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INVERSE LIMITS OF FINITE TOPOLOGICAL SPACES
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(communicated by Nicholas J. Kuhn)

Abstract
Extending a result of McCord, we prove that every finite sim-

plicial complex is homotopy equivalent to the inverse limit of a
sequence of finite spaces. In addition to generalizing McCord’s
theorem, this provides it with a more geometric motivation,
demonstrating a sense in which the simplicial complex is suc-
cessively better approximated by its finite models.

1. Introduction

McCord proved in [4] that every finite simplicial complex is weakly homotopy
equivalent to a finite topological space, that is, a space with a finite number of points.
There has recently been renewed interest in finite topological spaces; for example,
in [2], Barmak and Minian present an approach to simple homotopy theory which is
based on McCord’s correspondence. In particular, they introduce the notion of a col-
lapse of finite spaces and prove that it corresponds under this association to simplicial
collapse, while in [1], they introduce a broader class of spaces than simplicial com-
plexes, namely the so-called “h-regular CW complexes”, to which McCord’s analysis
and their extension apply.

Expanding further upon McCord’s work, Hardie and Vermeulen introduce in [3]
a notion of barycentric subdivision of finite spaces, which, when applied to the finite
model of a simplicial complex K, yields a sequence of finite spaces all weakly homo-
topy equivalent to K. By studying a homotopy category of finite T0 spaces and proving
its equivalence to the homotopy category of compact polyhedra, they prove a bijec-
tion between the homotopy set [|K|, |L|] for finite simplicial complexes K, L and the
direct limit of a sequence of homotopy sets between finite spaces.

The main result of this paper is the following:

Theorem 1.1. Any finite simplicial complex is homotopy equivalent to the inverse
limit of a sequence of finite spaces.

Specifically, we show that if one considers the barycentrically subdivided finite
models of a simplicial complex, as defined by Hardie and Vermeulen, but imposes
them with the opposite topology, then one in fact obtains a homotopy equivalence
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(not merely a weak equivalence) between the simplicial complex and the inverse limit
of its finite models.

2. Construction of the Finite Models

Let K be a finite simplicial complex. To construct its finite models, we begin by
letting X0 be the finite space whose points are in one-to-one correspondence with the
faces of simplices of K, just as in McCord’s definition of X (K). Also analogously to
McCord, we make X0 into a poset by declaring that if x, y ∈ X0 correspond to the
faces σx and σy of K, then x 6 y if and only if σx ⊆ σy. However, we endow this
space with the opposite topology to the topology on X (K); namely, the topology on
X0 is generated by the sets

Bx = {y ∈ X0 | x 6 y}
for x ∈ X0. The reason for this distinction involves the continuity of the maps pn

defined below.
For each n > 0, let Kn denote the nth barycentric subdivision of K, and let Xn

be the finite space whose points are in one-to-one correspondence with the faces of
simplices of Kn. Using an analogous partial order on the points of Xn, we can endow
each Xn with the topology generated by the sets Bx as above. (It should be noted that
in the terminology of [3], the space Xn is precisely (X (K)(n))op, the nth barycentric
subdivision of the finite space X (K) with the opposite topology.)

There is a natural map pn : |K| → Xn for each n, since every point in K is con-
tained in the interior of exactly one face of the nth barycentric subdivision of K.
Moreover, there is a unique projection map qn : Xn → Xn−1 making the following
diagram commute:

|K|
pn

}}||
||

||
|| pn−1

##FFFFFFFF

Xn
qn // Xn−1.

In light of the correspondence between points in Xn and faces of simplices in Kn, we
will typically denote the simplex corresponding to x ∈ Xn by σn

x . It is straightforward
to check that for each n > 0 and each x ∈ Xn, one has

p−1
n (Bx) = stn(σn

x ),

where stn(σn
x ) is the open star of σn

x in Kn. This implies in particular that the
maps pn are all continuous. They are also open maps, as is easily checked, so by the
commutativity of the above diagram, this implies that each qn is continuous.

3. Proof of Theorem 1.1

We now have an inverse system:

X0
q1←− X1

q2←− X2
q3←− X3

q4←− · · · ,
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and we can define X̃ to be its inverse limit. The main work of the proof of Theorem 1.1
will be in showing that |K| is homeomorphic to a quotient space of X̃.

Before doing so, however, it should be noted that the maps pn : |K| → Xn are all
quasifibrations with contractible fibers, and hence are still weak homotopy equiva-
lences. To prove this, recall that for any basis element Bx ⊂ Xn, the set p−1

n (Bx) =
stn(σn

x ) is contractible. And, using the fact that Bx is the smallest open set contain-
ing x, it is readily verified that each Bx is also contractible. Hence the restriction
pn|p−1

n (Bx) : p−1
n (Bx)→ Bx is a weak homotopy equivalence for each basis element

Bx, and by Theorem 6 of [4] this is sufficient to conclude that pn is a weak homotopy
equivalence.

Lemma 3.1. If K is a finite simplicial complex and the finite spaces Xn are defined
as above, then |K| is homeomorphic to a quotient space of lim

←−
Xn.

