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A RELATIVE VERSION OF THE FINITENESS OBSTRUCTION
THEORY OF C. T. C. WALL

ANNA DAVIS
(communicated by Charles A. Weibel)

Abstract

In his 1965 paper C. T. C. Wall demonstrated that if a CW
complex Y is finitely dominated, then the reduced projective
class group of Y contains an obstruction which vanishes if and
only if Y is homotopy equivalent to a finite CW complex. Wall
also demonstrated that such an obstruction is invariant under
homotopy equivalences. Subsequently Sum and Product Theo-
rems for this obstruction were proved by L. C. Siebenmann.

In his second paper on the subject Wall gives an algebraic
definition of the relative finiteness obstruction. If a CW complex
Y is finitely dominated rel. a subcomplex X, then the reduced
projective class group of Y contains an obstruction which van-
ishes if and only if Y is homotopy equivalent to a finite complex
rel. X.

In this paper we will use a geometric construction to reduce
the relative finiteness obstruction to the non-relative version.
We will demonstrate that the relative finiteness obstruction is
invariant under certain types of homotopy equivalences. We will
also prove the relative versions of the Sum and the Product
Theorems.

1. Introduction

The purpose of this paper is to provide a geometric reduction of Wall’s relative
finiteness obstruction [14] to his non-relative version [13]. The idea that such a reduc-
tion is possible as well as the choice of construction techniques used in this paper are
due to Chapman. We will employ a modification of the infinite mapping cylinder
construction used by Ferry in [7] to obtain a geometric description of the non-relative
obstruction. Our modification is similar to the technique used by Chapman in [5] and
involves a truncated version of the infinite mapping cylinder construction. As a result
we obtain relative versions of the sum and product theorems of [10].

We will start by reviewing the non-relative theory. In what follows all spaces are
assumed to be locally compact, separable and metric and all maps are continuous
functions.

Received August 26, 2006, revised September 9, 2009; published on December 2, 2009.
2000 Mathematics Subject Classification: 57Q12.

Key words and phrases: CW complex, finiteness obstruction, relative finiteness obstruction.
This article is available at http://intlpress.com/HHA/v11/n2/al7

Copyright (© 2009, International Press. Permission to copy for private use granted.



382 ANNA DAVIS

A map d: X — Y is a homotopy domination if there exists a map u: ¥ — X
such that du ~ idy. We say that u is an inverse of d and that Y is dominated by X.
A CW complex is said to be finitely dominated if it is dominated by a finite complex.

Wall’s finiteness obstruction theory arises from the question: If Y is finitely domi-
nated, when is Y homotopy equivalent to some finite CW complex? Wall defines the
finiteness obstruction of a finitely dominated CW complex Y to be an element o(Y")
of the reduced projective class group Ko(Zm(Y)) and shows that o(Y) = 0 if and
only if Y is homotopy equivalent to a finite complex [13]. Wall also shows that o(Y")
is an invariant of homotopy type. Siebenmann used finiteness obstruction to solve the
problem of putting a boundary on an open manifold [10]. He also obtained product
and sum theorems for the obstruction [10].

By a CW pair (Y,X) we mean a CW complex Y together with a subcomplex
X closed in Y. Let (Y, X) be a CW pair. YV is said to be finitely dominated rel. X
if there exists a compact CW complex K and a map d: X UK — Y such that d
is a homotopy domination rel. X (i.e., there exists a homotopy inverse u such that

du % id with hi(x) =z for all x € X). Equivalently, Y is finitely dominated rel. X
if the inclusion i: X UC — Y is a homotopy domination rel. X for some compact
subcomplex C C Y. If YV is finitely dominated rel. X we say that (Y, X) is finitely
dominated.

Let (Y1,X) and (Y2, X) be CW pairs. Suppose there is a homotopy equivalence
f: Y1 — Yo such that f|x: X — X is the identity. If there exists an inverse g such that

glx: X — X is the identity, and homotopies F; and G; such that fg & id, gf & id
and Fi|x =id, Gi|x =id for all ¢, then we say that f is a homotopy equivalence
rel. X. If Yo =X UK, where K is a finite complex, we say that Y; is homotopy
equivalent rel. X to a finite complex.

Relative finiteness obstruction theory arises from the question: If Y is finitely
dominated rel. X, when is Y homotopy equivalent to a finite complex rel. X 2 Wall
uses relative chain complexes to define the relative finiteness obstruction of a finitely
dominated pair (Y, X) to be an element o(Y, X) of Ko(Zm (Y)) [14]. The obstruction
vanishes if and only if Y is homotopy equivalent rel. X to some X U K, where K is
finite. The relative finiteness obstruction plays a key role in infinite simple homotopy
theory [11].

We will reduce the relative finiteness obstruction to the ordinary finiteness obstruc-
tion and derive the relative versions of the sum and product formulas. The ideas for
the sum and product formulas came from Cohen who proves similar results for White-
head torsion in [6]. Statements of Theorem 4.15 and Lemma 4.17 are analogous to
Cohen’s 20.2 and 20.3. The striking similarity between formulas and results for the
relative finiteness obstruction and Whitehead torsion can be partially explained by
the Bass-Heller-Swan result which states that the reduced projective class group of
Y injects into the Whitehead group of Y x St [1].
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2. Preliminaries

2.1. Finiteness Obstruction

Let X be a connected complex. Let Z71(X) = Z7 denote the integral group ring.
The reduced projective class group of X, Ko(Zm1 (X)), can be thought of as the
Grothendieck group of finitely generated projective Zm-modules, modulo free mod-
ules [13]. Henceforth we will refer to Ko(Z7m1 (X)) as Ko(X). The reduced projective
class group of a non-connected complex X is the direct sum of the reduced projective
class groups of the components of X [10].

Ky is a functor from the category of topological spaces and continuous functions
to the category of abelian groups and homomorphisms [10]. Kj satisfies the following
properties:

1. For any space X, f(o(X) is an abelian group.

2. If f: X — Y is a continuous function then there is an induced homomorphism

fe: Ko(X) — Ko(Y).

3. id, =id and (gf)s = gu fx.

4. Ky is a homotopy functor i.e., f ~ g then f, = g,.

5. Ko has compact support i.e.,

(a) If o € Ko(X) then there exists a compact C' C X and 7 € Ko(C) such that
ix(T) = 0, where i: C'— X is an inclusion. .

(b) If C C X is compact, T € Ko(C), and i.(7) = 0 € Ko(X) then there exists a
compact D C X such that C C D and j.(7) = 0 € Ko(D), where j: C — D
is an inclusion.

If X is a CW complex we can ensure that C' and D are finite subcomplexes.

6. Let X, X', Y and Y’ be finitely dominated spaces. Let f: X — X" and g: Y —

Y’ be maps. There exists a pairing -: Ko(X) x Ko(Y) — Ko(X xY). This

pairing is natural in the sense that the following diagram commutes.

