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HOPF CYCLIC COHOMOLOGY IN
BRAIDED MONOIDAL CATEGORIES

MASOUD KHALKHALI and ARASH POURKIA

(communicated by Jean-Louis Loday)

Abstract
We extend the formalism of Hopf cyclic cohomology to the

context of braided categories. For a Hopf algebra in a braided
monoidal abelian category we introduce the notion of stable
anti-Yetter-Drinfeld module. We associate a para-cocyclic and
a cocyclic object to a braided Hopf algebra endowed with a
braided modular pair in involution in the sense of Connes and
Moscovici. When the braiding is symmetric the full formalism
of Hopf cyclic cohomology with coefficients can be extended to
our categorical setting.

1. Introduction

In [6, 7, 8], Connes and Moscovici, motivated by transverse index theory for
foliations, defined a cohomology theory of cyclic type for Hopf algebras by introducing
the concept of a modular pair in involution. This theory was later extended, by
the first author and collaborators [10, 11, 14, 15], by introducing the notion of a
stable anti-Yetter-Drinfeld module as coefficients for a cyclic cohomology theory of
algebras or coalgebras endowed with an action or coaction of a Hopf algebra. Modular
pairs in involution appeared naturally as one dimensional stable anti-Yetter-Drinfeld
modules in this latter theory. It is by now clear that Hopf cyclic cohomology is the
right noncommutative analogue of group homology and Lie algebra homology. In
particular it allows an extension of Connes’ theory of noncommutative characteristic
classes [4, 5] to a setup involving an action of a Hopf algebra or quantum group [6, 7].

There are many examples of Hopf algebra-like objects that are close to being a Hopf
algebra but are not a Hopf algebra in the usual sense. Examples include (differen-
tial graded) super Hopf algebras, quasi-Hopf algebras, multiplier Hopf algebras, Hopf
algebroids, and locally compact quantum groups. In some cases, but certainly not
always, these objects are Hopf algebras in an appropriate monoidal category. Differ-
ential graded super Hopf algebras and quasi-Hopf algebras are examples of this. Study
of Hopf algebras in symmetric monoidal categories goes back to [21]. Recent work on
braided Hopf algebras is mostly motivated by low dimensional topology [18, 19, 22].

In this paper we work in an arbitrary braided monoidal abelian category and
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extend the notion of a stable anti-Yetter-Drinfeld module over a Hopf algebra in
such a category. We show that to any braided Hopf algebra endowed with a braided
modular pair in involution one can associate a para-cocyclic object. This para-cocyclic
object is cyclic if the ambient category is symmetric. In fact Theorem 7.3 (cf. also
Remark 7.4), shows that this para-cocyclic object is almost never cocyclic if the
category is not symmetric. Of course, as with any para-cocyclic object, by restricting
to an appropriate subspace we obtain a cocyclic object.

In the symmetric case one can go much further. In this case and for an arbitrary
braided stable anti-Yetter-Drinfeld module we obtain a cocyclic object. In fact in this
case it is no longer needed to restrict to Hopf algebras and one can work with module
coalgebras. As a special case, we define a Hopf cyclic cohomology for a (differential
graded) super Hopf algebra and relate it to the cohomology of super Lie algebras by
considering the enveloping algebra of a super Lie algebra.

The paper is organized as follows. In Section 2 we recall basic notions of braided
monoidal categories and braided Hopf algebras which are, by definition, Hopf algebra
objects in such categories. In Section 3 we define the notion of a stable anti-Yetter-
Drinfeld (SAYD) module for a braided Hopf algebra. For symmetric braidings, we
define a Hopf cyclic cohomology theory for triples (H,C,M) consisting of a coalgebra
object endowed with an action of a braided Hopf algebra H, and a braided SAYD
module M . In Section 4 we show that when C = H the Hopf cyclic complex of the
triple (C,C, σIδ) simplifies and we compute the resulting cocyclic object. In Sections 5
and 6 we focus on the special case of (differential graded) super Hopf algebras and
show that, for the universal enveloping algebra of a (differential graded) super Lie
algebra, Hopf cyclic cohomology reduces to Lie algebra homology.

The last section is in a sense the heart of this paper. Here we work in an arbi-
trary braided monoidal category and show that, for one dimensional SAYD’s, one can
always define a para-cocyclic object for a braided Hopf algebra. We compute powers
of the cyclic operator and express it in terms of the braiding of the category (Theo-
rem 7.3 and Remark 7.4). Extending these results to more general braided SAYD’s
and to braided triples (H,C,M) is not straightforward and requires introducing extra
structures. This more general case will be dealt with elsewhere.

We should mention that the cyclic cohomology of (ribbon)-algebras in braided
monoidal abelian categories has been introduced and studied in [1], motivated by
non-associative geometry.
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2. Hopf algebras in braided monoidal categories

Recall that a monoidal, or tensor, category (C,⊗, I, a, l, r) consists of a category C, a
functor ⊗ : C × C → C, an object I ∈ C (called unit object), and natural isomorphisms,
defined for all objects A, B, C, of C,

a = aA,B,C : A⊗ (B ⊗ C)→ (A⊗B)⊗ C,
l = lA : I ⊗A→ A, r = rA : A⊗ I → A,
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(called the associativity and unit constraints, respectively), such that the following
pentagon and triangle diagrams commute [17, 19]:

((A⊗B)⊗ C)⊗D

wwoooooooo

''OOOOOOOO

(A⊗ (B ⊗ C))⊗D

²²

(A⊗B)⊗ (C ⊗D)

²²
A⊗ ((B ⊗ C)⊗D) // A⊗ (B ⊗ (C ⊗D))

