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p-LOCAL FINITE GROUP COHOMOLOGY

RAN LEVI and KÁRI RAGNARSSON

(communicated by Michael A. Mandell)

Abstract
We study cohomology for p-local finite groups with non-

constant coefficient systems. In particular we show that under
certain restrictions there exists a cohomology transfer map in
this context, and deduce the standard consequences.

1. Introduction

A p-local finite group is an algebraic object designed to encapsulate the information
modeled on the p-completed classifying space of a finite group. More specifically, it is a
triple (S,F ,L), where S is a finite p-group, and F is a certain category whose objects
are the subgroups of S and whose morphisms are certain homomorphisms between
them, satisfying a list of axioms, which entitles it to be called a “saturated fusion
system over S”. The category F models conjugacy relations between subgroups of S,
while L is again a category, whose objects are a certain subcollection of subgroups of
S, but whose morphism set contain enough structure as to allow one to associate a
classifying space with (S,F ,L) from which the full structure briefly described above
can be retrieved. The classifying space of (S,F ,L) is simply the p-completed nerve
|L|∧p .

The theory of p-local finite groups was introduced in [BLO2] and has been studied
quite extensively by various authors. In particular the mod p cohomology of the clas-
sifying space of a p-local finite group satisfies a “stable elements theorem”, identical
in essence to the corresponding statement for the cohomology of finite groups with
constant mod p coefficients [BLO2, Thm B]. However, as we shall see below, the
analogy does not carry forward when one considers a more general setup, i.e., the
cohomology of p-local finite groups in the context of functor cohomology. In partic-
ular we will present counter examples to the statement that the cohomology of the
p-local group, in this sense, is given as the stable elements in the cohomology of its
Sylow subgroup with restricted coefficient.

The purpose of this paper is to study the cohomology of p-local finite groups with
arbitrary coefficients, and in particular to establish an algebraic definition of a transfer
map for p-local finite groups in this setting. We deal with the cases where a geomet-
ric transfer must exist, that is, when there is a finite index covering space associated
with the given setup. The necessary theory is provided by the papers [5A1, 5A2],
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where “subgroups” of a p-local finite group of a given “index” are defined and stud-
ied. In particular it is shown in [5A2] that with a given p-local finite group one can
associate two finite groups – a p-group and a p′-group – and that, up to equivalence,
p-local subgroups of p-power index and p′ index are in one to one correspondence
with subgroups of these two groups. Subgroups of indices which are neither p-power
nor p′ can also be studied under restricted conditions, which essentially follow from
the two basic cases. In the current article we show the existence of a “transfer map”
to the cohomology of a p-local finite group from the cohomology of any subgroup
of index prime to p with respect to any system of coefficients, and from the coho-
mology of any subgroup of p-power index with respect to locally constant systems
of coefficients. These transfer maps carry similar properties to the standard group
cohomology transfer, and can be used to study cohomology of p-local finite groups
with non-constant coefficients.

We now explain our setup and state our results. To a finite group G, one can
associate a category B(G) with a single object whose endomorphism monoid is G. A
G-module M can be regarded as a functor on B(G), and the cohomology of G with
coefficients in M can be computed as the higher limits of that functor. By analogy, a
coefficient system on a p-local finite group (S,F ,L) is a functor M : L → Ab, where
Ab is the category of abelian groups (or sometimes Z(p)-modules, in which case we
say that the system is p-local), and the cohomology groups H∗(L,M) are defined as
the higher limits ofM over L. Unless otherwise specified, we will work with coefficient
systems which are covariant functors. A coefficient system M is locally constant if it
sends every morphism in L to an isomorphism of modules.

As already indicated, we only define a transfer for arbitrary systems of coefficients
under certain, rather restrictive, conditions. We start our discussion with a proposi-
tion, due to Bob Oliver, which shows that in general one cannot hope to do much
better.

Proposition 1.1. There exist a p-local finite group (S,F ,L) and a locally constant p-

local system of coefficients M on (S,F ,L) such that H̃∗(L,M) 6= 0 but H̃∗(S, ι∗M) =
0, where ι∗M means the restriction of M to S.

Thus the proposition shows that unlike the situation in ordinary group cohomology,
the cohomology of a p-local finite group with p-local coefficients is not always a retract
of the cohomology of its Sylow subgroup with the restricted coefficients.

If (S,F ,L) is a p-local finite group, and (S0,F0,L0) is a subgroup of p-power
index or index prime to p, then one has an associated covering space up to homotopy
ι : |L0| → |L|, and thus if M is a Z(p)[π1(|L|)]-module, then there is a transfer map
H∗(|L0|, ι∗M)→ H∗(|L|,M) associated with the covering. We present a categorical
analog of this setup, and use it to prove our first theorem.

Theorem 1.2. Let (S,F ,L) be a p-local finite group, and let (S0,F0,L0) be a sub-
group of p-power index or index prime to p. Then for any locally constant coefficient
system M on L, there exists a map Tr: H∗(L0,M0)→ H∗(L,M), where M0 denotes
the restriction of M to L0, such that the composite

H∗(L,M)
Res−−→ H∗(L0,M0)

Tr−→ H∗(L,M)

is multiplication by the index. Furthermore, the map Tr coincides with the transfer
map associated with the covering |L0| → |L|.
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Theorem 1.2 is proven below as Theorem 4.5. Next, we specialize to p-local finite
subgroups of index prime to p. It is in this setting that we are able to obtain our most
general result.

Theorem 1.3. Let (S,F ,L) be a p-local finite group, and let (S0,F0,L0) be a sub-
group of index prime to p. Let M be an arbitrary system of coefficients on L. Then
there exists a map

Tr: H∗(L0,M0)→ H∗(L,M),

where M0 denotes the restriction of M to L0, such that the composite Tr ◦ Res is
given by multiplication by the index. Furthermore, the map Tr satisfies a double coset
formula and Frobenius reciprocity.

The construction of the transfer map is carried out in Section 4. The precise
statements and proof of its properties appear below as Propositions 6.1, 6.2 and 6.7.

As a final standard application we conclude a stable elements theorem in our
context. The statement of the theorem however requires some extra preparation, and
will therefore not be stated here. The reader who is familiar with [5A2] is referred to
Theorem 6.6 for the precise statement.

The paper is organized as follows. In Section 1 we recall the definition of a p-
local finite group, and revise some of the background material necessary for our
discussion. Section 2 is devoted to some basic concepts of homological algebra of
functors, including a discussion of cohomology with locally constant coefficients. We
start Section 3 by presenting a family of examples which show that in general one
cannot expect a stable elements theorem to hold for p-local finite groups even with
respect to locally constant coefficients. This is followed by a discussion of the transfer
for locally constant coefficient systems and subgroups of p-power index and index
prime to p. Still in Section 3 we set up the background for the construction of a
transfer map for subgroup of index prime to p. The construction itself is carried out
in Section 4, where we also present a cochain level construction of the map, and a
geometric interpretation of the construction for locally constant coefficients, where a
transfer map exists for geometric reasons. Finally in Section 5 we derive the standard
consequences of the existence of a transfer map to the cohomology theory of p-local
finite groups with nontrivial coefficients.

Acknowledgements

The authors would like to thank Bob Oliver for a number of useful conversations
while we were working on this project, and particularly for his illuminating counter
example (Section 3). The second named author would like thank Lukas Vokrinek for
giving him a copy of his bachelor thesis, which contains useful background material
on functor cohomology.

2. p-local finite groups

In this section we recall some of the basic concepts of p-local finite group theory. We
also recall the Stable Elements Theorem for the cohomology of p-local finite groups
with p-local constant coefficients. The reader is referred to [BLO2, 5A1, 5A2] for
more detail.
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2.1. Saturated Fusion Systems
The fundamental object underlying a p-local finite group is a finite p-group and a

fusion system over it. The concept is originally due to Puig [Pu], but we will use the
simpler, equivalent definition from [BLO2].

For a group G and subgroups P,Q 6 G we denote by HomG(P,Q) ⊆ Hom(P,Q)
the set of all homomorphisms P → Q obtained by restriction of inner automor-
phisms of G to P . The set of all elements g ∈ G such that gPg−1 6 Q is called
the transporter set in G from P to Q, and is denoted NG(P,Q). Thus HomG(P,Q) =
NG(P,Q)/CG(P ). If g ∈ G, then we denote by cg the conjugation x→ gxg−1.

Definition 2.1 ([Pu] and [BLO2, Definition 1.1]). A fusion system over a finite p-
group S is a category F , where Ob(F) is the set of all subgroups of S, and which
satisfies the following two properties for all P,Q 6 S:

1. HomS(P,Q) ⊆ HomF (P,Q) ⊆ Inj(P,Q); and

2. each ϕ ∈ HomF (P,Q) is the composite of an isomorphism in F followed by an
inclusion.

If F is a fusion system over a finite p-group S, then two subgroups P,Q 6 S are
said to be F-conjugate if they are isomorphic as objects in F .

Definition 2.2 ([Pu], and [BLO2, Definition 1.2]). Let F be a fusion system over
a p-group S. A subgroup P 6 S is said to be

1. fully centralized in F if |CS(P )| > |CS(P ′)| for all P ′ 6 S which are F-conjugate
to P ;

2. fully normalized in F if |NS(P )| > |NS(P ′)| for for all P ′ 6 S which are F-
conjugate to P ;

3. F-centric if CS(P
′) = Z(P ′) for all P ′ 6 S which are F-conjugate to P ;

4. F-radical if OutF (P )
def
= AutF (P )/ Inn(P ) does not contain a nontrivial normal

p-subgroup.

A fusion system F is said to be saturated if the following two conditions hold:

(I) For every P 6 S that is fully normalized in F , P is fully centralized in F and
AutS(P ) ∈ Sylp(AutF (P )).

(II) If P 6 S and ϕ ∈ HomF (P, S) are such that P ′ = ϕ(P ) is fully centralized, then
ϕ extends to a morphism ϕ ∈ HomF (Nϕ, S), where

Nϕ = {g ∈ NS(P ) |ϕcgϕ−1 ∈ AutS(P
′)}.

If G is a finite group and S ∈ Sylp(G), then the category F = FS(G), whose objects
are all subgroups P 6 S, and whose morphisms are HomF (P,Q) = HomG(P,Q), is a
saturated fusion system ([BLO2, Proposition 1.3]).

2.2. Centric Linking Systems
Let Fc ⊆ F denote the full subcategory whose objects are the F-centric subgroups

of S.

Definition 2.3 ([BLO2, Definition 1.7]). Let F be a fusion system over the p-group
S. A centric linking system associated to F is a category L whose objects are the
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F-centric subgroups of S, together with a functor π : L → Fc, and “distinguished”

monomorphisms P
δP−−−→ AutL(P ) for each F-centric subgroup P 6 S, which satisfy

the following conditions.

(A) π is the identity on objects and surjective on morphism sets. For each pair of
objects P,Q ∈ Ob(L), Z(P ) acts freely on MorL(P,Q) by composition (upon
identifying Z(P ) with δP (Z(P )) 6 AutL(P )), and π induces a bijection

MorL(P,Q)/Z(P )
∼=−−→ HomF (P,Q).

(B) For each F-centric subgroup P 6 S and each x ∈ P , π(δP (x)) = cx ∈ AutF (P ).

(C) For each f ∈ MorL(P,Q) and each x ∈ P , f ◦ δP (x) = δQ(π(f)(x)) ◦ f .

A p-local finite group is a triple (S,F ,L), where S is a finite p-group, F is a
saturated fusion system over S, and L is a centric linking system associated to F .
The classifying space of a p-local finite group (S,F ,L) is the p-completed nerve |L|∧p .

