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TORSION IN FINITE H-SPACES AND THE HOMOTOPY OF THE
THREE-SPHERE

PIOTR BEBEN and STEPHEN THERIAULT

(communicated by Donald M. Davis)

Abstract
Let X be a 2-connected p-local finite H-space with a single

cell in dimension three. We give a simple cohomological criterion
which distinguishes when the inclusion S3 i−→ X has the prop-
erty that the loop of its three-connected cover is null homotopic.
In particular, such a null homotopy implies that πm(i) = 0 for
m > 4. Applications are made to Harper’s rank 2 finite H-space
and simple, simply-connected, compact Lie groups.

1. Introduction

The existence of torsion in the cohomology of a finite H-space has been a subject
of great interest for several decades (see, for example, [H, K, L]). In this paper we
show that, in certain situations, the existence of torsion in cohomology determines
interesting homotopy theoretic information.

Assume that all spaces and maps have been localized at an odd prime p and
homology is taken with mod-p coefficients. Let X be a 2-connected finite H-space.
Note that by [L], any simply-connected finite H-space is in fact 2-connected. Suppose
that X has a single cell in dimension three, i : S3 −→ X is the inclusion of the bottom
cell, and x ∈ H3(X) satisfies i∗(x) = ι, where ι ∈ H3(S3) is a generator. We show that
the cohomological property βP1(x) 6= 0 holds if and only if the loops on the three-
connected cover of i is null homotopic. To phrase this another way, let S3〈3〉 and
X〈3〉 be the three-connected covers of S3 and X respectively, and let i〈3〉 be the
three-connected cover of i. Then βP1 detects the triviality of Ωi〈3〉.

These statements are intimately connected to the least nonvanishing torsion homo-
topy group of S3. Let α : S2p −→ S3 be a representative of the generator of π2p(S3) ∼=
Z/pZ. Since α has order p, it extends to a map α : P 2p+1(p) −→ S3. Note that this
extension is unique since the difference between any two choices of an extension fac-
tors through a map S2p+1 −→ S3, and π2p+1(S3) = 0. We show that, in general, if X
is any H-space and i : S3 −→ X is any map then Ωi〈3〉 is null homotopic if and only
if i ◦ α is null homotopic. In the special case when X is a simply-connected, finite
H-space and i is the inclusion of one of the bottom cells we relate a null homotopy
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for i ◦ α to the cohomological condition βP1(x) 6= 0. When X has a single cell in
dimension 3, the null homotopy for i ◦ α becomes equivalent to having βP1(x) 6= 0.

Theorem 1.1. Let X be an H-space and i : S3 −→ X be a map. The following are
equivalent:

(a) the composite P 2p+1(p) α−→ S3 i−→ X is null homotopic;

(b) the map ΩS3〈3〉 Ωi〈3〉−→ ΩX〈3〉 is null homotopic.

If X is a 2-connected finite H-space with a single cell in dimension three, i is the
inclusion of the bottom cell, and x ∈ H3(X) satisfies i∗(x) = ι, then parts (a) and (b)
are also equivalent to:

(c) βP1(x) 6= 0.

In Section 3 we consider the more general case of a 2-connected finite H-space X

with multiple cells in dimension three, and give a condition for when a map S3 i−→ X
satisfying i∗(x) = ι and βP1(x) 6= 0 has the property that Ωi〈3〉 is null homotopic.
However, the statement is too technical to reasonably describe at this point.

From Theorem 1.1 (b) we immediately obtain the following corollary.

Corollary 1.2. The map S3 i−→ X has the property that πm(i) = 0 for m > 4.

The implication (a) implies (b) in Theorem 1.1 is related to a deep conjecture
in homotopy theory, that Ω2α〈3〉 has a left homotopy inverse. If this were the case,

then (a) would imply that the map Ω2S3〈3〉 Ω2i〈3〉−−→ Ω2X〈3〉 is null homotopic, with no
condition on X. In this sense the H-space hypothesis on X in Theorem 1.1 should
not be regarded as best possible. Rather, it allows us to go forward and suffices for
the applications we have in mind.

