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ON THE VANISHING OF COHOMOLOGY
IN TRIANGULATED CATEGORIES

PETTER ANDREAS BERGH

(communicated by J.P.C. Greenlees)

Abstract
We study the vanishing of cohomology in a triangulated cat-

egory, in particular vanishing gaps and symmetry.

1. Introduction

In this paper, we study the vanishing of cohomology in a triangulated category
T with suspension functor Σ. Given two objects X and Y of T , a very natural
question arises when looking at their cohomology: can we detect the vanishing of
HomT (X,ΣnY ) for large n by looking at finite vanishing gaps? That is, is there a
finite set S of integers such that the implication

HomT (X,ΣnY ) = 0 for n ∈ S =⇒ HomT (X,ΣnY ) = 0 for n � 0

holds? The bounded derived category of a commutative local complete intersection
ring is an example where this is true. Namely, for such a ring A, the following was
shown by Jorgensen in [26] for a module M of complexity d: if N is an A-module,
and there exists an integer n > dimA such that ExtiA(M,N) = 0 for n 6 i 6 n+ d,
then ExtiA(M,N) vanishes for all i > dimA. Since ExtnA(M,N) is isomorphic to
HomDb(A)(M,ΣnN), the result of Jorgensen shows that we can indeed detect van-

ishing of cohomology in the bounded derived category Db(A) from finite vanishing
gaps. Moreover, by a classical result of Gulliksen (cf. [23]), the complexity of an
A-module is at most the codimension c of A. Therefore, we can always detect van-
ishing of cohomology over A by looking at gaps of length c+ 1.

Another natural question is: does symmetry hold in the vanishing of cohomology in
T ? In other words, if X and Y are objects in T such that HomT (X,ΣnY ) vanishes for
n � 0, then does it necessarily follow that HomT (Y,Σ

nX) also vanishes for n � 0?
Again, commutative local complete intersection rings provide examples where this
holds. Namely, it was shown in [5] that if M and N are modules over such a ring A,
then the implication

ExtiA(M,N) = 0 for i � 0 =⇒ ExtiA(N,M) = 0 for i � 0

holds. Another class of rings where such symmetry holds are group algebras of finite
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groups (cf. [28]), or, more generally, as we shall see, symmetric algebras with “finitely
generated” cohomology.

The two questions raised are studied in Section 3 and Section 4, respectively. We
obtain affirmative answers when certain cohomology groups are finitely generated
as modules over a ring acting centrally on our triangulated category, a concept we
define in the following section. In particular, we show that Ext-symmetry holds for
symmetric periodic algebras.

2. Preliminaries

Throughout this paper, we fix a triangulated category T with a suspension functor
Σ. Thus T is an additive Z-category together with an automorphism Σ and a class
of distinguished triangles satisfying Verdier’s axioms (cf. [34]).

Recall that a thick subcategory of T is a full triangulated subcategory closed under
direct summands. Now let C and D be subcategories of T . We denote by thick1T (C)
the full subcategory of T consisting of all the direct summands of finite direct sums
of shifts of objects in C. Furthermore, we denote by C ∗D the full subcategory of T
consisting of objects M such that there exists a distinguished triangle

C → M → D → ΣC

in T , with C ∈ C and D ∈ D. Now for each n > 2, define inductively thicknT (C) to
be thick1T

(
thickn−1

T (C) ∗ thick1T (C)
)
, and denote

∪∞
n=1 thick

n
T (C) by thickT (C). This

is the smallest thick subcategory of T containing C.
The aim of this paper is to study the vanishing of cohomology in triangulated

categories satisfying a certain finite generation hypothesis. This finite generation
hypothesis is expressed in terms of the graded center Z∗(T ) of our triangulated cat-
egory T . Recall therefore that for an integer n ∈ Z, the degree n component Zn(T )

is the set of natural transformations Id
f−→ Σn satisfying fΣX = (−1)nΣfX for each

object X ∈ T . This turns the graded center Z∗(T ) into a graded-commutative ring.
For a homogeneous central element f and objects X,Y ∈ T , consider the graded
group Hom∗

T (X,Y ) = ⊕i∈Z HomT (X,ΣiY ). The element f acts from the right on

this graded group via the morphism X
fX−−→ ΣnX, and from the left via the mor-

phism Y
fY−−→ ΣnY . Namely, given a morphism g ∈ HomT (X,ΣmY ), the scalar prod-

uct gf is the composition X
fX−−→ ΣnX

Σng−−−→ Σm+nY , whereas fg is the composition

X
g−→ ΣmY

ΣmfY−−−−→ Σm+nY . However, since Id
f−→ Σn is a natural transformation, the

diagram

X
g //

fX

��

ΣmY

fΣmY

��
ΣnX

Σng // Σm+nY

commutes, and so since fΣmY equals (−1)mnΣmfY we see that gf = (−1)mnfg. This
shows that Z∗(T ) acts graded-commutatively on Hom∗

T (X,Y ) for all objects X and
Y in T . For further details on the graded center and its action on the cohomology
groups, see [14].
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Now let R = ⊕∞
i=0Ri be a graded-commutative ring, that is, for homogeneous

elements r1, r2 ∈ R the equality r1r2 = (−1)|r1||r2|r2r1 holds (where |r| denotes the
degree of a homogeneous element r ∈ R). We say that R acts centrally on T if there
exists a graded ring homomorphism R → Z∗(T ). If this is the case, then for every

object X ∈ T there is a graded ring homomorphism R
ϕX−−→ Hom∗

T (X,X) with the
following property: for all objects Y ∈ T the scalar actions from R on Hom∗

T (X,Y )
via ϕX and ϕY are graded equivalent, i.e.,

ϕY (r)f = (−1)|r||f |fϕX(r)

for all homogeneous elements r ∈ R and f ∈ Hom∗
T (X,Y ). Following [6], we say

that the R-module Hom∗
T (X,Y ) is eventually Noetherian, and write Hom∗

T (X,Y ) ∈
NoethR, if there exists an integer n0 ∈ Z such that the R-module Hom>n0