If F = FS(G) for some finite group G, then P 6 S is F-centric if and only if P
is p-centric in G; that is, if and only if Z(P ) ∈ Sylp(CG(P )), or equivalently if and
only if CG(P ) ∼= Z(P )× C ′

G(P ), where C
′
G(P ) is a group of order prime to p. The

centric linking system of G is defined to be the category LcS(G), whose objects are the
subgroups of S that are p-centric in G, and whose morphism sets are MorL(P,Q) =
NG(P,Q)/C ′

G(P ). The triple (S,FS(G),LcS(G)) then forms a p-local finite group
whose classifying space is equivalent to BG∧

p [BLO2].

2.3. Compatible Systems of Inclusions
For a p-local finite group (S,F ,L), a morphism ϕ : P → Q in L can be thought

of as a “lift” of the group homomorphism ϕ = π(ϕ) in the fusion system F , and the
number of such lifts is |Z(P )|. It will often be convenient to extend concepts associated
to group homomorphisms to morphisms in L. For instance, we define the image of ϕ
to be the image of ϕ, and denote it by ϕ(P ) or Pϕ. (Observe that since the morpism
is written on the right, we have Pψ◦ϕ = (Pϕ)ψ.) Just as in F , a morphism in L can
be restricted to a subgroup, and also induces an isomorphism from its source to its
image. To make sense of these restrictions, we first need a good notion of “inclusions”
in L. This is developed in [5A2, Definition 1.11], and we recall the definitions here.

Definition 2.4 ([5A2, Def. 1.11(b)]). Let (S,F ,L) be a p-local finite group. A com-

patible set of inclusions for L is a choice of morphisms ιQP ∈ MorL(P,Q), one for each
pair of F-centric subgroups P 6 Q, such that ιSS = IdS , and the following hold for all
P 6 Q 6 R,

(i) π(ιQP ) is the inclusion P ↪→ Q;

(ii) ιRQ ◦ ιQP = ιRP .

We often write ιP for ιSP . The existence of a compatible set of inclusions for L is
proved in [5A2, Proposition 1.13]. A compatible set of inclusions for L allows us to
talk about restrictions of morphisms in L. That is, for a morphism ϕ ∈ MorL(P,Q)
and F-centric subgroups P ′ 6 P and Q′ 6 Q such that ϕ ◦ ιPP ′(P ′) 6 Q′, there is a

unique morphism ϕQ
′

P ′ ∈ MorLq (P
′, Q′) with ιQQ′ ◦ ϕQ

′

P ′ = ϕ ◦ ιPP ′ . We refer to ϕQ
′

P ′ as
the restriction of ϕ to P ′. To simplify notation, we will often write ϕ|P ′ instead of
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ϕQ
′

P ′ when there is no danger of confusion. If P ′ is clear from the context, we will
sometimes omit it from the notation as well.

Fix a compatible system of inclusions. Let π1(|L|, S) be the fundamental group of
|L| with basepoint at the vertex S, and let B(π1(|L|, S)) be the category associated
to the fundamental group π1(|L|, S). One obtains a functor

J : L → B(π1(|L|, S))

that sends each object to the unique object in the target, and sends a morphism
f : P → Q to the class of the loop ιQ ∗ f ∗ ι−1

P . Composing with the distinguished
monomorphism δS : S → AutL(S), we get a functor

B(j) : B(S) B(δS)−−−−→ B(AutL(S)) ⊆ L
J−→ B(π1(|L|, S)),

and a corresponding homomorphism

j : S → π1(|L|).

A construction of the functor J in a more general setting is described in Subsec-
tion 3.5.

2.4. A Stable Elements Theorem
The cohomology of a finite group G with coefficients in a p-local module can be

computed by a fundamental result due to Cartan and Eilenberg [CE] (known as the
stable elements theorem). Their original statement can be reinterpreted as follows. Let
OS(G) denote the category whose objects are the subgroups of S, and whose mor-
phisms P → Q are representations (Q-conjugacy classes of homomorphisms) induced
by conjugation in G. Given a Z(p)[G]-moduleM , there is a functor on OS(G)op which
sends P 6 S to H∗(P,M), where M becomes a Z(p)[P ]-module via restriction. The
Cartan-Eilenberg stable elements theorem can then be restated as claiming that the
following isomorphism holds

H∗(G,M) ∼= lim
OS(G)op

H∗(−,M).

Theorem 5.8 in [BLO2] is the analogous statement for p-local finite groups, and
where the module of coefficients is the field Fp. Specifically, if (S,F ,L) is a p-local
finite group, and O(F) is the orbit category of F , i.e., the category with the same
objects, and where morphisms P → Q are given by HomF (P,Q)/ Inn(Q), then

H∗(|L|,Fp) ∼= lim
O(F)op

H∗(−,Fp).

From this one can deduce that the same statement is true for any Z(p)-module of
coefficients with a trivial π1(|L|)-action.

More generally, using a stable transfer construction it is shown in [Ra] that the
stable elements theorem holds for any (non-equivariant) stably representable coho-
mology theory. However, as we will observe at the end of Section 3, this statement is
far from being true for cohomology with nontrivial coefficients.

2.5. Finite Index Subgroups in p-local Finite Groups
We now discuss the setup in which we are able to define a transfer map on p-local

group homology and cohomology. Given a saturated fusion system F over a p-group
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S, the paper [5A2] defines what it means to be a subsystem of F of a finite index,
which in this context is either a power of p or prime to p. We refer to the latter case
as a p′ index subsystem. The paper also gives a classification of all subsystems of F of
p-power or p′ index, which we recall here. We point out that generically (i.e., without
considering iterations) these are the only cases where it makes sense to talk about a
subsystem where the notion of an index is well defined.

To any saturated fusion system F over a p-group S, one associates two finite groups
Γp(F) and Γp′(F). If F admits an associated centric linking system L, then these
groups turn out to be the maximal p-power and p′ quotients of π1(|L|), respectively.
Both groups depend only on F (and not on the existence or nature of an associated
centric linking system L). The group Γp(F) is given by S/OpF (S), where the divisor
is the hyperfocal subgroup of S with respect to F (see [5A1, Sec. 2]). If F admits
an associated centric linking system, then Γp(F) ∼= π1(|L|∧p ). The group Γp′(F) has
a more complicated description in [5A2], but was observed by Aschbacher to be
π1(|Fc|).

Subsystems of F of p-power or p′ index are in bijective correspondence with sub-
groups of Γp(F) and Γp′(F), respectively. If (S,F ,L) is a p-local finite group, and
we let Γ denote either Γp(F) or Γp′(F), then with each subgroup H 6 Γ one has an
associated p-local finite group (SH ,FH ,LH), and |LH | is homotopy equivalent to a
covering space of |L| with fibre Γ/H.

It is for this type of subgroups of a p-local finite group that we are able to define
a transfer in cohomology (or homology) with coefficients M ∈ L-mod. In the case of
a subgroup of p′ index, we can do so in full generality, and we define a cochain-level
transfer in cohomology for any functor of coefficients. These general methods do not
carry over to the p-power index case, but we can still define a transfer map for locally
constant coefficient systems.

We next state a summary of the main classification result from [5A2] for fusion
subsystem of p-power or p′ index. Some minor modifications of the original statement
will be dealt with in the proof. Before stating the theorem, we set up some notation.

Let (S,F ,L) be a p-local finite group, and let Fq and Lq be the associated quasi-
centric fusion and linking systems [5A1, Sec. 3]. Let Γ denote Γp(F) = π1(|L|∧p , S) or
Γp′(F) = π1(|Fc|, S), where in both cases S denotes the basepoint given by the vertex

S. Fix a compatible choice of inclusions {ιQP } for Lq, and let J : Lq → B(π1(|Lq|, S) be
the resulting functor as defined in Section 2.3. Composing with the obvious projection
θ̂ : π1(|Lq|, S) = π1(|L|, S)→ Γ, one gets a functor

Θ̂ : Lq → B(Γ).

We will denote the restriction of Θ̂ to L by the same symbol. Notice that Θ̂ sends
the chosen inclusions in Lq to the identity (since J does). Let θ : S → Γ denote the

restriction of Θ̂ to S via the monomorphism δS : S → AutLq (S) ⊆ Lq. (Equivalently,
θ = θ̂ ◦ j, where j : S → π1(|L|, S) is the homomorphism defined in Section 2.3.) For
any subgroup H 6 Γ, let L•

H ⊆ Lq be the subcategory with the same objects and

with morphism set Θ̂−1(H), and let LqH ⊆ L•
H be the full subcategory obtained by

restricting to subgroups of SH
def
= θ−1(H). Finally, let FH be the fusion system over

SH generated by π(LqH) ⊆ Fq and restrictions of morphisms, and let LH ⊆ LqH be
the full subcategory on those objects which are FH -centric.
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Theorem 2.5 ([5A2]). Let (S,F ,L) be a p-local finite group. Then, with the notation
above the following are satisfied.

(i) FH is a saturated fusion system over SH , and LH is an associated centric linking
system. Thus the triple (SH ,FH ,LH) is a p-local finite group.

(ii) If Γ = Γp′(F) then a subgroup P 6 SH is FH-centric (fully FH-centralized,
fully FH-normalized) if and only if it is F-centric (fully F-centralized, fully
F-normalized). If Γ = Γp(F) then the same statements hold, replacing centric
by quasicentric.

(iii) There is a 1–1 correspondence between subgroups H 6 Γ and p-local subgroups
of (S,F ,L) with p-power or p′ index (as appropriate). The correspondence is
given by H ←→ (SH ,FH ,LH).

(iv) |LH | is homotopy equivalent to the covering space of |Lq| ' |L| with fibre Γ/H.

(v) The homomorphism AutL(S)→ Γ induced by the restriction of Θ̂ : Lq → B(Γ)
to AutL(S) is surjective.

Proof. Parts (i), (ii), (iii) and (iv) are included in Proposition 3.8 and Theorem 3.9
of [5A2]. Part (v) is clear in the case of Γp(F) = S/OpF (S), and follows from the
definition of Γp′(F) given in [5A2, Thm 5.4]).

3. Homological algebra of functors

In this section we develop the background we need from homological algebra. Most
or all the results we present here are well known to the expert, but are included here
for the convenience of the reader.

Throughout this paper, let R denote a fixed commutative ring with a unit. Let
R-mod denote the category of (left) R-modules, and let R-alg denote the category of
(left) R-algebras. All categories we consider in this article will be small. For a category
C, let C-mod and C-alg be the categories whose objects are functors C → R-mod or
C → R-alg, respectively, and whose morphisms are natural transformations. We will
refer to an object of C-mod as a C-module, and to an object of C-alg as a C-algebra.
Depending on context we may sometimes refer to objects of C-mod as system of
coefficients on C, or a C-diagram of R-modules, and similarly for objects of C-alg.
Notice that we have not discussed variance of functors at all. By convention, all
functors we deal with are covariant. If we need to discuss contravariant functors (and
in certain contexts we will), we shall consider them as objects in the module category
over the opposite category.

3.1. Functor Cohomology.
Given an R-module M , the constant C-diagram MC is the functor which takes

every object in C to M and every morphism to the identity. The inverse limit on a
category C is a functor

lim
C

: C-mod→ R-mod.

It comes with a morphism
(
lim
C
U
)

λU−−→ U , for any C-diagram U of R-modules, and is

characterized by the universal property that ifM is any R-module, and if α : MC → U
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is any natural transformation, then there exists a unique R-module homomorphism
α̂ : M → limC U such that α = λU ◦ α̂C , where α̂C is the functor induced on the respec-
tive constant diagrams by α̂.

The universal property of the inverse limit functor implies an obvious identification:

lim
C
U ∼= HomC-mod(RC , U). (1)

This shows in particular that the inverse limit functor is left exact. Its right derived
functors applied to U ∈ C-mod are usually referred to as the higher limits of U , or
as the cohomology of C with coefficients in U (being the right derived functors of the
Hom functor). Thus if U → I• is an injective resolution of U in C-mod, and P• → RC
is a projective resolution of RC in C-mod, then

limi

C
U = Hi(HomC-mod(RC , I•)) = Hi(HomC-mod(P•, U)).

