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ON THE HOMOTOPY GROUPS OF TORIC SPACES

DAVID ALLEN

(communicated by Donald M. Davis)

Abstract
Given a certain class of simple polyhedral complexes P and

the associated Borel space BTP we compute the E2-term of the
Unstable Adams Novikov Spectral Sequence for BTP through
a range. As a result, through a range, the higher homotopy
groups of BTP are isomorphic to the homotopy groups of a
wedge of spheres whose dimensions depend on the combina-
torics of P . This paper provides a unified approach to attack-
ing the problem of computing the higher homotopy groups of
complements of arbitrary complex coordinate subspace arrange-
ments. We extend all higher homotopy group computations in
the cases where the homotopy type of a complement of a com-
plex coordinate subspace arrangement is unknown. If K is a
simplicial complex that defines a triangulation of a sphere that
is dual to a simple convex polytope P , then, in many cases,
the homotopy groups of the quasi-toric manifold M2n(λ) can
be computed through a range that was previously unknown. As
an application, the homotopy type of a family of moment angle
complexes ZK will be determined.

Introduction

The higher homotopy groups of a quasi-toric manifold and a complex coordinate
subspace arrangement complement are related by the existence of various fibrations.
Quasi-toric manifolds do not exist in general if P is not dual to a simplicial sphere.
However, by the work of [BP4] the higher homotopy groups of ZK can be attacked
by studying π∗(BTZK). This paper uses the methods of unstable homotopy theory
to understand the homotopy groups of various toric spaces. In particular, a general
framework for understanding π∗(BTP ), π∗(ZK) and π∗(M2n(λ)) is discussed. Some
inroads have been made with respect to the homotopy groups of certain subspace
arrangements and their complements by the work of [GT, L, DP, PS], and [Zie].
It turns out that in many cases only the first non-trivial higher homotopy group is
known. Imposing mild combinatorial restrictions on the simple polyhedral complex
PK dual to a simplicial complex K, [DJ, p. 428], we are able to write down the
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E2-term of the UANSS within a range. However, more stringent restrictions must
be imposed on the underlying combinatorial object if one wants to use filtration
arguments to determine the homotopy type of ZK . In [GT2] it was shown that when
K is a shifted complex the homotopy type of ZK is a wedge of spheres. To illustrate
the power of the techniques developed in this paper the homotopy type of families of
ZK can be determined for certain K which are not shifted complexes. It follows from
this analysis and the work of [GT2] that we have constructed families of simplicial
complexes that are not shifted but whose face ring is Golod.

We start by computing BP∗(BTP ). We generalize the notion of injective exten-
sion sequence to injective extension sequence through a range. Injective extension
sequences first appeared in [MS] and were used by [Bous] to compute the primitive
dimension of co-algebras. The obstruction to complete answers as far as homotopy
calculations go is the failure of the existence of injective extension sequences without
the range restriction that comes about from the combinatorics. In general, it turns
out that the degree of a particular “relation among relations” provides the upper
bound for the range for which an injective extension sequence exists. The relation-
ship between the combinatorics and the theory of derived functors of non-additive
functors is uncovered. Bousfield [Bous] alludes to the idea of using the higher-derived
functors of the primitive element functor, RiP , to measure the failure of an algebra
being free. It is shown that R1P comes from the relations in the face ring k(K).
Even though it is well known that R2P corresponds in some way to a relation among
relations, the precise way in which this holds given certain combinatorial restrictions
is exposed. From this, the generators of R2P are represented by cycles in a chain
complex, U , which comes about from applying the primitive element functor to a
certain resolution in a non-Alain category.