(A⊗ I)⊗B //

ÃÃ@
@@

@@
@@

A⊗ (I ⊗B)

~~~~
~~

~~
~

A⊗B

The coherence theorem of Mac Lane [17] asserts that all diagrams formed by a, l, r
by tensoring and composing, commute. More precisely, it asserts that any two natural
transformations defined by a, l, r between any two functors defined by ⊗ and I are
equal.

A braided monoidal category is a monoidal category C endowed with a natural
family of isomorphisms

ψA,B : A⊗B → B ⊗A,

called braiding such that for all objects A,B,C of C the following diagrams commute
(hexagon axioms):

A⊗ (B ⊗ C)
ψ // (B ⊗ C)⊗A

a−1

((RRRRRRRRRRR

(A⊗B)⊗ C

a−1
66lllllllllll

ψ⊗id
((RRRRRRRRRRR

B ⊗ (C ⊗A)

(B ⊗A)⊗ C a−1
// B ⊗ (A⊗ C)

id⊗ψ 66lllllllllll

(A⊗B)⊗ C ψ // C ⊗ (A⊗B)
a

((RRRRRRRRRRR

A⊗ (B ⊗ C)

a
66lllllllllll

id⊗ψ
((RRRRRRRRRRR

(C ⊗A)⊗B

A⊗ (C ⊗B) a // (A⊗ C)⊗B

ψ⊗id 66lllllllllll

If we show the braiding map ψA,B by the following standard diagram as in [1, 19],

ψA,B
A B

B A

for any A and B in C, then the naturality of ψ can be visualized by the following
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identity:

•f
A

•g
B

ψA′,B′

B′ A′

=

ψA,B
A B

•g
B′

•f
A′

(1)

for any two morphisms f : A→ A′ and f : B → B′ in C. Notice that in special case
when for example B = I, since

ψI,A = ψA,I = idA, ∀A ∈ C, (2)

we have

•f
A

•g
◦

ψA′,B′

B′ A′

=

◦ A

•g
B′

•f
A′

(3)

In other cases when A,A′ or B′ is I the naturality identities can be simplified in a
similar way.

A braiding is called a symmetry if we have

ψB,A ◦ ψA,B = idA⊗B ,

or in terms of braiding diagrams:

ψA,B
A B

ψB,A

A B

=

A B

A B

(4)

for all objects A and B of C. Sometimes we just write ψ2 = id to signify the symmetry
condition. A symmetric monoidal category is a monoidal category endowed with a
symmetry.

A monoidal category is called strict if its associativity and unit isomorphisms
are in fact equalities. By a theorem of Mac Lane [17] (cf. also [19]), any (braided)
monoidal category is monoidal equivalent to a (braided) strict monoidal category in
which a, l and r are just equalities and the above commuting diagrams are reduced
to the following equalities:

(A⊗B)⊗ C = A⊗ (B ⊗ C)
I ⊗A = A⊗ I = A

ψA,B⊗C = (idB ⊗ ψA,C)(ψA,B ⊗ idC)
ψA⊗B,C = (ψA,C ⊗ idB)(idA ⊗ ψB,C)

for all objects A,B,C of C. The last identity in terms of braided diagrams is as follows:

dddd

A B C

C A B

ψA⊗B,C =
A B CψB,C
ψA,C

C A B
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The other one is the same.
We note that if the original category is symmetric then its strictification is sym-

metric as well. This plays an important role in our approach. In fact, using this result,
we can safely assume that our symmetric monoidal categories are strict and symmet-
ric. Working with strict categories drastically simplifies the formalism and that is
what we shall do in this paper.

Example 2.1. Let (H, R = R1 ⊗R2) be a quasitriangular Hopf algebra and C be the
category of all left H-modules. Then C is a braided monoidal abelian category. It is
symmetric if and only if R−1 = R2 ⊗R1 [19]. Here the monoidal structure is defined
by

h¤ (v ⊗ w) = h(1) ¤ v ⊗ h(2) ¤ w,

and the braiding map ψV⊗W acts by

ψV⊗W (v ⊗ w) := (R2 ¤ w ⊗R1 ¤ v),

for any V and W in C, where ¤ denotes the action of H. Throughout this paper we
use Sweedler’s notation, with summation understood, e.g. we write ∆h = h(1) ⊗ h(2)

to denote the comultiplication of Hopf algebras.

Example 2.2. In a dual manner if we consider a co-quasitriangular Hopf algebra
(H, R), then the category of left H-comodules is a braided monoidal abelian cat-
egory.

Example 2.3. As a very special case of Example 2.1, let H = CZ2 with the non-trivial
quasitriangular structure R = R1 ⊗R2 defined by

R := (
1
2
)(1⊗ 1 + 1⊗ g + g ⊗ 1− g ⊗ g),

where g is the generator of the cyclic group Z2. The category C = Z2- Mod then is the
category of super vector spaces with even morphisms [19]. The braiding map ψV⊗W
for any V = V0 ⊕ V1 and W = W0 ⊕W1 in C acts as below:

ψV⊗W (v ⊗ w) = (−1)|v||w| (w ⊗ v). (5)

There is also a category of differential graded (DG) super vector spaces whose
objects are super complexes

V0

d

¿
d
V1,

and its morphisms are even chain maps. It is a braided monoidal category with the
same braiding map as (5).

Remark 2.4. One can extend Example 2.3 to CZn for any n > 2 which provides a
good source of non-symmetric braided monoidal categories [19].

Example 2.5. Let H be a Hopf algebra over a field k with comultiplication ∆h =
h(1) ⊗ h(2) and a bijective antipode S. A left-left Yetter-Drinfeld (YD) H-module
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consist of a vector space V , a left H-module structure on V [20, 23]

H ⊗ V → V, h⊗ v 7→ hv,

and a left H-comodule structure on V

V → H ⊗ V, v 7→ v(−1) ⊗ v(0).
The left action and coaction are supposed to satisfy the Yetter-Drinfeld (YD) com-
patibility condition:

(hv)(−1) ⊗ (hv)(0) = h(1)v(−1)S(h(3))⊗ h(2)v(0),

for all h ∈ H and v ∈ V . The category of all YD H-modules is called the Yetter-
Drinfeld category of H, and is usually denoted by H

HYD. It is a braided monoidal
abelian category with the braiding map:

ψV⊗W (v ⊗ w) = v(−1)w ⊗ v(0).
This category is in general not symmetric. In fact the inverse of the braiding is given
by:

ψ−1
V⊗W (w ⊗ v) = v(0) ⊗ S−1(v(−1))w.

Definition 2.6. Let C be a strict braided monoidal category. A Hopf algebra
(H,m, η,∆, ε, S) in C consists of an object H ∈ obj C, morphisms m : H ⊗H → H,
η : I → H, ∆: H → H ⊗H, ε : H → I and S : H → H called multiplication, unit,
comultiplication, counit and antipode maps satisfying the relations:

m(id⊗m) = m(m⊗ id), associativity

H H H

H

=

H H H

H

=

H

H

m(η ⊗ id) = m(id⊗ η) = id, unit

H

•η◦

H

=

H

•η◦

H

=

H

H

(id⊗∆)∆ = (∆⊗ id)∆, coassociativity

H

H H H

=

H

H H H

(ε⊗ id)∆ = (id⊗ ε)∆ = id, counit

H

•ε◦
H

=

H

•ε◦
H

=

H

H
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∆m = (m⊗m)(id⊗ ψ ⊗ id)(∆⊗∆), compatibility

H H

H H

=

H H

ψ

H H

(6)

∆η = η ⊗ η, εm = ε⊗ ε, εη = idI

•η◦

H H

= •η
◦

•η
◦

H H

H H

•ε◦ =

H H

•ε
◦

•ε
◦

•η◦•ε◦ =
◦
◦

(7)

m(S ⊗ id)∆ = m(id⊗ S)∆ = ηε, antipode

H

•S

H

=

H

•S

H

=

H
•ε◦
•η◦
H

(8)

By a braided Hopf algebra we mean a Hopf algebra in a braided monoidal category.

Notice that relation (6), which expresses the algebra property of the comultiplica-
tion, is the only relation that involves the braiding map ψ.

Lemma 2.7. It is easy to prove that

∆2m =(m⊗m⊗m)(id⊗ ψ ⊗ id⊗ id⊗ id)
(id⊗ id⊗ id⊗ ψ ⊗ id)(id⊗ id⊗ ψ ⊗ id⊗ id)(∆2 ⊗∆2).

H H

H H H

=

H H

ψ

ψ

ψ

H H H

(9)

Example 2.8. Any Hopf algebra in Z2-Mod of Example 2.3 is called a super Hopf
algebra. See Section 5 for more details. Similarly, a Hopf algebra in the category of
differential graded super vector spaces is a differential graded super Hopf algebra.

Notice that a super Hopf algebra is, in general, not a standard Hopf algebra, since
the comultiplication ∆ is not an algebra map, and the multiplication m is not a
coalgebra map in the standard sense.
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Example 2.9. For any V in H
HYD of Example 2.5, the tensor algebra T (V ) is a

braided Hopf algebra in H
HYD. Its comultiplication, counit, and antipode are defined

by ∆(v) = 1⊗ v + v ⊗ 1, ε(v) = 0, and S(v) = −v, for all v in V .

The following proposition shows that standard properties of Hopf algebras hold
for braided Hopf algebras.

Proposition 2.10. If (H,m, η,∆, ε, S) is a braided Hopf algebra (in C), then:

Sm = mψ(S ⊗ S) = m(S ⊗ S)ψ,

H H

•S
H

=

H H

•S •Sψ

H

=

H H
ψ

•S •S

H

(10)

Sη = η, εS = ε,

•η◦
•S
H

= •η
◦

H

H

•S
•ε◦◦

=
H

•ε
◦◦

(11)

∆S = ψ(S ⊗ S)∆ = (S ⊗ S)ψ∆.

H

•S

H H

=

H

•S •Sψ

H H

=

H

ψ

•S •S
H H

(12)

Proof. See [19].

Definition 2.11. Let H be a braided Hopf algebra in C. A right H-module is an