Ko(X) x KoY) — KyXxY)
Al |9 |7 % g).

Ko(X') x KoY — Ko(X' xY')

Let d: K — X be a map. We will use m,(d) to denote m,(M(d), K x 1), where
M (d) is the mapping cylinder of d. We say that d is n-connected if K and X are
connected and 7;(d) =0 for 1 < i < n.

Definition 2.1 ([13]). 1. We say that X satisfies Fy if 7 is finitely generated.

2. We say that X satisfies Fy if 7 is finitely presented, and for any finite complex
K? and map ¢: K2 — X inducing an isomorphism of fundamental groups, 7o ()
is a finitely generated module over Z.

3. We say that X satisfies F;, (n > 3) if it satisfies F},_1 and for any finite complex
K"~ and (n — 1)-connected map ¢: K"~ ! — X, 7,(¢) is a finitely generated
Zm-module.
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Definition 2.2 ([13]). We say that X satisfies D, if H;(X) =0 for i > n, and
H" 1 (X;B) = 0 for all coefficient bundles B.

The following is a statement of Wall’s theorem of [13] as it appears in [12].

Theorem 2.3. X is dominated by a finite complex if and only if X satisfies Fi
and Dy for some N > 3. In this case X satisfies Fy,, and D,, for allmn > N. More-
over, given any n > N we can find an n-connected map D: L =L" — X with L
finite. In this case m,41(D) is finitely generated, projective over Zm and the element
o(X) = (=1)"mpy1(D)] € Ko(X) depends only on the homotopy type of X. The
vanishing of o(X) is necessary and sufficient for X to be homotopy equivalent to a
finite complex.

In the above theorem, D is an extension of a finite domination d: K — X, and L
is obtained by attaching a finite number of cells to K [13].

The finiteness obstruction is defined to be o(X) = (—=1)""![r,,+1(D)]. Obstruction
may also be defined geometrically as in [7].

The finiteness obstruction satisfies the following properties:

1. Invariance (Wall [13])
If f: X — Y is a homotopy equivalence and both spaces are finitely dominated,
then f.(c(X)) =a(Y).

2. Sum Theorem (Siebenmann [10])
If X = X7 UXs, where X1, X5, Xg = X7 N X5 are finitely dominated, then X
is finitely dominated and

o(X) = j1«o(X1) + jaco(X2) — joxo(Xo),
where j;: X; — X are inclusions.

3. Product Theorem (Siebenmann [10])
If X7 and X5 are finitely dominated, connected CW complexes then X; x X5
is finitely dominated and

o(X1 x Xp) = 0(Xy) - 0(X2) + x(X2)j1.0(X1) + x(X1)j2:0(X2),

where j;: X; — X1 x X5 are inclusions, and x is the Euler Characteristic func-
tion.

2.2. Relative Finiteness Obstruction

We will reduce the relative finiteness obstruction to the ordinary obstruction as
follows. Given a finitely dominated pair (Y, X) we construct a CW pair (X U D', X)
and a homotopy equivalence u: X UD’ — Y rel. X, where D’ is finitely dominated
and u(D’) is contained in a compact subset of Y. Then o(Y,X) is defined to be
the image of o(D’) in Ko(Zn(Y)). This definition allows us to naturally deduce
the relative versions of the sum and product theorems from the non-relative versions
of [10].

1. Fundamental Property of Relative Finiteness Obstruction
o(Y,X) =0 if and only if Y is homotopy equivalent rel. X to a finite complex.
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2. Relative Invariance
If (Y, X) is finitely dominated and f: (Y, X) — (Y1, X7) is a homotopy equiva-
lence such that f|x: X — X; is a homotopy equivalence, then (Y7, X7) is finitely
dominated and f,(o(Y, X)) = o(Y1, X1).

3. Relative Sum Theorem
Suppose Y =Y, UYs, Yo=Y NYs; and X = X; U X, X = X1 N Xy, where
X1 CYy, Xo CYs, and Xy C Yy, and each (Y5, X;) is finitely dominated (i =
0, 1, 2). Then (Y, X) is finitely dominated and

(Y, X) = j1c(o(Y1, X1)) + j2x(0(Y2, X2)) — jox(c (Y0, Xo0)),

where j;: Y; — Y are inclusions.

4. Relative Product Theorem
If (Y1, X1) and (Y2, X3) are finitely dominated, path connected CW pairs, then
(Y1 x Y3, (Y7 x X2) U (X7 X Y3)) is finitely dominated and

oY1 xYs, (Y1 x Xo) U (X1 xY3)) =0(Y1,X1) - 0(Ya, Xo)+
X (Y1, X1)j2.0 (Y2, X2) + x(Y2, X2)j1.0(Y1, X1),

where j;: Y; — Y7 x Y5 are inclusions.

2.3. Miscellaneous

A CW isomorphism between two CW complexes Y7 and Y5 is a homeomorphism
of Y7 onto Y5 such that the image of every cell of Y7 is a cell of Y5. A map is cellular
provided that it sends every cell into cell(s) of equal or lower dimension.

A direct mapping cylinder D(f) of a map f: X — X is the space formed from
the disjoint union of X x [n,n + 1], where n is an integer, by identifying (x,n) €
X x [n—1,n] with (f(x),n) € X x [n,n+ 1] for ecach z € X.

X X X
= D(f)
—00 -1 0 1 00
The Hilbert Cube is the countable infinite product
Q =112, I,
where each I; = [—1,1]. Every separable metric space can be embedded into Q. Let

Qo denote the Hilbert Cube with one point removed. It is easy to show that if a
space Z is an ANR, then there exists a proper embedding k: Z — Q. (Let Z be a
one-point compactification of Z. Embed Z into Q. Remove the image of co from Q.)
For more information on the Hilbert Cube, see [4].
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3. Preliminary Constructions

Definition 3.1. Let (Y, X) be a finitely dominated CW pair. Let D = D’ U X, where
D’ is a finitely dominated subcomplex of D. If there exists a homotopy equivalence
4: D — Y rel. X with homotopy inverse ¢ such that #(D’) is contained in a compact
set, then we say that (Y, X) is stable with respect to (D', i, ©). When inverse ¢ of 4 is
irrelevant, we will say that (Y, X) is stable with respect to (D’,4) or simply, stable.

The construction that we carry out will result in 4(D’) being compact.
This section is devoted to the proof of the following theorem.

Theorem 3.2. Fvery finitely dominated CW pair is stable.

Let C' CY be a finite subcomplex such that X UC — Y is a homotopy domi-
nation rel. X (i.e., 3 a homotopy h:: Y — Y rel. X such that hg =id and hy(Y) C
X UCQC). Let e = hy|xuc: X UC — X UC. Observe that e is the identity on X, so e
is cellular on X. By [9] e is homotopic rel. X to a cellular map. Thus we can assume
that e is cellular. Form the direct mapping cylinder D(e). By 3.5 of [6] D(e) is a CW
complex.