Since ZK exists for any simplicial complex K we have the associated Borel space
ETm ×Tm ZK . The techniques developed in this paper show that π∗(BTP )
∼= π∗(ZK) ∼= π∗(

∨
i S

j) within a range, where P is dual to K in some way. The
number of factors and the dimensions of the spheres are intimately related to the
combinatorics of PK . In this context, η refers to multiplication by the co-operation
h1, which is an element of the Hopf algebroid Γ = BP∗(BP ). More specifically, the
number of η towers that appear in the E2-term of the UANSS is indexed by the
cardinality of the set of generators of I − |I|, where I is the ideal in the face ring
generated by square-free monomials that come from either the missing faces of K or
the trivial intersections of facets in P . As an application, the homotopy type of a
family of complex subspace arrangement complements is determined by showing that
a certain attaching map is trivial via a filtration argument. Arguments of this sort
arise from analyzing the E2-term of the UANSS. The geometry and square-freeness
of the ideal I in k(K) is critical in determining the stable and unstable co-actions.
It is not clear how one would compute these maps without the existence of the map
BTP →

∏
m CP∞.

The paper is set up as follows. The preliminaries are discussed in §2–§5. In §4 the
tools used in unstable homotopy theory are listed for the benefit of the non-expert.
In §5 injective extension sequences are described as well as the notion of an injective
extension sequence through a range which will be crucial in what follows. In §6 the
homotopy groups of BTX are studied.
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1. Main results and notational conventions

In this section, we state the main results and set up the notational conventions
that will be assumed throughout the paper.

Let K be an n− 1-dimensional simplicial complex with the vertex set {1, . . . ,m}.
In short, we say K is a simplicial complex. If it is necessary to refer to the vertex
set, then we shall say K is a simplicial complex on [m]. If the n-dimensional simple
polyhedral complex P is obtained as the cone over the barycentric subdivision of K,
we write PK [DJ]. If K is a simplicial sphere, then PK is a simple convex polytope.
Fix K and write P for PK . Let F = {F1, . . . , Fm} be the set of facets of P and the
number of facets will be denoted by m. For a fixed commutative ring R with unit,
the face ring of P is

R(P ) = R[v1, . . . , vm]/I = 〈vi1 · · · vik |
k⋂

j=1

Fij = ∅〉,

where |vi| = 2 are indexed by the facets and the ideal I is generated by square-free
monomials r1, . . . , rk. Suppose that the monomials ri that generate the ideal I in
the face ring are of degree |ri|. The cardinality |I| of the ideal I is equal to the
cardinality of the set of monomials that generate I. This set of monomials contains
no redundancies. We say that P is q-neighborly if the intersection of any q facets is
non-empty.

It is assumed throughout that P is q > 1 neighborly unless stated
otherwise. Simplicial complexes K are assumed to be q-neighborly as well, [BP4,
p. 96]. References to neighborliness will only be made to clarify statements. We call
F = BP∗(BTP ) the BP -face ring. Let <min be a relation among relations of minimal
degree (6.2). Many of the theorems that appear in §6 depend on the neighborliness
of P , since they hold in a range specified by |<min| which depends on q. In fact,
the theorems hold in the range 2q + 4 6 |<min| 6 4q + 2kij + 2, where the kij are
positive integers given by Definition 6.7.

Theorem 6.15. Given a simple polyhedral complex P , then up to dimension
|<min| − 1, the BP∗-module structure of RiPF is as follows:

RiPF ∼=





BP∗{a1, . . . , am}, i = 0, |ai| = 2
BP∗{e1 . . . , ek}, if i = 1, |ej | = |rj |
0 otherwise.

Various stable and unstable co-actions are computed through a range. The way in
which the geometry and combinatorics reveals itself is interesting when computing
these maps. After various identifications we have the following through a range.