Notation 3.1. Throughout this article we use the notation H∗(C, U) to denote lim
C

∗U .

This is standard notation in the subject, and is better suited for our purposes.

Dual to the limit functor there is the colimit functor

colim
C

: C-mod→ R-mod.

One defines the homology of C with coefficients in U ∈ C-mod as the higher colimits
of U , i.e., the left derived functors of the colimit functor, applied to U . In this section,
and throughout the paper, we focus on cohomology and mostly leave the reader to
dualize the discussion to obtain analogous results in homology.

3.2. Cup Products in Functor Cohomology.
Let C be a small category. For chain complexes C• and C ′

• in C-mod, one obtains
a chain complex (C ⊗ C ′)• with

(C ⊗ C ′)n
def
=

∑
k+l=n

Ck ⊗ C ′
l

and differential δ induced by the differentials of C• and C ′
• (which we also denote by

δ) via the formula δ(x⊗ y) = δx⊗ y + (−1)kx⊗ δy for x ∈ Ck, y ∈ C ′
l .

It is a standard result that if both C• and C
′
• are exact then (C ⊗ C ′)• is exact, and

likewise that (C ⊗ C ′)• is projective if both C• and C ′
• are projective. In particular,

given projective resolutions P• → RC and P ′
• → RC of the constant functor on C, one

obtains a projective resolution (P ⊗ P ′)• → RC ⊗ RC ∼= RC .
Let M,M ′ ∈ C-mod. For σ ∈ HomC-mod(Pk,M) and σ′ ∈ HomC-mod(P

′
l ,M

′), let
σ × σ′ ∈ HomC-mod((P ⊗ P ′)k+l,M ⊗M ′) be the natural transformation

σ × σ′ : (P ⊗ P ′)k+l
proj−−−→ Pk ⊗ P ′

l
σ⊗σ′

−−−→M ⊗M ′.

This gives a bilinear pairing

HomC-mod(P•,M)⊗HomC-mod(P
′
•,M

′)→ HomC-mod((P ⊗ P ′)•,M ⊗M ′)

σ ⊗ σ′ 7−→ σ × σ′.

One can check that this is a map of cochain complexes, so after taking cohomology
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we obtain a bilinear pairing on higher limits

H∗(C,M)⊗H∗(C, N) −→ H∗(C,M ⊗N),

x⊗ y 7→ x× y.

One can furthermore check that this is independent of the choice of projective reso-
lutions. This pairing is called the cross product pairing.

For any A ∈ C-alg one has a multiplication transformation µ : A⊗A→ A which
induces a homomorphism on cohomology. Composing with the cross product pairing,
we obtain the cup product.

Definition 3.2. Let A ∈ C-alg. For x ∈ Hk(C, A) and y ∈ H l(C, A), the cup product
x ∪ y ∈ Hk+l(C, A), (or xy,) is the image of x⊗ y under the homomorphism

H∗(C, A)⊗H∗(C, A) ×−→ H∗(C, A⊗A) µ∗−→ H∗(C, A).

The cup product constructed here has the algebraic properties we expect, as stated
in the next proposition. The proof is routine.

Proposition 3.3. For a functor A ∈ C-alg, the cup product on H∗(C, A) is associa-
tive, graded-commutative, and has a multiplicative unit. Thus H∗(C, A) is a graded-
commutative ring with a unit.

If F : C → D is any functor, one has an exact functor F ∗ : D-mod→ C-mod defined

by F ∗(α)
def
= α ◦ F . The next proposition says that the cup product is natural in both

C and A. Again, the proof is routine.

Proposition 3.4. Let F : C → D be a functor, let A,B ∈ D-alg, and let η : A→ B
be a natural transformation. Then the following hold for x, y ∈ H∗(D, A):

(a) The homomorphism F ∗ : H∗(D, A)→ H∗(C, F ∗A) induced by F satisfies

F ∗(x ∪ y) = F ∗x ∪ F ∗y.

(b) The homomorphism η∗ : H
∗(D, A)→ H∗(D, B) induced by η satisfies

η∗(x ∪ y) = η∗x ∪ η∗y.

3.3. Kan Extensions and the Shapiro Lemma.

Let ι : C → D be any functor. For each object d ∈ D one defines the overcategory
ι ↓ d to be the category with objects (c, α), where c ∈ C and α : ι(c)→ d is a morphism
in D. Morphisms from (c, α) to (c′, α′) in ι ↓ d are morphisms γ : c→ c′ in C such that
α′ ◦ ι(γ) = α. The undercategory d ↓ ι is defined analogously. Both categories admit
an obvious forgetful functor to C, and for M ∈ C-mod we denote the composite of M
with the forgetful functor by M].

The functor ι∗ : D-mod→ C-mod induced by ι has a right adjoint Rι and a left
adjoint Lι called the right and left Kan extension along ι, respectively. The Kan
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extensions of a given functor M ∈ C-mod is determined objectwise by

Rι(M)(d) = lim
d ↓ ι

M# and Lι(M)(d) = colim
ι ↓ d

M#,

and a morphism d→ d′ in D induces homomorphisms

Rι(M)(d)→ Rι(M)(d′) and Lι(M)(d)→ Lι(M)(d′),

via the universal properties of the limit and colimit functors. From these descriptions
of Kan extensions one easily obtains the isomorphisms

lim
D
Rι(M) = lim

C
M and colim

D
Lι(M) = colim

C
M.

For a functor ι : C → D and a system of coefficients M ∈ C-mod there is a homo-
morphism called the Shapiro map

ShM : H∗(D, Rι(M))→ H∗(C,M),

which is constructed as follows. Let M → I• be an injective resolution of M . Since
Rι is the right adjoint of the exact functor ι∗ it preserves injectives, and we have
a (possibly non-exact) cochain complex RιM → RιI0 → RιI1 → · · · in which every
term after RιM is injective. If RιM → I ′• is an injective resolution of RιM , then the
identity transformation of RιM lifts (non-uniquely) to a cochain map χ : I ′• → RιI•,
which induces a cochain map of limits

lim
D
I ′•

def
= HomD(RD, I

′
•)

χ∗−→ HomD(RD, RιI•)
ρ−1

−−→∼= HomC(RC , I•)
def
= lim

C
I•,

and ShM is defined as the induced map in cohomology. Here,

ρ : HomC(RC , I•) = HomC(ι
∗RD, I•)→ HomD(RD, RιI•)

is the adjunction isomorphism. The Shapiro map is independent of the choice of the
injective resolutions I• and I ′•, and the cochain map χ, and is natural with respect
to morphisms M →M ′ in C-mod. Hence it induces a natural transformation

Sh : H∗(D, Rι(−))→ H∗(C,−)

which will be referred to as the Shapiro transformation. The important property of
the Shapiro transformation is given by the following lemma.

Lemma 3.5 (The Shapiro Lemma). Let ι : C → D be a functor. If the right Kan
extension Rι is exact then the Shapiro transformation is a natural isomorphism of
functors.

Proof. If Rι is exact, then RιM → RιI• is an injective resolution, so we can take
I ′• = RιI• and χ = Id in the construction of ShM forM ∈ C-mod, and it follows that
ShM is an isomorphism.

The right Kan extension functor is always left exact as it is a right adjoint. Similarly
the left Kan extension functor is right exact. In some instances the left and right Kan
extension functors are naturally isomorphic. In this case both Kan extension functors
are exact, and in particular the Shapiro Lemma holds. The Shapiro lemma has an
analogous homological version, involving the derived functors of the colimit, and the
left Kan extension.
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3.4. Deformation Retracts of Categories
We now study a condition on a functor which ensures that it induces a natural

isomorphism between the corresponding derived functors of the limit and colimit.

Definition 3.6. Let f : C → D be a functor between small categories. We say that f is
a left deformation retract of D if there exists a functor r : D → C such that r ◦ f = 1C ,
and a natural transformation η : f ◦ r → 1D satisfying ηf(c) = 1f(c) for c ∈ C. When
f is the inclusion of a subcategory, we say that C is a left deformation retract of D.
Right deformation retracts are defined dually.

Notice that this falls short of defining ι as left adjoint to r in the sense that we
do not require that rη is the identity transformation on r. The definition should
remind the reader of deformation retracts of spaces. Indeed, if C is a (left or right)
deformation retract of D, then |C| is a deformation retract of |D|.

Lemma 3.7. Let f : C → D be a functor between small categories.

(a) If f is a left deformation retract then f preserves limits.

(b) If f is a right deformation retract then f preserves colimits.

Proof. It suffices to prove part (a), as part (b) follows by duality, so assume that f is
a left deformation retract and let r : D → C and η : f ◦ r → 1D be as in Definition 3.6.
Since r ◦ f = 1, we can regard f as the inclusion of a subcategory. To show that f
preserves limits, it therefore suffices ([MacL]) to show that f is left cofinal in the
sense that for every object d in D, the overcategory f ↓ d is connected (meaning it is
nonempty and there exists a zigzag of morphisms between any two objects).

First, the map ηd : f(r(d))→ d gives rise to an object (r(d), ηd) in f ↓ d. Now, if

(c, u) is another object consisting of an object c in C and a morphism f(c)
u−→ d in D,

then the natural transformation η gives rise to the following commutative square.

(f ◦ r)(f(c))
(f◦r)(u) //

ηf(c)

(f ◦ r)(d)

ηd

��
f(c)

u // d

Thus we have a morphism r(u) : (c, u)→ (r(d), ηd) in f ↓ d, and in particular (c, u)
is in the same connected component as (r(d), ηd), proving that f ↓ d.

Lemma 3.7 actually holds if f is a weak deformation retract, for which we require
only that for c ∈ C, we have ηf(c) = f(h) for some morphism h in C. Using the full
strength of deformation retracts, one can prove a stronger result, namely that if f is
a left deformation retract then it induces an isomorphism on cohomology, and if it is
a right deformation retract then it induces an isomorphism on homology (Lemma 3.7
makes that claim only in dimension 0, which is all we need for our purposes).

3.5. Cohomology with Locally Constant Coefficients
We now discuss an important special case of functor cohomology, namely the case

where the coefficient system is locally constant.
Let C be a small connected category, and let Ĉ denote the groupoid completion

of C, i.e., the category with the same objects as C, and where all morphisms are
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formally inverted. Let π : C → Ĉ be the obvious functor. Choose an object c0 ∈ C. For
any other object c ∈ C, choose a morphism φc ∈ MorĈ(c, c0), and take φc0 to be the
identity. Then one gets isomorphisms of sets

ja,b : MorĈ(a, b)→ AutĈ(c0) by ϕ 7→ φb ◦ ϕ ◦ φ−1
a .

Let Γ
def
= AutĈ(c0), and let ι : B(Γ)→ Ĉ be the inclusion functor. Assembling the

isomorphisms ja,b together for all pairs of objects in Ĉ, one gets a functor

J : Ĉ → B(Γ),

which is an equivalence of categories (but depends on the choices made). In particular,
J ◦ ι is the identity on B(Γ), while ι ◦ J is naturally isomorphic to the identity on

Ĉ. Moreover, by [Qu, Prop. 1], the group Γ is naturally isomorphic to π1(|C|, c0),
and the map induced on nerves by the composite J ◦ π induces an isomorphism on
fundamental groups.

A system of coefficients M ∈ C-mod is said to be locally constant if for every
morphism ϕ : a→ b in C, M(ϕ) is an isomorphism. Notice that M is locally constant

if and only if M factors as M = M̂ ◦ π for a unique functor M̂ ∈ Ĉ-mod. Let R be a
commutative ring with a unit. An R[Γ]-module is a functor N : B(Γ)→ R-mod. The
next lemma shows that every locally constant system of coefficients on C is, up to a
natural isomorphism, a R[Γ]-module composed with the functor J constructed above.

