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RATIONAL HOMOTOPY MODELS FOR TWO-POINT
CONFIGURATION SPACES OF LENS SPACES

MATTHEW S. MILLER

(communicated by Gunnar Carlsson)

Abstract
We study the algebraic topology of configuration spaces as

interesting objects in their own right and with the goal of con-
structing invariants for topological manifolds. We calculate the
complete Massey product structure for the universal cover of
the space of two point configurations in a three-dimensional lens
space. We then construct rational homotopy models for these
spaces and calculate the rational homotopy groups.

1. Introduction

1.1. Configuration Spaces
The objects we study are configuration spaces, which parametrize collections of k

distinct labelled points free to move through a given space.

Definition 1.1. The configuration space of k points in a manifold M is the space

Conf k(M) := {(x1, x2, . . . , xk) ∈M×k : xi 6= xj for i 6= j}.

Configuration spaces have played an important role in many areas of topology,
ranging from operads to iterated loop spaces to knot theory. They have also been
studied for their own sake, and in general it is not known how to compute the coho-
mology ring of configurations in an arbitrary manifold, see Bendersky and Gitler [3],
Cohen and Taylor [4], Felix and Thomas [5], and Totaro [11].

A long standing conjecture about configuration spaces was that two homotopy
equivalent manifolds of the same dimension would have homotopy equivalent config-
uration spaces. Lambrechts and Stanley [7] resolved this conjecture for the rational
homotopy type of a configuration of two points in a closed two-connected manifold.
In [8], Longoni and Salvatore used Lens spaces to provide the first counterexample.
One important motivation for studying configuration spaces is thus that the homo-
topy type of a configuration space can be sensitive to the more subtle homeomorphism
type of the original manifold. As in Felix and Thomas [5] and Longoni and Salva-
tore [8] we find that Massey products play a central role in our study of configuration
spaces.
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1.2. Lens Spaces
The first class of manifolds used to illustrate the distinction between homeomor-

phism and homotopy equivalence was Lens spaces, see Reidemeister [10]. To define
Lens spaces, let the group Zp be the group of pth roots of unity in C, generated by
ζ = e2πi/p. Note that p need not be prime. Let S3 be the submanifold of unit length
vectors in C2. Define the action of ζq by

ζq(z1, z2) = (ζz1, ζ
qz2).

Definition 1.2. For the relatively prime pair of integers, (p, q) we define the Lens
space L(p, q) to be the quotient S3/〈ζq〉.

Theorem 1.3. (Reidemeister [10]) The Lens spaces L(p, q) and L(p, q′) are homo-
topy equivalent if and only if for some r ∈ Zp

q′ ≡ ±qr2 mod p.

The Lens spaces L(p, q) and L(p, q′) are homeomorphic if and only if

q′ ≡ ±q±1 mod p.

1.3. Overview
As stated before, the main goal of our work is to model the rational homotopy

type of certain configuration spaces. We extend the approach of Longoni and Sal-
vatore [8] to study the universal cover of the configuration space Conf 2(L(p, q)),

which we denote by C̃onf 2
(
L(p, q)

)
. Our first main theorem is Theorem 3.2 which is

a computation of all of the Massey products for C̃onf 2
(
L(p, q)

)
. We use the Massey

product structure to prove our second main result, Theorem 4.2, which is the con-
struction of a differential graded algebra, A(p, q), that is a model for the co-chains on

C̃onf 2
(
L(p, q)

)
.

Longoni and Salvatore [8] show that C̃onf 2
(
L(7, 1)

)
is homotopy equivalent to(

∨6S2
)
× S3 and hence is rationally formal and has no non-trivial Massey products.

Then they proceed to construct representing submanifolds for the cohomology classes

of C̃onf 2
(
L(7, 2)

)
and use these representatives to show that there is a non-trivial

Massey product in the cohomology of C̃onf 2
(
L(7, 2)

)
. At the end of their paper they

suggest that it would be interesting to study the homeomorphism type of all Lens
spaces through the rational homotopy type of configuration spaces. While initially
we use the constructions and techniques of Longoni and Salvatore [8], which in some
cases have direct generalizations as mentioned at the end of [8], at our level of gener-
ality there are new technical difficulties. In particular, there are several transversality
problems to overcome. Moreover, Longoni and Salvatore [8] compare only two Massey
product structures, one of which is entirely trivial, leaving the task of showing that in
the other there is a non-trivial product. When attempting to understand the class of

all spaces, C̃onf 2
(
L(p, q)

)
, many of which admit non-trivial products, the algebraic

problem of finding invariants of the Massey product structure remains open and is
a topic of our current work. During the summer of 2010 at an intensive research
period on configuration spaces at the Centro di Ricerca Matematica Ennio De Gior-
gio, we were happy to hear a lecture by Paolo Salvatore. In part of his lecture he
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used the work contained in this paper to distinguish the rational homotopy type of

C̃onf 2
(
L(11, 2)

)
and C̃onf 2

(
L(11, 3)

)
.

An interesting question raised by the anonymous referee is that of the integral

homotopy type of C̃onf 2
(
L(p, q)

)
. We are currently investigating whether the rational

models constructed here are integral homotopy models for C̃onf 2
(
L(p, q)

)
. Anick’s

work in [1, 2] provides one method by which to approach this problem. It may also
be interesting to attempt a computation of the Steenrod operations directly.

Our plan is as follows. In Section 2 we discuss the cohomology of C̃onf 2
(
L(p, q)

)
and how to represent cohomology classes geometrically. In Section 3 we compute all

Massey products in C̃onf 2
(
L(p, q)

)
. To do this we make use of intersection theory and

describe explicit perturbations of the cohomology representatives in order to make
intersections transversal. Section 4 focuses on the algebraic theorems. We use the
Massey product information from Section 3 to construct the algebras A(p, q), which

are rational models for the co-chains on C̃onf 2
(
L(p, q)

)
.

2. The cohomology ring and geometric representatives

In this section we discuss the cohomology of the universal cover of two point
configuration spaces of Lens spaces. In particular, we consider

C̃onf 2
(
L(p, q)

)
= {(x, y) ∈ S3 × S3 : x 6= ζkq y for all k ∈ Zp}.