For the purpose of Lemma 3.3 and definitions of u and v we will refer to a point
of the direct mapping cylinder D(e) as (z,n +t), where z € X UC,0<t <1l and n
is an integer. Subsequently we will refer to points of D(e) as (z,t), where t € R.

Define maps

u: D(e) —Y, wu(z,n+1t)=hz)
v:Y — D(e)’ U(y) = (hl(y)vo)'

Lemma 3.3. uv >~ idy and vu =~ idp).

Proof. Observe that
uv = hy ~ id.
Define T': D(e) — D(e) by
T(x,n+t)=(x,n+t—1).

We will first show that vu ~ T.
Define @: D(e) — Y x Rand ©: Y x R — D(e) by

iz m + 1) (z,n+ 2t) 0<t<i
u(r,n =
(h2t71($)77’l+ 1) % <t< 1
Syin+ 1) = (h1(y),n + 2t) 0<t<3
’ (hlhg,gt(y),n—l— 1) % <t< 1.

We want to show that vu ~ T.
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Define a homotopy vs: D(e) — D(e) by

(hi(z),n + 4t) 0<t<z
Ys(@,n41t) =  (hho_sppsae—n(x),n+1) ;<t< 35
(hihot—11s@—20(z),n+1) F<t<1
Then
Yo = VU
h 4) 0<t<i
difan b= DA Ot
(h1h1($),n+1) Z<t<1
Let
O(x,n+1t) = (hi(z),n+1).
Then ¢, ~ 6 via the homotopy
h t+3ts) 0<t<+
1 g) = § (kT 310) O P g
rs(hi(z),n +1t) 7St<l1,

where

(r,n+t+s(1—1t) 0<s<1

rs(m’n+t>:{(h1(x),n+1) s—1.

Now we need to show that T ~ 6. Define G,: D(e) — D(e) by

aen = {1
Observe that
Go(z,n+1t) = (z,n+t) =id(z,n+1)
Gi(z,n+t)= (hi(z),n+t+1) =0T (z,n+1).

Assuming that G is continuous we have id ~ T 1. Therefore T ~ 0.

387

We now need to show that G is continuous. We will demonstrate that G is contin-
uous on a closed segment of the direct mapping cylinder. Continuity of G will follow

from the Pasting Lemma.

Let M; be the mapping cylinder of e: X UC — e(X U C). Let Ms be the mapping
cylinder of e|¢(xuc): e(X UC) — e(e(X UC)). Let M = My U My (1-level of M is

identified with the 0-level of M>).
Consider the following diagram:

(Xuo)x[0,1)xI - (Xuc)x]o,2
lq:ChXid lqz

Gl xr1

My x I — M
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where the maps are defined as follows

F(z,n+t,s)=(z,n+t+s)
e~

(z,n+1) n=0
g2(w,n+1) = (hl(x)7n+t) n=1
(hlhl (l‘), 2) n=2.
Observe that the diagram commutes. Since ¢ is a proper continuous surjection it

follows that ¢ is a quotient map.
To show continuity of G pick an open set U C M, then

¢ (GTHU)) = F gy ' (U)) = (e2F) 7 (U)

but (g2 F)~(U) is open since g F is continuous. Therefore ¢~ (G~1(U)) is open. But
then G=1(U) is open because ¢ is a quotient map. So G is continuous.

Let p=proj: Y x R— Y. Define i: Y =Y x R by i(y) = (y,0). Let u/(z,
n+t) = (h(x),n+1t).

We have the following sequence of homotopies:

, HY H? G
VU = ViU = mpu ~ VIpU ~ 00 = qpo wl 2 ~ T,
where
0(hts(z),0 o<ttt
HY(z,n+t) = Tj( ts(2),0) | 2
O(h2-1)1-s)4st(2),0) 5 <t <1
v 2t(1 — <t
H2(em 4 1) = L@+ 21 =) 0<i<}
3(h@i—1y(z),n+(1-3s)) i<t< 1

Finally we need to show that T ~ de(e Observe that T is a homeomorphism.
Thus T =T TT ~ T w(uww)u ~ T lvu ~ T7T = id. O

Lemma 3.4. There exists a compact subcomplex V' of X UC such that C C Int(V)
and hyhy, b, (C) C Int(V) for all t1, to € 1.

Proof. Recall that h: Y x I — Y is a homotopy. Then h(C x I) C A for some com-
pact A C Y. Thus h,(C) C A for all t; € I.

Also, h(A x I) C B for some compact B CY. Thus hy, (A) C B for all ¢; € I.
Therefore there exists a compact subcomplex V' such that C' C Int(V) and

hihy, he, (C) C hihe, (A) C hi(B) C Int(V) € X UC. O

Constructing D’

Choose a subcomplex V of X U C as in Lemma 3.4. Let D” be the direct mapping
cylinder of e|y. Then D” C D(e).

Let X’ be a finite subcomplex of X U C containing V in its interior. Let D’ be
the direct mapping cylinder of ¢’ = e|x/. Then D’ C D(e). Since €’ is cellular, D’ is
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a subcomplex of D = X U D’, where the union is taken by identifying X’ C X with

X' x {0} C D'. Note that since vu(z,t) = v(ht(x)) = (h1h(x),0), we have vu(D") C
X' x {0}. Thus, D' is finitely dominated.

I

Figure 1: D’

Lemma 3.5. The homotopy vu ~ idp . restricts to vu|p: ~ idp:.

Proof. If we use homotopies of Lemma 3.3 together with Lemma 3.4 it is easy to
check that the path of each element of D’ lies in D’. O

Theorem 3.6. There exists a homotopy equivalence G: D' U X — Y such that 4(D’)
18 compact.

Proof. We will treat D(e) as D" U ((X \ V) x R).
Choose amap ¢: X'\ Int(V) — [0,1] such that ¢(Bd(X')) = 1 and ¢(Bd(V)) = 0.
Define r: D(e) — D(e) by

(z,t) reV
(z,0) re X\ X’
r(at) = (@ 5 —1) e X\V,t> g5 -1
1 l 1
(x,—d)(x)—i-l) xeX\V,t<—w+1
(z,t) xGX/\V,|t|<@71.

Clearly r is a strong deformation retraction, i.e., there exists a map (a horizontal
push)

gs: D(e) — D(e)
such that go = id, g1(D(e)) = r(D(e)) and g¢|,(p(e)) = id. (See Figure 2) Thus,

xuD & Dee)

. . s » gtlxupr .
is a homotopy equivalence with inverse r. (kr z id, kP id.)