object M in C equipped with a morphism φM : M ⊗H →M , called H action, such
that:

(φ)(idM ⊗mH) = (φ)(φ⊗ idH), (φ)(idM ⊗ ηH) = idM .

M H H
mH

φM

M

=

M H H

φM

φM

M

M

•η◦
φM

M

=

M

M
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A left H-comodule is an object M in C equipped with a morphism ρM : M →
H ⊗M , called an H coaction, such that:

(∆H ⊗ idM )(ρ) = (idH ⊗ ρ)(ρ), (εH ⊗ idM )(ρ) = idM .

M

ρM

∆H

H H M

=

M

ρM

ρM

H H M

M

ρM
•ε◦◦

M

=

M

ρM
ψH,M

•ε◦◦M

=
M

M

Remark 2.12. Let C be a strict, braided, monoidal abelian category. Throughout the
paper we shall use the following conventions to denote objects and morphisms of C:
• An for A⊗n,
• 1 for id, e.gẇe write 1A or just 1 for idA,
• (f, g) for (f ⊗ g),
• idn or just 1n for idAn ,
• 1A,B for 1A ⊗ 1B ,
• ψ for ψA,A.

For example instead of writing

∆H mH = (mH ⊗mH)(idH ⊗ ψH,H ⊗ idH)(∆H ⊗∆H),

which expresses the fact that the comultiplication of a Hopf algebra is an anti-
algebra map, we just write ∆m = (m,m)(1, ψ, 1)(∆,∆); or instead of ψU,U⊗U =
(idU ⊗ ψU,U )(ψU,U ⊗ idU ), we simply write ψU,U2 = (1, ψ)(ψ, 1) when there is no
chance of confusion, and so on.

3. The cocyclic object of a braided triple (H, C, M)

In this section we extend the notion of a stable anti-Yetter-Drinfeld (SAYD) mod-
ule [10, 11] to braided monoidal categories and define a cocyclic object for braided
triples (H,C,M) in a symmetric monoidal abelian category. In the last section of
this paper we treat the general non-symmetric case which is much more subtle. Recall
that, by definition, in a para-cocyclic object all axioms of a cocyclic object are satisfied
except the relations τn+1

n = id. Given a para-cocyclic object Xn, n > 0 in an abelian
category, we can always define a cocyclic object by considering

Xn := ker(id− τn+1
n ),

and restricting the faces, degeneracies, and cyclic operators to these subspaces. For
general notion of cyclic and cocyclic objects we refer to [3, 5, 16]

We fix a strict, braided monoidal category C, and a Hopf algebra H in C. For the
following definition C need not be symmetric or additive.

Definition 3.1. A right-left braided stable anti-Yetter-Drinfeld (SAYD) H-module
in C is an object M in C such that:

(i) M is a right H-module via an action φM : M ⊗H →M ,



120 MASOUD KHALKHALI and ARASH POURKIA

(ii) M is a left H-comodule via a coaction ρM : M → H ⊗M ,
(iii) M satisfies the braided anti-Yetter-Drinfeld condition, i.e.,

(ρ)(φ) =[(m)(S ⊗m)⊗ φ][(ψH⊗2,H ⊗ idM ⊗ idH)(idH⊗2 ⊗ ψM,H ⊗ idH)

(idH⊗2 ⊗ idM ⊗ ψH,H)(idH ⊗ ψM,H ⊗ idH⊗2)][ρ⊗∆2]. (13)

(iv) M is stable, i.e., (φ)(ψH,M )(ρ) = idM .

Remark 3.2. To deal with large expressions like (13) we break them into two lines.

The above braided SAYD conditions (iii) and (iv) in terms of braided diagrams
are as follows:

φM

M H

H M

ρM

=

M H

ρM ∆2
HψM,H

ψH,H

ψM,H

dddd

ψH2,H

•SH mH

mH

φM

H M

M

ρM

ψH,M

φM

M

=

M

M

(14)

Definition 3.3. A quadruple (C, ∆C , εC , φC) is called a left (braided) H-module-
coalgebra in C if (C,∆C , εC) is a coalgebra in C, and C is a left H-module via an
action φC : H ⊗ C → C such that φC is a coalgebra map in C i.e., we have:

∆CφC = (φC ⊗ φC)(idH ⊗ ψH,C ⊗ idC)(∆H ⊗∆C), εCφC = εH ⊗ εC
H C

φC

∆C

C C

=

H C

∆H ∆CψH,C

φC φC

C C

H C

φC
•εC◦

=

H C

•εH
◦

•εC
◦

(15)

Definition 3.4. Let (C, φC) be a left H-module. The diagonal action of H on
Cn+1 := C⊗(n+1) is defined by:

φCn+1 : H ⊗ Cn+1 → Cn+1

φCn+1 := (φC , φC , . . . , φC)︸ ︷︷ ︸
n+1 times

(F(ψH,C))(∆n
H ⊗ 1Cn+1),

where,

F(ψH,C) :=
n∏

i=1

(idHi , ψH,C , ψH,C , . . . , ψH,C︸ ︷︷ ︸
n+1−i times

, idCi).
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The following is the diagrammatic version of the diagonal action:

∆n

H

. . .

C C . . . C

. . .
φ

C

φ

C

φ

C

. . .

Now we are going to associate a para-cocyclic object to any triple (H,C,M), where
H is a Hopf algebra, C is an H-module coalgebra and M is a SAYD H-module, all
in a symmetric monoidal category C. Notice that C need not be additive. For n > 0,
let

Cn = Cn(C,M) := M ⊗ Cn+1.

We define faces δi : Cn−1 → Cn, degeneracies σi : Cn+1 → Cn and cyclic maps
τn : Cn → Cn by:

δi =

{
(1M , 1Ci ,∆C , 1Cn−i−1) 0 6 i < n

(1M , ψC,Cn)(1M , φC , 1Cn)(ψH,M , 1Cn+1)(ρM ,∆C , 1Cn−1) i = n

σi = (1M , 1Ci+1 , εC , 1Cn−i), 0 6 i 6 n

τn = (1M , ψC,Cn)(1M , φC , 1Cn)(ψH,M , 1Cn+1)(ρM , 1Cn+1)

Proposition 3.5. If C is a symmetric monoidal category, then (C•, δi, σi, τ) is a
para-cocyclic object in C.

The idea of the proof of this proposition is very similar to and even easier than
the proof of Theorem 7.1, except that the symmetry condition is used in some steps.

Now let us assume in addition that C is an abelian category. Recall that given a
right H- module V via action φV , and a left H-module W via action φW , the balanced
tensor product V ⊗H W is defined as the cokernel of the map:

V ⊗H ⊗W (φV ⊗1W−1V ⊗φW )−−−−−−−−−−−−−→ V ⊗W.
We form the balanced tensor products

CnH = CnH(C,M) := M ⊗H Cn+1, n > 0,

with induced faces, degeneracies and cyclic maps denoted by δ̃i, σ̃i and τ̃n.

Theorem 3.6. If C is a symmetric monoidal abelian category, then (C•H , δ̃i, σ̃i, τ̃n) is
a cocyclic object in C.

Some essential parts of the proof are visualized by braiding diagrams to help the
reader for a better understanding of those parts involving long series of formulas.
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Proof. The most difficult part is to show that the cyclic map τ̃n is well defined on
CnH(C,M) for all n. For this, we use the following diagram:

M ⊗H ⊗ Cn+1
fM,Cn+1−−−−−−→ M ⊗ Cn+1

coker(fM,Cn+1 )−−−−−−−−−−→ M ⊗H Cn+1

yτ
yeτ

M ⊗H ⊗ Cn+1
fM,Cn+1−−−−−−→ M ⊗ Cn+1

coker(fM,Cn+1 )−−−−−−−−−−→ M ⊗H Cn+1

where fM,Cn+1 = (φM ⊗ 1Cn+1 − 1M ⊗ φCn+1). So we have to show that

coker(fM,Cn+1) (τ) (fM,Cn+1) = 0,

i.e.,

coker(fM,Cn+1) [(1M , ψC,Cn)(1M , φC , 1Cn)(ψH,M , 1Cn+1)
(ρM , 1Cn+1)], (φM ⊗ 1Cn+1 − 1M ⊗ φCn+1) = 0 ∀n. (16)

It is not hard to see that the equality (16) is equivalent to:

coker(fM,H2) [ [(1M,H ,mH)(1M , ψH2,H)(ψH,M , 1H2)(ρM ,∆H)]
−[(1M , ηH , 1H)(ψH,M )(ρM )(φM )] ] = 0. (17)

From (17) to (16) one uses the diagonal action of H on Cn+1 and the coaction of
H on M . From (16) to (17) one puts n = 1 and then acts both sides of (16) on
(1M , 1H , ηH , ηH).

If we put:

α = [(1M,H ,mH)(1M , ψH2,H)(ψH,M , 1H2)(ρM ,∆H)],

and

β = [(1M , ηH , 1H)(ψH,M )(ρM )(φM )],

then (17) becomes:

coker(fM,H2) (α− β) = 0.

To prove this equality, we will define an isomorphism

ϕ̃ : M ⊗H H2 →M ⊗H H2 ∼= M ⊗H
and will show that,

(ϕ̃) coker(fM,H2) (α− β) = 0.

More explicitly:

Step 1: We claim that

ϕ := (1H ,mH)(1H , SH , 1H))(∆H , 1H) : H2 → H2

is an H-linear isomorphism, where the domain H2 is considered as an H-module
via diagonal action (φH2), and the codomain H2 is considered as an H-module via
multiplication in the first factor (φ′H2). It is easy to see that ϕ is an isomorphism and
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in fact its inverse map is ϕ−1 := (1,m)(∆, 1). To see that ϕ is H-linear, we have to
show that the following diagram commutes:

H2 ϕ−−−−→ H2

φH2

x
xφ′H2

H ⊗H2 −−−−→
1⊗ϕ

H ⊗H2

i.e., that

(ϕ)(φH2) = (φ′H2)(1, ϕ), (18)

where φH2 := (m,m)(1, ψ, 1)(∆, 1H2) is the diagonal action of H on the domain H2,
and φ′H2 := (m, 1) is the other action of H on the codomain H2. To prove that (18)
is true we see that

RHS = (m, 1) (1, 1,m)(1, 1, S, 1)(1,∆, 1) = (m,m)(1, 1, S, 1)(1,∆, 1),

and

LHS
(1)
= (1,m)(1, S, 1)(∆, 1) (m,m)(1, ψ, 1)(∆, 1, 1)

(2)
= (1,m)(1, S, 1)(1, 1,m)(∆m, 1, 1)(1, ψ, 1)(∆, 1, 1)
(3)
= (1,m)(1, 1,m)(1, S, 1, 1)(m,m, 1, 1)(1, ψ, 1, 1, 1)(∆,∆, 1, 1)(1, ψ, 1)(∆, 1, 1)
(4)
= (1,m)(1, 1,m)(m, 1, 1, 1)(1, 1, Sm, 1, 1)(1, ψ, 1, 1, 1)(∆,∆, 1, 1)(1, ψ, 1)(∆, 1, 1)
(5)
= (1,m)(1, 1,m)(m, 1, 1, 1)(1, 1,m, 1, 1)(1, 1, S, S, 1, 1)