We give two useful examples. First, Harper [H] constructed a rank 2 mod-p finite
H-space Kp which is analogous to the Lie group G2 at the prime 2, in the sense that

H∗(Kp) = Λ(x3, y2p+1)⊗ Z/pZ[z2p+2]/(zp
2p+2)

with P1(x) = y and β(y) = z. Since βP1(x) 6= 0, Theorem 1.1 implies that the map

ΩS3〈3〉 Ωi〈3〉−→ ΩKp〈3〉 is null homotopic, and so πm(i) = 0 for m > 4. Second, a torsion
Lie group is a Lie group which has p-torsion in its integral cohomology. When p is odd
the only simple, simply-connected, compact torsion Lie groups are F4, E6, E7, and
E8 at the prime 3, and E8 at the prime 5. In each case, there is a single generator x
in degree three cohomology and βP1(x) 6= 0. On the other hand, if G is a simple,
simply-connected, compact Lie group which is torsion free then there is a single
generator x ∈ H3(G) and the fact that G is torsion free implies that βP1(x) = 0.
Hence Theorem 1.1 implies the following.

Theorem 1.3. Let p > 3 and let G be a simple, simply-connected, compact Lie group.

The inclusion S3 i−→ G has the property that ΩS3〈3〉 Ωi〈3〉−→ ΩG〈3〉 is null homotopic
if and only if G is a torsion Lie group.
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In proving Theorem 1.1 we use an H-space B(3, 2p + 1) studied by Toda [To1],
which has three key properties. First,

H∗(B(3, 2p + 1)) ∼= Λ(x, y)

where |x| = 3, |y| = 2p + 1 and P1(x) = y. Second, there is a homotopy fibration

S3 s−→ B(3, 2p + 1)
q−→ S2p+1

where q∗ is an injection and s∗ is a projection. Third, there is a “characteristic map”

c : S2p+1 −→ B(3, 2p + 1)

with the property that q ◦ c is of degree p. We show that the map S3 i−→ X extends
to a map j : B(3, 2p + 1) −→ X with the property that j ◦ c is null homotopic. In
Proposition 4.1 we show that if p > 5 then the pth-power map

ΩB(3, 2p + 1)〈3〉 p−→ ΩB(3, 2p + 1)〈3〉
factors through Ωc. This is then used to prove the following (the p = 3 case arises
from different methods).

Theorem 1.4. Let X be a finite H-space as in Theorem 1.1. If p > 5, the map

ΩB(3, 2p + 1)〈3〉 Ωj〈3〉−−−→ ΩX〈3〉
has order p. If p = 3, the map

Ω2B(3, 7)〈3〉 Ω2j〈3〉−−−−→ Ω2X〈3〉
has order 3.

In particular, the map ΩB(3, 2p + 1)〈3〉 Ωj〈3〉−→ ΩKp〈3〉 has order p; if G is one of

F4, E6, E7, or E8, then localized at 3 the map ΩB(3, 7)〈3〉 Ωj〈3〉−→ ΩG〈3〉 has order 3;

and localized at 5 the map ΩB(3, 11)〈3〉 Ωj〈3〉−→ ΩE8〈3〉 has order 5. For the latter case,
it is interesting to note that by [MNT], there is a 5-local homotopy equivalence
e : B(3, 11) −→ G2. Since E8 at 5 is the Eilenberg-MacLane space K(Z, 3) in dimen-
sions 6 14 and both G2 and B(3, 11) are of dimension 14, the homotopy classes of

the standard inclusion ı : G2 −→ E8 and the map B(3, 11)
j−→ E8 are determined by

H3(G2;Z/5Z) and H3(B(3, 11);Z/5Z) respectively. Since e can be chosen to be the
identity on H3, we obtain e ◦ i ' j. Thus Ωi〈3〉 has order 5.

2. The equivalence of parts (a) and (b) of Theorem 1.1

The difficult implication is (b) implies (a). To prepare for this, we need the following
initial construction.

Proposition 2.1. Let X be an H-space and i : S3 −→ X be any map. Suppose that
the composition P 2p+1(p) α−→ S3 i−→ X is null homotopic. Then i extends to a map
j : B(3, 2p + 1) −→ X which can be chosen so that the composite

S2p+1 c−→ B(3, 2p + 1)
j−→ X

is null homotopic.
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Proposition 2.1 requires three preliminary steps. First, define the space A by the
homotopy cofibration

P 2p+1(p) α−→ S3 i−→ A.