T (X,Y )
is Noetherian. Moreover, we say that Hom∗

T (X,Y ) is eventually Noetherian of
finite length, and write Hom∗

T (X,Y ) ∈ Noethfl R, if Hom∗
T (X,Y ) ∈ NoethR, and

there exists an integer n0 ∈ Z such that `R0 (HomT (X,ΣnY )) < ∞ for each n > n0.
Note that if Hom∗

T (X,Y ) is eventually Noetherian (respectively, eventually Noethe-
rian of finite length), then so is Hom∗

T (X
′, Y ′) for all objects X ′ ∈ thickT (X) and

Y ′ ∈ thickT (Y ). In particular, if our category T is finitely generated in the sense
that there exists an object G such that T = thickT (G), then Hom∗

T (X,Y ) ∈ NoethR
(respectively, Hom∗

T (X,Y ) ∈ Noethfl R) for all X,Y ∈ T if and only if Hom∗
T (G,G) ∈

NoethR (respectively, Hom∗
T (G,G) ∈ Noethfl R).

Definition 2.1. Given objects X and Y of T , we define the complexity of the ordered
pair (X,Y ) as

cxT (X,Y )
def
= dimRev Hom∗

T (X,Y ),

where Rev denotes the commutative graded subalgebra⊕∞
i=0R2i of R, and dim denotes

the Krull dimension. We define the complexity cxT X of the single object X as

cxT X
def
= cxT (X,X).

As is seen from the definition, the complexity of a pair of objects depends on
the ring acting centrally. Therefore, strictly speaking, the correct notation should
be something like cxRT (X,Y ). However, by [11, Lemma 4.3], the complexity is inde-
pendent of the ring when the cohomology is finitely generated. Namely, if R and S
are graded-commutative rings acting centrally on T , and Hom∗

T (X,Y ) belongs to
both Noethfl R and Noethfl S, then dimRev Hom∗

T (X,Y ) = dimSev Hom∗
T (X,Y ). We

therefore omit the ring in the notation of complexity; when studying vanishing of
cohomology in T , we will only be dealing with objects X,Y ∈ T with the property
that the R-module Hom∗

T (X,Y ) is eventually Noetherian of finite length.
The fact that we will only be dealing with objects having finitely generated coho-

mology motivates the choice of terminology. Namely, it follows from [11, Proposition
2.6] that if Hom∗

T (X,Y ) ∈ Noethfl R, then the Krull dimension of the Rev-module
Hom∗

T (X,Y ) equals the infimum of all non-negative integers t with the following
property: there exists a real number a such that

`R0 (HomT (X,ΣnY )) 6 ant−1

for n � 0. A priori, the complexity of a pair is not finite. However, finite-
ness holds when Hom∗

T (X,Y ) is eventually Noetherian of finite length. To see
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this, let n0 be an integer such that the R-module Hom>n0

T (X,Y ) is Noethe-
rian and `R0 (HomT (X,ΣnY )) < ∞ for each n > n0, and denote the ideal

AnnR Hom>n0

T (X,Y ) in R by I. By [11, Remark 2.1], the quotient ring R/I is Noethe-
rian, and its degree zero part (R/I)0 is Artinian. The claim now follows from the
Hilbert-Serre Theorem (cf. [1, Theorem 11.1]).

It follows from the above alternative description of complexity that if X and Y
are objects of T with Hom∗

T (X,Y ) ∈ Noethfl R, then cxT (X,Y ) = 0 if and only if
Hom∗

T (X,Y ) is eventually zero, that is, if HomT (X,ΣnY ) = 0 for n � 0. Now digress
for a moment, and let Λ be a ring. Then Λ is said to satisfy Auslander’s condition if for
every finitely generated module M , there exists an integer dM , depending only on M ,
satisfying the following: if N is a finitely generated Λ-module and ExtnΛ(M,N) = 0
for n � 0, then ExtnΛ(M,N) = 0 for n > dM . Such algebras were studied in [15].
Motivated by this, we say that a full subcategory C of T satisfies the left Auslander
condition if for every object X ∈ C, there exists an integer dX , depending only on
X, such that the following holds: if Hom∗

T (X,Y ) is eventually zero for some object
Y ∈ T , then HomT (X,ΣnY ) = 0 for n > dX . It is easy to see that this holds if and
only if for all objects X ∈ C and Y ∈ T , the implication

HomT (X,ΣnY ) = 0 for n � 0 =⇒ HomT (X,ΣnY ) = 0 for all n ∈ Z

holds. Dually, we say that C satisfies the right Auslander condition if the implication

HomT (Y,Σ
nX) = 0 for n � 0 =⇒ HomT (Y,Σ

nX) = 0 for all n ∈ Z

holds for all X ∈ C and Y ∈ T . Note that if an object X ∈ T belongs to a subcategory
of T satisfying either the left or the right Auslander condition, then Hom∗

T (X,X)
is eventually zero if and only if X = 0. Note also that, even if a ring Λ satisfies
Auslander’s condition, its bounded derived category does not (neither left nor right).

3. Vanishing of cohomology

In this section, we prove that if Hom∗
T (X,X) is eventually Noetherian of finite

length over some ring acting centrally on T , then Hom∗
T (X,Y ) (and Hom∗

T (Y,X)) is
zero if it contains a finite vanishing gap of a certain length. We start with a result
which is the key ingredient in the main theorem. It shows that we can always reduce
the complexity of a given object X, in the sense that there exists a triangle containing
X, one of its shifts ΣnX, and a third object whose complexity is less than that of X.
Recall first the following notion, introduced in [9]. Let R be a graded-commutative
ring acting centrally on T , and let X ∈ T be an object. Then, given a homogeneous

element r ∈ R, we can complete the map X
ϕX(r)−−−−→ Σ|r|X into a triangle

X
ϕX(r)−−−−→ Σ|r|X → X//r → ΣX.