This space can be written as (S3 × S3)\∆q, where ∆q is a union of diagonals ∆q =
∪k∈Zp∆

k
q and ∆k

q is the image of the embedding

S3 −→ S3 × S3

w 7−→ (w, ζkqw).

We also describe two standard models for S3 which are useful in understanding the
cohomology geometrically.

Recall from the calculation of Longoni and Salvatore in [8], that

H∗
(
C̃onf 2

(
L(p, q)

))
=


Zp−1 ∗ = 2

Z ∗ = 3

Zp−1 ∗ = 5,

which follows from an easy Leray-Serre spectral sequence calculation that also deter-
mines the ring structure. Lefshetz Duality gives the following isomorphism

H6−∗(S
3 × S3,∆q) = H∗(C̃onf 2

(
L(p, q)

)
).

For convenience we list the generators of H∗(S
3 × S3,∆q) and their Lefshetz duals

in Table 1. The subscripts k are in Zp. With this notation we describe the cohomology
ring as the differential graded algebra generated in degree two by the ak and in degree
three by η with the relations [aj ] · [ak] = 0 and

∑
k∈Zp

[ak] = 0. This description of
the cohomology ring is symmetric with respect to the action of Zp on subscripts.

To describe submanifolds that represent generators of H∗(S
3 × S3,∆q), we use the

standard descriptions of S3, given through its standard embedding as the unit sphere
in C2 and through its canonical Heegard decomposition.
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∗ H∗ H6−∗ 6− ∗

2 [ak] oo // [Ak] 4

3 [η] oo // [S] 3

5 [ηak] oo // [S ∩Ak] 1

Table 1: The generators of H∗(S
3 × S3,∆q) and their Lefshetz duals.

2.1. The Complex Model

Using the standard embedding of S3 in C2 we have

C̃onf 2
(
L(p, q)

)
= S3 × S3\∆q

= {(z1, z2); (z3, z4) ∈ C2 × C2 : (z1, z2) 6= (ζkz3, ζ
qkz4)}.

The representatives for the classes [Ak] will be denoted Ak and can be thought of
as graphs of “fattened” functions from S3 to itself. That is, for every point in the first
S3 factor, Ak contains an interval in the second S3 which goes between the diagonals
∆k−1

q and ∆k
q . Since we often make use of objects of this form, we make the following

definition.

Definition 2.1. Given a map f : X × Y → X we define the track of f , denoted Γ(f),
to be the image of (idX ◦ π)× f : X × Y → X ×X, where idX is the identity map
on X and π the canonical projection from X × Y to X.

Note that the graph of a self map is the special case of a track in which Y is a
point.

We also set I(k) to be the interval (k − 1, k), and note that I(1) = I = (0, 1).
We choose the canonical positive orientation on I(k). Throughout we choose the
orientation for S3 that is consistent with the orientation at the point (1, 0) given by
the basis tangent vectors (i, 0), (1, 0) and (0, i).

Using our notion of a track we define Ak to be the same submanifold as that given
by Longoni and Salvatore in [8].

Definition 2.2. Let Ak be the track Γ(αk), where

αk : S
3 × I(k) −→ S3

(w, s) 7−→ ζq
s w.

Alternatively, in coordinates, w = (z1, z2) and

Ak = {(z1, z2); (ζsz1, ζqsz2) : s ∈ I(k)} ⊂ S3 × S3 ⊂ C2 × C2.

To show that these submanifolds do represent homology generators and the sum
of these classes is zero, we consider a portion of the long exact sequence of the pair
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(S3 × S3,∆q). Let Ak be the closure of Ak in S3 × S3 and consider the following.

H4(S
3 × S3) = 0 // H4(S

3 × S3,∆q)
∂ // H3(∆q) · · ·

[Ak]
� // [∆k

q ]− [∆k−1
q ].

From the injectivity of ∂ it is immediate that the [Ak] generate H4(S
3 × S3,∆q)

and that
∑

k∈Zp
[Ak] = 0. Throughout the rest of this paper we use the locally finite

representatives Ak so as to avoid issues of transversality on the boundary.
The generator of H3(S

3 × S3,∆q) is represented by an embedded S3.

Definition 2.3. Define S to be the image of the embedding S3 → S3 × S3 which
sends w to

(
1, w

)
.

The point in the first coordinate may be chosen arbitrarily, but our choice of (1, 0)
makes some computations easier.

By Lefshetz duality the generators of H1(S
3 × S3,∆q) are given by homology

classes of the intersections,

S ∩Ak = {αk((1, 0)× t)} = {(1, 0); (ζs, 0) : s ∈ I(k)},

which we show are transversal in the next section.
The group of deck transformations is Zp × Zp, and the element (ζj1 , ζj2) acts on

the Lefshetz dual homology representatives Ak by

(ζj1 , ζj2)(Ak) = {(ζj1q , ζj2q )(w, ζk−1+t
q w)} (for t ∈ I)

= {(ζj1q w, ζk−1+t+j2
q w)}

= {(w, ζk−1+t+(j2−j1)
q w)} (as subspaces)

= Ak+(j2−j1).

Thus the diagonal subgroup of Zp × Zp acts trivially. We restrict our attention to the
action by the subgroup generated by (1, ζ), which is isomorphic to the quotient of
Zp × Zp by this kernel. Notice also that (ζj1q , ζj2q )(1, z) = (ζj1q 1, ζj2z), thereby sending
S to S′ another representative of [S] that differs only by the choice of the point in
the first coordinate. We deduce that (1, ζ)[Ak ∩ S] = [Ak+1 ∩ S].

2.2. The Heegard Decomposition
When computing the intersections of these homology representatives in the next

section, it will be useful to employ the canonical Heegard decomposition. To this end
we define T to be the solid torus D2 × [0, p] modulo the relation (x, 0) ∼ (x, p). We
describe points in T using polar coordinates as

{
(r, θ1, θ2) : r ∈ [0, 1] and θj ∈ [0, p]

}
.