As a module over the Steenrod algebra we have H∗(A) ∼= {y,P1(y), βP1(y)}, where
|y| = 3. Observe also that A is the (2p + 2)-skeleton of K(Z, 3). Since one of our
assumptions on X is that the composition P 2p+1(p) α−→ S3 i−→ X is null homotopic,
the following lemma is an immediate consequence.

Lemma 2.2. There is an extension

S3 //

i

²²

A

iA~~~~
~~

~~
~~

X

for some map iA.

Second, let A be the (2p + 1)-skeleton of A. As a module over the Steenrod alge-
bra we have H∗(A) ∼= {x,P1(x)}. In particular, observe that A is also the (2p + 1)-
skeleton of B(3, 2p + 1). Consider the cofibration

S2p+1 d−→ A −→ A

where d attaches the top cell to A.

Lemma 2.3. The following hold:

(a) the map d represents a generator of π2p+1(A) ∼= Z;

(b) the composite S2p+1 d−→ A −→ B(3, 2p + 1) is homotopic to ±c.

Proof. Consider the homotopy fibration F −→ A −→ A, which defines the space F .
It was observed that A is the (2p + 2)-skeleton of K(Z, 3). However, the next cell
in K(Z, 3) occurs in dimension 2p + 4, as the product of the degree 3 and (2p + 1)-
cells. Thus A is actually the (2p + 3)-skeleton of K(Z, 3). In other words, the map
A −→ K(Z, 3) is (2p + 2)-connected, implying that πm(A) = 0 for 3 < m < 2p + 2.
Thus the map F −→ A induces an isomorphism on π2p+1. On the other hand, a Serre
spectral sequence calculation shows that the (2p + 3)-skeleton of F is S2p+1. Thus
π2p+1(F ) = π2p+1(S2p+1) ∼= Z, and therefore π2p+1(A) ∼= Z. Further, the composite
S2p+1 ↪→ F −→ A is homotopic to the attaching map d, implying that d represents a
generator of π2p+1(A), proving part (a).

Next, observe that the skeletal inclusion A −→ B(3, 2p + 1) is (2p + 2)-connected.
Thus it induces an isomorphism on π2p+1. By part (a), d represents a generator of
π2p+1(A) ∼= Z while by [To1], c represents a generator of π2p+1(B(3, 2p + 1)) ∼= Z.
Part (b) now follows immediately.

For the third preliminary step, let iA be the composite iA : A −→ A
iA−→ X, where

the left map is the skeletal inclusion. Observe that as iA extends the map S3 i−→ X,
so does iA.
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Lemma 2.4. The map A
iA−→ X extends to a map j : B(3, 2p + 1) −→ X. Conse-

quently, j also extends i.

Proof. Observe that there is a homotopy cofibration S2p+3 θ−→ A −→ B(3, 2p + 1)
where θ attaches the top cell to B(3, 2p + 1). To show that iA extends to j we need
to show that the composite iA ◦ θ is null homotopic. Since X is an H-space, it is equiv-
alent to show that ΣiA ◦ Σθ is null homotopic. We claim that this is true because Σθ
itself is null homotopic. This is a consequence of the following general result of [CN].
Let Y be an H-space with H∗(Y ) ∼= Λ(y, z), where |y| = 2m + 1 and |z| = 2n + 1.
Without loss of generality, suppose that n > m. Let Z be the (2n + 1)-skeleton of Y ,
so H∗(Z) ∼= {x, y}. Then there is a homotopy equivalence ΣY ' ΣZ ∨ ΣS2n+2m+2.
In particular, the map S2n+2m+1 −→ Z attaching the top cell to Y is null homotopic
when suspended.

Proof of Proposition 2.1: By Lemma 2.4, the map j extends i. To show that c ◦ j is
null homotopic, consider the diagram

S2p+1 d //

±c

&&NNNNNNNNNN A //

²²

iA

%%LLLLLLLLLLL A

iA

²²
B(3, 2p + 1)

j // X.

The left triangle homotopy commutes by Lemma 2.3 (b). The upper right triangle
homotopy commutes by definition of iA as the skeletal restriction of iA. The lower
right triangle homotopy commutes by Lemma 2.4. Since the top row is two consecutive
maps in a cofibration, it is null homotopic. The homotopy commtutativity of the
diagram as a whole therefore implies that j ◦ c is null homotopic.