The object X//r is well defined up to isomorphism and is called a Koszul object of r
on X.

Proposition 3.1. Let R be a graded-commutative ring acting centrally on T , and let
X ∈ T be an object such that Hom∗

T (X,X) ∈ Noethfl R. Then if cxT X is nonzero,
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there exists a homogeneous element r ∈ R, of positive degree, whose Koszul object
X//r in the triangle

X
ϕX(r)−−−−→ Σ|r|X → X//r → ΣX

satisfies cxT X//r = cxT X − 1.

Proof. Suppose cxT X > 0. By [11, Lemma 2.5], there exists an integer i0 and a
homogeneous element r ∈ R, of positive degree, such that scalar multiplication

HomT (X,ΣiX)
·r−→ HomT (X,Σi+|r|X)

is injective for i > i0. Applying HomT (X,−) to the triangle

X
ϕX(r)−−−−→ Σ|r|X → X//r → ΣX,

we obtain a long exact sequence

· · · → HomT (X,ΣiX)
·(−1)ir−−−−−→ HomT (X,Σi+|r|X) → HomT (X,ΣiX//r) → · · ·

in cohomology. This long exact sequence induces a short exact sequence

0 → Hom>i0
T (X,X)

·r−→ Hom
>i0+|r|
T (X,X) → Hom>i0

T (X,X//r) → 0

of eventually Noetherian R-modules of finite length. A standard argument (see, for
example, [10, Proof of Theorem 3.2]) then gives cxT (X,X//r) = cxT X − 1. From this

exact sequence we also see that the element r annihilates Hom>i0
T (X,X//r). Therefore,

when applying HomT (−, X//r) to our triangle, we obtain a short exact sequence

0 → Hom
>i0+|r|
T (X,X//r) → Hom

>i0+|r|+1
T (X//r,X//r) → Hom>i0+1

T (X,X//r) → 0

of eventually Noetherian R-modules of finite length. This gives the inequality
cxT X//r 6 cxT (X,X//r).

Since Hom∗
T (X,X//r) is eventually Noetherian, there exists an integer n0 such

that the R-module Hom>n0

T (X,X//r) is finitely generated. The R-scalar action fac-

tors through the ring homomorphism ϕX//r, and therefore Hom>n0

T (X,X//r) is also
finitely generated as a module over Hom∗

T (X//r,X//r). Consequently, the rate of
growth of the sequence {`R0 (HomT (X,ΣnX//r))}∞n=1 is at most the rate of growth
of {`R0 (HomT (X//r,ΣnX//r))}∞n=1, i.e., cxT (X,X//r) 6 cxT X//r.

Now let X be an object of T , and let (r1, . . . , rc) be a sequence of homogeneous
elements belonging to a graded-commutative ring R acting centrally on T , with c > 2.
Then we define the Koszul object X//(r1, . . . , rc) inductively as

X//(r1, . . . , rc)
def
= (X//(r1, . . . , rc−1)) //rc.

Suppose the complexity of X is nonzero and finite, say cxT X = c. We say that
a sequence (r1, . . . , rc) of positive degree homogeneous elements of R reduces the
complexity of X if cxT X//(r1, . . . , ri) = c− i for 1 6 i 6 c. Such a sequence gives rise
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to triangles

X → Σ|r1|X → X1 → ΣX

X1 → Σ|r2|X1 → X2 → ΣX1

...

Xc−1 → Σ|rc|Xc−1 → Xc → ΣXc−1

in which Xi = X//(r1, . . . , ri) for 1 6 i 6 c. Note that the sequence also reduces the
complexity of ΣnX for any n ∈ Z, since the complexity of an object Y equals that of
ΣnY for all objects Y in T .

The main results of this section show that we can detect vanishing of cohomology
from finite vanishing gaps. The length of these gaps depends on the sum of the degrees
of the elements in a sequence reducing the complexity of an object. We therefore make
the following definition.

Definition 3.2. Given an object X of T of finite complexity c, we define dRT (X) as
follows: if c = 0, then dRT (X) = 0, and if c > 0, then

dRT (X) = inf{|r1|+ · · ·+ |rc| | (r1, . . . , rc) reduces the complexity of X}.

Note that the inequality dRT (X) > cxT X always holds. Moreover, if there does not
exist a sequence reducing the complexity of X, then dRT (X) is infinite.

If the complexity of an object in T is finite, then does there exist a sequence
in R reducing it? Suppose the R-module Hom∗

T (X,X) is eventually Noetherian of
finite length, and denote the complexity of X by c. As we have seen, the finiteness
condition implies that c is finite. If c > 0, then the previous result guarantees the
existence of a homogeneous element r1 ∈ R, of positive degree, such that cxT X//r1 =
c− 1. Since X//r1 belongs to thickT (X), the R-module Hom∗

T (X//r1, X//r1) is also
eventually Noetherian of finite length. Therefore, if c− 1 > 0, then we may use
the above result again; there exists a homogeneous element r2 ∈ R, of positive
degree, such that cxT X//(r1, r2) = c− 2. Continuing like this, we obtain a sequence
(r1, . . . , rc) of homogeneous elements of R, all of positive degree, with the property
that cxT X//(r1, . . . , ri) = c− i for 1 6 i 6 c. Thus when Hom∗

T (X,X) is eventually
Noetherian of finite length, then a reducing sequence exists if cxT X > 0, and conse-
quently dRT (X) is finite. We record this in the following lemma.

Lemma 3.3. If X is an object of T with Hom∗
T (X,X) ∈ Noethfl R for some graded-

commutative ring R acting centrally on T , then dRT (X) is finite.