Along the circle given by r = 0, θ1 is irrelevant, so we denote such points as (0,−, θ2),
and refer to them as the central fiber of the torus. Let T1 and T2 to be two copies of
T and set F : ∂T1 −→ ∂T2, by (1, θ1, θ2) 7−→ (1, θ2, θ1). We have that S3 = T1 ∪F T2

and

C̃onf 2
(
L(p, q)

)
⊂ (T1 ∪F T2)× (T3 ∪F T4).

When using this decomposition to define a map we use superscripts to indicate
which torus we are mapping to. The action of ζq in the torus decomposition of S3 is
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described by

ζq (r1, θ2, θ1) = (r1, θ2 + q, θ1 + 1)

ζq (r2, θ1, θ2) = (r2, θ1 + 1, θ2 + q) .

Here the first equation describes the action in T1 and the second in T2. Furthermore,
we note that when using the torus decomposition of S3 we can write Ak as the union
Γ(α1

k) ∪ Γ(α2
k) where

α1
k : T × I(k) −→ T

(r1, θ1, θ2)× s 7−→ (r1, θ1 + qs, θ2 + s)

α2
k : T × I(k) −→ T

(r2, θ3, θ4)× s 7−→ (r2, θ3 + s, θ4 + qs).

3. Intersection theory and Massey products

In this section we determine the Massey product structure for C̃onf 2
(
L(p, q)

)
. Let

S1 be R modulo the subgroup pZ, and given an interval (a, b) ⊂ R, let (a, b)S1 denote
its projection on S1. Many of the following computations depend on the intersection
of specific intervals on S1. These intervals depend on the choice of q, hence we make
the following definition.

Definition 3.1. Let j be an integer modulo p. Define j to be q-covering if

j ≡ q−1m (mod p) for |m| ∈ (0, q)S1 .

Fix j to be q-covering. Now define k to be an interloper of j if

k ∈ [j, p]S1 and m > 0, or

k ∈ [0, j]S1 and m < 0.

If j is not q-covering then there are no interlopers of j.

To conveniently summarize the results of this section, we use a model for the

cochains of C̃onf 2
(
L(p, q)

)
defined in Section 4.

Theorem 3.2. All non-trivial Massey products in C̃onf 2
(
L(p, q)

)
are determined by

the action of Zp on the ai’s, linearity and the following chain level products, with the
choice of bounding chains stated in Definition 3.20 below:
〈a1+j , a1, a1+k〉 = ηa1+k, for k a non-zero interloper of j but not q-covering

〈a1+j , a1, a1+j ′〉 = η(a1+j ′ − a1+j), for j and j ′ interlopers of each other

〈a1+j , a1, a1〉 =
∑
k

ηa1+k, where the sum ranges over all non-zero interlopers of j.

Example 3.3. For the Lens space L(7, 2) we have the following non-trivial chain level
Massey products,

〈a4, a1, a2〉 = ηa2, 〈a5, a1, a6〉 = ηa6

〈a4, a1, a3〉 = ηa3, 〈a5, a1, a0〉 = ηa0

〈a4, a1, a1〉 = η(a2 + a3 + a4), 〈a5, a1, a1〉 = η(a5 + a6 + a0).

The first Massey product here is the example constructed by Longoni and Salvatore
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T~w(Ak) T~w(S)(
0, 0
)
;
(
iζs, 0

) (
0, 0
)
;
(
iζs, 0

)(
0, 1
)
;
(
0, ζqs

) (
0, 0
)
;
(
0, ζqs

)(
0, i
)
;
(
0, iζqs

) (
0, 0
)
;
(
0, iζqs

)(
i, 0
)
;
(
iζs, 0

)
.

Table 2: The tangent vectors at a point ~w ∈ S ∩Ak.

in [8], up to the indeterminacy.

We use intersection theory to compute these Massey (triple) products which we
define at the chain level. Given a differential graded algebra A and elements u, v, x, y,
and z ∈ A such that

dx = dy = dz = 0, du = xy, and dv = yz,

we define the Massey product

〈x, y, z〉 := uz − (−1)|x|xv.

The notation |x| denotes the degree of x.

Remark 3.4. This Massey product depends on choices of u and v. So a better notation
would be 〈x, y, z〉(u,v). But we will instead make our choices of u and v clear outside

of the notation. When defined at the cohomology level, a Massey product
〈
[x], [y], [z]

〉
lives in the cohomology ring H(A), modulo the ideal generated by [x] and [z]. Thus
in Example 3.3 all but the last two Massey products vanish at the cohomology level.

3.1. Intersection Computations
Some of the intersections among our representing submanifolds are transversal,

and others are not. We describe all double and triple intersections among the repre-
senting manifolds Ak. When the intersections are not transversal we describe explicit
perturbations that make them so. When an intersection is transversal, we sometimes
denote it by U t V .

Example 3.5. To give an example of a transversal intersection, we justify the claim
from the previous section that S ∩Ak is transversal. Recall that

S ∩Ak = {Γ(αk)((1, 0)× s) : s ∈ I(k)} = {(1, 0); (ζs, 0) : s ∈ I(k)} ,

and notice that is has the correct dimension. To show this intersection is transversal,
we span the tangent space at a point

~w = (w1, w2) ∈ C̃onf 2
(
L(p, q)

)
⊂ S3 × S3

using tangent vectors of Ak and S. Consulting Definitions 2.2 and 2.3, and then
finding perpendicular vectors in C2 × C2 ∼= R4 × R4 that are tangent to S3 × S3, we
see that the tangent vectors of ~w are listed in Table 2. These tangent vectors clearly
span a six-dimensional space, since only the top two vectors are linearly dependent.
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We also remark that it is sufficient to restrict our attention to q < p
2 . If q were

greater than p
2 we could replace our chosen representative Ak with

Ăk :=
{
(z1, z2);

(
ζk−1+tz1, ζ

q(k−1)+(q−p)t)z2

)
: t ∈ I

}
.

This yields similar results to those which we prove for q < p
2 .

3.1.1. Double Intersections
We begin by computing the intersection of Ak and Ak+j . Recall our chosen repre-
sentatives for the the generators [Ak] ∈ H4(S

3 × S3,∆q) are Ak = Γ(αk) as given in
Definition 2.2. These representatives have codimension two so the transversal intersec-
tion of any two of these representatives should have codimension four. A transversal
intersection of three of them is a collection of points, and any transversal intersection
of more than three is empty.