Next, we aim towards Corollary 2.6 which describes a crucial property of the map
S2p+1 c−→ B(3, 2p + 1). Define the space S2p+1{p} and the map δ by the homotopy
fibration

S2p+1{p} δ−→ S2p+1 p−→ S2p+1.

A Serre spectral sequence calculation directly shows that

H∗(S2p+1{p}) ∼= Λ(x2p+1)⊗ Γ[y2p]

with β(x) = y. In particular, the bottom cell of S2p+1{p} is in dimension 2p.
As mentioned in the introduction, the composite

S2p+1 c−→ B(3, 2p + 1)〈3〉 q〈3〉−→ S2p+1

is of degree p. From this we obtain a homotopy pullback diagram

Y

²²

Y

²²
S2p+1{p} δ //

f

²²

S2p+1
p //

c

²²

S2p+1

S3〈3〉 s〈3〉 // B(3, 2p + 1)〈3〉 q〈3〉 // S2p+1

(1)
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which defines the space Y and the map f . By [To1], the space Y is (2p2 − 2)-
connected.

Lemma 2.5. The map ΩS2p+1{p} Ωf−→ ΩS3〈3〉 has a right homotopy inverse.

Proof. It is well known that there are isomorphisms

H∗(ΩS2p+1{p}) ∼= ⊗∞j=1(Λ(a2pj−1)⊗ Z/pZ[b2pj−2])

and

H∗(ΩS3〈3〉) ∼= Λ(x2p−1)⊗ Z/pZ[y2p−2].

Since the homotopy fibre ΩY of Ωf is (2p2 − 3)-connected, Ωf is a homotopy equiv-
alence when restricted to 2p-skeleta. Therefore, for degree reasons, we have

(Ωf)∗(a2p−1) = x2p−1

and

(Ωf)∗(b2p−2) = y2p−2.

Since (Ωf)∗ is an algebra map, the composite

Λ(a2p−1)⊗ Z/pZ[b2p−2] ↪→ H∗(ΩS2p+1{p}) (Ωf)∗−→ H∗(ΩS3〈3〉)
is therefore the identity map.

By [GraT], for each p > 3, there is a space T 2p+1 and a map T 2p+1 g−→ ΩS2p+1{p}
which geometrically realizes the inclusion

Λ(a2p−1)⊗ Z/pZ[b2p−2] ↪→ H∗(ΩS2p+1{p}).

Thus the composite T 2p+1 g−→ ΩS2p+1{p} Ωf−→ ΩS3〈3〉 induces the identity map in
homology and so is a homotopy equivalence. Hence Ωf has a right homotopy inverse.

Let t : ΩS3〈3〉 −→ ΩS2p+1{p} be a right homotopy inverse of Ωf . Looping the
lower left square in (1) and precomposing with t, we obtain the following.

Corollary 2.6. There is a homotopy commutative diagram

ΩS3〈3〉 Ωδ◦t // ΩS2p+1

Ωc

²²
ΩS3〈3〉 Ωs〈3〉 // ΩB(3, 2p + 1)〈3〉.

In other words, Corollary 2.6 states that Ωj〈3〉 lifts through Ωc, and Ωδ ◦ t is a
specific choice of a lift.

Proof of the equivalence of parts (a) and (b) in Theorem 1.1. Suppose that i ◦ α is

null homotopic. By Proposition 2.1, i extends to a map B(3, 2p + 1)
j−→ X with
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the property that j ◦ c is null homotopic. Note that by connectivity, the composite
S3 s−→ B(3, 2p + 1)

j−→ X is homotopic to i. Consider the diagram

ΩS3〈3〉 Ωδ◦t // ΩS2p+1

Ωc

²²
ΩS3〈3〉 Ωs〈3〉 // ΩB(3, 2p + 1)〈3〉 Ωj〈3〉 // ΩX〈3〉.

The square homotopy commutes by Corollary 2.6. Since j ◦ c is null homotopic, the
upper direction around the diagram is null homotopic. Thus the lower direction direc-
tion around the diagram – the composite Ωj〈3〉 ◦ Ωs〈3〉 – is null homotopic. Therefore,
as j ◦ s ' i, the map Ωi〈3〉 is null homotopic.