Note that a sequence reducing the complexity of an object is not unique in gen-
eral. To see this, suppose that Hom∗

T (X,X) belongs to Noethfl R for some graded-
commutative ring R acting centrally on T and that cxT X > 0. By [11, Lemma 2.5],
there exists a homogeneous element r of R, of positive degree, such that scalar mul-
tiplication

HomT (X,ΣiX)
·r−→ HomT (X,Σi+|r|X)

is injective for i � 0. The proof of Proposition 3.1 shows that cxT X//r = cxT X − 1,
and so from the discussion prior to Lemma 3.3, we see that r is the first element
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in a sequence reducing the complexity of X. However, for any number n, scalar
multiplication

HomT (X,ΣiX)
·rn−−→ HomT (X,Σi+n|r|X)

is also injective for i � 0. Consequently, the element rn is also the first element in a
sequence reducing the complexity of X.

We now prove our main result. It shows that, for two objects X and Y with X
satisfying the appropriate finiteness conditions, a large gap in Hom∗

T (X,Y ) cannot
occur unless Hom∗

T (X,Y ) is actually zero.

Theorem 3.4. Let X and Y be objects of T with Hom∗
T (X,X) ∈ Noethfl R for some

graded-commutative ring R acting centrally on T , and suppose that the subcategory
thickT (X) of T satisfies either the left or the right Auslander condition. Then the
following are equivalent:

(i) There exists an integer n ∈ Z such that HomT (X,ΣiY ) = 0 for n 6 i 6 n+
dRT (X)− cxT X.

(ii) HomT (X,ΣiY ) = 0 for all i ∈ Z.

Proof. We argue by induction on c = cxT X that (i) implies (ii). If c is zero, then
Hom∗

T (X,X) is eventually zero, and so X = 0 since thickT (X) satisfies either the left
or the right Auslander condition. If c > 0, then let (r1, . . . , rc) be a sequence reducing
the complexity of X, with |r1|+ · · ·+ |rc| = dRT (X), and consider the triangle

X → Σ|r1|X → X//r1 → ΣX.

Applying HomT (−, Y ) to this triangle gives the long exact sequence

· · · → HomT (X,Σi−1Y ) → HomT (X//r1,Σ
iY ) → HomT (X,Σi−|r1|Y ) → · · ·

in cohomology, from which we see that HomT (X//r1,Σ
iY ) = 0 for

(n+ |r1|) 6 i 6 (n+ |r1|) + |r2|+ · · ·+ |rc| − (c− 1).

The complexity of X//r1 is c− 1, and the sequence r2, . . . , rc is a complexity reduc-
ing sequence for this object. Therefore, by the induction hypothesis and the fact
that |r2|+ · · ·+ |rc| > dRT (X//r1), we conclude that HomT (X//r1,Σ

iY ) = 0 for all
i ∈ Z. The long exact sequence then shows that HomT (X,ΣiY ) is isomorphic to
HomT (X,Σi+|r1|Y ) for all integers i, and from (i) we then see that HomT (X,ΣiY )
must vanish for all i ∈ Z.

If we interchange the objects X and Y in the theorem, then the corresponding
result of course holds. We state this without proof.

Theorem 3.5. Let X and Y be objects of T with Hom∗
T (X,X) ∈ Noethfl R for some

graded-commutative ring R acting centrally on T , and suppose that the subcategory
thickT (X) of T satisfies either the left or the right Auslander condition. Then the
following are equivalent:

(i) There exists an integer n ∈ Z such that HomT (Y,Σ
iX) = 0 for n 6 i 6 n+

dRT (X)− cxT X.

(ii) HomT (Y,Σ
iX) = 0 for all i ∈ Z.
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We now use these results to study the vanishing of cohomology over Artin algebras.
Let Λ be a Noetherian ring, and denote the bounded derived category of finitely
generated Λ-modules byDb(Λ). Furthermore, letDperf(Λ) be the thick subcategory of
Db(Λ) generated by Λ; it consists of the perfect complexes, that is, objects isomorphic
to bounded complexes of finitely generated projective Λ-modules. The stable derived
category of Λ, denoted Db

st(Λ), is the Verdier quotient

Db
st(Λ)

def
= Db(Λ)/Dperf(Λ).

This is a triangulated category whose suspension functor corresponds to that in
Db(Λ). Moreover, by [11, Remark 5.1], the central action of a graded-commutative
ring R on Db(Λ) carries over to Db

st(Λ) via the ring homomorphism Z∗(Db(Λ)) →
Z∗(Db

st(Λ)) induced by the natural quotient functor. Thus if X and Y are complexes
in Db(Λ), then the natural map

Hom∗
Db(Λ)(X,Y ) → Hom∗

Db
st(Λ)(X,Y )

is an R-module homomorphism. If Λ is also Gorenstein, that is, if the injective dimen-
sion of Λ both as a left and as a right module over itself is finite, then by [13, Corollary
6.3.4] this homomorphism is eventually bijective. That is, if Λ is a Noetherian Goren-
stein ring, then the natural map

HomDb(Λ)(X,ΣnY ) → HomDb
st(Λ)(X,ΣnY )

is bijective for n � 0. Consequently, for any complexes X and Y in Db(Λ), if
Hom∗

Db(Λ)(X,Y ) is an eventually Noetherian R-module of finite length, then so is

Hom∗
Db

st(Λ)(X,Y ).

Suppose Λ is an Artin algebra, that is, the center Z(Λ) of Λ is a commutative Artin
ring over which Λ is finitely generated as a module. Denote by modΛ the category
of finitely generated left Λ-modules. If Λ is Gorenstein, then denote by MCM(Λ) the
category of finitely generated maximal Cohen-Macaulay Λ-modules (cf. [3]), i.e.,

MCM(Λ) = {M ∈ modΛ | ExtiΛ(M,Λ) = 0 for all i > 0}.

Its stable category MCM(Λ), which is obtained by factoring out all morphisms
which factor through projective Λ-modules, is a triangulated category; for details,
see [13] and [24]. Its shift functor is given by cokernels of left addΛ-approximations,
the inverse shift is the usual syzygy functor. It follows from work by Buchweitz,
Happel and Rickard (cf. [13], [25], [29]) that MCM(Λ) and the quotient category
Db(Λ)/Dperf(Λ) are equivalent as triangulated categories. If M and N are maximal
Cohen-Macaulay modules in modΛ, then there is an isomorphism

ExtnΛ(M,N) ' HomMCM(Λ)(Ω
n
Λ(M), N)

for every n > 0. We use this isomorphism to prove the following result. It shows that
when a certain finiteness condition holds, then the thick subcategory in MCM(Λ)
generated by a module satisfies both the left and the right Auslander condition.