In computing intersections we make use of the projections pri : S
3 × S3 −→ S3

sending (w1, w2) to wi. If we consider the equality

pr1Γ(αk)(w, s) = pr1Γ(αk+j)(w
′, s′),

where s ∈ I(k) and s′ ∈ I(k + j), we see that any point in Ak ∩Ak+j would have w
equal w′. Applying the second projection we see αk(w) must equal αk+j(w

′) as well,
so we have

ζq
sw = ζq

s′w.

Thus, letting w = (z1, z2) we have

ζs = ζs
′

or z1 = 0, (1)

ζqs = ζqs
′

or z2 = 0. (2)

It is clear that unless j = 0, Equation (1) only has solutions when z1 = 0. So the
intersection occurs along a central fiber. We assume j 6= 0 for now and discuss the
case when j = 0 in Section 3.1.3. So the intersection in question is of the form

Ak ∩Ak+j =
{
Γ(α1)

(
(0, z2)× τ

)}
for some τ which is determined by the solution to the equation (2). This equation
can be written as

q(s− s′) ≡ 0 (mod p) or q(j + λ) ≡ 0 (mod p),

where λ ∈ (−1, 1), so qλ ∈ (−q, q)S1 . As qj is a non-zero integer this equation has
solutions exactly when qj ≡ m (mod p) for |m| ∈ (0, q).

Remark 3.6. The definition of q-covering in Definition 3.1 arises from this computa-
tion. If j is not q-covering then Ak ∩Ak+j is empty.

Remark 3.7. We adopt the notational convention that all s, including those that are
decorated (for example s′′), are in I(k) for an appropriate choice of k. We reserve t,
including those that are decorated, for quantities which vary in I = (0, 1). Lastly, we
let τ ∈ Iτ , where Iτ is the interval (q(`− 1), q`)S1 ∩ (q(`′ − 1), q`′)S1 for the appro-
priate choice of ` and `′. This convention holds for decorated τ ’s as well. Note that
Iτ can be empty.
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Proposition 3.8. If j is q-covering and Iτ =
(
qI(k)

)
S1 ∩

(
qI(k + j)

)
S1 , then the

intersection

Ak ∩Ak+j =
{
Γ(αk)

(
(0, z2)× τ

)
: τ ∈ Iτ

}
= {(0, z2); (0, ζτz2) : τ ∈ Iτ}

is non-empty, transversal and is homeomorphic to S1 × Iτ .

Proof. Our previous discussion establishes that such an intersection is non-empty. To
show the intersection is transversal we let s ∈ I(k) and s′ ∈ I(k + j) and record the
tangent vectors in C2 × C2 as follows:

T~w(Ak) T~w(Ak+j)

(1, 0); (ζs, 0) (1, 0); (ζs
′
, 0)

(i, 0); (iζs, 0) (i, 0); (iζs
′
, 0)

(0, i); (0, iζqsz2) (0, i); (0, iζqs
′
z2)

(0, 0); (0, iζqsz2) (0, 0); (0, iζqs
′
z2)

.

Since we are evaluating these tangent vectors at a point where ζqs = ζqs
′
, the last

two pairs of tangent vectors are linearly dependent and thus span a two dimensional
space. The remaining four are linearly independent since j 6= 0. Thus these span a
six-dimensional space showing that the intersection is transversal.

Example 3.9. If we consider p = 11 and q = 3, this proposition says that for
Ak ∩Ak+j to be non-empty j ≡ 4m (mod p) for m = −2,−1, 1, 2, so j = 3, 7, 4, 8.

Remark 3.10. Many of the theorems in this section follow from straightforward
though tedious computations. We omit several of these computations, noting that
the structure is similar to the proof of Proposition 3.8. Namely, we would proceed
to show that an intersection must occur on the central fiber of a torus, and then
use number theory to determine the exact intersection. This kind of argument works
even with perturbations, though more care is needed. For the interested reader the
computations are given in the author’s thesis [9].

3.1.2. Triple Intersections
We saw above that all of the double intersections of the Ak’s are transversal. This is
not the case with the triple intersections. But in order to compute Massey products
we need to calculate Ak ∩Xij where the boundary of Xij is Ai ∩Aj . The boundary
Ak ∩ ∂Xij is Ak ∩Ai ∩Aj , so we begin by understanding all of the triple intersections
of distinct Ak. By the action of Zp = 〈(1, ζ)〉 described in Section 2.1, it suffices to
consider i = 1.

From the previous section we know that when j and j′ are q-covering, and Iτ and
Iτ ′ are as described in Remark 3.7,

A1 ∩A1+j = {(0, z2); (0, ζτz2) : τ ∈ Iτ}

A1 ∩A1+j′ = {(0, z′2); (0, ζτ
′
z′2) : τ

′ ∈ Iτ ′}.

So the only non-trivial triple intersections of distinct Ak must be of the form

A1 ∩A1+j ∩A1+j′ = {(0, z2); (0, ζτz2) : τ ∈ Iτ ∩ Iτ ′}.

If this is non-empty, it is not transversal because its dimension is two, not zero.
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That there are non-empty intersections of this form now follows from an elementary
calculation.

Proposition 3.11. Let j and j′ be q-covering so j ≡ mq−1, and j′ ≡ m′q−1 with
|m|, |m′| ∈ (0, q)S1 . Then the triple intersection A1 ∩A1+j ∩A1+j′ is non-empty if
and only if |m−m′| is in (0, q)S1 .

Example 3.12. When, p = 11 and q = 3 the only non-empty triple intersections of
distinct Ak’s are Ak ∩Ak+7 ∩Ak+4.

The main result in this section resolves these non-transversal triple intersections.

Theorem 3.13. There exist arbitrarily small perturbations of A1+j′ , denoted by

Ã1+j′ and defined below, so that the intersection A1 ∩A1+j ∩ Ã1+j′ is empty and
hence transversal.