Let
= uk = u|xup
then
4: XUD —Y

is a homotopy equivalence with a homotopy inverse v’ = rv.
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Figure 2: Action of g5 on D(e).

Each “cell” X’ x I of the direct mapping cylinder D’ is compact. Therefore
(X" x I) is compact. Because of the way u is defined, the images of all these “cells”
coincide in Y. Thus, 4(D’) is compact in Y. O

To complete the proof of Theorem 3.2 we need to show that @ is a bounded
homotopy equivalence rel. X.

Theorem 3.7. Let (Y, X) be a CW pair. Let Z be a locally compact ANR contain-
ing X' as a closed subset. Suppose f: Z —Y is a homotopy equivalence such that
flx: X' — X is a homeomorphism. Then there exists a homotopy inverse g such
that g|x: X — X' is a homeomorphism and gf ~idy rel. X' and fg ~ idy rel. X.

Proof. Let k: Z — Qg be a proper embedding. Define f': Z — Y x Qg by

f'(2) = (f(2),k(2)).

It can be shown that f’ is a proper embedding. Thus f/(Z) is closed in Y x Q.

There exists some homotopy inverse g’ of f. Define 7': Y x Qo — f'(Z) CY x Qo
by

r =gy,

where 7y is a projection map in the Y coordinate. Let i: f'(Z) — Y x Qo be an
inclusion. Since ir'(y,t) = (f¢'(y), kg'(y)) and fg’ ~ id we have ir’ ~ id.

Let G be a homotopy such that Gy =id and Gy = ¢'f. Let F; = f'G.(f") " (2
then for any (f(z),k(2)) € f'(Z) we have:

Fo(f(2),k(2)) = f'Go(f') " 2y (£ (2), k(2)) = f'Go(2) = f'(2) = (f(2), k(2))

Fi(f(2),k(2)) = ['G1(z) = f'g' f(2) = ['g'my (f(2), k(2))
=112 (f(2), k(2)) = r"i(f(2), k(2)).
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Therefore r'i ~ id.
f(Z) is closed in Y x Qg therefore, by the Homotopy Extension Theorem, there
exists a homotopy H: (Y x Qo) x I — Y x Qo such that Hy =+’ and Hy|s(z) = F;.
Let

r = H().
Then r" ~ 7 and ri = id (7). Thus, r is a retraction homotopic to the identity. Using

the proof of Theorem 3.1 of [3] we can ensure that r ~ id rel. f'(Z).
Let w: Y — Qg be a map which extends kf|;(1. Define j: Y — Y x Qg by

J) = (y, w(y))-

Since Qo = Q x [0,1) is convex and wf|x: = k|x-, there is a straight line homo-
topy wf ~k rel. X'. f'(z) = (f(2),k(2)) and jf(z) = (f(2),wf(2)). Since the first
coordinates agree and other coordinates are joined by a homotopy rel. X’ we conclude
that jf ~ f’ rel. X'.

Define g: Y — Z by

g=(f)""rj.
Then for any x € X C Y we have
glx) = (f)"'rj(x)

= ()7 'r(z,w(=))
= (/) (fFIX (@) k(X (2)))
= ()7 f (X (@)

= (71X (@)

= flx' (@).

Thus, g|x: X — X' is a homeomorphism.

We will now show that fg ~ idy rel. X and gf ~ idz rel. X'. rj takes Y to f/(Z).
Since f’ is an embedding, every point of f'(Z) can be expressed as (f(z),k(z)) in
terms of some z € Z. But then we have

FUNTHS (), k(2) = f(2) = my (£(2), k(2));

therefore,

r =~ id therefore
TyT] >~ Ty J.
This homotopy can be chosen to be rel. X because for all z € X we have
j(@) = (z,w(x) = (F(fIX (@) k(fIX' (@) = f(fIX () € f'(2)

and the homotopy r ~ id is rel. f'(Z). But wyj = id; therefore, fg ~ id rel. X.
Recall that jf ~ f’ rel. X" and that 7|/ (z) = id. We have

gf = () rif = () f = ()T =d
with the homotopy taking place rel. X'. O
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Let © be a homotopy inverse of @ as in Theorem 3.7. Then (Y, X) is stable with
respect to (D', 4, 0). This completes the proof of Theorem 3.2.

4. Relative Finiteness Obstruction: Definition and Properties

Definition 4.1. Let (Y, X) be a finitely dominated CW pair stable with respect to
(D', u,v). Then we have

DDy

where 7 is an inclusion map. This induces
Ko(D') == Ko(D) 5 Ko(Y).
D' is finitely dominated, so o(D’) € Ko(D'). Define the relative finiteness obstruction
o(Y, X) by
o(Y, X) = usiso(D").

Lemma 4.2. Let D = D' UX be as in Definition 4.1. Then there exists a map

a: D — D such that o ~id rel. X and F(D)c D', a(D)Cc XUC, where C is
compact in D',

Proof. D' is finitely dominated, therefore there exists a finite subcomplex P of D’
and a map 3: D’ — P such that i3 g id (fo =1d, fr =ip).

Let X' =D'NnX. We can modify f=1i3: D' — D’ so that 8 ~idp rel. X'
Choose finite subcomplexes V and W of D’ so that X' C Int(V) C V C Int(W).
Choose a map ¢: W\ Int(V) — [0, 1] such that ¢(Bd(W)) =1 and ¢(Bd(V)) = 0.
Define f;: D' — D' by

fi(x) x € D'\ Int(W)
fi(x) =< = zeV
Joi(x) e W\ Int(V).

Observe that fl ~id rel. X'. Extend fl to a: D — D by the identity. Then a ~ id
rel. X. Let C = PUW, then (D) C X UC. O

Lemma 4.3. Let D1 = DU X, Dy =D, UX5 be as in Definition 4.1. Suppose
~v: D1 — Dy is a homotopy equivalence such that v|x,: X1 — X3 is a homeomor-
phism. Then there exists a homotopy equivalence f': Dy — Do with inverse g such
that

(1) gf 2 idp, rel. X1, and Fy(D}) C D} U K;, where K1 is compact in X;.
(2) f'g & idp, rel. Xo, and G(D4) C DU Ko, where Ky is compact in Xs.

Proof. We will prove (1), the proof of (2) is similar. For i = 1,2 let o;: D; — D, be
a homotopy equivalence rel. X; such that a;(D}) C C;, where C; is compact in D; as
in Lemma 4.2. Let A} be a homotopy joining each «; with idp, (\) = id, \} = «;).
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. . . T: . .
Let 7 be a homotopy inverse of v as in Theorem 3.7 with 7y ~ idp, rel. X (Tp = id,
Ty = 77) and y7 ~ idp, rel. X;. Let
!/
[r=rym
g =TOQ3.