(1, 1, ψ, 1, 1)(1, ψ, 1, 1, 1)(∆,∆, 1, 1)(1, ψ, 1)(∆, 1, 1)
(6)
= (1,m)(1, 1,m)(m, 1, 1, 1)(1, 1,m, 1, 1)(1, 1, S, S, 1, 1)

(1, ψH,H2 , 1, 1)(1, 1,∆, 1, 1)(∆, 1, 1, 1)(1, ψ, 1)(∆, 1, 1)
(7)
= (1,m)(1, 1,m)(m, 1, 1, 1)(1, 1,m, 1, 1)(1, 1, S, S, 1, 1)

(1,∆, 1, 1, 1)(1, ψ, 1, 1)(1, 1, ψ, 1)(∆, 1, 1, 1)(∆, 1, 1)
(8)
= (1,m)(1, 1,m)(m, 1, 1, 1)(1, 1,m, 1, 1)(1, 1, S, S, 1, 1)

(1,∆, 1, 1, 1)(1, ψH2,H)(1,∆, 1, 1)(∆, 1, 1)
(9)
= (1,m)(1, 1,m)(m, 1, 1, 1)(1, 1,m, 1, 1)(1, 1, S, S, 1, 1)

(1,∆, 1, 1, 1)(1, 1,∆, 1)(1, ψ, 1)(∆, 1, 1)
(10)
= (1,m)(m, 1, 1)(1, 1, 1,m)(1, 1, 1,m, 1)(1, 1, S, S, 1, 1)

(1, 1, 1,∆, 1)(1,∆, 1, 1)(1, ψ, 1)(∆, 1, 1)
(11)
= (1,m)(m, 1, 1)(1, 1, 1,m)(1, 1, S,m(S, 1)∆, 1)(1,∆, 1, 1)(1, ψ, 1)(∆, 1, 1)

(12)
= (1,m)(m, 1, 1)(1, 1, 1,m)(1, 1, S, η, 1)(1, 1, 1, ε, 1)(1,∆, 1, 1)(1, ψ, 1)(∆, 1, 1)

(13)
= (1,m)(m, 1, 1)(1, 1, S,m(η, 1))(1,∆, 1)(1, 1, ε, 1)(1, ψ, 1)(∆, 1, 1)
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(14)
= (m,m)(1, 1, S, 1)(1,∆, 1)(1, ε, 1, 1)(∆, 1, 1)

= (m,m)(1, 1, S, 1)(1,∆, 1)((1, ε)∆, 1, 1)
(15)
= (m,m)(1, 1, S, 1)(1,∆, 1)

Therefore LHS = RHS. Stages (1) to (15) are explained below:

(1) We use definitions ϕ = (1,m)(1, S, 1))(∆, 1) and φH2 = (m,m)(1, ψ, 1)(∆, 1H2).

(2) We use (m,m) = (1,m)(m, 1, 1), commute (1,m) and (∆, 1), i.e., (∆, 1)(1,m) =
(1, 1,m)(∆, 1, 1), and then use (∆, 1, 1)(m, 1, 1) = (∆m, 1, 1).

(3) We commute (1, S, 1) and (1, 1,m), and use

∆m = (m⊗m)(id⊗ ψ ⊗ id)(∆⊗∆).

(4) We use (m,m, 1, 1) = (m, 1, 1, 1)(1, 1,m, 1, 1), then commute (m, 1, 1, 1) and
(1, S, 1, 1), and then compose (1, 1,m, 1, 1) with (1, 1, S, 1, 1).

(5) We use Sm = m(S, S)ψ.

(6) We use ψH,H2 = (1, ψ)(ψ, 1) and (∆,∆, 1, 1) = (1, 1,∆, 1, 1)(∆, 1, 1, 1).

(7) We use the naturality of ψ to commute (1, ψH,H2 , 1, 1) and (1, 1,∆, 1, 1); more
explicitly, we use the following commuting diagram:

H2 (1,∆)−−−−→ H ⊗H2

ψ

y
yψH,H2

H2 −−−−→
(∆,1)

H2 ⊗H

Also we commute (∆, 1, 1, 1) and (1, ψ, 1), i.e., we use (∆, 1, 1, 1)(1, ψ, 1) =
(1, 1, ψ, 1)(∆, 1, 1, 1).

(8) We use ψH2,H = (ψ, 1)(1, ψ) and the coassociativity (∆, 1)∆ = (1,∆)∆.

(9) We commute (1, ψH2,H) and (1,∆, 1, 1) using the naturality of ψ as in step (7).

(10) We use simple commutations and the associativity m(1,m) = m(m, 1), in four
first parenthesis, also commute (1,∆, 1, 1, 1) and (1, 1,∆, 1).

(11) We use (1, 1, 1,m, 1)(1, 1, S, S, 1, 1)(1, 1, 1,∆, 1) = (1, 1, S,m(S, 1)∆, 1).

(12) We use m(S, 1)∆ = ηε.

(13) We use (1, 1, 1, ε, 1)(1,∆, 1, 1) = (1,∆, 1)(1, 1, ε, 1).

(14) We use m(η, 1) = 1, also commute (1, 1, ε, 1) and (1, ψ, 1) using naturality of ψ.
In fact we use this commuting diagram:

H2 (ε,1)−−−−→ I ⊗H
ψ

y
yψI,H=idI

H2 −−−−→
(1,ε)

H ⊗ I

(15) We use (1, ε)∆ = 1.
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Step 2: Considering 1M : M →M as an H-linear isomorphism we have 1M ⊗ ϕ :
M ⊗H2 ∼= M ⊗H2 and so we have:

ϕ̃ := 1M ⊗H ϕ : M ⊗H H2 ∼= M ⊗H H2 ∼= (M ⊗H H)⊗H ∼= M ⊗H (19)

Step 3: Now we prove that (ϕ̃) coker(fM,H2) (α− β) = 0. For that, we look at this
commuting diagram

M ⊗H ⊗H2
fM,H2−−−−→ M ⊗H2

coker(fM,H2 )−−−−−−−−→ M ⊗H H2

y1M⊗ϕ
yeϕ

M ⊗H ⊗H2
f ′

M,H2−−−−→ M ⊗H2
coker(f ′

M,H2 )

−−−−−−−−→ M ⊗H H2

where fM,H2 = (φM ⊗ 1H2 − 1M ⊗ φH2) and f ′M,H2 = (φM ⊗ 1H2 − 1M ⊗ φ′H2). This
shows that (ϕ̃)(coker(f)) = (coker(f ′))(1M ⊗ ϕ), so we instead will prove that
(coker(f ′))(1M ⊗ ϕ) (α− β) = 0, i.e.,

(coker(f ′))(1M ⊗ ϕ)(α) = (coker(f ′))(1M ⊗ ϕ)(β). (20)

The LHS of (20) is equal to:

M H

ρM ∆HψH,M

ccccc
ψH2,H

mH

∆H

•SH
mH

M H H

• coker(f ′)

M ⊗H H2

(1)
= (coker(f ′))(1M , 1,m)(1M , 1, S, 1)(1M ,∆, 1)(1M , 1,m)

(1M , ψH2,H)(ψH,M , 1, 1)(ρ,∆)
(2)
= (coker(f ′)) (1M , 1,m)(1M , 1, S, 1)(1M ,∆, 1)(1M , ψ)(1M ,m, 1)(ψH,M , 1, 1)(ρ,∆)
(3)
= (coker(f ′)) (1M , 1,m)(1M , 1, S, 1)(1M , ψH,H2)(1M , 1,∆)(1M ,m, 1)

(ψH,M , 1, 1)(ρ,∆)
(4)
= (coker(f ′)) (1M , 1,m)(1M , 1, S, 1)(1M , ψH,H2)(1M ,m, 1, 1)(ψH,M , 1, 1, 1)

(1, 1M , 1,∆)(ρ,∆)
(5)
= (coker(f ′))(1M , 1,m)(1M , 1, S, 1)(1M , 1, 1,m)(1M , ψH2,H2)(ψH,M , 1, 1, 1)(ρ∆2)
(6)
= (coker(f ′)) (1M , 1,m(S,m))(1M , ψH2,H2)(ψH,M , 1, 1, 1)(ρ,∆2)
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(7)
= (coker(f ′)) (1M ,m(1, η),m(S,m))(1M , ψH2,H2)(ψH,M , 1, 1, 1)(ρ,∆2)
(8)
= (coker(f ′)) (1M ,m, 1)(1M , 1, η, 1)(1M , 1,m(S,m))(1M , ψH2,H2)

(ψH,M , 1, 1, 1)(ρ,∆2)
(9)
= (coker(f ′)) (1M , φ′H2)(1M , 1, η, 1)(1M , 1,m(S,m))(1M , ψH2,H2)

(ψH,M , 1, 1, 1)(ρ,∆2)
(10)
= (coker(f ′)) (φM , 1, 1)(1M , 1, η, 1)(1M , 1,m(S,m))

(1M , ψH2,H2)(ψH,M , 1, 1, 1)︸ ︷︷ ︸ (ρ,∆2)

=

M H

ρM ∆2
HψH,M

ψH2,H2

•SH mH

mH

•η◦φM

M H H

• coker(f ′)

M ⊗H H2

(21)

Stages (1) to (10) are explained below with (10) perhaps the most important one:
(1) We use ϕ = (1,m)(1, S, 1))(∆, 1) and

α = [(1M,H ,mH)(1M , ψH2,H)(ψH,M , 1H2)(ρ,∆)].

(2) We use the naturality of ψ to commute (1M , 1,m) and (1M , ψH2,H), i.e., we use
the diagram:

H2 ⊗H (m,1)−−−−→ H2

ψH,H2

y
yψ

H ⊗H2 −−−−→
(1,m)

H2

(3) We commute (1M ,∆, 1) and (1M , ψ), again using naturality of ψ:

H2 (1,∆)−−−−→ H ⊗H2

ψ

y
yψH,H2

H2 −−−−→
(∆,1)

H2 ⊗H

(4) We commute (1M , 1,∆) first with (1M ,m, 1) and next with (ψH,M , 1, 1).
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(5) We commute (1M , ψH,H2) and (1M ,m, 1, 1) using the diagram:

H2 ⊗H2 (m,1,1)−−−−−→ H ⊗H2

ψH2,H2

y
yψH,H2

H2 ⊗H2 −−−−−→
(1,1,m)

H2 ⊗H

Also we use (1, 1M , 1,∆)(ρ,∆) = (ρ,∆2) and use the definition ∆2 := (1,∆)∆.

(6) We use (1M , 1,m)(1M , 1, S, 1)(1M , 1, 1,m) = (1M , 1,m(S,m)).

(7) We use 1 = m(1, η).

(8) We use (1M ,m(1, η),m(S,m)) = (1M ,m, 1)(1M , 1, η, 1)(1M , 1,m(S,m)).

(9) We use the definition φ′H2 = (m, 1).

(10) We use coker(f ′) (1M , φ′H2) = coker(f ′) (φM , 1, 1), which comes from the defini-
tion of cokernel and this diagram:

M ⊗H ⊗H2
f ′

M,H2=(φM⊗1H2−1M⊗φ′H2 )

−−−−−−−−−−−−−−−−−−−→ M ⊗H2 coker(f ′)−−−−−−→ M ⊗H H2

The RHS of (20) is equal to:

(1)
= (coker(f ′)) (1M , 1,m)(1M , 1, S, 1)(1M ,∆, 1) (1M , η, 1)(ψH,M )(ρ)(φ)
(2)
= (coker(f ′)) (1M , 1,m)(1M , 1, S, 1)(1M , η, η, 1)(ψH,M )(ρ)(φ)
(3)
= (coker(f ′)) (1M , 1,m)(1M , η, η, 1)(ψH,M )(ρ)(φ)
(4)
= (coker(f ′)) (1M , η, 1)(ψH,M )(ρ)(φ)

=

φM

M H

ρM
ψH,M

•η◦
HM H

• coker(f ′)

M ⊗H H2

(14)
=

M H

ρM ∆2
HψM,H

ψH,H

ψM,H

dddd

ψH2,H

•SH mH

mH

φM

ψH,M

•η◦
HM H

• coker(f ′)

M ⊗H H2

(22)
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(5)
= (coker(f ′)) (1M , η, 1)(ψH,M ) (m(S,m), φ)(ψH2,H , 1M , 1)(1, 1, ψM,H , 1)

(1, 1, 1M , ψ)(1, ψM,H , 1, 1)(ρ,∆2)
(6)
= (coker(f ′)) (1M , η, 1)(ψH,M ) (1, φ)(m(S,m), 1M , 1)(ψH2,H , 1M , 1)(1, 1, ψM,H , 1)

(1, 1, 1M , ψ)(1, ψM,H , 1, 1)(ρ,∆2)
(7)
= (coker(f ′)) (1M , η, 1)(φ, 1)(ψH,M⊗H)(m(S,m), 1M , 1)(ψH2,H , 1M , 1)

(1, 1, ψM,H , 1)(1, 1, 1M , ψ)(1, ψM,H , 1, 1)(ρ,∆2)
(8)
= (coker(f ′)) (1M , η, 1)(φ, 1)(1M , 1,m(S,m))(ψH3,M⊗H)(ψH2,H , 1M , 1))

(1, 1, ψM,H , 1)(1, 1, 1M , ψ)(1, ψM,H , 1, 1)(ρ,∆2)
(9)
= (coker(f ′)) (φ, 1, 1)(1M , 1, η, 1)(1M , 1,m(S,m))

(ψH3,M⊗H)(ψH2,H , 1M , 1)(1, 1, ψM,H , 1)(1, 1, 1M , ψ)(1, ψM,H , 1, 1)︸ ︷︷ ︸
(ρ,∆2)

=

M H

ρM ∆2
HψM,H
ψH,H

ψM,H

ccccc

ψH2,H

ψH3,M⊗H

•SH mH

mH•η◦
φM

M H H

• coker(f ′)

M ⊗H H2

(23)

Stages (1) to (9) are explained below. Notice that as is shown in picture (22), in
stage (5) the braided AYD condition (14) is used.

(1) We just use the definitions of ϕ = (1,m)(1, S, 1))(∆, 1) and,

β = [(1M , η, 1)(ψH,M )(ρ)(φ)].

(2) We use (1M ,∆, 1)(1M , η, 1) = (1M ,∆η, 1) and ∆η = η ⊗ η.
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(3) We use (1M , 1, S, 1)(1M , η, η, 1) = (1M , η, Sη, 1) and Sη = η.

(4) We use (1M , 1,m)(1M , η, η, 1) = (1M , η,m(η, 1)) and m(η, 1) = 1.

(5) We use the AYD formula (14).

(6) We use (m(S,m), φ) = (1, φ)(m(S,m), 1M , 1).

(7) We commute (ψH,M ) and (1, φ) using:

H ⊗ (M ⊗H)
(1,φ)−−−−→ H ⊗M

ψH,M⊗H

y
yψH,M

(M ⊗H)⊗H −−−−→
(φ,1)

M ⊗H

(8) We commute (ψH,M⊗H) and (m(S,m), 1M , 1) using:

H3 ⊗ (M ⊗H)