Lemma 3.8. Let C be a small connected category, and let M ∈ C-mod be a locally
constant system of coefficients on C. Then M is naturally isomorphic to N ◦ J ◦ π,
where N is the R[Γ]-module M̂ ◦ ι. Moreover, this defines an equivalence of categories
between the category of R[Γ]-modules and the category of locally constant functors on
C.

Proof. Since ι ◦ J is naturally isomorphic to the identity on Ĉ, one has

M = M̂ ◦ π ∼= M̂ ◦ ι ◦ J ◦ π = N ◦ J ◦ π,

as claimed.

For the second statement, notice that the correspondences which takes an R[Γ]-
module N to N ◦ J ◦ π and a locally constant system of coefficients M ∈ C-mod to
M̂ ◦ ι are natural on N and M respectively, and using the first statement, define the
equivalence of categories claimed.

Proposition 3.9. Let C be a small connected category, and let M ∈ C-mod be a
locally constant functor. Then, with the notation above, there is an isomorphism

H∗(C,M) ∼= H∗(|C|, M̂ ◦ ι)

which is natural in M .

Proof. As a consequence of [Qu, Prop 1], Quillen shows that if C is a small connected
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category, and L is a Z[π1(|C|)]-module, then there is a canonical isomorphism

H∗(|C|, L) ∼= H∗(C, L′),

where L′ ∈ C-mod is given by the composite

C π−→ Ĉ J−→ B(π1(|C|))
L−→ Ab.

But by Lemma 3.8, every locally constant M ∈ C-mod is naturally isomorphic to a
functor of the formM ◦ ι ◦ J ◦ π. Thus, if we set L = M̂ ◦ ι, then Quillen’s result reads

H∗(|C|, M̂ ◦ ι) ∼= H∗(C,M ◦ ι ◦ J ◦ π) ∼= H∗(C,M).

This proves the claim.

Corollary 3.10. Let τ : C → D be a functor between small connected categories, such
that |τ | is a homotopy equivalence. Then for any locally constant system of coefficients
M ∈ D-mod, τ induces a natural isomorphism

H∗(C, τ∗M)
∼=−→ H∗(D,M).

3.6. Covering Spaces, and Locally Constant Coefficients

Let C be a small connected category, c0 ∈ C and Γ = AutĈ(c0)
∼= π1(|C|, c0). Let

J : C → B(Γ) be as before.

For each Γ′ 6 Γ, let EΓ(Γ/Γ′) denote the category with Γ/Γ′ as objects, and with
a unique morphism ĝ : aΓ′ → gaΓ′ for each g ∈ Γ and aΓ′ ∈ Γ/Γ′. Let CΓ′ denote the
category given by the pull back in the diagram

CΓ′ //

π

��

EΓ(Γ/Γ′)

ρΓ′

��
C

J
// BΓ.

Thus, Obj(CΓ′) = Obj(C)× Γ/Γ′, while morphisms (c, aΓ′)→ (c′, a′Γ′) are morph-
isms ϕ : c→ c′, such that a′Γ′ = J(ϕ)aΓ′.

For each c ∈ C the undercategory c ↓ π has objects ((d, aΓ′), ϕ) where d ∈ C, aΓ′ ∈
Γ/Γ′, and ϕ : c→ d is a morphism in C. A morphism ((d, aΓ′), ϕ)→ ((d′, a′Γ′), ϕ′) in
c ↓ π is a map ψ : d→ d′ in C, such that ψϕ = ϕ′, and a′Γ′ = J(ψ)aΓ′.

Let ((d, aΓ′), ϕ) be an arbitrary object in c ↓ π. Then there is a unique morphism
((c, aΓ′), 1c)→ ((d, J(ϕ)aΓ′), ϕ) which is induced by ϕ. Thus every component of
c ↓ π has an initial object and is therefore contractible. Notice that there is an obvious
1–1 correspondence between components of c ↓ π and Γ/Γ′, and that every morphism
c→ e in C induces a homotopy equivalence e ↓ π → c ↓ π. Thus the hypothesis of
Quillen’s theorem B are satisfied, and |CΓ′ | → |C| is a covering space up to homotopy,
with fibre over c given by |c ↓ π| ' Γ/Γ′.

Lemma 3.11. Let τ : D → C be a functor between small connected categories such
that the induced map |τ | : |D| → |C| is a covering space up to homotopy (i.e., has
a homotopically discrete homotopy fibre), and let Γ′ = π1(|D|, d0) for some d0 ∈ D.
Then the following hold:
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(i) There is a functor τ̂ : D → CΓ′ , lifting τ (i.e., πτ̂ = τ), which induces a homo-
topy equivalence on nerves.

(ii) For any locally constant system of coefficients M ∈ C-mod, there is a natural
isomorphism Rτ (τ

∗M) ∼= Rπ(π
∗M).

Proof. Choose some d0 ∈ D, and let c0 = τ(d0). Let Γ = π1(|C|, c0), and let Γ′ =
π1(|D|, d0). Then, constructing a projection functor J : C → B(Γ) as before, one gets
J ◦ τ : D → B(Γ), whose image is Γ′, and thus a corresponding projection J ′ : D →
B(Γ′). The diagram

D τ //

J ′

��

C

J

��

CΓ′
πoo

��
B(Γ′)

inc // B(Γ) EΓ(Γ/Γ′)
ρΓ′oo

commutes, where the right hand side square is a pull back square. The inclusion
of B(Γ′) in EΓ(Γ/Γ′) as the full subcategory on the object 1Γ′ induces a homotopy
equivalence on nerves, and a functor τ̂ : D → CΓ′ . A simple diagram chase now shows
that |τ̂ | is a homotopy equivalence, and proves (i).

To prove (ii), notice that since πτ̂ = τ , the functor τ̂ induces a natural transfor-
mation of functors C → Cat

τ̂(−) : (− ↓ τ)→ (− ↓ π).

Thus for every c ∈ C, and M ∈ C-mod, one has a map induced by τ̂ ,

Rπ(π
∗M)

def
= lim

c↓π
(π∗M)] → lim

c↓τ
(τ̂∗π∗M)] = lim

c↓τ
(τ∗M)]

def
= Rτ (τ

∗M).

But since π∗M is also locally constant, and since τ̂ induces a homotopy equivalence on
nerves, it follows from Corollary 3.10 that this map is an isomorphism, thus proving
(ii).

Lemma 3.11 allows us to compute the values of a right Kan extension of a system
of coefficients M ∈ D-mod along a functor τ : D → C satisfying its hypothesis.

The following lemma allows a calculation of the right Kan extension explicitly in
a specialized case which will be of interest in our discussion.

Lemma 3.12. Let τ : D → C be a functor between small connected categories such
that for each c ∈ C, every connected component in the under category c ↓ τ has an ini-
tial object. Then for any M ∈ D-mod, the value of the right Kan extension Rτ (M) ∈
C-mod at c is the direct product of the values of M] on these initial objects. In par-
ticular Rτ is an exact functor.

Proof. For each c ∈ C one has

Rτ (M)(c)
def
= lim

c↓τ
M]
∼=

∏
[(d,α)]∈[c↓τ ]

M(d0),

where the product runs over all connected components of c ↓ τ , and (d0, α0) is initial
in the component of (d, α). This follows at once from the fact that a limit over a
category with an initial object is given by the value of the functor on that object.
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This description also makes it clear that Rτ is an exact functor, and so the proof is
complete.

Proposition 3.13. Let τ : D → C be a functor between small connected categories
such that the induced map |τ | : |D| → |C| is a covering space up to homotopy. Fix an
object d0 in D, let Γ′ = π1(|D|, d0), and let π : CΓ′ → C be the projection.

For any locally constant system of coefficients M ∈ C-mod, there is a natural iso-
morphism

H∗(C, Rπ(π∗M) ∈ C-mod) ∼= H∗(D, τ∗M).

Furthermore, if the index of the covering is finite, then there is a natural transforma-
tion T : Rπ(π

∗M) ∈ C-mod→M , such that the composite

H∗(C,M)
τ∗

−→ H∗(D, τ∗(M)) ∼= H∗(C, Rπ(π∗M) ∈ C-mod)
T∗−→ H∗(C,M)

is multiplication by the index.

Proof. Since M is locally constant H∗(D, τ∗M) ∼= H∗(CΓ′ , π∗M) by Corollary 3.10.
By Lemma 3.12 Rπ is exact, and hence we have an isomorphism H∗(C, Rπ(π∗M)) ∼=
H∗(CΓ′ , π∗M) by the Shapiro lemma. This proves the first statement.

To prove the second statement, consider the functor Rπ(π
∗M). For each coset

aΓ′ ∈ Γ/Γ′, the object ((c, aΓ′), 1c) ∈ c ↓ π is initial in its own path component, and
(π∗(M))]((c, aΓ

′), 1c) =M(c). Thus, by Lemma 3.12, for each c ∈ C,

Rπ(π
∗M)(c)

def
= lim

c↓π
π∗M]

∼=
∏
Γ/Γ′

M(c).

Assuming Γ/Γ′ is a finite set, define a natural transformation of functors T : Rπ(π
∗M)

→ M in C-mod by

Tc({xaΓ′}aΓ′∈Γ/Γ′) =
∑

aΓ′∈Γ/Γ′

xaΓ′ . (2)

Naturality of T is clear, since M is additive.
It remains to show that T∗ ◦ τ∗ is multiplication by |Γ: Γ′|. To do that it suffices

to show that the natural transformation induced by π

HomC-mod(−,M)
π∗

−→ HomCΓ′ (π
∗(−), π∗M) ∼= HomC-mod(−, Rπ(π∗M)),

is the diagonal map. But for U ∈ C-mod, a natural transformation η : U →M takes
an object c ∈ C to a morphism ηc : U(c)→M(c). Composing with π we see that the
composition transformation takes each object (c, aΓ′) in CΓ′ to the morphism ηc as
above. This shows that π∗ is precisely the diagonal map and the proof is complete.

The next corollary follows at once from the definitions.

Corollary 3.14. Let M ∈ C-mod be a locally constant system of coefficients, and let
Γ′ 6 Γ = π1(|C|, c0) be a subgroup of finite index. Then the map

H∗(CΓ′ , π∗M) ∼= H∗(C, Rπ(π∗M))
T∗−→ H∗(C,M)

coincides with the geometric transfer map associated to the covering space |CΓ′ | → |C|.
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4. p-Local Finite Group Cohomology

The cohomology of a p-local finite group (S,F ,L) with coefficients M ∈ L-mod

is the main object of study in this paper. In ordinary finite group cohomology the
transfer map with respect to a subgroup is one of the most useful computational and
theoretical tools available to us, and its properties are the key to proving the stable
element theorem in cohomology, among other things. We start our discussion of the
p-local analog with an example showing that in p-local finite group cohomology one
cannot associate a transfer map to an arbitrary p-local subgroup inclusion, even if
one restricts to locally constant coefficients.

4.1. An Example

As already mentioned, in [BLO2] it is shown that if (S,F ,L) is a p-local finite
group then the mod p cohomology of |L| is given by the F-stable elements in
H∗(BS,Fp). The next statement, due to Bob Oliver, provides an abundance of exam-
ples that show that with our definition of local coefficients one cannot expect a stable
elements theorem to hold in full generality.

Proposition 4.1. Let (S,F ,L) be a p-local finite group, (with S nontrivial) and let
Γ = π1(|L|). Fix a compatible system of inclusions, and assume that the composite
functor

B(j) : B(S) ι−→ L J−→ B(Γ)

is faithful, where ι is the inclusion B(S) B(δS)−−−−→ B(AutL(S)) ⊆ L, and J is the functor

defined in Section 2.3. Assume further that the universal cover |̃L| is not mod p
acyclic. Let M be the group ring Fp[Γ] regarded as a system of coefficients in L-mod

via J and the obvious Γ action. Then H̃∗(S, ι∗M) = 0, but H̃∗(L,M) 6= 0.