First recall that Ak is the track of αk, which in the torus decomposition is the track
of α1

k ∪ α2
k. The double intersections and the non-transversal triple intersections are

contained in the central fiber and thus in Γ(α2
k)
(
(0,−, θ2)× s

)
. Since our perturba-

tions will be arbitrarily small and these intersections are at the center of the tori, we
need only consider the image of α2

k.
In order to more easily perturb the representatives we use rectangular coordinates

on the range of our map α2
1+j′ : T × I(j′)→ T defined as

α2
1+j′ : (r, θ1, θ2)× s′ 7−→

(
r cos

(
2π
p (θ1 + s′)

)
, r sin

(
2π
p (θ1 + s′)

)
, θ2 + qs′

)
.

There are two functions needed to perturb α2
1+j′ . The first function depends on

t′ = s′ − j′ ∈ I. Let

f(t′) =

{
t′, t′ ∈

(
0, 1

2

]
1− t′, t′ ∈

[
1
2 , 1
)
.

The next function will be used to alter α2
1+j′ according to the distance from the

central fiber of the tori. Let

g(r) =


1, r ∈

[
0, 1

4

]
2− 4r, r ∈

[
1
4 ,

1
2

]
0, r ∈

[
1
2 , 1
]
.

Definition 3.14. Let Ã1+j′ be the union Γ(α1
1+j′) ∪ Γ(α̃2

1+j′), where

α̃2
1+j′ : T × I(1 + j′) −→ T2 × T4,

α̃2
1+j′ : (r, θ1, θ2)× s′ 7−→(

r cos
(

2π
p (θ1 + s′)

)
, r sin

(
2π
p (θ1 + s′)

)
+ f(t′)g(r)ε, θ2 + qs′

)
,

where s′ ∈ I(1 + j′), t′ = s′ − j′ and ε > 0 is constant and close to zero.

This perturbation shifts the y coordinate of α̃2
1,1+j′ by an arbitrarily small amount

which goes to zero as points approach the boundary of the torus, ∆j′

q and ∆1+j′

q . In
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Figure 1 we illustrate the image of α2
1+j′(x× I(1 + j′)) and α2

1+j′

(
y × I(1 + j′)

)
by

dotted lines and their perturbations α̃2
1+j′

(
x× I(1 + j′)

)
and α̃2

1+j′

(
y × I(1 + j′)

)
by

solid lines.

xy

Figure 1: Some “fibers” in A1+j′ and its perturbation Ã1+j′

Proof. (of Theorem 3.13)
Recall that A1 ∩A1+j ⊂ Γ(α2

1)
(
(0,−, θ2)× t

)
, which is in the central fiber of

T2 × T4. We show that A1 ∩ Ã1+j′ does not intersect Γ(α
2
1)
(
(0,−, φ2)× s′

)
. Consider

A1 ∩ Ã1+j′ , our perturbation does not effect the projection onto the first coordi-
nate, so pr1Γ(α1+j′) = pr1Γ(α̃1+j′) implying that α1(w, s) = α̃1+j′(w

′, s′) only when
w = w′. Now we consider the equality arising from the projection onto the second
coordinate, namely α1

(
(0,−, θ2)× t

)
= α̃1+j′

(
(0,−, θ2)× s′

)
. Using the definitions

of α1, α̃1+j′ and g(r) we see that

Γ(α1)
(
(0,−, θ2)× t

)
= (0, 0, θ2)× (0, 0, θ2 + qt)

Γ(α̃1+j′)
(
(0,−, θ2)× s′

)
= (0, 0, θ2)× (0, f(t′)ε, θ2 + qs′),

where t′ = s′ − j′. Because f(t′)ε is never zero,

Γ(α1)
(
(0,−, θ2)× t

)
∩ Γ(α1+j′)

(
(0,−, φ2)× s′

)
is empty, which finishes the proof of the theorem.

When we compute Massey products we will need to understand A1 ∩ Ã1+j′ explic-
itly. As we have all the definitions at hand we present this intersection now. This
intersection is a small perturbation of A1 ∩A1+j′ and thus occurs close to the central
fiber of the second torus. Heuristically, this is the original intersection “pushed off
the central fiber in one direction”.

Proposition 3.15. Let τ ∈ Iτ , as defined in Remark 3.7, let � = p
2 −

1
2 (j

′ − m′

q ),
and let

r(t) =
f(t− m

q )ε

2 sin
(

2π
p �
) . (3)

Then we have the following intersection

A1 ∩ Ã1,1+j′ = Γ(α2
1

(
(r(t),�, θ2)× τ

)
).
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We note that with an appropriate choice of ε the intersection A1 ∩ Ã1+j′ occurs
arbitrarily close to the central fiber.

3.1.3. Self Intersections

The self intersection A1 ∩A1, which is clearly not transversal, plays an important

role in the Massey product structure of C̃onf 2
(
L(p, q)

)
. For the purpose of this self-

intersection we use a perturbation of A1 that is slightly different than the perturbation
in the previous section. We need another function which changes the perturbation
according to the distance from the center of the tori,

h(r) =


0, r ∈

[
0, 1

4

]
4r − 1, r ∈

[
1
4 ,

1
2

]
1, r ∈

[
1
2 , 1
]
.

We now define a new perturbation of A1
∼= S3 × (0, 1) using rectangular coordinates

that rescales the interval and the distance from the central fiber, as well as shifts the
y coordinate.

Definition 3.16. Let Â1 be Γ(α̂1), the track of the map

α̂1 = α̂1
1 ∪ α̂2

1 : S3 × I −→ S3

α̂1
1 : (r1, θ1, θ2)× t 7−→

((
1− f(t)h(r1)ε3

)
r1 cos

(
2π
p (θ1 + q(t+ f(t)g(r1)ε1))

)
,(

1− f(t)h(r1)ε3
)
r1 sin

(
2π
p (θ1 + q(t+ f(t)g(r1)ε1))

)
+ f(t)2g(r1)ε2, θ2 + t

)
α̂2
1 : (r2, θ3, θ4)× t 7−→

((
1 + f(t)h(r2)ε3

)
r2 cos

(
2π
p (θ3 + t+ f(t)g(r2)ε1)

)
,(

1 + f(t)h(r2)ε3
)
r2 sin

(
2π
p (θ3 + t+ f(t)g(r2)ε1)

)
+ f(t)2g(r2)ε2, θ4 + qt

)
.