(m(S,m),1M ,1)−−−−−−−−−−→ H ⊗ (M ⊗H)

ψH3,M⊗H

y
yψH,M⊗H

(M ⊗H)⊗H3 −−−−−−−−−−→
(1M ,1,m(S,m))

(M ⊗H)⊗H

(9) We commute (1M , η, 1) and (φ, 1).

Thus, LHS = RHS in (20) if:

(ψH3,M⊗H)(ψH2,H , 1M , 1)(1, 1, ψM,H , 1)(1, 1, 1M , ψ)(1, ψM,H , 1, 1)
= (1M , ψH2,H2)(ψH,M , 1, 1, 1),

i.e., if in diagrams (21) and (23), the parts between dotted lines are equal. This is
true since:

H M H H H
ψM,H

ψH,H

ψM,H

dddd

ψH2,H

ψH3,M⊗H

M H H H H

(1)
=

H M H H H
ψM,H

ψH,H

ψM,H

ψH3,M⊗H

dddd

ψH2,H

M H H H H

(2)
=
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H M H H H
ψM,H

ψH,H

ψM,H

ψH,M

ψH,M

ψH,M

ψH,H

ψH,H

ψH,H

ggg

ψH2,H

M H H H H

(3)
=

H M H H H
ψM,H

ψH,H

ψH,M

ψH,M

ψH,H

ψH,H

ψH,H

ggg

ψH2,H

M H H H H

(4)
=

H M H H H

ψH,M

ψH,H

ψH,H

ggg

ψH2,H

M H H H H

(5)
=

H M H H H
ψH,M

ψH2,H2

M H H H H

Stages (1) to (5) are explained below. Notice that in stages (3), (4) the symmetry
condition ψ2 = id is used.

(1) We commute (ψH3,M⊗H) and (ψH2,H , 1M , 1) using naturality of ψ:

H3 ⊗ (M ⊗H)
(ψH2,H ,1M ,1)−−−−−−−−−→ H3 ⊗ (M ⊗H)

ψH3,M⊗H

y
yψH3,M⊗H

(M ⊗H)⊗H3 −−−−−−−−−→
(1M ,1,ψH2,H)

(M ⊗H)⊗H3

(2) We use

(ψH3,M⊗H) = (1M , ψH,H , 1, 1)(1M , 1, ψH,H , 1)(1M , 1, 1, ψH,H)
(ψH,M , 1, 1, 1)(1, ψH,M , 1, 1)(1, 1, ψH,M , 1)

(3) We use the symmetric property of ψ to put ψH,MψM,H = 1.

(4) We use the symmetric property of ψ to put ψH,MψM,H = 1 and ψH,HψH,H = 1.

(5) We use ψH2,H2 = (1, ψH2,H)(ψH,H , 1, 1)(1, ψH,H , 1).
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As for the cyclic condition, considering the following diagram:

M ⊗H ⊗ Cn+1
fM,Cn+1−−−−−−→ M ⊗ Cn+1

coker(fM,Cn+1 )−−−−−−−−−−→ M ⊗H Cn+1

yτ
yeτ

M ⊗H ⊗ Cn+1
fM,Cn+1−−−−−−→ M ⊗ Cn+1

coker(fM,Cn+1 )−−−−−−−−−−→ M ⊗H Cn+1

where fM,Cn+1 = (φM ⊗ 1Cn+1 − 1M ⊗ φCn+1), and using the definition of cokernel,
it can be verified that:

(τ̃n+1
n )coker(fM,Cn+1) = coker(fM,Cn+1)(τn+1

n )
= coker(fM,Cn+1)(1M ⊗ φCn+1)(ψH,MρM ⊗ 1Cn+1)
= coker(fM,Cn+1)(φM ⊗ 1Cn+1)(ψH,MρM ⊗ 1Cn+1)
= coker(fM,Cn+1)(φMψH,MρM ⊗ 1Cn+1).

Now using the stability property of M , (φM )(ψH,M )(ρM ) = 1M , and the universal
property of cokernel it is clear that:

τ̃n+1
n = id.

Also the other properties of a cocyclic object can be easily checked. This finishes the
proof of Theorem 3.6.

Example 3.7. As a special case, if we put C = H as an H-module coalgebra over
itself, we obtain a braided version of Connes-Moscovici’s Hopf cyclic theory [6, 7, 8]
in any symmetric monoidal abelian category. We shall explain this example in more
detail in the next section.

4. The braided version of Connes-Moscovici’s Hopf cyclic
cohomology

Let C be a strict braided monoidal category and (H, ∆, ε,m, η, S) be a Hopf
algebra in C. Notice that, except for Theorem 4.7, C is not assumed to be symmetric
or additive.

Definition 4.1. A character for H is a morphism δ : H → I in C which is an algebra
map, i.e,:

δm = δ ⊗ δ and δη = idI .

A co-character for H is a morphism σ : I → H which is a coalgebra map, i.e,:

∆σ = σ ⊗ σ and εσ = idI .

A pair (δ, σ) consisting of a character and a co-character is called a braided modular
pair if:

δσ = idI .
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Definition 4.2. If δ is a character for H, the corresponding δ-twisted antipode S̃ is
defined by:

S̃ := (δ ⊗ S)∆.

H

∆•δ◦◦ •S
H

(24)

Proposition 4.3. If S̃ is a δ-twisted antipode for H then we have:

S̃m = mψ(S̃ ⊗ S̃) = m(S̃ ⊗ S̃)ψ,

H H

•S̃
H

=

H H

•S̃ •S̃ψ

H

=

H H
ψ

•S̃ •S̃

H

(25)

S̃η = η,

∆S̃ = ψ(S̃ ⊗ S)∆ = (S ⊗ S̃)ψ∆,

H

•S̃ •S
ψ

H H

=

H

ψ

•S •S̃
H H

=

H

•S̃

H H

(26)

εS̃ = δ, δS̃ = ε, S̃σ = Sσ,

m(S̃σ ⊗ σ) = m(Sσ ⊗ σ) = η. (27)

Proof. Here we give a diagrammatic proof of the relation (25). Other relations can
be easily proved with the same method.

H H

•S̃
H

=

H H

•δ◦◦ •S
H

=

H H

ψ

•δ◦ •S
H

=

H H

•δ◦◦ •δ◦◦ •S •S
ψ

H
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=

H H

•δ◦◦ •S •δ◦◦ •S
ψ

H

=

H H

•S̃ •S̃ψ

H

=

H H
ψ

•S̃ •S̃

H

In the first identity we used the definition of S̃, relation (24). In the second one
we used relation (6), and in the third one relations (7) (replacing ε by δ) and (10).
In the fourth identity, the naturality of ψ, relation (3), is used. In the fifth identity
again the definition of S̃, relation (24), is used and in the last identity the naturality
of ψ, relation (1), is used.

Definition 4.4. A modular pair (δ, σ) for H is called a braided modular pair in
involution (BMPI) if:

m((m⊗ id)(Sσ ⊗ S̃2 ⊗ σ)) = id.

Considering the fact that Sσ = S̃σ, the BMPI condition can be shown by the following
diagram.

H

•σ
•S

◦
•S̃2 •σ

◦

H

=

H

•σ
•S̃

◦
•S̃2 •σ

◦

H

=

H

H

(28)

Example 4.5. One can easily check that, if I is considered as a right H-module via a
character δ:

φI = δ : I ⊗H = H → I,

and as a left H-comodule via a co-character σ:

ρI = σ : I → H ⊗ I = I,

then I is a braided SAYD module over H if and only if (δ, σ) is a braided MPI. We
denote this SAYD module by σIδ.

Example 4.6. If H is a Hopf algebra in V ectC, then the above definitions reduce to
those of Connes-Moscovici [6, 7, 8].

Now we are ready to give a braided version of Connes-Moscovici’s Hopf cyclic
theory.
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Theorem 4.7. Suppose (H, (δ, σ)) is a braided Hopf algebra in a symmetric braided
monoidal abelian category C, where (δ, σ) is a braided MPI. If we put

(C; φC , ∆C) = (H; mH , ∆H),

and

M = σIδ,

then the cocyclic object of Theorem 3.6 reduces to the following one which is a braided
version of Connes-Moscovici’s Hopf cyclic theory:

C0(H) = I and Cn(H) = Hn, n > 1,

with faces, degeneracies, and cyclic maps given by:

δi =





(η, 1, 1, . . . , 1) i = 0
(1, 1, . . . , 1, ∆

i−th
, 1, 1, . . . 1) 1 6 i 6 n− 1

(1, 1, . . . , 1, σ) i = n

σi = (1, 1, . . . , ε
(i+1)−th

, 1, 1 . . . , 1), 0 6 i 6 n

τn =
{
idI n = 0
(mn)(∆n−1S̃, 1Hn−1 , σ) n 6= 0.

Here by mn we mean, m1 = m, and for n > 2:

mn = mHn = (m,m, . . . ,m︸ ︷︷ ︸
n times

)Fn(ψ),

where

Fn(ψ) :=
n−1∏

j=1

(1Hj , ψ, ψ, . . . , ψ︸ ︷︷ ︸
n− j times

, 1Hj ).

For example for n = 2, 3, τ2 and τ3 are as follows:

τ2 = (m2)(∆S̃, 1, σ)

= (m,m)(1, ψ, 1)((S, S̃)ψ∆, 1, σ) = (m,m)(1, ψ, 1)(ψ(S̃, S)∆, 1, σ)

=

H H

•σ◦ψ

•S •S̃ ψ

H H

(1)
=

H H

•σ◦
•S̃ •Sψ

ψ

H H

(29)
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τ3 = (m3)(∆2S̃, 1, 1, σ)

= (m,m,m)(1, ψ, 3)(3, ψ, 1)(2, ψ, 2)((S, S, S̃)(1, ψ)(ψ, 1)(1, ψ)∆2, 1, 1, σ)
(1)
= (m,m,m)(S, 1, S, 1, S̃, σ)(1, ψ, 2)(3, ψ)(2, ψ, 1)(1, ψ, 2)(ψ, 3)(1, ψ, 2)(∆2, 2)

=

H H H

•σ◦ψ

ψ

ψ

•S •S •S̃ψ
ψ

ψ

H H H

(1)
=

H H H

ψ

ψ

ψ

ψ

ψ

ψ

•S •S •S̃ •σ◦

H H H

(30)

Remark 4.8. In Section 7 we discuss the analogue of this theorem in a non-symmetric
braided monoidal abelian category.

Remark 4.9. One can define the notions of H-module algebra and δ-invariant σ-trace
and define a characteristic map as in [6, 7, 8].

Example 4.10. (Connes-Moscovici’s theory) If one puts C = V ectC and I = C, then
the above formulas reduce to those in [6, 7, 8].

As another example of the above theory, we devote Section 5 to provide a Hopf
cyclic theory for super Hopf algebras. But before that we give some more results here:

Lemma 4.11. If H is commutative in the sense that mψ = m or cocommutative in
the sense that ∆ = ψ∆, then S2 = id and thus (ε, 1) is an MPI for H.

Proof. We have:

1 = idH
(1)
= m(η, 1)(ε, 1)∆ = m(ηε, 1)∆
(2)
= m(Sηε, 1)∆ = m(S(m(1, S)∆, 1)∆
(3)
= m(m(S, S)ψ(1, S)∆, 1)∆ = m(m(S2, S)ψ∆, 1)∆
(4)
= m(m(S2, S)∆, 1)∆ = m(m, 1)(S2, S, 1)(∆, 1)∆
(5)
= m(1,m)(S2, S, 1)(1,∆)∆ = m(S2,m(S, 1)∆)∆ = m(S2, ηε)∆

= m(1, η)(S2, 1I)(1, ε)∆ = (S2, 1I)
(6)
= S2
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Stages (1) to (6) are explained below:

(1) We use (ε, 1)∆ = m(η, 1) = 1.

(2) We use Sη = η and m(1, S)∆ = ηε.

(3) We use Sm = m(S, S)ψ, commute ψ and (1, S) using the naturality of ψ, and