Proof. Since S
j−→ Γ is monic, ι∗M is a projective Fp[S] module, and since S is finite,

it is also injective, and thus acyclic. On the other hand, since M is locally constant,

H∗(L,M) = H∗(|L|,Fp[Γ])
def
= H∗(HomFp[Γ](C∗(|̃L|),Fp[Γ])) ∼=

H∗(HomFp(C∗(|̃L|),Fp)) ∼= H∗(|̃L|,Fp),

where the first equality follows from Proposition 3.9, and the right hand side is not
mod p acyclic by assumption.

One large family of examples which satisfy the conditions of Proposition 4.1 is
the general linear groups GLn(Fpk). The following argument is a sketch of a proof.
Since the same argument applies for all k, we will replace Fpk by F, while p and k
are assumed fixed. The radical subgroups in these groups are all p-centric, and their
centers are given by the diagonally embedded F∗ ∼= Z/(pk − 1). Hence the centric
radical linking systems of GLn(F) and the associated projective group PGLn(F)
have the same objects, and |Lcr(GLn(F))| is a covering space of |Lcr(PGLn(F))| with
fibre F∗, and thus they share the same universal cover. But Lcr(PGLn(F)) coincides
with the centric radical transporter system of PGLn(F) (the category with the same
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objects, and where morphism sets are the transporters NG(P,Q)), and thus admits
an obvious map

|Lcr(PGLn(F))| → BPGLn(F),

with fibre given by the nerve of the poset of centric radical subgroups in PGLn(F)
[BLO1]. This nerve is known as the Tits building, and has the homotopy type of a
wedge of spheres. Thus it is the universal cover of |Lcr(PGLn)|, while at the same
time it is not acyclic. This was first observed by Grodal. To finish the argument, we
recall from [5A1] that for any p-local finite group, the centric radical linking system
and the centric linking system have homotopy equivalent nerves.

4.2. Transfer Maps for Locally Constant Coefficients

We now show that if (S,F ,L) is a p-local finite group and (S0,F0,L0) is a subgroup
of p-power index or index prime to p, then one can define an algebraic transfer map,
which coincides with the transfer map associated to the finite covering |L0| → |L|
(See Thm. 2.5(iv)).

First we must discuss restrictions of coefficient systems. We defined a system of
coefficients on a p-local finite group to be a functor M ∈ L-mod. When (S0,F0,L0)
is a subgroup of (S,F ,L) of p-power index, one does not have in general an inclusion
functor L0 → L, but rather an inclusion Lq0 → Lq. Thus, in this case, a system of
coefficients on (S,F ,L) cannot be directly restricted to (S0,F0,L0). We will show
that for locally constant coefficients, this is in fact an easily solvable problem. We
start by observing that the restriction of a locally constant system of coefficients on
Lq to L does not affect cohomology.

Lemma 4.2. Let (S,F ,L) be a p-local finite group, and let Lq be the associated quasi-
centric linking system. For every locally constant system of coefficients N ∈ Lq-mod,
the restriction to L induces an isomorphism in cohomology H∗(Lq, N) ∼= H∗(L, ι∗N).

Proof. This follows directly from Corollary 3.10 since the inclusion Lq ⊆ L induces
a homotopy equivalence on nerves.

Below we will outline a functorial way to extend a locally constant coefficient
system M on L to a locally constant coefficient system Mq on Lq. The extension
Mq can then be restricted to a locally constant coefficent system M0 on L0 via the
inclusions L0 ⊆ Lq0 ⊆ Lq. We will furthermore show that the extension Mq is unique
up to unique isomorphism extending the identity morphism of M , and thus it makes
sense to think of M0 as the restriction of M to L0. Lemma 4.2 shows that this
convention has the desired effect in cohomology.

Given a locally constant system of coefficients M on L, we construct an exten-
sion Mq of M to Lq as follows. First recall that M extends uniquely to a system of
coefficients M̂ on the groupoid completion L̂. Since every morphism in Lq is both a
monomorphism and an epimorphism in the categorical sense ([5A1, Corollary 3.10]),

the inclusion i : L → Lq induces an inclusion of groupoid completions, î : L̂ → L̂q.
Since i induces a homotopy equivalence on nerves, and in particular an isomor-
phism of fundamental groups, î is an equivalence of categories. This implies that
L̂ is a deformation retract of L̂q, and we can choose an inverse r : L̂q → L̂ such that
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r ◦ î = idL̂. Now the composite

Mq : Lq π−→ L̂q r−→ L̂ M̂−→ R-mod,

where π is the groupoid completion map, is a locally constant system of coefficients
on Lq that extends M .

Fixing a choice for the retraction r, the construction of Mq as the restriction of M̂
along r ◦ π clearly makes the assignmentM 7→Mq functorial. However this extension
functor is by no means unique or even canonical as a different choice of retract would
give rise to a different extension functor. The next lemma shows that, while there are
many such extension functors, the difference between them is inconsequential.

Lemma 4.3. Let (S,F ,L) be a p-local finite group, let Lq be the associated quasicen-
tric linking system, and let M be a locally constant system of coefficients on L. If M ′

is a locally constant system of coefficients on Lq extending M , then there is a unique
natural isomorphism η : Mq ⇒M ′ that restricts to the identity transformation of M .

Proof. The isomorphism η sends P to the composite

ηP : Mq(P )
Mq(ιP )−−−−−→Mq(S) =M(S) =M ′(S)

M ′(ιP )−1

−−−−−−→M ′(P ).

The verification of naturality and uniqueness of η is routine and is left for the reader.

In light of this uniqueness result, we make the following definition.

Definition 4.4. Let (S,F ,L) be a p-local finite group and let Γ = Γp(F) or Γp′(F).
LetH 6 Γ, let (SH ,FH ,LH) be the corresponding p-local subgroup, and let ιq : LqH →
Lq be the inclusion. For a locally constant system of coefficients M on L, the restric-
tion of M to LH is the composite

MH : LH ⊆ LqH ⊆ L
q Mq

−−→ R-mod.

The restriction map ResH : H∗(L,M)→ H∗(LH ,MH) is the unique map that fits
into the commutative diagram

H∗(Lq,Mq)

∼=
��

ι∗ // H∗(LqH , ι∗Mq)

∼=
��

H∗(L,M)
ResH // H∗(LH ,MH),

where the vertical maps are the isomorphisms from Lemma 4.2.

When Γ = Γp′(F), there is a well-defined inclusion LH ⊂ L, and we note that MH

is just restriction along this inclusion, and ResH is the usual restriction map.
The following proposition holds for both centric and quasicentric linking systems,

although we state it using the notation for centric linking systems.

Proposition 4.5. Let (S,F ,L) be a p-local finite group and let Γ = Γp(F) or Γp′(F).
Let H 6 Γ, and let (SH ,FH ,LH) be the corresponding p-local subgroup. For any
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locally constant system of coefficients M ∈ L-mod there exists a map

TrH : H∗(LH ,MH)→ H∗(L,M),

such that TrH ◦ ResH is multiplication by |Γ: H| on H∗(L,M). Furthermore, the map
thus defined coincides with the transfer map associated with the covering |LH | → |L|.

Proof. It suffices to prove this in the quasicentric case, as the centric case is obtained
by restriction. Let ι : LqH → Lq be the inclusion. By Theorem 2.5, the map |ι| : |LqH | →
|Lq| is a covering space up to homotopy, with homotopy fibre equivalent to Γ/H. Thus
Proposition 3.13 applies and one has a system of coefficients M ′ ∈ L-mod, such that

H∗(Lq,M ′) ∼= H∗(LqH , ι
∗M),

and a natural transformation T : M ′ →M such that the composite

H∗(Lq,M)
ι∗−→ H∗(LqH , ι

∗M) ∼= H∗(Lq,M ′)
T∗−→ H∗(Lq,M)

is multiplication by the index |Γ: H|. Identifying the two middle terms in the sequence
via the isomorphism between them, define Tr to be the map T∗.

The second statement follows at once from Corollary 3.14.

4.3. Subsystems of Index Prime to p
We now restrict attention to subgroups of p-local finite groups of index prime to

p. It is in this context that we are able to obtain our most general results. However
some of the discussion here has more general implications as well.

Throughout this subsection, fix a p-local finite group (S,F ,L) and let Γ = Γp′(F).
Fix a subgroup H 6 Γ and let ι : LH → L be the inclusion We assume throughout
that a compatible system of inclusions for L has been chosen, and by restriction of a
morphism in L we always mean restriction with respect to the chosen inclusions (see

Subsection 2.3). Let Θ̂ : L → B(Γ) denote the projection, as in Subsection 1.5. If α is
a morphism in L, we denote by [α] the class of α in F .

Recall that a category is a discrete groupoid if each of its morphism sets either
consists of a single isomorphism or is empty.

Lemma 4.6. For P ∈ L, let GH(P ) ⊆ P ↓ ι and GH(P ) ⊆ ι ↓ P denote the full sub-
categories, whose objects, respectively, are of the form (Pα, α) and (Pα, α−1) for
some α ∈ MorL(P, S). Then GH(P ) and GH(P ) are discrete groupoids. Furthermore,
GH(P ) is a left deformation retract of P ↓ ι, and GH(P ) is a right deformation retract
of ι ↓ P .

Proof. Since LH and L have the same objects by Theorem 2.5, the category P ↓ ι
is nonempty for any P ∈ L. Thus let α, β ∈ HomL(P, S) be any morphisms. Then
(Pα, α) and (P β , β) are objects in GH(P ). A morphism between them is a morphism
ϕ : Pα → P β in LH , such that ϕ ◦ α = β. But α : P → Pα is an isomorphism in L,
and hence invertible. Thus ϕ = β ◦ α−1, and so if a morphism between two given
objects exists, then it is unique, and is obviously an isomorphism. This shows that
GH(P ) is a discrete groupoid. An analogous argument shows that GH(P ) is also a
discrete groupoid.

Let j : GH(P )→ P ↓ ι denote the inclusion, and define r : P ↓ ι→ GH(P ) as fol-

lows. On objects r(Q,α)
def
= (Pα, α), noting that Pα 6 Q, while any morphism
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(Q,α)
ϕ−→ (Q′, α′) is taken by r to α′ ◦ α−1. For this to be well defined, α′ ◦ α−1 should

be a morphism in LH , and this is indeed the case since ϕ ◦ α′ = α and Θ̂(ϕ) ∈ H
implies Θ̂(α′ ◦ α−1) ∈ H. The composite r ◦ j is the identity functor on GH(P ), and
there is a natural transformation η : j ◦ r → IdP↓ι that takes an object (Q,α) in P ↓ ι
to the morphism (Pα, α)→ (Q,α) induced by the inclusion. Clearly ηj is the identity
transformation of j. This shows that GH(P ) is a left deformation retract of P ↓ ι, as
claimed.

Next, let j denote the inclusion GH(P )→ ι ↓ P . For an object (Q,α) in ι ↓ P
we choose a morphism γ(Q,α) ∈ MorL(P, S) with Θ̂(γ(Q,α)) = Θ̂(α)−1 as follows. If
α is an isomorphism, then we just take γ(Q,α) = α−1. Otherwise, we choose, using

Theorem 2.5(v), a morphism γ̄(Q,α) ∈ AutL(S) such that Θ̂(γ̄(Q,α)) = Θ̂(α)−1, and
we let γ(Q,α) be the restriction of γ̄(Q,α) to P . We now define the retraction

r : ι ↓ P → GH(P ) by setting r(Q,α) = (P γ(Q,α) , γ−1
(Q,α)), and sending a morphism

(Q,α)
ϕ−→ (R, β) to the unique morphism

γ(R,β) ◦ γ−1
(Q,α) : (P

γ(Q,α) , γ−1
(Q,α))→ (P γ(R,β) , γ−1

(R,β))

in GH(P ). Observe that this is well defined since

Θ̂(γ(R,β) ◦ γ−1
(Q,α)) = Θ̂(β)−1Θ̂(α) = Θ̂(ϕ) ∈ H,

and so γ(R,β) ◦ γ−1
(Q,α) is in LH . With this definition we have r ◦ j = IdGH(P ). Further-

more, if η : Idι↓P → j ◦ r is the natural transformation that sends an object (Q,α) to
the morphism γ(Q,α) ◦ α, then ηj is the identity transformation of j, and so GH(P ) is
a right deformation retract of ι ↓ P .