Proof. Given x = (x0, x1, x2, . . .) ∈ X̃, we can associate to x a sequence of points in
|K| by choosing an arbitrary element an ∈ p−1

n (xn) for each n > 0. Because these
points lie in nested simplices of increasingly fine barycentric subdivisions of K, any
sequence obtained in this way converges to the same point.

We have thus established that there is a well-defined map

G : X̃ → |K|
given by sending (x0, x1, x2, . . .) to the limit of any sequence {an} ⊂ |K| where
pn(an) = xn for all n. To prove that G is continuous, let U ⊂ |K| be any open set,
and let x = (x0, x1, x2, . . .) ∈ G−1(U). First, observe that

G−1(U) ⊂
∞∏

n=0

pn(U),

so we may as well assume that the sequence {an} has an ∈ U for all n. Since U is
open and {an} converges to a point in U , there is an open set V such that each
an ∈ V and such that V ⊂ U . Now, the set

∏
pn(V ) is open since the pn are open

maps. Moreover, if y = (y0, y1, y2, . . .) ∈
∏

pn(V ), then yn ∈ pn(V ) for all n, so we can
choose a sequence {bn} ⊂ V such that pn(bn) = yn for all n. Denote the limit of {bn}
by b, so that b = G(y). Then, since {bn} ⊂ V , we have b ∈ V ⊂ U , so y ∈ G−1(U).
Thus,

x ∈
∞∏

n=0

pn(V ) ⊂ G−1(U),

and hence G−1(U) is open.
Define an equivalence relation on X̃ by x ∼ y if and only if G(x) = G(y), and

denote by Y the corresponding quotient space of X̃. (In fact, one can check that
this equivalence relation is simply the T1 relation, wherein x ∼ y if and only if either
every open set containing x also contains y or vice versa, since any open set in X̃
containing (p0(z), p1(z), p2(z), . . .) necessarily contains every x such that G(x) = z.
Thus, we might say that Y is the “T1-ification” of X̃.)

We get an induced map G̃ : Y → |K|, which is by construction both well-defined
and injective. Since G̃([(p0(x), p1(x), p2(x), . . .)]) = x for any x ∈ |K|, it is also clearly
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surjective, and it is continuous because G = G̃ ◦ π , where π : X̃ → Y is the quotient
map. The inverse of G̃ is the continuous map G̃−1 : |K| → Y defined by

x 7→ [(p0(x), p1(x), p2(x), . . .)],

so G̃ is a homeomorphism.

All that remains, now, is to show that in fact Y is homotopy equivalent to X̃. This
will be achieved by way of the following lemma:

Lemma 3.2. The quotient space Y is homeomorphic to a deformation retract of X̃.

Proof. First, observe that if x̃ ∈ X̃ and G(x̃) = y, then every neighborhood of the
point (p0(y), p1(y), p2(y), . . .) ∈ X̃ contains x̃.

Let E be any equivalence class under ∼, wherein every element defines a sequence
converging to x ∈ |K|. Define a homotopy hE : E × [0, 1]→ E by

hE(y, t) =

{
y if t ∈ [0, 1)
(p0(x), p1(x), . . .) if t = 1.

This map is easily seen to be continuous, and hence proves that every equivalence
class is contractible.

Combining all of these homotopies on the various equivalence classes, we obtain a
map F : X̃ × [0, 1]→ X̃, which we claim is also continuous. To verify this, let U ⊂ X̃
be open, and define a subset UBC ⊂ U as follows:

UBC = {x ∈ U | (p0(G(x)), p1(G(x)), . . .) /∈ U}.
These are the “boundary-convergent” points in U , those that we view as sequences
of points in the open set U converging to a point that is not in U . The set UBC is
closed in U , and

F−1(U) = (U × [0, 1]) \ (UBC × {1}),
so F−1(U) is open. Therefore, F is continuous, as claimed.

We have thus defined a deformation retraction of X̃ onto a subspace Z that contains
exactly one element from each equivalence class. It is clear that if i : Z ↪→ X̃ is the
inclusion map and π : X̃ → Y is the quotient map as above, then the map

f = π ◦ i : Z → Y,

is a bijection. Indeed, this map is a homeomorphism; for if U ⊂ Z is open, then
U = V ∩ Z for some open subset V ⊂ X̃, and π(V ) = f(U). And by the definition of
Z, the set V is forced to contain every point in each equivalence class it intersects,
so π−1(π(V )) = V . In particular, π(V ) is open, so f is an open map. Conversely, if
U ⊂ Y is open, then π−1(V ) ⊂ X̃ is open, so π−1(V ) ∩ Z = f−1(Z) is open in Z.
Hence f is continuous.

Therefore, by the composition of the deformation retraction X̃ → Z and the home-
omorphism f : Z → Y , we obtain the claim.

The proof of Theorem 1.1 is now immediate:

Proof of Theorem 1.1. Composing the homeomorphism from Lemma 3.1 and the
homotopy equivalence from Lemma 3.2, we obtain the desired result.
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