Theorem 6.26. The unstable co-action on R1PF is trivial.
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It is assumed throughout that the coefficient ring is BP∗. Modules are assumed to
be positively graded BP∗-modules which are free of finite type [BCR, p. 378]. In this
context, a co-algebra means a co-algebra generated by modules of this type [BCR,
p. 378]. It turns out that the co-algebra structure is essential in computing the
G-co-algebra structure map, C → G(C) 4.2, where G is the functor of a cotriple
on the category of free positively graded BP∗-modules. Further analysis shows that
the square-freeness of the ideal I in the face ring allows the Γ = BP∗(BP ) co-action
on various co-algebras to be computed. The category of unstable co-algebras G, con-
sists of free BP∗-modules equipped with maps: M → G(M), M →M ⊗BP∗ M and
M → Γ⊗BP∗ M that come from a particular cotriple. The statements of the main
theorems on the homotopy groups of BTP concern the notion of a spectral sequence
converging within a range. In particular, [BCM] define a Composite Functor Spec-
tral Sequence (CFSS) that converges to the E2-term of the Unstable Adams Novikov
Spectral Sequence (UANSS). The classes that appear in the E2-term of the UANSS
are those that survive to the E∞ in the CFSS. The input for the CFSS consists of
the higher-derived functors of the primitives as well as their structure as an unstable
comodule in a particular category. The co-action formulae and computation of the
higher-derived functors hold within a range, which is determined by the combinatorics
of the underlying P .

The main theorems concerning the homotopy groups of toric spaces are Theorems
6.33 and 6.35.

Theorem 6.33. If K is a simplicial complex and F is the BP∗-face ring associated
to P , then in filtration s > 0 and total degree t 6 s(2p− 2) + |<min| − 1. For i = 0, 1,
the classes in

Ext i+s,tG (F )

are those that come from the E2-terms:

Exts,tA(U)(BP∗(
∏

rj∈I
S|rj |)) for i = 1

and

Exts,tA(U)(BP∗{a1, . . . , ak}) for i = 0.

By relabeling the axes in the E2 page of the UANSS and using the condition on
the total degree that appears in Theorem 6.33 we obtain a restriction on the stem
degree in homotopy. We now have the following theorem on π∗(BTP ).

Theorem 6.35. Given P and total degree t as in Theorem 6.33, let BTP be the
associated Borel space. We have

πt−s−1(BTP )(p) = πt−s−1((
∨

rj∈I
S|rj |−1))(p)

for t− s 6 |<min| − 1 and in filtration s = 0, π2(BTP ) = Z⊕m.

These computations generalize what is known about the homotopy groups of the
Borel space and the various toric spaces associated with P . One should notice that the
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homotopy groups of BTP are known through a range. If K is a simplicial sphere then
this theorem has, by way of the standard fibrations, applications to the homotopy
groups of quasi-toric manifolds. There are applications pertaining to the homotopy
type of complex coordinate subspace arrangement complements associated to a par-
ticular family of simplicial complexes K[m] (Definition 6.41), which are modeled on
the complex dual to the square in that each simplicial complex in this family has
exactly two missing faces and the monomials that generate the ideal I in the face
ring have a “v” in common, Definition 6.41.

Theorem 6.54. Let m > 4 be an integer and ZK[m] the moment angle complex asso-
ciated to K[m]. We have

ZK[m] '
{
S2r−1

∨
S2m−2r+1

∨
S2m−2 m even

S2r−1
∨
S2r−1

∨
S2m−2 m odd.

Recall from [GT2] the definition of a shifted complex. A simplicial complex K is
shifted if there is an ordering on the vertex set such that whenever σ ∈ K and v < v′,
then σ\{v} ∪ v′ ∈ K. Closer inspection of the simplicial complexes K[m] reveals that
they are not shifted for certain m. For example, when m = 5, let σ = {1, 2, 4, 5}
∈ K[5]. However, σ\{4} ∪ 3 /∈ K[5] as described in [GT2]. As a result, the techniques
in that paper cannot be used to determine the homotopy type of the moment angle
complexes associated to various K[m]. The techniques used in this paper require the
analysis of the attaching maps present in the CW-structure of ZK as certain homotopy
classes of maps, which can be studied via spectral sequence arguments.

2. Quasi-toric manifolds

Suppose that P is a n-dimensional simple convex polytope. Let = denote the set
of facets of P . Given the torus Tm the coordinate torus T kι1,...,ιk is a product of tori
that come from the factors ι1, . . . , ιk in Tm.