Clearly gf = Tagya; ~id rel. X; and f'g = yay7as ~ id rel. Xs.
Define F;: D1 — D; by

M) o<t< s
Ft(l‘) = Tgt_lal(gg) 1/3 <t< 2/3
A oy (z) 2/3<t< 1.

It is easy to check that F} is continuous and that Fy = id and F} = Tasya; = gf’.
Now we show that Fy(D}) C Dj UK, for some compact Ki C X;. For t € [0, 3]
the homotopy stays in Df, as in Lemma 4.2. For t € [$, 2] observe that oy (D]) C C.
Therefore Ty (D7) C T(Cy x I) which is compact. Finally, yay (D}) is contained in
some compact set C' C Dy. Therefore A2yay (D)) C A2(C x I) which is compact in

Ds. Thus, 7A?ya4 (D)) C 7A%(C x I) which is compact in D;. O

Corollary 4.4. Let (Y1, X1) and (Ya, X2) be finitely dominated CW pairs. Suppose
(Y1, X1) is stable with respect to (D}, uy1,v1), and (Yo, X2) is stable with respect to
(D}, u2,v9), and suppose that there exists a homotopy equivalence f: Yy — Ya such
that f|x,: X1 — Xo is a homeomorphism. Then there exists a homotopy equivalence
1" Dy — Dy with homotopy inverse g such that conditions (1) and (2) of Lemma 4.8
are satisfied.

Proof. Let v = vg fu; and apply Lemma 4.3. O

Corollary 4.5. Let all spaces and maps be as in Lemma 4.3 and Corollary 4.4. In
addition assume that f|x,: X1 — Xo is a CW isomorphism. Then there ezist a finite
subcompler Py C X1 and a finite subcomplex Py C Xo such that f'|p;up,: D3 U P —
D, U Py is a homotopy equivalence with homotopy inverse

glpyup,: Dy U Py — Dy U Py

Proof. By Lemma 4.3 and Corollary 4.4 f' = vs fui1. Find a compact subcomplex
Py of X; such that K; C Py and Ky C f'(Py). Observe that aq|x,, u1|x, and vsx,
are identity maps. Thus f/(P;) is a subcomplex. Let P, = f/(P;). O

Theorem 4.6. Let all spaces and maps be as in Corollary 4.5. Then
f*Ul*h*U(D/) = u2*i2*J(D'1),
where i1, 19 are inclusions.
Proof. By Corollary 4.5 there exist compact P; C X;, i = 1,2, such that
va furen|prup, s Dy UPL — Dy U Py

is a homotopy equivalence rel. X;. Consider the following diagram where ji, jo, k1,
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ko are inclusions. (Note that i; = k1j; and o = kojo.)

Dy Dy

ji| | 2

v2furealprup,

l)’1 UP — Dé U P
k‘1l lkz
va fui o

D1 — DQ
U1a1lTU1 UQJ(TUQ

Y 4, Y,

This gives rise to
Ko(D)) Ko(Dj)

jl*l lj2*

~ (U2fu10‘1‘D’1uP1)* ~

Ko(Dy U Py) — Ko(Dy U Py)

kul lk‘z*

Ko(Dy) (vafu1gn)- Ko(D)
(ulal)*lTUu u2*lTU2*
Ko(¥7) RLN Ko(Y2)

Each P; is compact, therefore o(P;) = o(D};N P;) = 0. Thus by the Sum The-
orem [10] o(D; U P;) = jixo(Dj). Since v fuici|p;up, is a homotopy equivalence
(v2furaa|prup, )0 (Dy U Pr) = o(Dj U Py) which gives us:

(vafurei|pjup, )10 (D) = jaxo(Ds)
ko« (V2 furn | prup, )+ J120(D}) = k24j2.0(D3) = ig.0 (D)
(vafuran)ekiafro (DY) = i2.0(D3)
U2*f*u1*i1*U(DI1) = iz*J(Dlg)
U4 V24 frti1571:0 (D) = Uguiz.o(Dj)
faurxirso (D)) = ugkioeo(D5). O



A RELATIVE VERSION OF THE FINITENESS OBSTRUCTION THEORY OF WALL 395

The following corollary shows that o(Y, X) is well defined by demonstrating that
o(Y, X) is independent of the choice of D'.

Corollary 4.7. Suppose (Y, X) is a finitely dominated CW pair stable with respect
to (D' u,v) and (D7, u1,v1). Then uyi,o(D') = uisir.o(D]).

Proof. In the above proof let Y1 = Yo =Y and let f = id. O

Corollary 4.8 (Weak Invariance). Let (Y1, X1) and (Ya, X2) be finitely dominated
CW pairs. Suppose there exists a homotopy equivalence f: Yy — Ya such that

flx,: X1 — Xo
is a CW isomorphism. Then f.o(Y1,X1) = o(Y2, X3).

Lemma 4.9. Let (Z, Zy) be a CW pair such that Zy is finite. Suppose Z is homotopy
equivalent to some finite CW complex K. Then there exists a finite CW complex P
such that Zo C P and there is a homotopy equivalence P — Z rel. Zy.

Proof. There exist maps f: Z — K, g: K — Z such that gf ~ id and fg ~ id. Let
P = M(f|z,). Consider maps

P KL 7

where r is the collapse to the base along the rays of the mapping cylinder. Since g
and r are both homotopy equivalences, gr is also a homotopy equivalence.

Observe that gr|z, = gf|z, =~ idz,. By the Homotopy Extension Theorem gr is
homotopic to some ¢' such that ¢'|z, = idz,. ¢'|z,: Zo — Zo is a homeomorphism.
Thus, by Proposition 3.2 of [3], there exists f’ such that f'¢g’ ~ id rel. Zy and ¢’ f’ ~ id
rel. ZQ. O

Theorem 4.10 (Fundamental Property of the Relative Finiteness Obstruction). Let
(Y, X) be a finitely dominated CW pair. Then o(Y,X) =0 if and only if X — Y can
be extended to a homotopy equivalence X UP — Y rel. X where P is a finite CW
complez such that PN X is a subcomplex of both X and P.

Proof. Suppose X — Y can be extended to a homotopy equivalence u: X U P —
Y. Since P is a finite CW complex, (Y, X) is stable with respect to (P,u). Thus
o(Y, X) = usi.o(P). But P is finite, therefore o(P) = 0 and (Y, X) = 0.

Conversely, assume o(Y, X) = 0. Suppose that (Y, X) is stable with respect to
(D', u,v). Then we have:

usizo(D') =0
Vylyixo(D') =0
(vu)4ixo(D') =0
ivo(D') =0 € Ko(D).
Since D’ is finitely dominated, o(D’) € f(O(D: ). There exists a compact subset A
of D', an inclusion map j: A < D" and 7 € Ko(A) such that o(D") = j.(7). Thus
ix0(D") = i.j.« (1) =0 € Ko(D).
There exists a compact set B such that A C B C D and an inclusion map a: A —
B such that . (7) = 0. Without loss of generality we may assume that X N D’ C B.