Here we let ε1 > 0, ε2 > 0, and ε3 > 0 be fixed.

Remark 3.17.

• Away from the central fibers, the radius has been contracted in the first torus
and dilated in the second torus, so the radius is multiplied by 1− f(t)h(r2)ε3 for
α1 and 1 + f(t)h(r2)ε3 for α2. If this were the only perturbation the intersection
Γ(α1) ∩ Γ(α̂1) would occur on all of the subspace defined by ri 6 1

4 .

• The perturbation in the inputs of sine and cosine ensures that for a given point
in the torus and a fixed t = t′, the image under α is different than the image
under α̂. With only these first two perturbations, the intersection Γ(α1) ∩ Γ(α̂1)
would occur on the central fiber, which has the correct dimension but is not
transversal.

• The shift in the y coordinates is the same as the perturbation in the previous
section. This factor pushes the intersection off of the central fiber, and makes
the intersection transversal. We square f(t) so that this shift is close to zero
when t is close to 0 and 1.
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Theorem 3.18. The intersection A1 ∩ Â1 is a transversal perturbation of the self
intersection A1 ∩A1 and is equal to

A1 ∩ Â1 = Γ(α1
1)
(
(r1(t),�1, θ2)× t

)
∪ Γ(α2

1)
(
(r2(t),�2, θ4)× t

)
for functions

r1(t) =
f(t)2ε

2 sin
(

2π
p (�1 + qt)

)
r2(t) =

f(t)2ε

2 sin
(

2π
p (�2 + t)

)
�1 =p

2 −
q
2f(t)ε− qt

�2 =p
2 −

1
2f(t)ε− t.

Moreover, with an appropriate choice of ε this intersection lies arbitrarily close to the
central fiber.

In this intersection there are two components because, unlike in previous cases,
there is a non-trivial intersection of A1 with itself along the central fiber of the first
torus. We also note that the functions ri(t) are similar to those in Proposition 3.15.

Proposition 3.19. The triple intersection A1 ∩ Â1 ∩Aj is empty

Proof. This proposition follows immediately from the fact that A1 ∩A1+j is empty
unless j is q-covering, in which case it occurs on the central fiber of T2 × T4. But
A1 ∩ Â1 does not intersect the central fiber, as stated in Theorem 3.18.

3.2. Massey Products
The Massey product 〈x, y, z〉 is in degree |x|+ |y|+ |z| − 1. Therefore a non-trivial

Massey product in C∗(C̃onf 2
(
L(p, q)

)
) must involve cycles x, y, z all in degree 2.

Moreover, at the chain level Massey products are linear, so we need only consider
when these cycles are generators.

In order to compute Massey products of the form 〈ai, aj , ak〉 it is necessary to find
bounding manifolds for the double intersections described above. The triple intersec-
tion will be relevant when intersecting the bounding manifolds with other Ak. Since
all products of the form [ak] · [aj ] are zero in the cohomology ring, there are bounding
manifolds for all of the double intersections. We define three dimensional manifolds
X1,1+j that have relative boundary equal to A1 ∩A1+j .

Recall that A1 ∩A1+j is defined by an embedding of S1 × (0, 1) along the central
fiber of T2 × T4. The bounding manifolds X1,1+j are defined by an embedding of
D2 × (0, 1) so that the boundary S1 × (0, 1) coincides with A1 ∩A1+j and the center
of the disc is on the central fiber of T1 × T3. To be precise we identify D2 with the
image of the embedding

δ : D2 −→ T1 ∪F T2 = S3

δ1 : (r, θ) 7−→ (r1, θ, 0)

δ2 : (r, θ) 7−→ (r2, 0, θ),

where r1 = 2r for r ∈
[
0, 1

2

]
, and r2 = 2− 2r for

[
1
2 , 1
]
.
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Definition 3.20. For j q-covering, define a three dimensional sub-manifold X1,1+j

to be Γ(χ1,1+j), the track of the map

χ1,1+j = χ1
1,1+j ∪ χ2

1,1+j : D
2 × Iτ −→ S3

χ1
1,1+j : (r, θ)× τ 7−→ (r1, θ + τ, σ)

χ2
1,1+j : (r, θ)× τ 7−→ (r2, σ, θ + τ).

Here r1 and r2 are as described in the definition of δ, Iτ = (0, q)S1 ∩ (m,m+ q)S1 ,
qσ ≡ τ (mod p). If m is negative then σ ∈ (0, j)S1 , and if m is positive then
σ ∈ (j, 0)S1 . We denote the interval of possible values for σ by Iσ.

Alternately, in the complex model we have

X1,1+j = {(ρ, z); (ρζσ, ζτz) : |z|2 + ρ2 = 1, and ρ ∈ R}.

Since A1 ∩A` is empty when ` 6= 1 + j, where j is q-covering, we set X1,` = ∅ in
this case.

Proposition 3.21. The manifold X1,1+j has boundary A1 t A1+j.

Proof. Since τ is in an open interval the only boundary occurs when r = 1. But when
r = 1 we have A1 t A1+j .

The bounding manifold X̂1,1 for the self intersection A1 ∩ Â1 has two compo-
nents. Both components are similar in structure to X1,1+j in that they are each an
embedding of D2 × (0, 1) such that the boundary circle coincides with a component

of A1 ∩ Â1 and the center of the disc lies on a central fiber. Recall from Theorem 3.18
that

�1 :=p
2 −

q
2f(t)ε− qt

�2 :=p
2 −

1
2f(t)ε− t

and the functions ri(t) can be set arbitrarily close to zero with the choice of ε.

Definition 3.22. Let ρi be in the interval [0, 1], for i = 1, 2 and define X̂1,1 to be the
union of Γ(β1) defined here and Γ(γ1) defined below in Definition 3.24.

β1 = β1
1 ∪ β2

1 : D
2 × (0, 1) −→ S3

β1
1 : (ρ1, θ1)× t 7−→

((
ρ1 + (1− ρ1)r1(t)

)
cos
(

2π
p ((1− ρ1)�1 + qt))

)
,

(
ρ1 + (1− ρ1)r1(t)

)
sin
(

2π
p ((1− ρ1)�1 + qt))

)
, θ1 + t

)
β2
1 : (ρ2, θ3)× t 7−→ (ρ2, θ3 + t, qt),

where ρ1 = 2ρ for ρ ∈
[
0, 1

2

]
, ρ2 = 2− 2ρ for ρ ∈

[
1
2 , 1
]
.