use (S, S)(S, 1) = (S2, S).

(4) In the commutative case we first use (S, S)ψ = ψ(S, S) and then use mψ =
m. In the cocommutative case we use ∆ = ψ∆, and then (m(S2, S)∆, 1) =
(m, 1)(S2, S, 1)(∆, 1).

(5) We use m(m, 1) = m(1,m), (∆, 1)∆ = (1,∆)∆, and m(S, 1)∆ = ηε.

(6) We use (ε, 1)∆ = m(η, 1) = 1 again.

Remark 4.12. As one can see, in the proof of the above theorem we didn’t need the
symmetric property ψ2 = id for C.

The following braided version of Theorem (4.2) in [14], can be proved along the
same lines.

Theorem 4.13. If H is commutative, then

HCn(ε,1)(H) =
⊕

i=n(mod 2)

HHi(H, I), ∀n > 0, (31)

where the left hand side is the cyclic cohomology of the braided Hopf algebra H with
MPI (ε, 1) and the right hand side is the Hochschild cohomology of coalgebra H with
coefficients in H-bimodule I.

5. Hopf cyclic cohomology for super Hopf algebras

In this section we give explicit formulas for the Hopf cyclic complex in the special
case of super Hopf algebras and compute it in the super commutative case. The degree
of an element a in a super vector space will be denoted by |a|.

Definition 5.1. A Hopf algebra H in Z2-Mod is called a super Hopf algebra. Thus
a super Hopf algebra H = H0 ⊕H1 is simultaneously a super algebra and a super
coalgebra and the two structures are compatible in the sense that for all homogeneous
elements a, b ∈ H:

∆(ab) = (−1)|a(2)||b(1)| (a(1)b(1) ⊗ a(2)b(2)). (32)

Furthermore, there is an even map S : H → H, the antipode, such that: S(h(1))h(2) =
h(1)S(h(2)) = ε(h)1, for all h in H.

One easily checks that formulas (10) and (12) in Proposition 2.10 reduce to:

S(ab) = (−1)|a||b| S(b)S(a),

∆S(a) = S(a)(1) ⊗ S(a)(2) = (−1)|a(1)||a(2)| S(a(2))⊗ S(a(1)).
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Remark 5.2. We emphasize that condition (32) shows that a super Hopf algebra is,
in general, not a Hopf algebra in the category of vector spaces. It is of course a Hopf
algebra object in the category of super Hopf algebras (Example 2.3)

Let H = H0 ⊕H1 be a super Hopf algebra and (δ, σ) be a super MPI for H. One
checks that formulas (25), (26), and (27) in Proposition 4.3 reduce to:

S̃(ab) = (−1)|a||b| S̃(b)S̃(a),

∆S̃(a) = S̃(a)(1) ⊗ S̃(a)(2) = (−1)|a(1)||a(2)| S(a(2))⊗ S̃(a(1)),

S(σ) = S̃(σ) = σ−1.

Proposition 5.3. Let H = H0 ⊕H1 be a super Hopf algebra endowed with a braided
modular pair in involution (δ, σ). Then the complex, faces, degeneracies and cyclic
maps of Theorem 4.7 can be written as:

C0(H) = C and Cn(H) = Hn, n > 1,

δi(h1, . . . , hn−1) =





(1, h1, h2, . . . , hn−1) i = 0
(h1, h2, . . . , h

(1)
i , h

(2)
i , . . . , hn−1) 1 6 i 6 n− 1

(h1, h2, . . . , hn−1, σ) i = n

σi(h1, h2, . . . , hn+1) = ε(hi+1) (h1, h2, . . . , hi, hi+2, . . . , hn+1), 0 6 i 6 n,

τn(h1, h2, . . . , hn) = αβ (S(h(n)
1 )h2, S(h(n−1)

1 )h3, . . . , S(h(2)
1 )hn, S̃(h(1)

1 )σ),

where hi’s are homogeneous elements and:

α =
n−1∏

i=1

(−1)(|h
(1)
1 |+···+|h(i)

1 |)(|h(i+1)
1 |),

β =
n−1∏

j=1

(−1)|h
(j)
1 |(|h2|+|h3|+···+|hn−j+1|).

The next lemma is a corollary of Lemma 4.11.

Lemma 5.4. If a super Hopf algebra H = H0 ⊕H1 is super commutative or super-
cocommutative, then S2 = 1 and thus (ε, 1) is a super MPI for H.

The next proposition is a corollary of Theorem 4.13

Proposition 5.5. If a super Hopf algebra H = H0 ⊕H1 is super commutative, then
we have a decomposition:

HCn(ε,1)(H) =
⊕

i=n(mod 2)

HHi(H,C), ∀n > 0.

Remark 5.6. All the results of this section easily extend to the case of differential
graded super Hopf algebras.
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6. Hopf cyclic cohomology of the enveloping algebra of a super
Lie algebra

A good reference for super Lie algebras, their enveloping algebras, and a super
analogue of the Poincaré-Birkhoff-Witt theorem is [9]. This latter result is specially
important for the proof of Lemma 6.2. Let g = g0 ⊕ g1 be a super Lie algebra, let

∧
g :=

T (g)
(a⊗ b+ (−1)|a||b|b⊗ a) ,

be the exterior algebra of g and let

H = U(g) :=
T (g)

([a, b]− a⊗ b+ (−1)|a||b|b⊗ a) ,

be the enveloping algebra of g. Here T (g) is the tensor algebra of g. All these con-
structions are done in the category of super vector spaces [9]. U(g) is a super cocom-
mutative super Hopf algebra. Our goal in this section is to show that, analogous to
the non-graded case [6, 7, 8], the relation

HP ∗(δ,1)(U(g)) =
⊕

i=∗(mod 2)

Hi(g;Cδ),

holds, where δ is a character for g. Here HP ∗(δ,1)(U(g)) is the periodic Hopf cyclic
cohomology of the super Hopf algebra H = U(g), and Hi(g;Cδ) is the Lie algebra
homology of g with coefficient in the g-module Cδ.

First, we notice that the Hochschild cohomology HH∗(H,Cσ) depends only on the
coalgebra structure of H and the grouplike elements σ and 1. In fact we have:

Lemma 6.1. HH∗(H,Cσ) = Cotor∗H(C,Cσ).

Let

S(g) :=
T (g)

(a⊗ b− (−1)|a||b|b⊗ a) ,

denote the symmetric algebra of the super vector space g. It is a super cocommutative
super Hopf algebra with the comultiplication defined by ∆(x) = x⊗ 1 + 1⊗ x for
homogeneous elements x of g. Since by the super Poincaré-Birkhoff-Witt theorem [9],
U(g) = S(g) as super coalgebras one, using Lemma 6.1, can prove the following lemma
analogous to the non super case [16].

Lemma 6.2. The antisymmetrization map

A :
∧n

g −−−−→ U(g)n,

defined by

A(x1 ∧ · · · ∧ xn) = (
∑

σ∈Sn

(−1)ασsign(σ)(xσ(1), . . . , xσ(n)))/n!,

induces an isomorphism HH∗(U(g),C) =
∧∗(g). Here

ασ =
n∑

i=1

|xσ(i)|(|x1|+ |x2|+ · · · |̂xσ(j)|+ · · ·+ |xσ(i)−1|),



HOPF CYCLIC COHOMOLOGY IN BRAIDED MONOIDAL CATEGORIES 139

where |̂xσ(j)| means that if there are any of |xσ(j)|’s for all j < i they should be
omitted. Simply ασ contains |a||b| for any two elements a and b of xi’s, if they cross
each other.

The following complex is the super analogue of the Chevalley-Eilenberg complex
to compute the Lie algebra homology H•(g, Cδ) of the super Lie algebra g:

∧0
g

δ←−−−− ∧1
g

d←−−−− ∧2
g

d←−−−− ∧3
g

d←−−−− · · ·

d(x1, . . . , xn) = (
n∑

i=1

(−1)i+1+αiδ(xi)x1 ∧ · · · ∧ x̂i ∧ · · · ∧ xn)

+ (
∑

i<j

(−1)i+j+αi+αj−|xi||xj |[xi, xj ] ∧ x1 ∧ · · · ∧ x̂i ∧ · · · ∧ x̂j ∧ · · · ∧ xn),

where α1 := 0 and αi = |xi|(|x1|+ · · ·+ |xi−1|); i > 1.
Clearly we have a double complex

∧0
g

d

¿
0

∧1
g

d

¿
0

∧2
g

d

¿
0
. . .

whose total homology is
⊕

i=∗(mod 2)Hi(g;Cδ). On the other hand we have the (b,B)
double complex

U(g)0
B
¿
b
U(g)1

B
¿
b
U(g)2

B
¿
b
. . .

whose total homology is HP ∗(δ,1)(U(g)).
One checks that the antisymmetrization map A commutes with the B-operator,

i.e., BA = Ad. Now using Lemma 6.2 we conclude that the antisymmetrization map

A :
∧n

g −−−−→ U(g)n,

defines a quasi-isomorphism between the above double complexes. Summarizing
everything we have:

Theorem 6.3.

HP ∗(δ,1)(U(g)) =
⊕

i=∗(mod 2)

Hi(g;Cδ).

7. Hopf cyclic cohomology in non-symmetric monoidal cate-
gories

In Theorem 4.7 we obtained a braided version of Connes-Moscovici’s Hopf cyclic
theory in a symmetric monoidal category. This was obtained as a special case of a more
general result in Section 3, for braided triples (H,C,M) in a symmetric monoidal
category. In this section we proceed to eliminate the restrictive symmetry condition
ψ2 = id. For this, we will directly show that the complex of Theorem 4.7 remains para-
cocyclic in any braided abelian monoidal category C, without any symmetry condition
on the part of C (Theorem 7.1 below). We shall also indicate how the symmetry
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condition on the braiding is related to the cyclic condition τn+1
n = id (Theorem 7.3

below). The upshot is that to obtain a cocyclic object and a Hopf cyclic cohomology
in non-symmetric monoidal categories one must inevitably restrict to the subcomplex
ker(1− τn+1

n ) (cf. formula (13)). This procedure can, to some extent, be generalized