396 ANNA DAVIS

By the Sum Theorem
(D" U B) = wi.0(D') + wa.0(B) — ws.o(D' N B),
where wy, wy and w3 are appropriate inclusions. But B and D’ N B are compact
therefore wa,0(B) = w30 (D' N B) = 0.
To show that wy.o(D’) =0 recall that o(D’) = j.(7). Observe that wij = fa,
where 3: B — D’ U B is an inclusion. Thus,

Brs(T) = w1k (T)
but a.(7) = 0; therefore,
w140(D") = w14 (T) = Bua (1) = 0.

Thus, (D’ U B) =0 and D’ U B is homotopy equivalent to some finite CW complex
K.

Let Z=D'UB and Z, = (D' U B)N X. By Lemma 4.9 there exists a finite CW
complex P such that Zy C P, and there is a homotopy equivalence P — Z rel. Zj.
We can extend this homotopy equivalence to the rest of X by the identity to obtain
a homotopy equivalence PUX — ZUX = D rel. X. But D ~ Y rel. X. Therefore
PUX ~Y rel. X. O

Theorem 4.11. Let (Y, X) be a CW pair. Suppose Y is finitely dominated rel. X,
and X is finitely dominated, then'Y is finitely dominated and

o(Y) = o(Y, X) + ino(X),
where i: X — Y is an inclusion map.
Proof. There exists a finite subcomplex C' of Y such that the inclusion i: X UC —

Y is a homotopy domination. C' and X N C are finite therefore they are finitely
dominated. By the Sum Theorem X UC must be finitely dominated. Thus there
exists a finite CW complex P such that P LXUCisa homotopy domination. But
then if: P — Y is also a homotopy domination.

(Y, X) = usj.o(D’) where D’ and u are such that (Y, X) is stable with respect to
(D',u), and j: D' — D' U X is an inclusion. It follows from the Sum Theorem that
D’ U X is finitely dominated and

o(D'UX)=j.0(D)+keo(X)—0,
where k: X — D’ U X is an inclusion.
Applying u, to both sides we get
U (D' U X) = uyjuo (D) + uikyo(X).

But u is a homotopy equivalence therefore u,o (D’ U X) = o(Y"). Since u is the identity
on X we have u,k.o(X) = i,0(X) which yields the desired result. O
Corollary 4.12. IfY is finitely dominated with respect to 0, then Y is finitely dom-
inated and o(Y,0) = o(Y).

Lemma 4.13. Let (Y, X) and (Y', X’) be CW pairs. Suppose Y is finitely dominated
rel. X' and there exists a homotopy equivalence f: Y' — Y such that f|x: X' — X
is a homeomorphism. Then Y is finitely dominated rel. X.
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Proof. By Theorem 3.7 there exists a homotopy inverse g: Y — Y such that gf ~
idyr vel. X', fg ~idy rel. X, and g|x = f~!|x.

Y’ is finitely dominated rel. X', therefore there exists a compact subcomplex C’
of Y’ such that the inclusion i: X’ UC’ < Y’ is a homotopy domination rel. X’. Let
h be homotopy inverse of i. Then there exists a homotopy H; such that Hy = idy~,
H1 = th and Ht|X’ =1d.

Define G; by
Gy= fHiyg: Y — Y.
Then
Go=fg~idy rel.X
and
G1(Y) = fhg(Y) C FR(Y') € F(X'UC") = X U F(C"), O

Theorem 4.14 (Relative Sum Theorem). Let (Y1, X1), (Yo, X2) be finitely domi-
nated CW pairs. Let Y =Y, UYs, X = X1 UXo, Yo=Y NYs, Xg = X1 NXs. Sup-
pose that (Yo, Xo) is finitely dominated. Then (Y, X) is finitely dominated and

o(Y, X) = ji«o (Y1, X1) + jaxo (Y2, X2) — joxo (Yo, Xo),
where j;: Y; =Y (i=0, 1, 2) are inclusions.

Proof. Case 1. Xg =X NYy.

For i =0, 1, 2 we have hi: Y; — Y; such that h} = idy,, hi(Y;) C C; U X; where
each C; is compact in Y;, and hi|yx, = idx,.

Using the Homotopy Extension Theorem we can extend hY to ki: V; — Y; (i = 1, 2)
in such a way that k|x, = id.

Next we want to modify hi (i =1, 2) so that hi|x,uc, = id. Observe that we
already have hi|x, = id (i = 1, 2). We will perform the modification of h}. Modifica-
tion of h? is similar.

There exist finite subcomplexes V' and K of Y7 such that Cy C Int(V) and
V C Int(K). Choose a map ¢: K \ Int(V) — [0,1] such that ¢(Bd(K)) =1 and
H(BA(V)) = 0.

Define

hi(y)  y €Y1\ Int(K)
hi(y) =14y yev
h;(y)t(y) ye K\ Int(V).

Observe that k) = id, hl|x,uc, = id and ﬁ%(Yl) C P U X; for some compact Py C
Y1. Similarly, we can modify h? so that h3 = id, h?|x,uc, = id and h3(Y3) C Py U X3
for some compact P, C Ys.

Define
J”(y) _ k%t(y) 0 < t
t I e i
b ki(y) 1/2<t< L

Then f* is continuous and f! = f? for all y € Yj.



398 ANNA DAVIS

Let

. ffy) yen
Mw_{ﬁ@)yen.

Observe that f1(Y) C (P UP;) UX and the inclusion (PLUP)UX — Y is a
homotopy domination rel. X.

There exists a finite CW complex M such that Py U P, C M. Then M U X — Y is
a homotopy domination rel. X. Let M; = M NY;, then M; U X; — Y, is a homotopy
domination rel. X; because P; C M;.

Using the mapping cylinder constructions we can define D; and D} (i =0, 1, 2)
such that (Y7, X;) is stable with respect to (D}, u;) and Dy N Dy = D.

Recall that u;(y,t) = fi(y) (i =0, 1, 2). Since f} = fZ for all y € Yy, u; agrees
with us on Yy. Thus we can define u by

_Ju(y) yeD
u(y){u2<y) y € Do.

Then u(y,t) = fi(y). Let D = Dy U Dy and D' = Dy U Dj. Then (Y, X) is stable
with respect to (D', u).
Let the following be inclusions:

D& S D
D&, & p.
Then

o(Y1 UYs, X1 U X3) = ub.0(D")
= 1,0,01.0(D]) 4+ 140,02, (Dh) — u.0.60.0(Dy)
= U 120140 (D7) + Uy P2x002,0(Dy) — uy foxro0(Dy)
= j1+(u|py )00 (D7) + jou(u| D, ) st2.0(Ds)
= Jox(u[ py) xct0.0(Dp)
= j1su1501.0 (D7) + Jostiae2,0(Dy) — jowuowoso(Dy)
= j1.0(Y1, X1) + j2.0 (Y2, X2) — jox0 (Yo, Xo).