Proposition 3.6. Let Λ be an Artin Gorenstein algebra with Jacobson radical r, and
let M be a maximal Cohen-Macaulay module. If either Ext∗Λ(M,Λ/r) or Ext∗Λ(Λ/r,M)
belongs to Noethfl R for some graded-commutative ring R acting centrally on Db(Λ),
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then the subcategory thickMCM(Λ)(M) of MCM(Λ) satisfies both the left and the right
Auslander condition.

Proof. Suppose that Ext∗Λ(M,Λ/r) ∈ Noethfl R. Let X and Y be maximal Cohen-
Macaulay modules in modΛ with X ∈ thickMCM(Λ)(M), and suppose that
Hom∗

MCM(Λ)(X,Y ) is eventually zero. We prove by induction on cxMCM(Λ) X that
HomMCM(Λ)(X,ΣnY ) = 0 for all n ∈ Z.

Suppose cxMCM(Λ) X = 0. Induction on the length of any module N ∈ modΛ

shows that since Ext∗Λ(M,Λ/r) belongs to Noethfl R, then so does Ext∗Λ(M,N).
Since X ∈ thickMCM(Λ)(M), the same holds for Hom∗

MCM(Λ)(X,X). Therefore
Hom∗

MCM(Λ)(X,X) is eventually zero, in particular ExtnΛ(X,X) = 0 for n � 0. Now

consider the R-module Ext∗Λ(X,Λ/r). Since it belongs to Noethfl R, and the R-

module structure factors through the ring homomorphism R
ϕX−−→ Ext∗Λ(X,X), we

see that it must be eventually zero. The Λ-module X therefore has finite projec-
tive dimension and is isomorphic to the zero object in MCM(Λ). Consequently,
HomMCM(Λ)(X,ΣnY ) = 0 for all n ∈ Z.

If cxMCM(Λ) X > 0, then let r ∈ R be a homogeneous element of positive degree
such that cxMCM(Λ) X//r = cxMCM(Λ) X − 1. Since Hom∗

MCM(Λ)(X,Y ) is eventually
zero, we see from the triangle

X → Σ|r|X → X//r → ΣX

that the same holds for Hom∗
MCM(Λ)(X//r, Y ). The Koszul object X//r belongs to

thickMCM(Λ)(M), hence by induction HomMCM(Λ)(X//r,ΣnY ) = 0 for all n ∈ Z. From
the triangle we obtain the isomorphism

HomMCM(Λ)(X,ΣnY ) ' HomMCM(Λ)(X,Σn+|r|Y )

for all integers n, and this implies that HomMCM(Λ)(X,ΣnY ) = 0 for all n ∈ Z.
We have now proved that if Ext∗Λ(M,Λ/r) is an eventually Noetherian R-module

of finite length, then the subcategory thickMCM(Λ)(M) of MCM(Λ) satisfies the left
Auslander condition. Virtually the same proof shows that thickMCM(Λ)(M) also satis-
fies the right Auslander condition. Moreover, an analogous proof shows that the same
holds if the R-module Ext∗Λ(Λ/r,M) is eventually Noetherian of finite length.

Before proving the next result, we recall the following: Let Λ be an Artin algebra
with Jacobson radical r, and let M ∈ modΛ be a module with minimal projective
and injective resolutions

· · · → P2 → P1 → P0 → M → 0

and

0 → M → I0 → I1 → I2 → · · · ,
respectively. Then the complexity and plexity of M , denoted cxΛ M and pxΛ M ,
respectively, are defined as

cxΛ M
def
= inf{t ∈ N ∪ {0} | ∃a ∈ R such that `Z(Λ)(Pn) 6 ant−1 for n � 0},

pxΛ M
def
= inf{t ∈ N ∪ {0} | ∃a ∈ R such that `Z(Λ)(I

n) 6 ant−1 for n � 0},
where Z(Λ) is the center of Λ. Now let R be a graded-commutative ring acting
centrally on Db(Λ). As we saw in the beginning of the previous proof, if the R-module
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Ext∗Λ(M,Λ/r) is eventually Noetherian of finite length, then so is Ext∗Λ(M,N) for any
Λ-module N . In particular, this holds for Ext∗Λ(M,M), and cxΛ M coincides with
cxDb(Λ) M (cf. [11, Lemma 4.1]). Therefore there exists a sequence (r1, . . . , rcxΛ M )
of homogeneous elements of R, all of positive degree, reducing the complexity of
M as an object in Db(Λ). It follows immediately that dRDb(Λ)(M) is finite and that

dRDb(Λ)(M) > cxΛ M .

Similarly, if the R-module Ext∗Λ(Λ/r,M) is eventually Noetherian of finite length,
then pxΛ M = cxDb(Λ) M . In this case, there exists a homogeneous sequence in R of

length pxΛ M reducing the complexity ofM as an object inDb(Λ). As above, it follows
that dRDb(Λ)(M) is finite and that dRDb(Λ)(M) > pxΛ M . Using this and Proposition 3.6,

we obtain the following vanishing results on cohomology over Gorenstein algebras.
We prove only the first of these results; the proof of the other result is similar.

Theorem 3.7. Let Λ be an Artin Gorenstein algebra with Jacobson radical r, and
let M ∈ modΛ be a maximal Cohen-Macaulay module. Suppose Ext∗Λ(M,Λ/r) ∈
Noethfl R for some graded-commutative ring R acting centrally on Db(Λ).

(i) For any N ∈ modΛ, the following are equivalent:

(a) There exists a number n > idΛ such that ExtiΛ(M,N) = 0 for n 6 i 6 n+
dRDb(Λ)(M)− cxΛ M .