Conversely, suppose that ΩS3〈3〉 Ωi〈3〉−→ ΩX〈3〉 is null homotopic. To show that the
composite P 2p+1(p) α−→ S3 i−→ X is null homotopic, it is equivalent to adjoint and
show that the composite P 2p(p) −→ ΩS3 Ωi−→ ΩX is null homotopic. Since α fac-

tors through S3〈3〉, the adjoint of i ◦ α factors through the map ΩS3〈3〉 Ωi〈3〉−→ ΩX〈3〉,
implying that it is null homotopic.

3. Finite H-spaces and part (c) of Theorem 1.1

Now assume that X is a 2-connected finite H-space. We will show that parts (a)
and (c) of Theorem 1.1 are equivalent. The easy implication is (a) implies (c), which
we prove in greater generality.

Lemma 3.1. Let Y be a space and suppose there is a map f : S3 −→ Y such that
f∗(x) = ι for some x ∈ H3(Y ). If the composite P 2p+1(p) α−→ S3 f−→ Y is null homo-
topic then βP1(x) 6= 0.

Proof. The null homotopy for f ◦ α implies that there is an extension

S3 //

f

²²

A

f~~~~
~~

~~
~~

Y

for some map f . Recall that H∗(A) ∼= {y,P1(y), βP1(y)}, where |y| = 3. As f∗(x) = ι,
the homotopy commutativity of this diagram implies that f

∗
(x) = y. The naturality

of the Steenrod operations then imply that f
∗
(βP1(x)) = βP1(f

∗
(x)) = βP1(y). But

βP1(y) 6= 0 in H∗(A). Therefore βP1(x) 6= 0 in H∗(Y ).

Now we turn to the difficult implication, (c) implies (a). We do this in greater
generality than is stated in Theorem 1.1 by considering any 2-connected finite H-
space X, possibly with many cells in dimension 3, and any map S3 i−→ X such that
i∗(x) = ι for some x ∈ H3(X) with βP1(x) 6= 0. We give a condition for when i ◦ α
is null homotopic. In the special case when X has a single cell in dimension 3 and i
is the inclusion of the bottom cell, the condition will be automatically satisfied.
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We first establish a homotopy equivalence for the (2p + 2)-skeleton of X, which is
stated in Proposition 3.2. We begin with some linear algebra designed to find a basis
of H3(X) which is well behaved with respect to the Steenrod operations P1 and βP1.

By hypothesis, the map S3 i−→ X has the property that there is an x ∈ H3(X)
such that i∗(x) = ι and βP1(x) 6= 0. Let y1 = x, and extend to a basis {y1, . . . , yr} of
H3(X). Consider the set {βP1(y1), . . . , βP1(yr)}. Some of these elements are nonzero,
some are zero, and some may be linear combinations of others. Reordering if neces-
sary, assume that βP1(yi) 6= 0 for 1 6 i 6 r1, and βP1(yi) = 0 for r1 < i 6 r. In the
case 1 6 i 6 r1, reordering again if necessary, assume that the set S = {βP1(yi)}k

i=1

consists of a maximal number of linearly independent elements, while the set T =
{βP1(yi)r1

i=k+1} consists of elements which are linear combinations of elements in S.
So for βP1(yi) ∈ T , we have βP1(yi) = Σt

j=1uji
βP1(yji

) where t 6 k and each uji
is

a unit in Z/pZ. Let ȳi = yi − Σt
j=1ujiyji . Then βP1(yi) = 0. Relabel ȳi as yi. Doing

this for each k + 1 6 i 6 r1, we obtain a new basis {y1, . . . , yr} for H3(X) which has
the property that the set {βP1(yi)}k

i=1 is linearly independent while βP1(yi) = 0 for
k < i 6 r.

Now consider the set {P1(yi)}r
i=1. Observe that as the set {βP1(yi)}k

i=1 is lin-
early independent so is the set S = {P1(yi)}k

i=1. As for the remaining elements,
U = {P1(yi)}r

i=k+1, some are nonzero, some are zero, and some may be linear combi-
nations of elements in S and other elements in U . Arguing as before, we can alter the
basis {y1, . . . , yr} of H3(X) so that: (i) {y1, . . . , yk} has remained fixed, and (ii) the
set {P1(yi)}l

i=1 is linearly independent, where l > k, while P1(yi) = 0 for l < i 6 r.
The extra condition we consider is:

(∗) Suppose that this basis B = {y1, . . . , yr} of H3(X) can be chosen such
that i∗(yi) = 0 for 2 6 i 6 r.