Definition 2.1. Let λ : = → Zn be a function which assigns to each coordinate torus
a primitive vector in the integer lattice Zn. We call such a function the characteristic
function of M2n.

Since P is simple any codimension k-face F can be written as the intersection:
Fk =

⋂k
i=1 Fij , where Fij ∈ =. The λ map determines a subgroup GF of the lattice

Zn.
It was shown in [DJ] that a quasi-toric manifold can be constructed from a cer-

tain quotient space Tn × Pn/ ∼. We will take this as our definition of a quasi-toric
manifold. First, one needs a particular pair (Pn, λ), where λ is a specific linear map
defined below. Given an n-dimensional simple convex polytope P and a codimension
k face, F of P , we let GF denote the stabilizer of F under the torus action for any
x ∈ F . For any F ∈ =, GF is a rank-one subgroup (coordinate torus). Coordinate tori
are determined by primitive vectors in the integer lattice Zn up to sign. This gives a
prescription for defining a function. In the next definition let n = dim P .

Definition 2.2. Let Fk be a codimension k-face of P . We define λ(Fk) as

Z− span〈λ(Fi1), . . . , λ(Fik)〉 ⊂ Zn.
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The subgroup GF is determined by the sub-lattice that is generated by the image of
λ defined above. Since P is simple, any vertex v ∈ P can be written as the intersection
of exactly n facets. This implies that the subspace λ(v) is a basis for Zn. If one puts a
rather restricted condition on the image of λ then it is possible to construct families
of quasi-toric manifolds over P . Davis and Januszkiewicz [DJ] refer to this restriction
as condition (∗). Let Fk be a codimension k-face of P . Let λ(Fk) be given as above.
We say λ satisfies condition (∗) if λ(Fk) spans a k-dimensional uni-modular subspace
of Zn.

In the general setting we suppose that K is a (n− 1)-dimensional simplicial com-
plex and let λ : Ver(K)→ Zn be a function. For each (k − 1) simplex σ ∈ K let Eσ
be the Z-span of λ(v) where v ∈ σ. In this context, condition (∗) translates as follows:
for each σ as above, Eσ is a k-dimensional uni-modular subspace of Zn [DJ]. The
resulting space is a toric space and not necessarily a quasi-toric manifold. We are
ready to describe the construction of quasi-toric manifolds from pairs of the form
(P, λ) where λ satisfies condition (∗). Buchstaber and Panov [BP4] call such pairs
characteristic pairs. For the convenience of the reader we list the following from [DJ].

Construction 2.3. Consider the characteristic pair (P, λ). The following construc-
tion will produce a family of quasi-toric manifolds M2n(λ) dependent on λ that sit
over P [DJ]. The relation between this construction and the construction of toric
varieties from the normal fan Σ(P ) associated to P can be found in [BP4, 5.1.3].
Let F (p) be the unique face of P which contains the point p in its interior. Suppose
we have an action of the torus on P . Define an equivalence relation ∼ on Tn × Pn
by (g, p) ∼ (h, q)⇔ p = q and g−1h ∈ GF (p). Denote the resulting quotient space by
M2n(λ). It is shown in [DJ] that this space is a quasi-toric manifold.

As λ varies so does the manifold that sits over P . It has been shown that the
homology groups of M2n(λ) are independent of λ and, in fact, are a function of the−→
h associated to P -[DJ]. Later, we will show that the homotopy groups in dimensions
greater than two are independent of λ leading to many interesting observations.

Examples of quasi-toric manifolds would include following. CPn is a quasi-toric
manifold over ∆n. Buchstaber and Ray [BR2] show that the 2n-dimensional manifold
Bn of all bounded flags in Cn+1 is a quasi-toric manifold over In, and that CPn]CPn

is a quasi-toric manifold over ∆1 ×∆n−1 by defining a connect sum operation on the
level of the polytopes. Orlik and Raymond [OR] classified four-dimensional quasi-
toric manifolds that sit over polygons and showed that they are connect sum of the
Hirzebruch surface with connect sums of CP 2.