Remark 3.23. If ri goes to zero, X̂1,1 approaches a manifold whose boundary is on
central fiber. The factors of 1− ρ are used to interpolate so that there is “no pertur-
bation” on the boundary of the torus, which allows the halves to match up there.
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Definition 3.24. Similarly,

γ1 = γ1
1 ∪ γ2

1 : D
2 × (0, 1) −→ S3

γ1
1 : (ρ1, θ2)× t 7−→ (ρ1, θ2 + qt, t)

γ2
1 : (ρ2, θ4)× t 7−→

((
(1− ρ2)r2(t) + ρ2

)
cos
(

2π
p ((1− ρ2)�2 + t))

)
,

(
(1− ρ2)r2(t) + ρ2

)
sin
(

2π
p ((1− ρ2)�2 + t))

)
, θ4 + qt

)
,

where ρ1 = 2− 2ρ for ρ ∈
[
0, 1

2

]
, ρ2 = 2ρ for ρ ∈

[
1
2 , 1
]
.

Proposition 3.25. The manifold X̂1,1 has boundary A1 ∩ Â1.

Proof. The only boundary of X̂1,1 occurs as the image of β1
1(0, θ1)× t and γ2

1(0, θ4)×
t, but this is exactly A1 ∩ Â1.

Remark 3.26. We note that (1− ρi)ri(t) + ρi · 1 is never zero since ri(t) is always

positive. This implies that each component of X̂1,1 only intersects one central fiber,
and that is at the center of the disc. Schematically each component is similar to the
perturbation pictured in Figure 2 below.

Massey products are represented by the submanifolds (A` t X1,`′) ∪ (A`′ t X1,`),
so we compute A` t X1,`′ . In order to enumerate and explain the different cases more
clearly we reset the notation from Definition 3.1. In particular, for the rest of this
section we assume j and j′ are q-covering and k and k′ are interlopers for j and j′

respectively. We let ` be an arbitrary value in Zp. We need to calculate A∗ t X1,•

and A∗ ∩ X̂1,1. There are several cases, and we establish a proposition for each case.
Recall the definitions of A` and X1,1+j from Definitions 2.2 and 3.20.

Proposition 3.27. Let j be q-covering as in Definition 3.1, and let ` ∈ Zp. If ` is
also q-covering assume that |m− q`| 6∈ (0, q)S1 . Then

A1+` ∩X1,1+j =

{
∅, if ` is not an interloper of j

A1+` ∩ S, if ` is an interloper of j.

Moreover, in the second case the induced orientations on A` ∩X1,1+j and A` ∩ S
agree.

Next, the case when |m− q`| ∈ (0, q)S1 . When j and j′ are both q-covering with
|m−m′| ∈ (0, q)S1 the intersection A1+j′ ∩A1 ∩A1+j is not transversal, so neither is
A1+j′ ∩X1,1+j . Thus it requires a perturbation like those described in Section 3.1. We

define X̃1,1+j to be a bounding manifold for A1 ∩ Ã1+j using a perturbed embedding
of D2 × (0, 1). Recall that � = p

2 −
1
2 (j −

m
q ) and r(t) is close to zero and is defined

by Equation (3).
For τ ∈ Iτ , qσ = τ and σ ∈ Iσ as in Remark 3.7 we perturb the first twisting factor

with the function.

στ :=

{
σ + (τ − inf{Iτ})ε, τ ∈ (inf{Iτ}, 1

2 (sup{Iτ} − inf{Iτ}))
σ + (sup{Iτ} − τ)ε, τ ∈ ( 12 (sup{Iτ} − inf{Iτ}), sup{Iτ}).
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Definition 3.28. Define X̃1,1+j to be Γ(χ̃1,1+j), where

χ̃1,1+j = χ̃1
1,1+j ∪ χ̃2

1,1+j : D
2 × I −→ S3

χ̃1
1,1+j : (ρ, θ)× τ 7−→ (ρ1, θ + τ, στ )

χ̃2
1,1+j : (ρ, θ) 7−→

((
ρ2 + (1− ρ2)r(τ)

)
cos
(

2π
p ((1− ρ2)�+ στ

)
,

(
(1− ρ2)r(τ) + ρ2

)
sin
(

2π
p ((1− ρ2)�+ στ

)
, θ + τ

)
,

and where, ρ1 = 2ρ for ρ ∈
[
0, 1

2

]
and ρ2 = 2− 2ρ for ρ ∈

[
1
2 , 1
]
.

We illustrate pr1Γ(χ1,1+j′) on the left and pr1Γ(χ̃1,1+j′) on the right of Figure 2.

T1 T2
T1 T1 T2

T1

Figure 2: X1,1+j′ and its perturbation X̃1,1+j′

Proposition 3.29. The boundary of X̃1,1+j is A1 ∩ Ã1+j.

Proof. The only boundary is Γ(χ̃2
1,1+j)((0, θ)× τ), but this is A1 ∩ Ã1+j .

Proposition 3.30. When j and j′ are q-covering such that |m−m′| ∈ (0, q)S1 , then

A1+j′ ∩ X̃1,1+j =

{
∅, if j′ is not an interloper of j

A1+j′ ∩ S, if j′ is an interloper of j.

Moreover, in the second case the orientations on A1+j′ ∩ X̃1,1+j and A1+j′ ∩ S agree.

We now compute the intersections with X̂1,1 as defined in Definition 3.24. The

intersection A` ∩ X̂1,1, is treated similarly to the previous case.

Proposition 3.31. When j is q-covering and ` ∈ Zp then

A1+` ∩ X̂1,1 =

{
∅, if ` is not q-covering

Γ(α2
` )
(
(0,−, 0)× τ

)
, if ` is q-covering.

Here τ ∈ Iτ where Iτ is as defined in Remark 3.7.