Observe that condition (∗) is automatically satisfied if X has a single cell in dimen-
sion 3.

For a space Y , let Ym be the m-skeleton of Y .

Proposition 3.2. Let X be a 2-connected finite H-space. Then there is a homotopy
equivalence

X2p+2 ' (
k∏

j=1

A×
l∏

j=k+1

A×
m∏

j=l+1

S2ij+1)2p+2

where 3 6 2ij + 1 6 2p + 1 for each l + 1 6 ij 6 m. Further, if the basis B for H3(X)
satisfies condition (∗) then this homotopy equivalence has the property that the map
S3 i−→ X2p+2 factors as the composite S3 ↪→ A1 ↪→ X2p+2.

Proof. The fact that X is a 2-connected finite H-space imposes many restrictions
on the structure of H∗(X). In particular, by [L], the least degree even dimensional
generator can occur in degree 2p + 2, and such a generator z ∈ H2p+2(X) must be
of the form z = βP1(w) for some w ∈ H3(X). Consequently, in dimensions 6 2p + 2,
H∗(X) is the direct sum of an exterior algebra on odd degree generators and the
generating set of H2p+2(X), with the latter consisting of elements of the form βP1(w).
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Using the chosen basis of H3(X) we can write this more explicitly as

H∗(X) ∼=
(⊗k

i=1[Λ(yi,P1(yi))⊕ βP1(yi)]
)⊗ (⊗l

i=k+1Λ(yi,P1(yi))
)

⊗Λ(yl+1, . . . , yr, x2ir+1+1, . . . , x2im+1)

where |x2ij+1| = 2ij + 1 for 3 6 2ij + 1 6 2p + 1.
Each generator yi ∈ H3(X2p+2) is represented by a map εi : X2p+2 −→ K(Z, 3).

For dimensional reasons, εi factors through the (2p + 2)-skeleton of K(Z, 3), which
is homotopy equivalent to A. So εi induces a map ε̄i : X2p+2 −→ A. In particular, if
1 6 i 6 k, then the product of the maps ε̄i,

X2p+2 −→
k∏

i=1

A,

induces an injection onto the submodule ⊗k
i=1[Λ(yi,P1(yi))⊕ βP1(yi)] of H∗(X2p+2).

If k < i 6 l then the fact that P1(yi) 6= 0 but βP1(ii) = 0 implies that the composite
X2p+2

ε̄i−→ A
q−→ S2p+2 is null homotopic, where q is the pinch map to the top cell.

Thus ε̄i lifts to the homotopy fibre F of q. A Serre spectral sequence calculation
immediately shows that H∗(F2p+2) ∼= H∗(A), implying that F2p+2 ' A. Thus the lift
of ε̄i induces a map εi : X2p+2 −→ A, and the product of the maps εi,

X2p+2 −→
l∏

i=k+1

A

induces an injection onto the submodule ⊗l
i=k+1Λ(yi,P1(yi)) of H∗(X2p+2). If l < i 6

r, then the fact that P1(yi) = 0 implies that the composite X2p+2
ε̄i−→ A

q̄−→ P 2p+2(p)
is null homotopic, where q̄ is the pinch map to the top Moore space. Thus ε̄i lifts to
the homotopy fibre F of q̄. A Serre spectral sequence calculation immediately shows
that H∗(F 2p+2) ∼= H∗(S3), implying that F 2p+2 ' S3. Thus the lift of ε̄i induces a
map εi : X2p+2 −→ S3, and the product of the maps εi,

X2p+2 −→
r∏

i=l+1

S3

induces an injection onto the submodule Λ(yl+1, . . . , yr) of H∗(X2p+2).
Next, each generator x2ij+1 ∈ H∗(X2p+2) is represented by a map

εij : X2p+2 −→ K(Z, 2ij + 1).

For dimensional reasons, εij factors through the (2p + 2)-skeleton of K(Z, 2ij+1),
which is homotopy equivalent to S2ij+1 because 2ij + 1 > 5. Thus εij induces a map
ε̄ij : X2p+2 −→ S2ij+1. Taking the product of the maps ε̄ij for r < j 6 m gives a map

X2p+2 −→
m∏

j=r+1

S2ij+1

which induces an injection onto the submodule Λ(x2ir+1+1, . . . , x2im+1) of H∗(X2p+2).
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Collectively, we obtain a product map

X2p+2 −→ (
k∏

j=1

A×
l∏

j=k+1

A×
m∏

j=l+1

S2ij+1)2p+2

which induces an isomorphism in cohomology, implying that it is a homotopy equiv-
alence.