Case 2. Xg # X NY,.

We will separate those parts of X; and X, which do not intersect in Yy and apply
Case 1.

Consider Y7 x [0, 1]. We will identify Y; with Y7 x {0}. Construct a reduced prod-
uct Y1 xx, [0, 1] by identifying (z,t) with (z,0) for all z € Xy and ¢ € [0, 1]. Observe
that Y7 x x, [0, 1] is a CW complex and X; x {0}, X; x {1} are subcomplexes. Clearly
Y7 Xx, [0, 1] is finitely dominated rel. X; x {0}.

There exists a homeomorphism f: Y7 X x, [0,1] — Y7 Xx, [0, 1] such that f(y,0) =
(y,1) for all y € Y1. fx,xq03: X1 x {0} — X1 x {1} is a homeomorphism. Thus, by
Lemma 4.13, Y1 x x, [0,1] is finitely dominated rel. Xy x {1}.

We can repeat this process for Y3 x x, [—1,0]. Then Y2 x x, [—1, 0] is finitely dom-
inated rel. Xo x {—1}.
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Let

Yll = Y1 X Xo [07 1]
YQI =Y X Xo [7170}

Y' =Y/ UY,
X=X, x{1}
X=Xy x {~1}
X' = X, U Xl

Observe that Y/ NYy =Y, and XN X, = X,. Since Y/ is finitely dominated

3

rel. X/ (i =1,2) and Y is finitely dominated rel. X, by Case 1 we know that Y is
finitely dominated rel. X'.

Let p: Y/ — Y be the projection to the zero level. Then p is a homotopy equivalence
such that its restriction to X’ is a homeomorphism. By Lemma 4.13, Y is finitely
dominated rel. X.

By Case 1,
o(Y', X') = k1o (Y], X1) + k2.0 (Y2, X5) — koo (Yg, Xp)-
Finally, by Weak Invariance
oY, X) = puo(Y', X')
= J1e(plyy) <0 (Y], X1) + Jox(Plyy ) w0 (Y2, X3) — Jos (plyy) <0 (Yg, X0)
= j1x0(Y1, X1) + jou0 (Y2, X2) — joxo (Yo, Xo),

where k;, j; (i =0,1,2) are appropriate inclusions. O

Theorem 4.15. Let (Z,Y, X) be a CW triple. Suppose Z is finitely dominated rel. Y
andY is finitely dominated rel. X. Then Z is finitely dominated rel. X and

0(Z,X)=0(Z,Y)+i.0(Y,X),

where 1: Y — Z is an inclusion map.

Proof. There exists a compact subcomplex C' of Z such that the inclusioni: Y UC —
Z is a homotopy domination rel. Y. We are given that Y is finitely dominated rel. X.
C is finite, therefore C' is finitely dominated. Thus, by the Relative Sum Theorem,
Y U C is finitely dominated rel. X. X C Y therefore Z is finitely dominated rel. X.

o(Z,Y) = uyj.o(D') where D' and u are such that (Z,Y) is stable with respect
to (D',u) and j: D’ — D’ UY is an inclusion.

D’ is finitely dominated, therefore D’ is finitely dominated rel. (). Y is finitely
dominated rel. X. D’ NY is compact. So it follows from the Relative Sum Theorem
that D’ UY is finitely dominated rel. f U X = X and

o(D'UY,X) = j.o(D') + keo(Y,X) -0,

where k: Y — D’ UY is an inclusion.
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Applying u, to both sides we get
uso (D' UY, X) = usjuo(D') + uskso (Y, X).
But u is a homotopy equivalence such that u|x = id, therefore by Weak Invari-

ance u,o(D'UY, X) =0(Z, X). Since u is the identity on Y we have u.k.o(Y, X) =
1+0(Y, X) which yields the desired result. O

Corollary 4.16. Let (Y1,Ys,...,Y) be a CW k-tuple. Suppose that forn=1,...,
k—1 each Y, is finitely dominated rel. Y, 1. Then Y1 is finitely dominated rel. Yy

and
k—1

U(Ylv Yk) = U(YlaYQ) + Z in*U(an Yn+1)a

n=2

where i,: Y, — Y1 are inclusions.

Lemma 4.17. Suppose (Y, X) and (Z,X) are CW pairs such thatY N Z =X andY
is finitely dominated rel. X, then (Y U Z, Z) is finitely dominated and o(Y U Z,Z) =
1,0(Y, X) where i: Y — Y U Z is an inclusion.

Proof. (Y UZ,Z) can be written as (Y UZ, X UZ). Observe that (Y, X), (Z,2)
and (Y NZ,XNZ) are finitely dominated. Thus, by the Relative Sum Theorem,
(YU Z, X UZ) is finitely dominated and we have:
oYUZ,Z)=0(YUZ X UZ)
=iV, X)+j0(Z,2) - kio(YNZ,XNZ)
1,0V, X)+0-0
i (Y, X). O

Lemma 4.18. Let (Y, X) and (Y1, X1) be CW pairs such that (Y, X) is finitely dom-
inated. Suppose that X is a subcomplex of X1 andi: X — X is a homotopy equiva-
lence rel. X. If f: Y — Y] is a homotopy equivalence rel. X, then (Y1, X1) is finitely
dominated and f.o(Y,X) = o(Y1,X1).

Proof. Define f: Y UX; — Y; by
f‘Y:fa f‘Xlzld

then f is a homotopy equivalence. By Theorem 3.7 f is a homotopy equivalence
rel. X;. By Lemma 4.17 (Y U X1, X;) is finitely dominated. But f is a homotopy
equivalence such that f|x, : X1 — X; is a homeomorphism. Therefore by Lemma 4.13
(Y1, X1) is finitely dominated.

By Lemma 4.17 o(Y U X1, X1) = j.o (Y, X), where j: Y < Y U X; is an inclusion.
Since f is a homotopy equivalence rel. X; and f|x, is a CW isomorphism, by Weak
Invariance we have

f*U(YUXl,Xl) = O'(Yl,Xl),
but
foo(Y UX1, X)) = fujeo(Y, X) = foo(Y, X). O
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Theorem 4.19 (Invariance). Let (Y, X) and (Y1, X1) be CW pairs such that (Y, X) is
finitely dominated. Suppose f: Y — Y7 is a homotopy equivalence such that f|x: X —
X1 is a homotopy equivalence. Then (Y1, X1) is finitely dominated and f.o(Y,X) =
O’(Yl, Xl)

Proof. f: X — X; is a homotopy equivalence; therefore, f: X — X3 x {0} C X x
[0, o0) is homotopic to a proper homotopy equivalence f: X — X; x [0,00) [4, Lem-
ma 21.1]. Let M be the mapping cylinder of f’|x. Let F;: X — M be a homotopy such
that Fy = f|x and F} = idx. Form Y} U M by attaching M to Y; along X; x {0}. Use
the Homotopy Extension Theorem to extend F} to F,: Y — Y; UM so that Ft|X = F
and FO f

Let g be a homotopy inverse of f. Let ¢: Y1 UM — Y7 be a map such that c|y, = id
and c|ps is a collapse of M to X; x [0,00) followed by a collapse of X; x [0,00) to
X1 % {O} Then Fj is a homotopy equivalence with a homotopy inverse gc. Since
Fy ~ Fy, Fy is also a homotopy equivalence. Observe that F1| x = id, therefore by
Theorem 3.7, F} is a homotopy equivalence rel. X. Also, X < M is a homotopy
equivalence rel. X.