Recall that the homomorphism induced by the restriction of Θ̂ : Lq → B(Γ) to
AutL(S) is surjective by Theorem 2.5. Thus the composite with the projection to the
right cosets

AutL(S)→ Γ→ Γ/H (3)

is also surjective.

Lemma 4.7. Consider the set of left cosets Γ/H as a category with objects Γ/H and
no nontrivial morphisms. Then for any P ∈ L the functor

δP : GH(P )→ Γ/H

taking an object (Pα, α) to the coset Θ̂(α)−1H is an equivalence of categories.

Proof. Recall that an object in GH(P ) is of the form (Pα, α) where α : P → Pα 6 S
is an isomorphism in L. Surjectivity of δP on objects follows from the surjectivity of
Θ̂ : AutL(S)→ Γ.

Two objects (Pα, α) and (P β , β) are in the same connected component of GH(P )
if and only if β ◦ α−1 : Pα → P β is a morphism in LH . This is the case if and only
if Θ̂(β ◦ α−1) ∈ H, or equivalently if and only if Θ̂(α−1)H = Θ̂(β−1)H, or in other
words if and only if δP (P

α, α) = δP (P
β , β). This shows both that δP is well defined

and that it is an equivalence of categories as claimed.

We next observe that calculating limits over a discrete groupoid is particularly
easy.
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Lemma 4.8. Let G be a groupoid, and let M : G → Ab be a functor. Then

lim
G
M ∼=

∏
Gi

lim
Gi
M ∼=

∏
Gi

M(xi)
AutGi (xi),

where the product runs over connected components Gi of G, and xi is an arbitrary
object in Gi. In particular if G is discrete, then

lim
G
M ∼=

∏
Gi

M(xi).

Dually,

colim
G

M ∼=
⊕
Gi

M(xi)AutGi (xi)
,

where the subscript means coinvariants. In particular if G is discrete, then

colim
G

M ∼=
⊕
Gi

M(xi).

Proof. The first isomorphism is clear. For the second, observe that each connected
component of a groupoid is equivalent as a category to the group of automorphisms
of any object in it. Thus if xi is an object in Gi, then

lim
Gi
M ∼= lim

B(AutGi (xi))
M =M(xi)

AutGi (xi),

as claimed. The claim for colimits follows at once by duality. The conclusions for
discrete groupoids are clear.

We are now ready to describe the right Kan Extension of a module along the
inclusion ι : LH → L. To make notation less cumbersome, we will use the symbol g

to denote a left coset gH ∈ Γ/H. Also for any morphism ϕ in L, let tϕ
def
= Θ̂(ϕ) ∈ Γ.

Lemma 4.9. LetM ∈ LH-mod be any functor, and fix a section σ : Γ/H → AutL(S)
of the projection. Let σg denote σ(g). Then the right Kan extension of M to L can
be described as follows.

(a) For each P ∈ LH , there is an isomorphism

ΦσP : Rι(M)(P )
∼=−→

∏
g∈Γ/H

M(Pσ
−1
g ),

given by the formula

(ΦσP ({x(Q,β)}(Q,β)∈P↓ι))g = x
(Pσ

−1
g ,σ−1

g )
.

In other words, ΦσP takes a compatible family

{x(Q,β)}(Q,β)∈P↓ι ∈ Rι(M)(P )
def
= lim

P↓ι
M] 6

∏
(Q,β)∈P↓ι

M(Q)

to the element in
∏
g∈Γ/HM(Pσ

−1
g ) whose g-th coordinate is x

(Pσ
−1
g ,σ−1

g )
.
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(b) If τ : Γ/H → AutL(S) is another section, then one has a commutative diagram∏
g∈Γ/HM(Pσ

−1
g )

∏
M(τ−1

g ◦σg)∼=

��

Rι(M)(P )

∼=
ΦσP

55jjjjjjjjjjjjjjj

∼=

ΦτP

))TTTTTTTTTTTTTTT

∏
g∈Γ/HM(P τ

−1
g ).

(c) Let ϕ : P → Q be a morphism in L. Then, under the identification in part (a),
the map

Rι(M)(ϕ) : RιM(P )→ RιM(Q)

sends

(xg)g∈Γ/H ∈
∏

g∈Γ/H

M(Pσ
−1
g )

to {
M(σ−1

g ◦ ϕ ◦ σΘ̂(ϕ)−1g)(xΘ̂(ϕ)−1g)
}
g∈Γ/H

∈
∏

g∈Γ/H

M(Qσ
−1
g ).

Proof. For each object P ∈ L, the section σ defines an equivalence of categories

tσP : Γ/H → GH(P ) which takes an object gH to (Pσ
−1
g , σ−1

g ), and is a right inverse for
δP : GH(P )→ Γ/H of Lemma 4.7. Let jP : GH(P )→ P ↓ ι and rP : P ↓ ι→ GH(P )
denote the inclusion and retraction of Lemma 4.6 respectively.

The map ΦσP is the map induced by the composite jP ◦ tσP : Γ/H → P ↓ ι,

Rι(M)(P )
def
= lim

P↓ι
M]

j∗P−→ lim
GH(P )

M] ◦ jP
(tσP )∗−−−→ lim

Γ/H
M] ◦ jP ◦ tσP =

∏
g∈Γ/H

M(Pσ
−1
g ).

Notice that jp ◦ tσP takes a coset gH ∈ Γ/H to the object (Pσ
−1
g , σ−1

g ) ∈ P ↓ ι. Thus
the formula of part (a) is clear. Furthermore, the first map in the sequence above is
an isomorphism since GH(P ) is a left deformation retract of P ↓ ι by Lemma 4.6, and
the second is an isomorphism since tσP is an equivalence of groupoids.

For Part (b), notice that the morphisms τ−1
g ◦ σg define a natural isomorphism

from tσP to tτP , and hence a natural isomorphism jP ◦ tσP → jP ◦ tτP . Thus ΦσP and
ΦτP are naturally isomorphic, and (b) is nothing but a diagramatic realization of this
natural isomorphism.

To prove part (c), notice first that for each P ∈ L the composite functor δP ◦ rP is
a left inverse to jP ◦ tσP , and since the latter induces the isomorphism ΦσP of part (a),
δP ◦ rP induces (ΦσP )

−1. Thus to prove the statement we need to calculate the effect

of ΦσQ ◦Rι(M)(ϕ) ◦ (ΦσP )
−1 on a typical element {xg}g∈Γ/H ∈

∏
g∈Γ/HM(Pσ

−1
g ). By

direct calculation one has for (R, β) ∈ P ↓ ι, (T, γ) ∈ Q ↓ ι, and u ∈ Γ,

• ((ΦσP )
−1({xg}g∈Γ/H))(R,β) =M(βσΘ̂(β)−1)(xΘ̂(β)−1)

• (Rι(M)(ϕ)({M(βσΘ̂(β)−1)(xΘ̂(β)−1)}(R,β)))(T,γ) =M(γϕσΘ̂(γϕ)−1)(xΘ̂)(γϕ)−1)
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• (ΦσQ({M(γϕσΘ̂(γϕ)−1)(xΘ̂(γϕ)−1)}(T,γ)))u =M(σ−1
u ϕσΘ̂(σ−1

u ϕ)−1)(xΘ̂(σ−1
u ϕ)−1),

where σ−1
u represents the restricted map Q

σ−1
u−−→ Qσ

−1
u . Since Θ̂(σ−1

u ϕ)−1 = Θ̂(ϕ)−1u,
we have

(ΦσQ ◦Rι(M)(ϕ) ◦ (ΦσP )
−1({xg}g∈Γ/H))u =M(σ−1

u ◦ ϕ ◦ σΘ̂(ϕ)−1u)(xΘ̂(ϕ)−1u),

as claimed.

The following is an immediate corollary of Lemmas 4.9 and 3.5.

Corollary 4.10. The right Kan extension functor

Rι : LH-mod→ L-mod

is exact. Thus, the Shapiro map

ShM : H∗(L, Rι(M))→ H∗(LH ,M)

is an isomorphism for every M ∈ LH-mod.

There is a dual version of both Lemma 4.9, describing the left Kan extension LιM ,
and Corollary 4.10, showing that Lι is exact and hence ι∗ preserves injectives and
the Shapiro lemma holds in homology. We will not state these results explicitly, but
we draw the following corollary.

Corollary 4.11. The restriction functor ι∗ : L-mod→ LH-mod preserves both in-
jective and projective resolutions.

5. Construction of the transfer for subsystems of index prime
to p

Throughout this section let Γ = Γp′(F), fix a subgroup H 6 Γ, and let ι : LH → L
be the inclusion. Let σ : Γ/H → AutL(S) be a fixed section. As before, for g ∈ Γ we
denote by g the left coset gH ∈ Γ/H, and let σg denote σ(g).

Proposition 5.1. Let M ∈ L-mod. For each P ∈ L, let

Pre-TrP : Rι(ι
∗M)(P ) −→M(P )

be the map that, under the identification of Lemma 4.9, is given by

(xg)g∈Γ/H 7→
∑

g∈Γ/H

M(σg)(xg).

Then, the maps Pre-TrP are independent of the choice of the section σ, and assemble
into a natural transformation

Pre-Tr: Rι(ι
∗M)⇒M
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Proof. Let τ be another section. Then by Part (b) of Lemma 4.9 (omitting ι∗ from
the notation),

ΦτP =
(∏

M(τ−1
g

◦ σg)
)

◦ ΦσP .

Let x ∈ Rι(ι∗M)(P ), and let (xg)g and (x′g)g denote ΦσP (x) and ΦτP (x) respectively.
Then

(x′g)g = (M(τ−1
g ◦ σg)(xg))g.

Thus using the section τ to define Pre-Tr gives the map

(x′g)g∈Γ/H 7→
∑

g∈Γ/H

M(τg)(x
′
g) =

∑
g∈Γ/H

M(τg)(M(τ−1
g ◦ σg)(xg))

=
∑

g∈Γ/H

M(σg)(xg),

which agrees with the map defined using σ.

It remains to show that Pre-Tr is natural, meaning that for P,Q ∈ L and ϕ ∈
MorL(P,Q), the square

Rι(ι
∗M)(P )

Pre-TrP //

Rι(ι
∗M)(ϕ)

��

M(P )

M(ϕ)

��
Rι(ι

∗M)(Q)
Pre-TrQ // M(Q)

commutes. Let x ∈ Rι(ι∗M)(P ), and let (xg)g = ΦσP (x) ∈
∏

g∈Γ/H

M(Pσ
−1
g ), as in

Lemma 4.9. Then

M(ϕ) ◦ Pre-TrP (x) =
∑

g∈Γ/H

M(ϕ ◦ σg)(xg),

while, by part (c) of Lemma 4.9,

Pre-TrQ ◦Rι(ι
∗M)(ϕ)(x) =

∑
g∈Γ/H

M(σg)
(
M(σ−1

g ◦ ϕ ◦ σΘ̂(ϕ)−1g)(xΘ̂(ϕ)−1g)
)

=
∑

g∈Γ/H

M(ϕ ◦ σΘ̂(ϕ)−1g)(xΘ̂(ϕ)−1g).

Thus the two ways of composition in the square coincide.