to braided triples as in Theorem 3.6. This more general case however needs some
additional structure and will be dealt with elsewhere.

Theorem 7.1. Let (H, (δ, σ)) be a braided Hopf algebra in a braided abelian monoidal
category C, where (δ, σ) is a BMPI. The following defines a para-cocyclic object in C:

C0(H) = I and Cn(H) = Hn, n > 1,

δi =





(η, 1, 1, . . . , 1) i = 0
(1, 1, . . . , 1, ∆

i−th
, 1, 1, . . . 1) 1 6 i 6 n− 1

(1, 1, . . . , 1, σ) i = n

σi = (1, 1, . . . , ε
(i+1)−th

, 1, 1 . . . , 1), 0 6 i 6 n

τn =
{
idI n = 0
(mn)(∆n−1S̃, 1Hn−1 , σ) n 6= 0.

Here by mn we mean, m1 = m, and for n > 2:

mn = mHn = (m,m, . . . ,m︸ ︷︷ ︸
n times

)Fn(ψ),

where

Fn(ψ) :=
n−1∏

j=1

(1Hj , ψ, ψ, . . . , ψ︸ ︷︷ ︸
n− j times

, 1Hj ).

Since the proof includes a very long series of long formulas, we try to visualize
some essential steps by braiding diagrams. Of course it takes a very large amount of
space to show all the steps by diagrams.

Proof. Among all relations in a para-cocyclic object, only the relations

τnσ0 = σnτ
2
n+1, τnσi = σi−1τn+1,

and others involving the cyclic operator τn are not obvious because the braiding map
is involved. Here we give a detailed proof of the first formula in degree n = 2, i.e., we
prove that τ2σ0 = σ2τ

2
3 . In the following, in addition to our previous conventions, we

shall write (3, ψ, 2) for (1, 1, 1, ψ, 1, 1), ψ23 for ψH2⊗H3 , and so on. We have:

σ2τ
2
3

(30)
= (1, 1, ε)(m3)(∆2S̃, 1, 1, σ)(m3)(∆2S̃, 1, 1, σ)
= (1, 1, ε)(m,m,m)(1, ψ, 3)(3, ψ, 1)(2, ψ, 2)

((S, S, S̃)(1, ψ)(ψ, 1)(1, ψ)∆2, 1, 1, σ)(m,m,m)(1, ψ, 3)(3, ψ, 1)(2, ψ, 2)

((S, S, S̃)(1, ψ)(ψ, 1)(1, ψ)∆2, 1, 1, σ)
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(30)
=

H H H

•σ◦ψ
ψ

ψ

•S •S S̃• ψ
ψ

ψ

•σ◦ψ
ψ

ψ

•S •S S̃• ψ
ψ

ψ

H H •ε◦

(1)
= (m,m, εm)(1, ψ, 3)(3, ψ, 1)(2, ψ, 2)(S, S, S̃, 1, 1, σ)(1, ψ, 2)(ψ, 3)(1, ψ, 2)

(∆2m,m,m)(S, 1, S, 1, S̃, σ)(1, ψ, 2)(3, ψ)(2, ψ, 1)(1, ψ, 2)(ψ, 3)(1, ψ, 2)(∆2, 2)

=

H H H

ψ
ψ

ψ
ψ

ψ
ψ

•S •S S̃• •σ◦

ψ
ψ

ψ

•S •S S̃• •σ◦ψ
ψ

ψ

•ε◦
H H
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(1), (9)
= (m,m, ε, ε)(S, 1, S, 1, S̃, σ)(1, ψ, 2)(3, ψ)(2, ψ, 1)(1, ψ, 2)(ψ, 3)(1, ψ, 2)

((m,m,m)(1, ψ, 3)(3, ψ, 1)(2, ψ, 2)(∆2,∆2),m,m)(S, 1, S, 1, S̃, σ)

(1, ψ, 2)(3, ψ)(2, ψ, 1)(1, ψ, 2)(ψ, 3)(1, ψ, 2)(∆2, 2)

=

H H H

ψ
ψ

ψ
ψ

ψ
ψ

•S •S •S̃ •σ◦
ψ

ψ
ψ

ψ
ψ

ψ
ψ

ψ
ψ

•S •S •S̃ •σ◦•ε◦ •ε◦
H H

= (m,m)(S, 1, S, 1, εS̃, εσ)(1, ψ, 2)(3, ψ)(2, ψ, 1)(1, ψ, 2)(ψ, 3)(1, ψ, 2)

(m,m,m,m,m)(1, ψ, 7)(3, ψ, 5)(2, ψ, 6)(∆2,∆2, 4)(S, 1, S, 1, S̃, σ)

(1, ψ, 2)(3, ψ)(2, ψ, 1)(1, ψ, 2)(ψ, 3)(1, ψ, 2)(∆2, 2)

= (m,m)(S, 1, S, 1, δ)(1, ψ, 2)(3, ψ)(2, ψ, 1)(1, ψ, 2)(ψ, 3)(1, ψ, 2)

(m,m,m,m,m)(1, ψ, 7)(3, ψ, 5)(2, ψ, 6)(∆2S,∆2, S, 1, S̃, σ)

(1, ψ, 2)(3, ψ)(2, ψ, 1)(1, ψ, 2)(ψ, 3)(1, ψ, 2)(∆2, 2)

= (m,m)(S, 1, S, 1, δ)(m,m,m,m,m)(2, ψ2,2, 4)(6, ψ2,2)(4, ψ2,2, 2)(2, ψ2,2, 4)

(ψ2,2, 6)(2, ψ2,2, 4)(1, ψ, 7)(3, ψ, 5)(2, ψ, 6)(S, S, S, 3, S, 1, S̃, σ)(1, ψ, 6)

(ψ, 7)(1, ψ, 6)(∆2,∆2, 3)(1, ψ, 2)(3, ψ)(2, ψ, 1)(1, ψ, 2)(ψ, 3)(1, ψ, 2)(∆2, 2)

= (m,m)(Sm,m, Sm,m, δm)(2, ψ2,2, 4)(6, ψ2,2)(4, ψ2,2, 2)(2, ψ2,2, 4)

(ψ2,2, 6)(2, ψ2,2, 4)(S, 1, S, 1, S, 1, S, 1, S̃, σ)(1, ψ, 6)(3, ψ, 4)(2, ψ, 5)(1, ψ, 6)

(ψ, 7)(1, ψ, 6)(∆2,∆2, 3)(1, ψ, 2)(3, ψ)(2, ψ, 1)(1, ψ, 2)(ψ, 3)(1, ψ, 2)(∆2, 2)



HOPF CYCLIC COHOMOLOGY IN BRAIDED MONOIDAL CATEGORIES 143

= (m,m)(mψ,m,mψ,m)(S, S, 1, 1, S, S, 1, 1, δ, δ)(2, ψ2,2, 4)(6, ψ2,2)

(4, ψ2,2, 2)(2, ψ2,2, 4)(ψ2,2, 6)(2, ψ2,2, 4)(S, 1, S, 1, S, 1, S, 1, S̃, σ)

(1, ψ, 6)(3, ψ, 4)(2, ψ, 5)(1, ψ, 6)(ψ, 7)(1, ψ, 6)(∆2,∆2, 3)

(1, ψ, 2)(3, ψ)(2, ψ, 1)(1, ψ, 2)(ψ, 3)(1, ψ, 2)(∆2, 2)
= (m,m)(mψ,m,mψ,m)(2, ψ2,2, 2)(ψ2,2, 4)(δ, δ, S, S, S, S, 4)

(S, 1, S, 1, S, 1, S, 1, S̃, σ)(1, ψ, 6)(3, ψ, 4)(2, ψ, 5)(1, ψ, 6)(ψ, 7)(1, ψ, 6)

(∆2,∆2, 3)(1, ψ, 2)(3, ψ)(2, ψ, 1)(1, ψ, 2)(ψ, 3)(1, ψ, 2)(∆2, 2)

= (m,m)(1, ψ, 1)(ψ, 2)(mψ,mψ,m,m)(δS, δ, S2, S, S2, S, S, 1, S̃, σ)

(1, ψ, 6)(3, ψ, 4)(2, ψ, 5)(1, ψ, 6)(ψ, 7)(1, ψ, 6)(∆2,∆2, 3)(1, ψ, 2)(3, ψ)

(2, ψ, 1)(1, ψ, 2)(ψ, 3)(1, ψ, 2)(∆2, 2)
= (m,m)(1, ψ, 1)(ψ, 2)(mψ,mψ,m,m)(1, ψ, 5)(ψ, 6)

(S2, S2, δS, δ, S, S, S, 1, S̃, σ)(∆2,∆2, 3)(1, ψ, 2)(3, ψ)(2, ψ, 1)(1, ψ, 2)(ψ, 3)

(1, ψ, 2)(∆2, 2)
= (m,m)(1, ψ, 1)(ψ, 2)(mψ,mψ,m,m)(1, ψ, 5)(ψ, 6)

(S2, S2, δS, δ, S, S, S, 1, S̃, σ)(3,∆2, 3)(3, ψ, 2)(5, ψ)(4, ψ, 1)(3, ψ, 2)(∆2, 4)

(ψ, 3)(1, ψ, 2)(∆2, 2)

=

H H H

ψ
ψ

ψ
ψ

ψ
ψ

S2•S2• δS•◦ δ•◦ •S•S •S •S̃ •σ◦
ψ

ψ
ψ ψ

ψ
ψ

H H

= (m,m)(1, ψ, 1)(ψ, 2)(mψ,mψ,m,m)(1, ψ, 5)(ψ, 6)

(S2, S2, δS, δ, S, S, S, 1, S̃, σ)(3,∆2, 3)(3, ψ, 2)(5, ψ)(4, ψ, 1)(3, ψ, 2)(ψ13, 3)

(1, ψ13, 2)(2,∆2, 2)(∆2, 2)
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= (m,m)(1, ψ, 1)(ψ, 2)(mψ,mψ,m,m)(1, ψ, 5)(ψ, 6)

(S2, S2, δS, δ, S, S, S, 1, S̃, σ)(3, ψ13, 2)(7, ψ)(4, ψ13, 1)(3, ψ, 4)

(ψ13, 3)(1, ψ13, 2)(5,∆2, 1)(2,∆2, 2)(∆2, 2)
= (m,m)(1, ψ, 1)(ψ, 2)(mψ,mψ,m,m)(1, ψ, 5)(ψ, 6)(2, ψ12, 3)(5, ψ, 3)

(3, ψ12, 2)(2, ψ, 4)(ψ12, 5)(1, ψ12, 4)(S̃, S, S2, S2, δS, δ, S, S, 1, σ)(5,∆2, 1)

(2,∆2, 2)(∆2, 2)
= (m,m)(1, ψ, 1)(ψ, 2)(mψ,mψ,m,m)(1, ψ, 5)(ψ, 6)

(S2, S2, δ, S, S, S, 1, S̃, δS, σ)(2, ψ13, 3)(6, ψ21)(3, ψ23, 1)(2, ψ, 5)(ψ12, 6)

(1, ψ12, 5)(5,∆2, 1)(2,∆2, 2)(∆2, 2)
= (m,m)(1, ψ, 1)(ψ, 2)(mψ,mψ,m,m)(1, ψ, 5)(ψ, 6)

(S2, S2, δ, S, S, S, 1, S̃, σ, δS)(4, ψ, 3)(3, ψ, 4)(2, ψ, 5)(6, ψ, 1)(7, ψ)(5, ψ, 2)
(6, ψ, 1)(4, ψ, 3)(5, ψ, 2)(3, ψ, 4)(4, ψ, 3)(2, ψ, 5)(1, ψ, 6)(ψ, 7)(2, ψ, 5)(1, ψ, 6)

(5,∆2, 1)(2,∆2, 2)(∆2, 2)

=

H H H

ψ
ψ

ψ
ψ

ψ
ψ

ψ
ψ

ψ
ψ

ψ
ψ

ψ
ψ
ψ

ψ

S2• S2• δ•◦ •S•S •S •S̃ •σ◦ •δS◦
ψ

ψ
ψ ψ

ψ
ψ

H H
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= (m,m)(1, ψ, 1)(ψ, 2)(mψ,mψ,m,m)(1, ψ, 5)(ψ, 6)

(S2, S2, δ, S, S, S, 1, S̃, δS, σ)(4, ψ, 3)(3, ψ, 4)(2, ψ, 5)(6, ψ, 1)(5, ψ, 2)
(4, ψ, 3)(3, ψ, 4)(7, ψ)(6, ψ, 1)(5, ψ, 2)(4, ψ, 3)(2, ψ, 5)(1, ψ, 6)(ψ, 7)

(2, ψ, 5)(1, ψ, 6)(5,∆2, 1)(2,∆2, 2)(∆2, 2)

= (m,m)(1, ψ, 1)(ψ, 2)(mψ,mψ,m,m)(1, ψ, 5)(ψ, 6)

(S2, S2, δ, S, S, S, 1, S̃, δS, σ)(4, ψ, 3)(3, ψ, 4)(2, ψ, 5)(6, ψ, 1)
(5, ψ, 2)(4, ψ, 3)(3, ψ, 4)(2, ψ, 5)(1, ψ, 6)(ψ, 7)(2, ψ, 5)(1, ψ, 6)

(7, ψ)(6, ψ, 1)(5, ψ, 2)(4, ψ, 3)(5,∆2, 1)(2,∆2, 2)(∆2, 2)

= (m,m)(1, ψ, 1)(ψ, 2)(m,m,m,m)(ψ, 6)(2, ψ, 4)(1, ψ, 5)(ψ, 6)(3, ψ, 3)(2, ψ, 4)

(5, ψ, 1)(4, ψ, 2)(3, ψ, 3)(2, ψ, 4)(1, ψ, 5)(S2, S̃, S2, S, δ, S, S, 1, σ, δS)(ψ, 7)

(2, ψ, 5)(1, ψ, 6)(7, ψ)(6, ψ, 1)(5, ψ, 2)(4, ψ, 3)(5,∆2, 1)(2,∆2, 2)(∆2, 2)

= (m,m)(1, ψ, 1)(ψ, 2)(m,m,m,m)(ψ, 6)(2, ψ, 4)(1, ψ, 5)(3, ψ, 3)(2, ψ, 4)
(5, ψ, 1)(4, ψ, 2)(3, ψ, 3)(2, ψ, 4)(ψ, 6)(1, ψ, 5)

(S2, (δ, S)∆, S2, S, δ, S, S, 1, σ, δS)(ψ, 7)(2, ψ, 5)(1, ψ, 6)(7, ψ)(6, ψ, 1)

(5, ψ, 2)(4, ψ, 3)(5,∆2, 1)(2,∆2, 2)(∆2, 2)

= (m,m)(1, ψ, 1)(ψ, 2)(m,m,m,m)(ψ, 6)(2, ψ, 4)(1, ψ, 5)(3, ψ, 3)(2, ψ, 4)
(5, ψ, 1)(4, ψ, 2)(3, ψ, 3)(2, ψ, 4)(ψ, 6)(1, ψ, 5)

(S2, δ, S, S2, S, δ, S, S, 1, σ, δS)(1,∆, 7)(ψ, 7)(2, ψ, 5)(1, ψ, 6)(7, ψ)(6, ψ, 1)

(5, ψ, 2)(4, ψ, 3)(5,∆2, 1)(2,∆2, 2)(∆2, 2)

= (1,m)(m, 2)(ψ12, 1)(m,m,m,m)(ψ, 6)(2, ψ, 4)(1, ψ, 5)(3, ψ, 3)(2, ψ, 4)

(5, ψ, 1)(4, ψ, 2)(3, ψ, 3)(2, ψ, 4)(ψ, 6)(1, ψ, 5)(S2, δ, S, S2, S, δ, S, S, 1, σ, δS)
(ψ21, 7)(3, ψ, 5)(2, ψ, 6)(8, ψ)(7, ψ, 1)(6, ψ, 2)(5, ψ, 3)(∆, 8)(5,∆, 2)
(5,∆, 1)(2,∆, 3)(2,∆, 2)(∆, 3)(∆, 2)

= (1,m)(ψ, 1)(1,m, 1)(m, 2,m)(2,m, 3)(4,m, 2)(ψ, 6)(2, ψ, 4)(1, ψ, 5)(3, ψ, 3)
(2, ψ, 4)(5, ψ, 1)(4, ψ, 2)(3, ψ, 3)(2, ψ, 4)(ψ, 6)(1, ψ, 5)

(S2, δ, S, S2, S, δ, S, S, 1, σ, δS)(ψ21, 7)(3, ψ, 5)(2, ψ, 6)(8, ψ)(7, ψ, 1)
(5, ψ12, 2)(6,∆, 2)(∆, 7)(5,∆, 1)(2,∆, 3)(2,∆, 2)(∆, 3)(∆, 2)

= (1,m)(ψ, 1)(m, 1,m)(2,m, 2)(2,m, 3)(4,m, 2)(ψ, 6)(2, ψ, 4)(1, ψ, 5)(3, ψ, 3)
(2, ψ, 4)(5, ψ, 1)(4, ψ, 2)(3, ψ, 3)(2, ψ, 4)(ψ, 6)(1, ψ, 5)

(S2, δ, S, S2, S, δ, S, S, 1, σ, δS)(ψ21, 7)(3, ψ, 5)(2, ψ, 6)(8, ψ)(7, ψ, 1)(5, ψ12, 2)
(6,∆, 2)(∆, 7)(5,∆, 1)(2,∆, 3)(2,∆, 2)(∆, 3)(∆, 2)
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= (1,m)(ψ, 1)(m, 1,m)(2,m, 2)(3,m, 2)(4,m, 2)(ψ, 6)(2, ψ, 4)(1, ψ, 5)(3, ψ, 3)
(2, ψ, 4)(5, ψ, 1)(4, ψ, 2)(3, ψ, 3)(2, ψ, 4)(ψ, 6)(1, ψ, 5)