(b) ExtiΛ(M,N) = 0 for all i > idΛ.

(ii) For any N ∈ modΛ, the following are equivalent:

(a) There exists a number n > idΛ such that ExtiΛ(N,M) = 0 for n 6 i 6 n+
dRDb(Λ)(M)− cxΛ M .

(b) ExtiΛ(N,M) = 0 for all i > idΛ.

Proof. By [2, Theorem 1.8], there exists an exact sequence

0 → Q → C → N → 0

in modΛ, in which Q has finite projective dimension and C is maximal Cohen-
Macaulay. Since Q also has finite injective dimension and idQ is at most idΛ,
there are isomorphisms ExtiΛ(M,N) ' ExtiΛ(M,C) for i > idΛ. Moreover, the mod-
ule Ωid Λ

Λ (N) is maximal Cohen-Macaulay, and ExtiΛ(N,M) ' Exti−id Λ
Λ (Ωid Λ

Λ (N),M)
for i > idΛ. We may therefore, without loss of generality, assume that N itself is
maximal Cohen-Macaulay, and replace idΛ by 0 in the statements. The implica-
tions now follow from Theorem 3.4, Theorem 3.5, Proposition 3.6 and the fact that
ExtiΛ(X,Y ) ' HomMCM(Λ)(X,ΣiY ) when X and Y are maximal Cohen-Macaulay
and i > 0.

Theorem 3.8. Let Λ be an Artin Gorenstein algebra with Jacobson radical r, and
let M ∈ modΛ be a maximal Cohen-Macaulay module. Suppose Ext∗Λ(Λ/r,M) ∈
Noethfl R for some graded-commutative ring R acting centrally on Db(Λ).

(i) For any N ∈ modΛ, the following are equivalent:

(a) There exists a number n > idΛ such that ExtiΛ(M,N) = 0 for n 6 i 6 n+
dRDb(Λ)(M)− pxΛ M .

(b) ExtiΛ(M,N) = 0 for all i > idΛ.
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(ii) For any N ∈ modΛ, the following are equivalent:

(a) There exists a number n > idΛ such that ExtiΛ(N,M) = 0 for n 6 i 6 n+
dRDb(Λ)(M)− pxΛ M .

(b) ExtiΛ(N,M) = 0 for all i > idΛ.

We end this section with an example.

Example 3.9. Let k be a field and G a finite group whose order is divisible by
the characteristic of k. The group cohomology ring H∗(G, k) is graded-commutative
and acts centrally on Db(kG). Moreover, by a classical result of Evens and Venkov
(cf. [21], [32], [33]), the cohomology ring is Noetherian, and Ext∗kG(M,N) is a finitely
generated H∗(G, k)-module for all M and N in mod kG. Therefore Theorem 3.7 and
Theorem 3.8 apply to group algebras.

4. Symmetry

As seen in the above example, group algebras of finite groups are examples of
Artin algebras having finitely generated cohomology. Commutative local complete
intersection rings also have finitely generated cohomology. Namely, let (A,m, k) be

such a local ring of codimension c, i.e., c = dimk(m /m2)− dimA, and let Â denote
its completion with respect to its maximal ideal m. It was shown in [4] that there

exists a certain polynomial ring Â[χ1, . . . , χc] acting centrally on Db(Â), where the χi

are the so-called Eisenbud operators. For all finitely generated A-modules M and N ,
the Â[χ1, . . . , χc]-module Ext∗

Â
(M̂, N̂) is finitely generated. Consequently, vanishing

results similar to those in the previous section also hold in this case.

A fascinating aspect of the vanishing of cohomology over both group algebras and
commutative local complete intersections is symmetry. In [5] it was shown that for
finitely generated modules M and N over a commutative local complete intersection
A, the vanishing of ExtiA(M,N) for i � 0 implies the vanishing of ExtiA(N,M) for
i � 0. The proof involves the theory of certain support varieties attached to each pair
of A-modules. Denote by c the codimension of A and by K the algebraic closure of
its residue field. A cone V∗

A(M,N) in Kc is associated to the ordered pair (M,N),
with the following properties:

V∗
A(M,N) = {0} ⇔ ExtiA(M,N) = 0 for i � 0,

V∗
A(M,N) = V∗

A(M,M) ∩V∗
A(N,N).

The symmetry in the vanishing of cohomology follows immediately from these prop-
erties. As shown in [28, Corollary 4.8], group algebras of finite groups provide another
class of examples where Ext-symmetry holds.

We shall see in this section that in general there is no symmetry in the vanishing
of cohomology over an Artin algebra, even when the algebra is self-injective and has
finitely generated cohomology in the sense of group algebras. But first, we study sit-
uations where symmetry holds. Let k be a commutative Artin ring, and suppose that
T is a Hom-finite triangulated k-category. In other words, for all objects X,Y, Z ∈ T ,
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the group HomT (X,Y ) is a k-module of finite length, and the composition

HomT (Y,Z)×HomT (X,Y ) → HomT (X,Z)

is k-bilinear. Let E be an injective envelope of k as a module over itself, and denote

the functor Homk(−, E) by D. A Serre functor on T is an equivalence T S−→ T of
k-categories, together with functorial isomorphisms

HomT (X,Y ) ' DHomT (Y, SX)

of k-modules for all objectsX,Y ∈ T . Note that we do not require such a functor to be
triangulated. By [12], such a functor is unique if it exists. Following [27], for an integer
d ∈ Z, the category T is said to be weakly d-Calabi-Yau if it admits a Serre functor
which is isomorphic as a k-linear functor to Σd. If, in addition, this isomorphism is
an isomorphism of triangle functors, then T is d-Calabi-Yau. However, we will only
be dealing with weakly d-Calabi-Yau categories. When T is such a category, then for
all objects X,Y ∈ T there is an isomorphism

HomT (X,Y ) ' DHomT (Y,Σ
dY )

of k-modules. It follows immediately that if this holds, then HomT (X,ΣnY ) = 0 for
n � 0 if and only if HomT (Y,Σ

nX) = 0 for n � 0.
Now let Λ be an Artin Gorenstein algebra. Following [28], we say that Λ is stably

symmetric if MCM(Λ) is weakly d-Calabi-Yau for some integer d ∈ Z. It was shown
in that paper that if Λ in addition satisfies Auslander’s condition, then symmetry
holds in the vanishing of cohomology of Λ-modules. The following result shows that
symmetry holds for modules with finitely generated cohomology.