The natural transformation Pre-Tr induces a map on higher limits, which we also
denote by Pre-Tr. Composing this with the inverse of the Shapiro isomorphism we
obtain our transfer.
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Definition 5.2. For any subgroup H 6 Γ and a functor M ∈ L-mod the associated
transfer, is the map

Tr: H∗(LH , ι∗M)
Sh−1

M−−−→∼= H∗(L, Rι(ι∗M))
Pre-Tr−−−−→ H∗(L,M).

Since the transfer is defined as a natural transformation of coefficient systems it is
of course independent of the choice of resolutions used to compute cohomology.

5.1. Cochain-level Description
Just as in the classical group case, the transfer map constructed here can be

described at the cochain level as a sum of conjugation maps. To this end we must
first make sense of conjugation maps in our current context.

Definition 5.3. Let M and N be coefficient systems on L, and let K be a sub-
group of Γ. Let ιK : LK → L denote the inclusion. For a natural transformation
φ ∈ HomLK-mod(ι

∗
KN, ι

∗
KM), and α ∈ AutL(S), let φ

α be the map which associates
with an object P ∈ L the homomorphism of R-modules φαP : N(P )→M(P ) given by

φαP :=M(α) ◦ φα−1(P ) ◦N(α−1) ∈ HomR(N(P ),M(P )).

We refer to this construction as conjugation. Notice that φα needs not be a natural
transformation in general. In the case where (φα) is a natural transformation, so (φα)β

is defined, it follows immediately from the definition that (φα)β = φ(β◦α), the order
being reversed since we write α on the right. The following lemma investigates other
basic properties of φα, and in particular provides a condition under which it is a
natural transformation.

Lemma 5.4. Let L,M and N be coefficient systems on L, let K,H 6 Γ, and let
α ∈ AutL(S).

(a) If

ι∗KN
φ−→ ι∗KM

η−→ ι∗KL

is a composable sequence in LK-mod then

(η ◦ φ)α = ηα ◦ φα.

(b) If φ ∈ HomLK-mod(ι
∗
KN, ι

∗
KM), then for every α ∈ AutLK (S),

φα = φ.

(c) If Θ̂(α)−1 ∈ NΓ(H,K) and φ ∈ HomLK-mod(ι
∗
KN, ι

∗
KM), then φα is a natu-

ral transformation ι∗HN → ι∗HM , and the map which associates φα with φ is a
homomorphism

c∗α : HomLK-mod(ι
∗
KN, ι

∗
KM) −→ HomLH-mod(ι

∗
HN, ι

∗
HM).

Proof. For P ∈ L and α ∈ AutL(S),

(η ◦ φ)αP
def
= L(α) ◦ (η ◦ φ)α−1(P ) ◦N(α−1) =

L(α) ◦ ηα−1(P ) ◦M(α−1) ◦M(α) ◦ φα−1(P ) ◦N(α−1) = ηαP ◦ φαP .

This proves part (a).
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Part (b) is immediate, since by assumption φ is natural with respect to any mor-
phism in LK , and in particular α. Therefore, for any object Q,

φαQ =M(α) ◦ φα−1(Q) ◦N(α−1) =M(α) ◦M(α−1) ◦ φQ = φQ.

It remains to prove part (c). Let ϕ : P → Q be a morphism in LH . Then Θ̂(ϕ) ∈ H,
so by assumption on α we have

Θ̂(α−1 ◦ ϕ ◦ α) = Θ̂(α)−1 ◦ Θ̂(ϕ) ◦ Θ̂(α) ∈ K,

so

α−1 ◦ ϕ ◦ α ∈ MorLK (α
−1(P ), α−1(Q)).

Thus,

φαQ ◦N(ϕ) =M(α) ◦ φα−1(Q) ◦N(α−1) ◦N(ϕ)

=M(α) ◦ φα−1(Q) ◦N(α−1 ◦ ϕ ◦ α) ◦N(α−1)

=M(α) ◦M(α−1 ◦ ϕ ◦ α) ◦ φα−1(P ) ◦N(α−1)

=M(ϕ) ◦M(α) ◦ φα−1(P ) ◦N(α−1)

=M(ϕ) ◦ φαP .

This shows that φα is a natural transformation. That the map c∗α is a homomorphism
follows directly from the definition.

Remark 5.5. A consequence of part (b) of Lemma 5.4 is that if α, α′ ∈ AutL(S)

with Θ̂(α) = Θ̂(α′) then c∗α = c∗α′ , since α−1 ◦ α′ ∈ AutLH (S) for any subgroup H 6
Γ. Therefore we will often write c∗x for x ∈ Γ to denote the conjugation induced

by any α ∈ AutL(S) with Θ̂(α) = x, and write φx for c∗x(φ). When restricted to

HomLH-mod(ι
∗
HN, ι

∗
HM), the conjugation c∗α only depends on the coset Θ̂(α)H.

Therefore we will also write c∗x and φx for x ∈ Γ/H. Finally, we also write c∗x and
φx for x ∈ K\Γ/H when the maps involved are independent of the choice of repre-
sentative for double cosets.

Corollary 5.6. Let M be a coefficient system on L with injective resolution M → I•
and let K,H 6 Γ. For α ∈ AutL(S) such that Θ̂(α)−1 ∈ NΓ(H,K), the map induced
by conjugation

c∗α : HomLK-mod(ι
∗
KR, ι∗KI•) −→ HomLH-mod(ι

∗
HR, ι∗HI•)

is a map of cochain complexes, and the induced map on cohomology

c∗α : H
∗(LK , ι∗KM) −→ H∗(LH , ι∗HM)

is independent of the choice of the injective resolution I•.

Proof. First recall that ι∗H and ι∗K preserve injective resolutions by Corollary 4.11.
Now, denote the differential of I• by ∂. Then, by Lemma 5.4(b), ∂α = ∂ for any
α ∈ AutL(S). The differentials of the cochain complexes HomLK-mod(ι

∗
KR, ι∗KI•) and

HomLH-mod(ι
∗
HR, ι

∗
HI•) are both given by composition with ∂, and will be denoted
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δK and δH respectively. For φ ∈ HomLK-mod(ι
∗
KR, ι∗KI•) we therefore have

cα ◦ δK(φ) = cα(∂ ◦ φ) = ∂α ◦ φα = ∂ ◦ φα = δH ◦ cα(φ).

This shows that cα ◦ δK = δH ◦ cα, so cα is a cochain map. The proof of independence
on choice of injective resolutions is routine.

Lemma 5.7. Let M and N be coefficient systems on L, and let H 6 Γ. If
φ ∈ HomLH-mod(ι

∗
HN, ι

∗
HM) then∑

g∈Γ/H

φg ∈ HomL-mod(N,M).

Proof. We need to show naturality with respect to morphisms in L. So let ψ : P → Q
be a morphism in L. Fix a section σ : Γ/H → AutL(S), and let σg denote σ(g), as
before. For each g ∈ Γ/H, let ψg denote the composite

σ−1

Θ̂(ψ)−1g
(P )

σΘ̂(ψ)−1g−−−−−−→ P
ψ−→ Q

σ−1
g−−→ σ−1

g (Q),

where the appropriate restrictions on σg and σ−1

Θ̂(ψ)−1g
are understood. Observe that

Θ̂(ψg) ∈ H, so ψg ∈ MorLH (σ
−1

Θ̂(ψ)−1g
(P ), σ−1

g (Q)).

Now,∑
g∈Γ/H

φgQ ◦N(ψ) =
∑

g∈Γ/H

M(σg) ◦ φσ−1
g (Q) ◦N(σ−1

g ) ◦N(ψ)

=
∑

g∈Γ/H

M(σg) ◦ φσ−1
g (Q) ◦N(ψg) ◦N(σ−1

Θ̂(ψ)−1g
)

=
∑

g∈Γ/H

M(σg) ◦M(ψg) ◦ φσ−1

Θ̂(ψ)−1g
(P ) ◦N(σ−1

Θ̂(ψ)−1g
)

=
∑

g∈Γ/H

M(ψ) ◦M(σΘ̂(ψ)−1g) ◦ φσ−1

Θ̂(ψ)−1g
(P ) ◦N(σ−1

Θ̂(ψ)−1g
)

=M(ψ)
∑

g∈Γ/H

φ
Θ̂(ψ)−1g
P .

=M(ψ)
∑

g∈Γ/H

φgP .

The first and the fifth equalities follows from the definition of φg (see Remark 5.5),
the second and the fourth from the definition ψg, the third from naturality of φ, and
the sixth is clear. This shows naturality and proves the claim.

Definition 5.8. For a coefficient systemM on L, a subgroup H 6 Γ and an injective
resolution M → I•, the associated cochain-level transfer is the cochain map

TrH : HomLH (ι
∗
HR, ι∗HI•) −→ HomL(R, I•)

given by

TrH(φ) =
∑

g∈Γ/H

φg.
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Since TrH is a sum of conjugations, it follows by Corollary 5.6 that it is indeed a
cochain map, and that the induced map on cohomology is independent of the choice
of injective resolution.

Proposition 5.9. For a coefficient system M on L and a subgroup H of Γ, the map

H∗(LH , ι∗M) −→ H∗(L,M)

induced by the cochain-level transfer TrH of Definition 5.8 coincides with the transfer
associated to the same data, as defined in 5.2.

Proof. Let ι : LH → L denote the inclusion. IfM → I• is an injective resolution, then,
by Corollary 4.11, ι∗M → ι∗I• is an injective resolution. Thus the Shapiro isomor-
phism ShM is given on the cochain-level by the (ι∗, Rι)-adjunction isomorphism

ρ : HomL-mod(R, Rι(ι
∗I•))

∼=−→ HomLH-mod(ι
∗R, ι∗I•).

(cf. Subsection 3.3). Hence its inverse Sh−1
M is induced by ρ−1, whose value on

φ ∈ HomLH-mod(ι
∗R, ι∗I•) is the natural transformation which takes an object Q ∈ L

to the morphism ρ−1(φ)Q given by the composite

R = R(Q)

∏
g∈Γ/H

R(σ−1
g )

−−−−−−−−−→
∏

g∈Γ/H

R(Qσ
−1
g )

∏
g∈Γ/H

φ
σ
−1
g (Q)

−−−−−−−−−→
∏

g∈Γ/H

I•(Q
σ−1
g ) ∼= Rι(ι

∗I•)(Q).

Therefore the composite

HomLH-mod(ι
∗R, ι∗I•)

ρ−1
M−−→∼= HomL-mod(R, Rι(ι

∗I•))
Pre-Tr−−−−→ HomL(R, I•),

which induces the transfer, is given by

φ 7→
∑

g∈Γ/H

I•(σg) ◦ φσ−1
g (Q) ◦ R(σ−1

g ) =
∑

g∈Γ/H

φσg = TrH(φ).

5.2. Geometric Interpretation

We end this section by verifying that for a locally constant system of coefficients
M ∈ L-mod, and a subgroup LH 6 L of index prime to p, the transfer defined in this
section coincides with the map defined in Section 4.2.

Let ι : LH → L denote the inclusion. Let Γ = π1(|L|, S) and Γ′ = π1(|LH |, S).
Then, by Theorem 2.5(v), the map induced by ι on nerves is a covering space, up to
homotopy, with homotopy fibre Γ/Γ′ ∼= Γp′(F)/H. Construct π : LΓ′ → L as in Sec-
tion 3.6. Then, by Lemma 3.11(i), there is a functor ι̂ : LH → LΓ′ , such that π ◦ ι̂ = ι,
and by Part (ii) of the same lemma, for any locally constant M ∈ L-mod, there is a
natural isomorphism induced by ι̂,

ι̂∗ : Rπ(π
∗M)

∼=−→ Rι(ι
∗M).