Finally, suppose the basis B for H3(X) satisfies condition (∗). Since the homo-
topy equivalence for X2p+2 was determined by mapping into Eilenberg-Mac Lane
spaces, its effect on S3 i−→ X2p+2 is determined by i∗. By definition, y1 ∈ H3(X)
has the property that i∗(y1) = ι. By condition (∗), the other basis elements satisfy
i∗(yi) = 0 for 2 6 i 6 r. For dimensional reasons, i∗(x2ij+1) = 0 for r + 1 6 j 6 m.
Thus i factors as the composite S3 ↪→ A1 ↪→ X2p+2.

In the case when condition (∗) is satisfied, the factorization of i through the homo-
topy cofibre A of α immediately implies the following.

Corollary 3.3. If the basis B for H3(X) satisfies condition (∗) then the map S3 i−→
X has the property that i ◦ α is null homotopic.

Proof of the equivalence of parts (a) and (c) in Theorem 1.1. By Lemma 3.1, we get
that part (a) implies part (c). Conversely, suppose that X has a single cell in dimen-
sion 3, S3 i−→ X is the inclusion of the bottom cell, and i∗(x) = ι for some x ∈ H3(X)
with the property that βP1(x) 6= 0. Then the basis B of H3(X) automatically satis-
fies condition (∗), so by Corollary 3.3 the composite P 2p+1(p) α−→ S3 i−→ X is null
homotopic.

4. The order of Ωj〈3〉
By [Th], if p > 5 then B(3, 2p + 1) can be given an H-structure which is homotopy

associative and homotopy commutative, and with respect to this H-structure the
homotopy fibration S3 s−→ B(3, 2p + 1)

q−→ S2p+1 has both s and q being H-maps.
Further, B(3, 2p + 1) satisfies a certain universal property with respect to its (2p + 1)-
skeleton A. Let ı : A −→ B be the skeletal inclusion. Note that

H∗(B(3, 2p + 1)) ∼= Λ(x3, x2p+1) ∼= Λ(H̃∗(A)),

and ı induces the inclusion of the generating set. In particular, A generates B homo-
logically. The universal property implies a much stronger statement, that A generates
B(3, 2p + 1) as an H-space. To be precise, by B(3, 2p + 1) being universal for A, we
mean that any map f : A −→ Z into a homotopy associative, homotopy commuta-
tive H-space Z can be extended to an H-map f : B(3, 2p + 1) −→ Z, and this is the
unique H-map with the property that f ◦ ı ' f .

Let m be the homotopy associative, homotopy commutative multiplication on
B(3, 2p + 1). The universal property was used in [Th] to factor the pth-power map
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on B(3, 2p + 1) as

B(3, 2p + 1)
p //

a×q

²²

B(3, 2p + 1)

S3 × S2p+1 s·c // B(3, 2p + 1)

(2)

where a is an H-map with the property that a ◦ i is of degree p, and s · c is the compos-
ite S3 × S2p+1 s×c−→ B(3, 2p + 1)×B(3, 2p + 1) m−→ B(3, 2p + 1). In fact, all the maps
in (2) are H-maps. To see this, we have already mentioned that a, s, and q are
H-maps. By [G], if p > 5 then any map S2n+1 −→ Z into a homotopy associative,
homotopy commutative H-space is an H-map. In particular, c is an H-map. Since
B(3, 2p + 1) is a homotopy associative, homotopy commutative H-space its multipli-
cation m is an H-map, and so both p and s · c are H-maps. Thus, part of the strength
of (2) is that it is a factorization of the pth-power map through H-maps.

Now we refine the factorization in (2) after taking three-connected covers and loop-
ing. By Lemma 2.6, Ωj〈3〉 ' Ωc ◦ t′, where t′ = Ωδ ◦ t. Thus Ω(j〈3〉 · c) is homotopic
to the composite

ΩS3〈3〉 × ΩS2p+1 t′×1−→ ΩS2p+1 × ΩS2p+1 Ωc×Ωc−−−−→ ΩB(3, 2p + 1)〈3〉 × ΩB(3, 2p + 1)〈3〉
Ωm−→ ΩB(3, 2p + 1)〈3〉.