Theorem 4.1. Let Λ be a stably symmetric Artin Gorenstein algebra with Jacobson
radical r. Let M ∈ modΛ be a module such that either Ext∗Λ(M,Λ/r) or Ext∗Λ(Λ/r,M)
belongs to Noethfl R for some graded-commutative ring R acting centrally on Db(Λ).
Then for every N ∈ modΛ, the following are equivalent:

(i) ExtiΛ(M,N) = 0 for i � 0.

(ii) ExtiΛ(M,N) = 0 for i > idΛ.

(iii) ExtiΛ(N,M) = 0 for i � 0.

(iv) ExtiΛ(N,M) = 0 for i > idΛ.

Proof. As in the proof of Theorem 3.7, there exists an exact sequence

0 → QN → CN → N → 0

in modΛ, in which QN has finite projective (and injective) dimension, and
CN is maximal Cohen-Macaulay. Thus there is an isomorphism ExtiΛ(M,N) '
Exti−id Λ

Λ (Ωid Λ
Λ (M), CN ) for every i > idΛ. Moreover, since either Ext∗Λ(M,Λ/r)

or Ext∗Λ(Λ/r,M) belongs to Noethfl R, so do either Ext∗Λ(Ω
id Λ
Λ (M),Λ/r) or

Ext∗Λ(Λ/r,Ω
id Λ
Λ (M)). Therefore, as shown in the proof of Theorem 3.7, and by The-

orem 3.8, the implication

ExtiΛ(Ω
id Λ
Λ (M), CN ) = 0 for i � 0 ⇒ ExtiΛ(Ω

id Λ
Λ (M), CN ) = 0 for i > 0

holds, showing that (i) implies (ii). The proof that (iii) implies (iv) is similar: start
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with an exact sequence

0 → QM → CM → M → 0

where QM has finite projective/injective dimension, and CM is maximal Cohen-
Macaulay.

By Theorem 3.6, the subcategory thickMCM(Λ)(CM ) of MCM(Λ) satisfies both the
left and the right Auslander condition. Moreover, by assumption MCM(Λ) is weakly
d-Calabi-Yau for some integer d ∈ Z. Therefore the equivalences

ExtiΛ(M,N) = 0 for i � 0 ⇔ ExtiΛ(CM , CN ) = 0 for i � 0

⇔ HomMCM(Λ)(CM ,ΣiCN ) = 0 for i � 0

⇔ HomMCM(Λ)(CM ,ΣiCN ) = 0 for i ∈ Z
⇔ HomMCM(Λ)(CN ,ΣiCM ) = 0 for i ∈ Z
⇔ HomMCM(Λ)(CN ,ΣiCM ) = 0 for i � 0

⇔ ExtiΛ(CN , CM ) = 0 for i � 0

⇔ ExtiΛ(N,M) = 0 for i � 0

hold, and the proof is complete.

For an Artin algebra Λ with radical r, if Ext∗Λ(Λ/r,Λ/r) ∈ Noethfl R for some
graded-commutative ring R acting centrally on Db(Λ), then Ext∗Λ(M,N) ∈ Noethfl R
for all modulesM,N ∈ modΛ. Moreover, if this holds, then Λ is automatically Goren-
stein by [11, Proposition 5.6]. Consequently, we obtain the following “global version”
of Theorem 4.1.

Theorem 4.2. Let Λ be a stably symmetric Artin algebra with Jacobson radical r,
and suppose that Ext∗Λ(Λ/r,Λ/r) belongs to Noethfl R for some graded-commutative
ring R acting centrally on Db(Λ). Then for all modules M,N ∈ modΛ, the following
are equivalent:

(i) ExtiΛ(M,N) = 0 for i � 0.

(ii) ExtiΛ(M,N) = 0 for i > idΛ.

(iii) ExtiΛ(N,M) = 0 for i � 0.

(iv) ExtiΛ(N,M) = 0 for i > idΛ.

Next, we include a special case of this theorem. Recall that for a commutative Artin
ring k, an Artin k-algebra Λ is symmetric if there is an isomorphism Λ ' Homk(Λ, k)
of Λ-Λ-bimodules. Such an algebra is necessarily self-injective.

Corollary 4.3. Let Λ be a symmetric Artin algebra with Jacobson radical r, and
suppose that Ext∗Λ(Λ/r,Λ/r) belongs to Noethfl R for some graded-commutative ring
R acting centrally on Db(Λ). Then for all modules M,N ∈ modΛ, the following are
equivalent:

(i) ExtiΛ(M,N) = 0 for i � 0.

(ii) ExtiΛ(M,N) = 0 for i > 0.

(iii) ExtiΛ(N,M) = 0 for i � 0.

(iv) ExtiΛ(N,M) = 0 for i > 0.
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Proof. By [28, Corollary 4.4], a symmetric Artin algebra is stably symmetric.