3. Moment angle complexes and the Borel space

If a space X is endowed with a torus action, then we have

Definition 3.1. The Borel space BTX is the identification space

ETm ×X/ ∼= ETm ×Tm X,

where the equivalence relation is defined by: (e, x) ∼ (eg, g−1x) for any e ∈ ETm and
x ∈ X, g ∈ Tm.
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Remark 3.2. There is no ambiguity in writing BTP instead of BTX, the Borel con-
struction applied to a space. BTP refers to ETm ×X/ ∼ which has the homotopy
type of P when P is a simple convex polytope [DJ].

Sometimes one refers to this as applying the Borel construction to X. One nice
property of this definition is that it allows for one to move the torus action into the
quotient. Another very important characteristic of the Borel space is the existence of
the fibration:

X −→ ETm ×Tm X −→ BTm.

If K is an (n− 1)-dimensional simplicial complex on [m], then the Borel construc-
tion applied to the corresponding moment angle complex gives the space:

BTZK = ETm ×Tm ZK .

When P is an n-dimensional simple polyhedral complex, we take the following as
our definition of the moment angle complex [BP1, DJ]:

Definition 3.3.

ZP = Tm × P/ ∼,
where (g, p) ∼ (h, q)⇔ p = q and g−1h ∈ GF (p)

In fact, ZK exists for anyK. If K is a simplicial sphere then ZK is a manifold. More
generally, ZK is a space. It should be noted that the moment angle complex behaves
well with respect to products and other operations on the level of the polytope [BP4].
Neil Strickland has a more general formulation of these spaces [BP4]. In [BP4] it
was shown that one can associate the space DJ(K) =

⋃
σ∈K BTσ ⊂ BTm to any

n− 1-dimensional simplicial complex K. It was also shown that for each K there is a
deformation retraction BTZK → DJ(K). Recall that U(K) is the complex coordinate
subspace arrangement complement associated to K. Buchstaber and Panov [BP4]
show that there is an equivariant deformation retraction U(K)→ ZK .

The homotopy groups of the spaces above are related by the following fibrations
which always exist when P is a simple convex polytope:

Tm−ni −→ ZP −→> M2n,

M2n −→ BTM
2n −→ BTn,

and
ZP −→ BTZP −→ BTm.

By the Borel construction on ZK the last fibration always exists and takes the
form:

ZK −→ BTZK −→ BTm.

4. Co-triples and derived functors

In this section we list the most important constructions and definitions from
the theory of derived functors and cotriples over a category. The reader can refer
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to [Bous], [BCM], [BCR] or [BH] for more information. We assume that co-algebras
are over the ring BP∗ and C is a category.

Definition 4.1. A cotriple (G, δ, ε) consists of a covariant functor G : C → C and
natural transformations δ : G→ G2 and ε : G→ I such that the following diagrams
commute:

G
Gε←−−−− G2 εG←−−−− G

∥∥∥
xδ

∥∥∥
G G G,

and

G3 Gδ←−−−− G2

xδG
xδ

G2 δ←−−−− G.

Given a cotriple G we can define a G-co-algebra.

Definition 4.2. A G-co-algebra is an object C ∈ C endowed with a map ψ : C →
G(C) such that the following diagrams commute:

C
ψ−−−−→ G(C)

∥∥∥
yε

C C,

and

G2(C) δ←−−−− G(C)
xG(ψ)

xε

G(C)
ψ←−−−− C.

A map of G-co-algebras is a map f : C → D such that the following diagram com-
mutes:

C
f−−−−→ Dyψ

yψ

G(C)
G(f)−−−−→ G(D).

A map of G-co-algebras is a map which is compatible with the G-co-algebra struc-
ture map. The category M(G) consists of pairs (C,ψ), where C ∈ C and ψ is the
G-co-algebra structure map. It is important to note that objects of the form G(C)
have a canonical G-structure defined on them. Specifically, δ : G(C)→ G2(C).