Since Ωc is an H-map, this is homotopic to the composite

ΩS3〈3〉 × ΩS2p+1 t′×1−→ ΩS2p+1 × ΩS2p+1 µ−→ ΩS2p+1 Ωc−→ ΩB(3, 2p + 1)〈3〉
where µ is the loop multiplication. Note that S2p+1 is an H-space so the loop multi-
plication µ is homotopic to the loop of the multiplication on S2p+1, implying that µ
is an H-map. This lets us reformulate (2) as the following. Let

θ : ΩB(3, 2p + 1)〈3〉 −→ ΩS2p+1

be the composite µ ◦ (t′ × 1) ◦ (Ωa〈3〉 × q). Observe that each of the maps in the
composite is an H-map, and so θ is an H-map.

Proposition 4.1. For p > 5, there is a homotopy commutative square of H-maps

ΩB(3, 2p + 1)〈3〉 p //

θ

²²

ΩB(3, 2p + 1)〈3〉

ΩS2p+1 Ωc // ΩB(3, 2p + 1)〈3〉.

Proof of Theorem 1.4 for p > 5: Consider the map ΩB(3, 2p + 1)〈3〉 Ωj〈3〉−→ ΩX〈3〉.
As j has the property that j ◦ c is null homotopic, the diagram in Proposition 4.1

implies that the composite ΩB(3, 2p + 1)〈3〉 p−→ ΩB(3, 2p + 1)〈3〉 Ωb〈3〉−→ ΩX〈3〉 is null
homotopic. Since Ωb〈3〉 is an H-map it commutes with power maps, so the composite
p ◦ Ωb〈3〉 is null homotopic. That is, Ωb〈3〉 has order p.
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Remark 4.2. Note that the H-map property in Proposition 4.1 was not used in the
proof of Theorem 1.4. It has been included nevertheless as an interesting feature in
its own right which may have applications elsewhere.

The p = 3 case is different. Observe that the space B(3, 7) is homotopy equivalent
to the Lie group Sp(2) localized at 3. Since Sp(2) is a loop space, it is homotopy
associative. By [M], this loop multiplication is also homotopy commutative at 3.
By [GrbT], Sp(2) at 3 has a limited universal property, but it is unclear whether
this property can be used to show the existence of a factorization of the 3rd-power map
on Sp(2) through S3 × S5 as in (2). So in this case we do without such a factorization
and argue differently, but obtain an answer which requires one more loop.

Proof of Theorem 1.4 for p = 3: In general, if there is a homotopy pullback

A
b //

a

²²

B

c

²²
C

d // D

where D is an H-space with a homotopy inverse, then there is a homotopy fibration

A
a×b−−→ B × C

c·d−1

−−→ D. In our case, the homotopy pullback in (1) implies that there

is a homotopy fibration S7{3} −−−−→ S3〈3〉 × S5 i〈3〉·c−1

−−−−→ B(3, 7)〈3〉. This induces a
homotopy fibration

ΩS3〈3〉 × ΩS5 Ω(i〈3〉·c−1)−−−−−−→ ΩB(3, 7)〈3〉 ∂−−−−−−→ S7{3}
where ∂ is the fibration connecting map. By [N], the 3rd-power map on S7{3} is null
homotopic. However, it is not known whether ∂ is an H-map, so we cannot argue
that 3 ◦ ∂ ' ∂ ◦ 3 and therefore that ∂ ◦ 3 is null homotopic. However, after looping,
this argument does work. We obtain a lift

Ω2B(3, 7)〈3〉
3

²²

λ

ttjjjjjjjjjjjjjjjj

Ω2S3〈3〉 × Ω2S5
Ω2(i〈3〉·c) // Ω2B(3, 7)〈3〉

(3)

for some map λ. Since Ω2B(3, 7)〈3〉 is a double loop space, its loop multiplication
is an H-map. Thus there is a homotopy Ω2(i〈3〉 · c) ' Ω2i〈3〉 · Ω2c. The remainder
of the argument now follows as in the proof of Theorem 1.4 for p > 5, using (3) to
replace (2).
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