We turn now to a particular class of algebras having finitely generated cohomology
in the sense of Theorem 4.2 and Corollary 4.3. Details concerning the following can be
found in [30] and [31]. Let k be a field and Λ a finite dimensional k-algebra, and denote
the enveloping algebra Λ⊗k Λop of Λ by Λe. For n > 0, the nth Hochschild cohomology
group of Λ, denoted HHn(Λ), is the vector space ExtnΛe(Λ,Λ). The graded vector space
HH∗(Λ) = Ext∗Λe(Λ,Λ) is a graded-commutative ring with Yoneda product, and for
every M ∈ modΛ the tensor product −⊗Λ M induces a homomorphism

HH∗(Λ)
ϕM−−→ Ext∗Λ(M,M)

of graded k-algebras. If N ∈ modΛ is another module and η ∈ HH∗(Λ) and θ ∈
Ext∗Λ(M,N) are homogeneous elements, then the relation ϕN (η) ◦ θ = (−1)|η||θ|θ ◦
ϕM (η) holds, where “◦” denotes the Yoneda product. Therefore the Hochschild coho-
mology ring HH∗(Λ) acts centrally on Db(Λ). In [16], the authors studied the case
when HH∗(Λ) is Noetherian and Ext∗Λ(Λ/r,Λ/r) is a finitely generated HH∗(Λ)-
module. This is a special case of the finiteness conditions assumed in Theorem The-
orem 4.2 and Corollary 4.3.

Suppose now that Λ/r⊗k Λ/r is semisimple, as happens, for example, when k
is algebraically closed. Furthermore, suppose that Λ is a periodic algebra, that is,
there exists a number p > 0 such that Λ is isomorphic to Ωp

Λe(Λ) as a left Λe-module
(i.e., as a bimodule). By [17], [18] and [20], this happens, for example, when Λ is
a self-injective Nakayama algebra, a Möbius algebra or a preprojective algebra (see
also [19]). Moreover, by [22, Theorem 1.4], periodic algebras over algebraically closed
fields are necessarily self-injective. Letting Qn denote the nth module in the minimal
projective Λe-resolution of Λ, we have an exact sequence

0 → Λ → Qp−1 → · · · → Q0 → Λ → 0

of bimodules, and we denote this by µ. This extension is an element of HHp(Λ). If θ
is an element of HHn(Λ) for some n > p, then θ = θ̄µi for some i and a homogeneous
element θ̄ of degree not more than p. Hence the Hochschild cohomology ring HH∗(Λ)
is generated over HH0(Λ) by the finite set of k-generators in HH1(Λ), . . . ,HHp(Λ) and
therefore is Noetherian. If S is a simple non-projective Λ-module, then µ⊗Λ S is the
beginning of the minimal projective resolution of S, since Λ/r⊗k Λ/r is semisimple.
Therefore S must be periodic with period dividing p. If N is any finitely generated
Λ-module and ω is an element of ExtnΛ(S,N) for some n > p, then, as above, ω =
ω̄(µ⊗Λ S) for some element ω̄ ∈ ExtmΛ (S,N) with m 6 p. Therefore Ext∗Λ(S,N) is
finitely generated as a module over HH∗(Λ), and this shows that Ext∗Λ(Λ/r,Λ/r) is a
finitely generated HH∗(Λ)-module. The following result is therefore an application of
Corollary 4.3.

Theorem 4.4. Let k be a field, let Λ be a symmetric periodic k-algebra with Jacobson
radical r, and suppose that Λ/r⊗k Λ/r is semisimple. Then for all modules M,N ∈
modΛ, the following are equivalent:

(i) ExtiΛ(M,N) = 0 for i � 0.

(ii) ExtiΛ(M,N) = 0 for i > 0.
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(iii) ExtiΛ(N,M) = 0 for i � 0.

(iv) ExtiΛ(N,M) = 0 for i > 0.

We finish this paper with an example where we look at self-injective Nakayama
algebras. As we have seen, these algebras are periodic and therefore have finitely gen-
erated cohomology. However, the example shows that unless the algebra is symmetric,
symmetry does not necessarily hold in the vanishing of cohomology.

Example 4.5. Let Γ be the circular quiver

1
α1 // 2
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>>

>>
>>

t
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==zzzzzzzzz
3
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��
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αt−1

OO

4

~~~~
~~

~~
~~

bbFFFFFFFF

where t > 2 is an integer. Let k be a field, denote by kΓ the path algebra of Γ over
k, and let J ⊂ kΓ be the ideal generated by the arrows. Fix an integer n > 1, let
Λ be the quotient algebra kΓ/Jn+1, and denote by r the Jacobson radical of Λ.
Then Λ is a finite dimensional indecomposable self-injective Nakayama algebra, and
Ext∗Λ(Λ/r,Λ/r) is a finitely generated HH∗(Λ)-module (the ring structure of HH∗(Λ)
was studied and determined in [7] and [17]).

Write n = qt+ r, where 0 6 r < t. Let Si be the simple module corresponding to
the vertex i and Pi its projective cover. There is an exact sequence

0 → Ω2
Λ(Si) → Pi+1(mod t)

·αi−−→ Pi → Si → 0,

and it is easy to see that Ω2
Λ(Si) is isomorphic to Si+1+r(mod t). Therefore the minimal

projective resolution of Si is

· · · → Pi+3+2r → Pi+2+2r → Pi+2+r → Pi+1+r → Pi+1 → Pi → Si → 0,

with Ω2j
Λ (Si) = Si+j+jr (all the indices are taken modulo t). A number of completely

different situations may occur, depending on the values of the parameters t and r.
For example, if r = 0, then we see that all the simple modules appear infinitely many
times as even syzygies in the minimal projective resolution of any simple module.
Therefore, in this case, if S and S′ are simple modules, then ExtnΛ(S, S

′) is nonzero
for infinitely many n.

Note that when r = 0, then Λ is symmetric, and so by Theorem 4.4 symmetry
holds in the vanishing of Ext. However, symmetry does not hold for all Nakayama
algebras. For example, suppose that t > 3 and r = t− 1. Then the exact sequences

0 → S1 → P2 → P1 → S1 → 0

0 → S2 → P3 → P2 → S2 → 0

are the first parts of the minimal projective resolutions of S1 and S2, and therefore
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ExtnΛ(S1, S2) 6= 0 whenever n is odd, whereas ExtnΛ(S2, S1) = 0 for all n. Thus in this
situation there is no symmetry in the vanishing of Ext over Λ.
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