(S2, δ, S, S2, S, δ, S, S, 1, σ, δS)(ψ, 8)(5,∆, 3)(1, ψ, 6)(3, ψ, 4)(2, ψ, 5)
(7, ψ)(6, ψ, 1)(5, ψ, 2)(∆, 7)(5,∆, 1)(2,∆, 3)(2,∆, 2)(∆, 3)(∆, 2)

= (1,m)(ψ, 1)(m, 1,m)(2,m, 2)(3,m, 2)(3,m, 3)(ψ, 6)(2, ψ, 4)(1, ψ, 5)(3, ψ, 3)
(2, ψ, 4)(5, ψ, 1)(4, ψ, 2)(3, ψ, 3)(2, ψ, 4)(ψ, 6)(1, ψ, 5)

(δ, S2, S, S2, S, (δ, S)∆, S, 1, σ, δS)(1, ψ, 6)(3, ψ, 4)(2, ψ, 5)(7, ψ)
(6, ψ, 1)(5, ψ, 2)(∆, 7)(5,∆, 1)(2,∆, 3)(2,∆, 2)(∆, 3)(∆, 2)

=

H H H

ψ
ψ

ψ
ψ

ψ
ψ

•δ◦ S2•S• •S2 •S •δ◦ •S •S •σ
◦

•δS◦ψ
ψ

ψ
ψ

ψ
ψ

ψ
ψ

ψ
ψ

ψ

ψ

H H
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= (1,m)(ψ, 1)(m, 1,m)(2,m, 2)(3,m, 2)(3,m, 3)(ψ, 6)(2, ψ, 4)(1, ψ, 5)(3, ψ, 3)
(2, ψ, 4)(5, ψ, 1)(4, ψ, 2)(3, ψ, 3)(2, ψ, 4)(ψ, 6)(1, ψ, 5)(ψ, 6)

(δ, S, S2, S2, S, S̃, S, 1, σ, δS)(3, ψ, 4)(2, ψ, 5)(7, ψ)(6, ψ, 1)(5, ψ, 2)
(∆, 7)(5,∆, 1)(2,∆, 3)(2,∆, 2)(∆, 3)(∆, 2)

= (1,m)(ψ, 1)(m, 1,m)(2,m, 2)(3,m, 2)(ψ, 5)(3,m, 3)(2, ψ, )(3, ψ, 3)(1, ψ, 5)
(2, ψ, 4)(5, ψ, 1)(4, ψ, 2)(3, ψ, 3)(2, ψ, 4)(1, ψ, 5)(ψ, 6)(1, ψ, 5)

(δ, S, S2, S2, S, S̃, S, 1, σ, δS)(3, ψ, 4)(2, ψ, 5)(7, ψ)(6, ψ, 1)(5, ψ, 2)
(∆, 7)(5,∆, 1)(2,∆, 3)(2,∆, 2)(∆, 3)(∆, 2)

= (1,m)(ψ, 1)(m, 1,m)(2,m, 2)(3,m, 2)(ψ, 5)(3,m, 3)(2, ψ21, 3)(1, ψ21, 4))

(5, ψ, 1)(4, ψ, 2)(3, ψ, 3)(1, ψ12, 4)(ψ, 6)(δ, S, S2, S2, S, S̃, S, 1, σ, δS)(2, ψ, 5)
(3, ψ, 4)(2, ψ, 5)(7, ψ)(6, ψ, 1)(5, ψ, 2)(∆, 7)(5,∆, 1)(2,∆, 3)(2,∆, 2)(∆, 3)(∆, 2)

= (1,m)(ψ, 1)(m, 1,m)(2,m, 2)(3,m, 2)(ψ, 5)(2, ψ, 3)(1, ψ, 4)(1,m, 5)(5, ψ, 1)

(4, ψ, 2)(3, ψ, 3)(1, ψ12, 4)(ψ, 6)(δ, S, S2, S2, S, S̃, S, 1, σ, δS)(3, ψ, 4)(2, ψ, 5)
(3, ψ, 4)(7, ψ)(6, ψ, 1)(5, ψ, 2)(∆, 7)(5,∆, 1)(2,∆, 3)(2,∆, 2)(∆, 3)(∆, 2)

= (1,m)(ψ, 1)(m, 1,m)(2,m, 2)(3,m, 2)(ψ, 5)(2, ψ, 3)(1, ψ, 4)(4, ψ, 1)(3, ψ, 2)

(2, ψ, 3)(1,m, 5)(1, ψ12, 4)(ψ, 6)(δ, S, S2, S2, S, S̃, S, 1, σ, δS)(3, ψ, 4)(2, ψ, 5)
(3, ψ, 4)(7, ψ)(6, ψ, 1)(5, ψ, 2)(∆, 7)(5,∆, 1)(2,∆, 3)(2,∆, 2)(∆, 3)(∆, 2)

= (1,m)(ψ, 1)(m, 1,m)(2,m, 2)(3,m, 2)(ψ, 5)(2, ψ, 3)(1, ψ, 4)(4, ψ, 1)(3, ψ, 2)

(2, ψ, 3)(1, ψ, 4)(2,m, 4)(ψ, 6)(δ, S, S2, S2, S, S̃, S, 1, σ, δS)(3, ψ, 4)
(2, ψ21, 4)(7, ψ)(6, ψ, 1)(5, ψ, 2)(∆, 7)(5,∆, 1)(2,∆, 3)(2,∆, 2)(1,∆, 2)(∆, 2)

= (1,m)(ψ, 1)(m, 1,m)(2,m, 2)(3,m, 2)(ψ, 5)(2, ψ, 3)(1, ψ, 4)(4, ψ, 1)(3, ψ, 2)

(2, ψ, 3)(1, ψ, 4)(ψ, 5)(2,m, 4)(δ, S, S2, S2, S, S̃, S, 1, σ, δS)(3, ψ, 4)
(2, ψ21, 4)(7, ψ)(6, ψ, 1)(5, ψ, 2)(∆, 7)(5,∆, 1)(1,∆, 4)(1,∆, 3)(1,∆, 2)(∆, 2)

= (1,m)(ψ, 1)(m, 1,m)(2,m, 2)(3,m, 2)(ψ, 5)(2, ψ, 3)(1, ψ, 4)(4, ψ, 1)(3, ψ, 2)

(2, ψ, 3)(1, ψ, 4)(ψ, 5)(2,m, 4)(δ, S, S2, S2, S, S̃, S, 1, σ, δS)(3, ψ, 4)
(2, ψ21, 4)(2,∆, 5)(6, ψ)(5, ψ, 1)(4, ψ, 2)(∆, 6)(4,∆, 1)(1,∆, 3)(1,∆, 2)(∆, 2)

= (1,m)(ψ, 1)(m, 1,m)(2,m, 2)(3,m, 2)(ψ, 5)(2, ψ, 3)(1, ψ, 4)(4, ψ, 1)(3, ψ, 2)

(2, ψ, 3)(1, ψ, 4)(ψ, 5)(2,m, 4)(δ, S, S2, S2, S, S̃, S, 1, σ, δS)(3, ψ, 4)
(3,∆, 4)(2, ψ, 4)(6, ψ)(5, ψ, 1)(4, ψ, 2)(∆, 6)(4,∆, 1)(1,∆, 3)(1,∆, 2)(∆, 2)

= (1,m)(ψ, 1)(m, 1,m)(2,m, 2)(3,m, 2)(ψ, 5)(2, ψ, 3)(1, ψ, 4)(4, ψ, 1)(3, ψ, 2)

(2, ψ, 3)(1, ψ, 4)(ψ, 5)(δ, S, S2,m(S2, S)ψ∆, S̃, S, 1, σ, δS)(2, ψ, 4)
(6, ψ)(5, ψ, 1)(4, ψ, 2)(∆, 6)(4,∆, 1)(1,∆, 3)(1,∆, 2)(∆, 2)
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=

H H H

ψ
ψ

ψ
ψ

ψ

•δ◦ S•S2••S2 •S•S̃ •S •σ
◦
•δS◦

ψ
ψ

ψ
ψ

ψ
ψ

ψ
ψ

ψ

H H

(33)
=

H H H

ψ
ψ

ψ
ψ

•δ◦ S• •S2

•ε◦
•η◦ •S̃ •S •σ◦ •δS◦ψ

ψ
ψ

ψ
ψ

ψ
ψ

ψ

ψ

H H
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By the same method, using standard identities and properties, including:

(1, ψ)(ψ, 1)(1, ψ) = (ψ, 1)(1, ψ)(ψ, 1),

one reduces the above digram to the following one:

H H H

•S̃ •S •σ◦
•S

•δ◦ ψ
ψ

H H

(8)
=

H H H•ε◦ •σ◦

S̃• •Sψ
ψ

H H

(26)
=

H H H•ε◦
•S̃

•σ◦ψ

H H

= (m,m)(1, ψ, 1)(∆S̃, 1, σ)(ε, 2) = τ2σ0.

Lemma 7.2. It is easy to verify that

m(S2, S̃)ψ∆ = ηδ

H

ψ

•S2 •S̃
H

=
•δ
◦

H

•η
◦

H

(33)

We use this lemma in the proof of next theorem.

Theorem 7.3. Under the conditions of Theorem 7.1,

τ3
2 = ψ2

H,H .

Proof. We have:

τ3
2 = τ2τ

2
2

= τ2(m2)(∆S̃, 1, σ)(m2)(∆S̃, 1, σ)

= τ2(m,m)(1, ψ, 1)(ψ(S̃, S)∆, 1, σ)(m,m)(1, ψ, 1)(ψ(S̃, S)∆, 1, σ)
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= τ2(m,m)(1, ψ, 1)(ψ, 2)(S̃, S, 1, σ)(∆, 1)(m,m)(1, ψ, 1)(ψ, 2)

(S̃, S, 1, σ)(∆, 1)

(29)
=

H H

•σ◦
S̃• •Sψ

ψ

•σ◦
S̃• •Sψ

ψ

•σ◦
S̃• •Sψ

ψ

H H

(1), (6)
= τ2(m,m)(1, ψ, 1)(ψ, 2)(S̃, S, 1, σ)(m,m,m)(1, ψ, 3)(∆,∆, 2)

(S, 1, S̃, σ)(1, ψ)(ψ, 1)(∆, 1)

= τ2(m,m)(1, ψ, 1)(ψ, 2)(S̃m, Sm,m, σ)(1, ψ, 3)(∆S,∆, S̃, σ)
(1, ψ)(ψ, 1)(∆, 1)

=

H H

ψ
ψ

•S •S̃ •σ◦
ψ

•S̃ •S •σ◦ψ
ψ

•σ◦
S̃• •Sψ

ψ

H H
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(12), (10), (25)
= τ2(m,m)(1, ψ, 1)(ψ, 2)(m(S̃, S̃)ψ,m(S, S)ψ,m, σ)

(1, ψ, 3)((S, S)ψ∆,∆, S̃, σ)(1, ψ)(ψ, 1)(∆, 1)

=

H H

ψ
ψ

ψ

S• S•
•S̃ •σ

◦

ψ
ψ

•S̃ •S̃

ψ

•S •S •σ
◦

ψ
ψ

•σ◦
S̃• •Sψ

ψ

H H

Again, by the same method, using standard identities and properties, including:

(1, ψ)(ψ, 1)(1, ψ) = (ψ, 1)(1, ψ)(ψ, 1),

one reduces the above diagram to the following one:

H H
ψ

ψ
ψ

ψ
ψ

•σ
•S

◦ ψ

•S2 •S̃ •S̃2 •σ
◦

•σ
•S̃

◦ •S
•S̃

•σ
◦

H H

(33)
=

H H
ψ

ψ
ψ

ψ
ψ

•σ
•S

◦ •δ
◦
•η
◦ •S̃2 •σ

◦
•σ
•S̃

◦ •S
•S̃

•σ
◦

H H

= (m(m, 1),m(m, 1))(2,m, 3)(Sσ, ηδ, S̃2, σ, S̃σ, S̃S, σ)
(1, ψ)(ψ, 1)(1, ψ)(ψ, 1)(1, ψ)(1,∆)
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= (m(m, 1),m(m, 1))(1, η, 4)(1,m, 3)(Sσ, S̃2, σ, S̃σ, S̃S, σ)
(ψ)(δ, 2)(ψ, 1)(1, ψ)(ψ, 1)(1, ψ)(1,∆)

= (m(m(1, η), 1),m(m, 1))(1,m, 3)(Sσ, S̃2, σ, S̃σ, S̃S, σ)(ψ)
(2, δ)(ψ, 1)(1, ψ)(1,∆)

= (m,m(m, 1))(1,m, 3)(Sσ, S̃2, σ, S̃σ, S̃S, σ)(ψ)(ψ)(1, δ, 1)(1,∆)

= (m,m(m, 1))(1,m, 3)(Sσ, S̃2, σ, S̃σ, S̃, σ)(1, S)ψ2(1, δ, 1)(1,∆)

= (m,m(m, 1))(1,m, 3)(Sσ, S̃2, σ, S̃σ, S̃, σ)ψ2(1, S)(1, δ, 1)(1,∆)

= (m,m(m, 1))(1,m, 3)(Sσ, S̃2, σ, S̃σ, S̃, σ)ψ2(1, (δ, S)∆)

= (m,m(m, 1))(1,m, 3)(Sσ, S̃2, σ, S̃σ, S̃, σ)ψ2(1, S̃)

= (m(1,m),m(m, 1))(Sσ, S̃2, σ, S̃σ, S̃, σ)(1, S̃)ψ2

= (m(1,m)(Sσ, S̃2, σ),m(m, 1)(S̃σ, S̃2, σ))ψ2

=

H Hψ

ψ

•σ
•S

◦
•S̃2 •σ

◦

H

•σ
•S̃

◦
•S̃2 •σ

◦

H

(28)
=

H Hψ

ψ

H H

= (1, 1)ψ2 = ψ2.

Remark 7.4. In general we have for all n 6= 0:

τn+1
n = (ψH(n−1),H)n

which is equal to id, for all n 6= 0, iff ψ2 = id.

For n = 3 this statement means τ4
3 = (ψH2,H)3, which is visualized in the following

picture:
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H H H
•σ◦

•S •S •S̃

•σ◦

•S •S •S̃
=

•σ◦

•S •S •S̃

•σ◦

•S •S •S̃

H H H

H H H
gg

gg

gg

H H H

Now we proceed to our last example, the Hopf cyclic cohomology for quasitrian-
gular quasi-Hopf algebras, which was one of the main motivations for this work. One
knows that a quasitriangular quasi-Hopf algebra (H, R, Φ, α, β) is a Hopf algebra in
the braided monoidal category of (left) H-modules [2, 19]. This braided Hopf algebra
H has the following structure. As a vector space H = H, with H-module structure
given by conjugation

a¤ h = a(1)hS(a(2)).

The Hopf algebra structure on H is given by [2]:

m(a, b) = a.b = X1aS(x1X2)αx2X
(1)
3 bS(x3X

(2)
3 ),

with unit β,

∆(h) = h(1) ⊗ h(2) = x1X1h
(1)g1S(x2R2y3X

(2)
3 )⊗ x3R1 ¤ y1X2h

(2)g2S(y2X
(1)
3 ),

with counit ε = ε, and antipode

S(h) = x1R2p2S(q1(X2R1p1 ¤ h)S(q2)X3).
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Here we have used the following notations:

Φ = X1 ⊗X2 ⊗X3,

Φ−1 = x1 ⊗ x2 ⊗ x3 = y1 ⊗ y2 ⊗ y3,
p1 ⊗ p2 = x1 ⊗ x2βS(x3),

q1 ⊗ q2 = X1 ⊗ S−1(αX3)X2,

and

g1 ⊗ g2 = ∆(S(x1)αx2)ξ(S ⊗ S)(∆op(x3)),

where,

ξ = B1βS(B4)⊗B2βS(B3),

B1 ⊗B2 ⊗B3 ⊗B4 = (∆⊗ id⊗ id)(Φ)(Φ−1 ⊗ 1).

Let (δ, σ) be a braided modular pair in involution for H. Using Theorem 7.1 we
can associate a para-cocyclic module to H. By passing to subspaces ker(1− τn+1

n ) we
obtain a cocyclic module. Therefore we have the following corollary.

Corollary 7.5. For any quasitriangular quasi-Hopf algebra (H, R, Φ, α, β) endowed
with a braided modular pair in involution (δ, σ), the complex obtained in Theorem 7.1
defines a Hopf cyclic cohomology for H, denoted by HC∗(δ,σ)(H, R, Φ, α, β).
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