By Lemma 4.18 (Y7 U M, M) is finitely dominated. Therefore there exists h;: Y7 U
M — Y7 UM such that hg = id, hy|pr = id and hy (YL UM) C M UC for some com-
pact subcomplex C'. Consider

H, = chyly,: Y1 — Y7,

Hy =idy,, Hi|x, =id and H1(Y7) C X; U¢(C), where ¢(C) is compact. It follows
that (Y7, X1) is finitely dominated.
Also by Lemma 4.18 we have

Fr.o(Y,X)=0o(Y1UM,M).
But by Lemma 4.17,

ocY1UM,M) =i,0(Y1,X1),
where 7: Y7 <— Y7 U M is an inclusion. Thus, we have

Fi.o(Y,X) =i.0(Y, X1)

e F.o(Y, X) = cyivo(Y1, X1),

but cFy ~ f because cF} ~ cFy = cf = f, so
frio(Y, X) =0o(Y1,X1). O

Theorem 4.20 (Relative Product Theorem). Let (Y1, X1) and (Yz, X2) be finitely
dominated, path connected CW pairs. Then

(1) (Yl X )/2, (Yl X XQ) U (Xl X §/2>)
is finitely dominated and
(2) O'(Yl X YYQ, (Yl X Xg) U (Xl X ng)) = U(H,Xl) . O'(Y27X2)+
x (Y1, X1)joso (Yo, Xo) + x (Y2, X2)j1.0(Y1, X1),

where j;: Y; = Yy x Yy (i =1,2) are inclusions.
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Proof. For i = 1,2 suppose that (Y;, X;) is stable with respect to (D}, u;). Let D; =
D; U X;. Let X! = X; N D}. Note that by following the original constructions we can
insure that each X/ is compact.

(1) We will start by showing that (D; x Da, (D1 x X3) U (X7 x D)) is finitely
dominated. The following figure will be helpful.

Xo

X, D

Figure 3: D1 x Dy

Observe that
D1 x Dy = (D} x Dy) U[(X1 x D2) U (D1 x X3)].
Each Dj is finitely dominated by the definition; thus,
(D} x D3,0)

is finitely dominated.
Clearly

((Xl X Dg) U (Dl X XQ), (X1 X Dg) U (Dl X XQ))

is finitely dominated.
Finally we need to demonstrate that

((D1 x D3) N [(X1 x D2) U (D1 x X3)],0)
is finitely dominated. But
(D} x DY) N[(X1 x Do) U (D1 x Xa)] = (X7 x DY) U (D] x X5).

This is finitely dominated by the Sum Theorem since each term of the union is
finitely dominated by the Product Theorem [10] while the intersection is a compact
set X1 x XJ.

It is clear that

U1><’U,22D1><D2—>Y1><Y2
is a homotopy equivalence rel. X; x X5. Thus, it restricts to a homotopy equivalence
up X u2|(D1><X2)U(X1><D2): (Dl X X2) @] (Xl X Dg) — (Y1 X XQ) @] (Xl X 1/2)

The desired result follows from Invariance.
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(2) We will first derive the formula for o(D; x D, (D1 x X3) U (X7 X D3)). We
will use inc to denote any appropriate inclusion.
O'(Dl X DQ, (Dl X XQ) @] (Xl X Dg))

= mc*a(Di X D,27 @) + iTLC*U((Xl X DQ) @] (Dl X XQ), (Xl X Dz) @] (D1 X XQ))
— ine.o((X] x Dy) U (D} x X3),0)

= inc.(o(Dy) - 0(D3)) + x(D1)inc.o(Dy) + x(Dy)inc.o (D)
—inc.o(X] x Db) —inc.o (D] x X3) + inc.o(X] x X3)

— inc,(o(D}) - o(D)) + X(D})ine.o(D}) + x(Dy)inc,o(D})
— X(X])inc.o(D) — x(Xb)inc,o (D))

= inc.(0(D}) - (D)) + (x(D1) — x(X1))inc.o(Dy) + (x(D3)
— \(X}))inc,o(D})

— inc.(o(D}) - o(DY)) + (D}, X Jine.o(D}) + x(Dh, Xp)ine.o(D})

= inc,(o(D}) - 0(D3)) + x(Y1, X1)inc.o(Dy) + x(Ya, Xz )inc.o (D).

Applying (u1 X ugz)s we get

o(Y1 x Y, (Y1 X X2) U (X7 x Y2))
= (u1 X ug)«0(D1 x Da, (D1 x X3) U (X1 x Ds))
= (u1 X ug)sincy(o(D]) - o(Dy)) + x(Y1, X1)(u1 X uz)sinc.o(Dh)
+ x (Yo, X2)(u1 X uz)sinc.o(D))
= u1inc,o (D)) - uscinc.o(Dh) + x (Y1, X1 )inciuz.inc,o (DY)
+ x(Ya, Xo)inc.uicicko (DY)
=0(Y1, X1) - 0(Ye, Xo) + x(Y1, X1)j2.0(Y2, X2) + x (Y2, X2)j140(Y1, X1). O
If in the above theorem we let (Y2, X5) be (K, ) where K is (1) finite or (2) finitely
dominated, then the result reduces to
(1) oY1 x K, X1 X K) = x(K)j1.0(Y1, X1)
(2) oY1 x K, X1 x K) =0(Y1,X1) - 0(K) + x(Y1, X1)j2:0(K)
+ X (K)jreo (Y1, X1).
It is interesting to note that if (Y7, X7) and (Y2, X5) are finitely dominated, (Y7 x
Y3, X1 X X5) may not be finitely dominated. For example, let

Z={(z,y)|(x—2n)*+4*=1,n=0,1,2,...}.

Clearly, (Z, Z) is finitely dominated. Let (Y, X) be a finitely dominated pair satisfying
the following condition: For any homotopy domination C U X — Y, X is not a strong
deformation retract of C'U X. Then (Z x Y, Z x X) is not finitely dominated.
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