Choose a section σ : Γ/H → AutL(S) of the projection, and construct Φσ as in
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Lemma 4.9. Then for any M ∈ L-mod and P ∈ L, we claim that the diagram

Rπ(π
∗M)(P )

Pr //

ι̂∗

��

∏
Γ/Γ′ M(P ) Σ //

∏
M(σg)

−1

��

M(P )

Rι(ι
∗M)(P )

ΦσP // ∏
g∈Γ/Γ′ M(Pσ

−1
g )

Σσ // M(P )

commutes. Here the map Pr projects a compatible family of elements in the source
onto the coordinates of the respective initial objects, i.e., to the coordinates of the
objects of the form ((P, gΓ′), 1P ). The map Σ is the sum of coordinates, where Σσ is
the twisting of the sum of coordinates map by the M(σg), as in the construction of
Pre-TrP in Proposition 5.1. The right square clearly commutes, while the verification
that the left square commutes only involves checking all the relevant definitions.

Since the map TP of Proposition 3.13 is the top composition, and the map Pre-TrP
is the bottom composition, it follows that one has a commutative diagram in coho-
mology

H∗(LΓ′ , π∗M)
∼= //

ι̂∗∼=
��

H∗(L, Rπ(π∗M))
T∗ //

ι̂∗∼=
��

H∗(L,M)

H∗(LH , ι∗M)
∼= // H∗(L, Rι(ι∗M))

Pre-Tr∗ // H∗(L,M).

Here the top composition is the transfer associated to the covering |LH | → |L| by
Proposition 4.5, while the bottom composition is our algebraic transfer.

6. Standard Consequences

In this final section we show that the transfer constructed here for subsystems of
index prime to p satisfies all the standard properties one expects to have in ordinary
group cohomology. Throughout this section Γ = Γp′(F), and we let Θ̂ : L → B(Γ)
denote the projection functor, as before.

6.1. Transfer among Subgroups

We have defined a transfer associated to the inclusion LH ⊆ L for a subgroup
H 6 Γ. Just like in the group case, this construction can be generalized to obtain a
transfer associated to the inclusion LH ⊆ LK for subgroups H 6 K 6 Γ. Indeed, one
can simply take LK in place of L in the construction of the transfer. The transfer
associated to the inclusion ιKH : LH ⊆ LK can then be described on the cochain level
as follows. Let M be a coefficient system on LK , and let M → I• be an injective
resolution of M . A cochain-level transfer

TrKH : HomLH (ι
∗
HR, (ιKH)∗I•) −→ HomLK (ι

∗
KR, I•)

is given by

TrKH(φ) =
∑

x∈K/H

φx,
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as in Definition 5.8. This formula makes it clear that TrH = TrKH ◦ TrK for subgroups
H 6 K 6 Γ.

6.2. Normalization

One of the most basic properties of the standard cohomology transfer is that the
restriction to the cohomology of a subgroup followed by the transfer is given by
multiplication by the index. This is exactly the case in our more general context.

Proposition 6.1. Let (S,F ,L) be a p-local finite group, and let H be a subgroup of
Γ = Γp′(F). Let M be a system of coefficients for (S,F ,L). Then the composite

H∗(L,M)
Res−−→ H∗(LH , ι∗M)

Tr−−→ H∗(L,M)

is given by multiplication by the index |Γ: H|.

Proof. Consider the diagram

H∗(L,M)
Res //

(δM )∗

''PPPPPPPPPPPPPPPPPPPPPPPPPP
H∗(LH , ι∗M)

Sh−1
M

∼=

��

TrH // H∗(L,M)

H∗(L, Rι(ι∗M)),

Pre-Tr

77nnnnnnnnnnnnnnnnnnnnnnnnnn

where the right triangle commutes by the definition of the transfer, and where the
morphism δM : M → Rι(ι

∗M) is the unit of the (ι∗, Rι)-adjunction evaluated at
the object M . Notice that under the identification of Lemma 4.9(a),

δM (x) = {M(σg)
−1(x)}g∈Γ/H .

The left triangle is commutative by construction of the Shapiro isomorphism (see
Subsection 3.3). To see this, notice that Sh−1

M is induced by the adjunction isomor-
phism

ρ : HomLH-mod(RLH , ι
∗I•) = HomLH-mod(ι

∗RL, ι
∗I•)→ HomL-mod(RL, Rι(ι

∗I•)),

where I• is an injective resolution of M in L-mod. The adjunction, in turn, applied
to a natural transformation ψ : ι∗RL → ι∗I• is the composite

RL
δRL−−→ Rι(ι

∗RL)
Rιψ−−−→ Rι(ι

∗I•).

By naturality of δ, for any natural transformation ϕ : RL → I•,

δI• ◦ ϕ = Rι(ι
∗ϕ) ◦ δRL .

This proves commutativity of the left triangle, and therefore it suffices to show that
the composite Pre-Tr ◦(δM )∗ is given by multiplication by |Γ : H|. This map is induced
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by a natural transformation of coefficients

M
δM−−→ Rι(ι

∗M)
Pre-Tr−−−−→M,

which is given element-wise by

x 7→ {M(σg)
−1(x)}g∈Γ/H 7→

∑
g∈Γ/H

M(σg)(M(σ−1
g )(x)) = |Γ : H| · x

for P ∈ L and x ∈M(P ).

6.3. Double Coset Formula
We now show that the transfer map constructed here satisfies a double coset for-

mula which is essentially identical to that which holds for ordinary group cohomology.

Proposition 6.2. Let (S,F ,L) be a p-local finite group, and let H and K be sub-
groups of Γ = Γp′(F). Then the composite

H∗(LK , ι∗KM)
TrK−−−→ H∗(L,M)

ResH−−−→ H∗(LH , ι∗HM)

is given by

ResH ◦TrK =
∑

x∈H\Γ/K

TrHH∩xKx−1 ◦ c∗x ◦ ResKx−1Hx∩K .

Proof. Using the cochain-level description of the transfer in Section 5.1, one can
easily adapt most textbook proofs of the double coset formula for group cohomology
to prove this proposition. The argument presented here follows the lines of [AM,
Thm 6.2], to which the reader is referred for full detail.

Let Γ =
∐
iHxiK be a double coset decomposition of Γ with respect to K and H.

For each i, put

Vi
def
= x−1

i Hxi ∩K and Wi
def
= H ∩ xiKx−1

i ,

and let H =
∐
j zjiWi be a left coset decomposition of H with respect to Wi. Then

one can rewrite the right K-coset decomposition of Γ as

Γ =
∐
i,j

zjixiK.

Let M → I• be an injective resolution of M in L-mod. Since x−1
i ∈ NΓ(Wi, Vi) we

have induced chain maps

c∗xi : HomLVi-mod(ι
∗
ViRL, ι

∗
ViI•) −→ HomLWi-mod(ι

∗
Wi

RL, ι
∗
Wi
I•),

as in Corollary 5.6. Let φ ∈ HomLK-mod(ι
∗
KRL, ι

∗
KI•). Then

ResH ◦TrK(φ) = ResH

 ∑
g∈Γ/K

φg


= ResH

∑
i

∑
j

φ(zjixi)

 ,
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and ∑
i

TrHWi
◦ c∗xi ◦ ResKVi(φ) =

∑
i

∑
j

(
c∗xi(Res

K
Vi(φ))

)zij
=

∑
i

∑
j

(
ResKVi(φ)

)(zjixi) .

As we can ignore restrictions when determining the effect of these natural trans-
formations, this calculation shows that the double coset formula holds already at
the chain-level. Since the maps involved are maps of chain complexes, the result
follows.

6.4. A Stable Elements Theorem

In standard group cohomology, the availability of a transfer and a double coset for-
mula allows one to prove that the cohomology of a finite group with a p-local module
of coefficients is given by the so called “stable elements” in the cohomology of a Sylow
p-subgroup with the restricted module of coefficients. Using a “transfer-like” map, a
similar theorem was proved in p-local finite group cohomology with p-local constant
coefficients in [BLO2, Section 5]), and generalized to any stably representable non-
equivariant cohomology theory in [Ra]. We now show that the existence of a transfer
and a double coset formula in our context implies a stable elements theorem in p-
local finite group theory for arbitrary p-local modules of coefficients, and subgroups
of index prime to p.

Fix a p-local finite group (S,F ,L), and let Γ = Γp′(F).

Definition 6.3. Let H 6 K 6 Γ, and let M ∈ L-mod be a system of coefficients.
An element x ∈ H∗(LH , ι∗H(M)) is K-stable if for every subgroup U 6 H and every
g ∈ K with g−1 ∈ NK(U,H),

c∗g ◦ ResHgUg−1(x) = ResHU (x) ∈ H∗(LU , ι∗U (M)).

Lemma 6.4. Let H 6 K 6 Γ, and let M be a system of coefficients on L. The K-
stable elements in H∗(LH , ι∗H(M)) form a submodule. Furthermore, if A is a system
of ring coefficients, then the submodule of K-stable elements in H∗(LH , ι∗H(A)) is a
subring.

Proof. This follows at once from the definition of stable elements, and the fact that
the maps induced by restriction and conjugation are module maps or, in the case of
ring coefficients, ring maps.

Lemma 6.5. Let H 6 K 6 Γ, and let M ∈ L-mod be a system of coefficients. If
x ∈ H∗(LK , ι∗K(M)) then ResKH(x) is K-stable.

Proof. This follows from part (b) of Lemma 5.4.

We are now ready to state the Stable Elements Theorem for p-local finite groups.
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Theorem 6.6. Let Γ = Γp′(F), let H 6 K 6 Γ, and let M ∈ L-mod be a p-local
system of coefficients. Then the restriction homomorphism

ResKH : H∗(LK , ι∗K(M)) −→ H∗(LH , ι∗H(M))

is a split injection whose image is the submodule of K-stable elements.

Proof. By Proposition 6.1, the composite TrKH ◦ ResKH on H∗(LK , ι∗K(M)) is multipli-

cation by the index |K : H|. Since this is prime to p, the map t
def
= |K : H|−1 · TrKH is

a left inverse for ResKH , proving split injectivity. By Lemma 6.5 the image of ResKH lies
in the submodule of stable elements. Conversely, if a ∈ H∗(LH , ι∗H(M)) is K-stable,
then the double coset formula gives us

ResKH ◦TrKH(a) =
∑

x∈H\K/H

TrHH∩xHx−1 ◦ c∗x ◦ ResHx−1Hx∩H(a)

=
∑

x∈H\K/H

TrHH∩xHx−1 ◦ ResHH∩xHx−1(a)

=
∑

x∈H\K/H

|H : H ∩ xHx−1| a

= |K : H| a,

where the equality ∑
x∈H\K/H

|H : H ∩ x−1Hx| = |K : H|

is obtained as in the first step of the proof of the double coset formula. It follows that

x = ResKH
(
TrKH(|K : H|−1 x)

)
is in the image of ResKH .

6.5. Frobenius Reciprocity
Here we show that the transfer and restriction maps for p-local finite groups satisfy

the standard Frobenius reciprocity formula.

Proposition 6.7. Let (S,F ,L) be a p-local finite group, and let Γ be Γp(F) or
Γp′(F). Let H 6 K 6 Γ, and let A be a system of ring coefficients on L. For x ∈
H∗(LK , ι∗KA) and y ∈ H∗(LH , ι∗HA) we have

TrKH(ResKH(x) y) = xTrKH(y).

Proof. We prove this at the cochain level. Let P• → R be a projective resolution of
the constant functor on L, and let φ ∈ HomLK-mod(ι

∗
KP•, ι

∗
KA), (representing x) and

ψ ∈ HomLH-mod(ι
∗
HP•, ι

∗
HA) (representing y). Then

TrKH(ResKH(φ)ψ) =
∑

g∈K/H

(ResKH(φ)ψ)g =
∑

g∈K/H

ResKH(φ)g ψg

=
∑

g∈K/H

ResKH(φ)ψg = φ
∑

g∈K/H

ψg

= φTrKH(ψ),
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where we have used the equality ResKH(φ)g = ResKH(φg) = ResKH(φ) for g ∈ K obtained
in Lemma 5.4 (b). The result follows by passing to cohomology.
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