Proposition 3.32. Let j be q-covering. The intersection A1+j ∩ X̂1,1, is homologous
to
∪

k Ak ∩ S, where k ranges over all interlopers of j. Moreover, the orientations

differ by a sign so [A1+j ∩ X̂1,1] = −
[∪

k Ak ∩ S
]
.
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Proof. Define a bounding manifold Uj(ξ), as Γ(ν) for

ν = ν1 ∪ ν2 : [0, 1]× I −→ S3

ν1j : (ξ, τ) 7−→ (2ξ, τ, σ) for ξ ∈ [0, 1
2 ]

ν2j : (ξ, τ) 7−→ (2− 2ξ, σ, τ) for ξ ∈ [12 , 1]

for τ ∈ Iτ , σ ∈ Iσ and qσ = τ . The boundary of Uj(ξ) is the union Uj(0) ∪ Uj(1), and
these components are recognizable as

Uj(0) =A1+j ∩ X̂1,1

Uj(1) =
∪
k

Ak ∩ S.

We note that the orientation of the first interval factor induces the difference
of orientation between Uj(0) and Uj(1). Therefore, A1+j ∩ X̂1,1 is homologous to
−
(∪

k Ak ∩ S
)
.

Combining all of the previous intersection computations we have the main theorem
of this section which gives a complete picture of the Massey product structure for

C∗(C̃onf 2
(
L(p, q)

)
). In summary we have the following theorem.

Theorem 3.33. After appropriate perturbations, for j q-covering and k an interloper
of j, the intersection A1+k t X1,1+j equals A1+k t S. For j q-covering the intersec-
tion A1+j t X1,1 is homologous to −

∑
k A1+k t S, where the sum ranges over all

interlopers of j.

We give two examples using this theorem. Theses examples are interesting to com-
pare since the Lens spaces L(11, 2) and L(11, 3) are the smallest Lens spaces that both
admit non-trivial Massey products and are homotopy equivalent but not homeomor-
phic. The tables below describe only the non-empty intersections (A1+` t X1,1+`′)
using the following conventions: if an entry is blank the intersection is empty, and a
list of numbers, i1, . . . , in represents the intersection ±(A1+i1 + · · ·+A1+in) ∩ S.

`′ = 0 `′ = 5 `′ = 6
` = 0 0 0
` = 1 1
` = 2 2
` = 3 3
` = 4 4
` = 5 0, 1, 2, 3, 4, 5 5
` = 6 6, 7, 8, 9, 10, 0 6
` = 7 7
` = 8 8
` = 9 9
` = 10 10

Table 3: Intersections in L(11, 2)
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`′ = 0 `′ = 3 `′ = 7 `′ = 4 `′ = 8
` = 0 0 0 0 0
` = 1 1 1
` = 2 2 2
` = 3 0, 1, 2, 3 3 3
` = 4 5, 6, 7, 8, 9, 10, 0 4
` = 5 5 5
` = 6 6 6
` = 7 0, 1, 2, 3, 4, 5, 6, 7 7 7
` = 8 8, 9, 10, 0 8 8
` = 9 9 9
` = 10 10 10

Table 4: Intersections in L(11, 3)

4. Rational homotopy models

In the last section we gathered the geometric information necessary to step into
the algebraic setting of rational homotopy theory. In this section we build rational

models, A(p, q) for the co-chains on C̃onf 2
(
L(p, q)

)
.

4.1. A Rational Co-chain Model
We now construct a model A(p, q) for the rational co-chains on C̃onf 2

(
L(p, q)

)
.

Recall the definition of q-covering and interloper of j from Definition 3.1.

Definition 4.1. Let B be the free differential graded algebra generated in degree two
by ak, for k ∈ Zp, and in degree three by η and xjk for j 6 k and j, k ∈ Zp. Define
the differential to be d(xjk) = ajak and zero otherwise.

Let A(p, q) be the differential graded algebra that is zero in degrees greater than
five and in degrees less than or equal to five define A(p, q) to be the quotient of B
modulo the following relations:∑

k∈Zp

ak = 0;

aiai+` = xi,i+` = 0 if ` is not q-covering;

ai+`xi,i+j = 0 for j q-covering and ` not an interloper of j;

ai+kxi,i+j = ηai+k for j q-covering and k an interloper of j;

−ai+jxi,i =
∑
k

ai+kη,where j q-covering and k ranges over all interlopers of j.

The following theorem is the main result of this section.

Theorem 4.2. The algebra A(p, q) is a rational model for the cochains of

C̃onf 2
(
L(p, q)

)
.

This theorem follows from Theorem 5.15 of Halperin and Stasheff [6] and the
Massey product calculations in Section 3. In particular, the only non-zero obstructions
of Theorem 5.15 correspond precisely to Massey triple products.
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4.2. The Homotopy Lie Algebra
To give generators for the rational homotopy groups we notice that the fibration

arising from the projection onto the first coordinate∨
p−1

S2 −→ C̃onf 2
(
L(p, q)

) pr

−→ S3

has a section. Thus the homotopy long exact sequence splits yielding

πk

(∨
p−1

S2

)
↪→ πk

(
C̃onf 2

(
L(p, q)

))
� πk

(
S3
)

for all k > 1. This implies that the homotopy Lie algebra contains a free Lie alge-
bra on (p− 1) generators in degree two. There is also a generator in degree three
corresponding to some choice of splitting

πk

(
C̃onf 2

(
L(p, q)

))
←↩ πk

(
S3
)
.

Rationally πk

(
S3
)
is trivial for k > 3 which proves the following additive result.

Proposition 4.3. The homotopy Lie algebra of πk

(
C̃onf 2

(
L(p, q)

))
is additively

given by one generator in degree three and the remaining generators arise from a free
Lie algebra with (p− 1) generators in degree two.

We note that the additive structure depends only on p. The Lie algebra structure
however, is significantly more complex. In particular if the generator in degree three
is denoted by S and the Lie algebra generators in degree two are denoted by αi then
there are relations of the form

[αi, S] =
∑

0<j,k,`<p

cijk`
[
[αj , αk], α`

]
.

In further work we plan to investigate to what extent the Lie algebra structure can
distinguish the homeomorphism type of Lens spaces. In particular we plan to compute
the coefficients cijk` and use them to define and compute invariants of the Lie algebra
structure.
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