Definition 4.3. Let C ∈M(G). We call objects of the form (G(C), δ) the models in
M(G).
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Later, we will form unstable resolutions of G-co-algebras. We will use the fact that
the adjoint of the cotriple (G, δ, ε) gives rise to a triple (G,µ, η). Specifically, we have
the functor G : C → C and natural transformations µ : G2 → G and η : I → G such
that following diagrams commute:

G
Gη−−−−→ G2 ηG←−−−− G∥∥∥

yδ
∥∥∥

G G G,

and

G3 Gη−−−−→ G2

yµG
yµ

G2 µ−−−−→ G.

Definition 4.4. Let D be a category. A cosimplicial object X over D consists of

1. For every integer n > 0 an object Xn ∈ D.

2. For every pair of integers (i, n) with 0 6 i 6 n coface and codegeneracy maps

Xn−1 −→ di >> Xn,

and

Xn+1 −→ Xn

satisfying the cosimplicial identities:

sjsi = si−1sj , i > j,

djdi = didj−1, i < j,

sjdi = disj−1, i < j,

= id, i = j, i = j + 1,

= di−1sj , i > j + 1.

Definition 4.5. An augmentation for X consists of a map d0 : X−1 → X0 such that
the following relation holds:

d1d0 = d0d0 : X−1 → X0.

Let A be an abelian category, CO −A the category of cosimplicial objects over
A and Ch(A) the category of normalized cochain complexes over A. We list the
Dold-Kan correspondence theorem:

Theorem 4.6. For any abelian category A, there is an equivalence

CO −A ∼= Ch(A).

Proof. See [W, p. 271].
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It follows that cosimplicial objects over a category are in a one to one corre-
spondence with chain complexes over the same category. Let (G, δ, ε) be a cotriple
over C.

Definition 4.7. GC is the cosimplicial object over the category C defined by
GCn = Gn+1(C).

The cosimplicial object GCn = Gn+1(C) gives rise to a diagram of the form:

C → G(C) →→ G2(C)
→
→
→
· · · .

We call such a diagram the G-resolution of C. The augmentation C → G(C) is
just the G-co-algebra structure map ψ : C → G(C). KG is a functor from the category
M(G) to the category of augmented cosimplicial complexes overM(G). A cosimplicial
object can be defined from this functor by KG(C)n = GCn. The structure maps in
the G-resolution arise by considering the triple (G,µ, η) that comes about from taking
the adjoint of the cotriple. The triple structure maps along with the functor G allow
for the coface and codegeneracy maps to be defined. We have, di = GiηGn−i and
si = GiµGn−i.

Let T be a functor: T : C → A, where A is an abelian category. For n > 0 we apply
T to the cosimplicial object GC. Here the category C consists of those objects C
with a G-co-algebra structure map. TGC is a cosimplicial object over the abelian
category A. All that is needed to obtain the chain complex that results from applying
the functor T to GC is to define the boundary map.

Definition 4.8. The cochain complex over A associated to the cosimplicial object
TGC has boundary map

∂ =
∑

i>0

(−1)iT (di).

Let X be a topological space such that BP∗(X) is a free BP∗-module M on the
generators {xi}. Let BP (M) be the zeroth space of the Ω-spectrum representing the
homology theory BP∗(−)⊗M .

Definition 4.9. Given M as above we define G(M) = BP∗(BP (X)).

It is standard to make the following change in notation:

G(BP∗(X)) = G(X) = BP∗(BP (X)).

The category of unstable G-co-algebras, G was first defined in [BCM]. Objects
in this category are free BP∗-modules M equipped with maps: M → G(M),
M →M ⊗BP∗ M ,M → Γ⊗BP∗ M coming from the cotriple structure. Maps between
objects are maps that respect the G-co-algebra structure.

It is possible to give a space X whose BP∗-homology satisfies the condition above
a G-co-algebra structure by applying BP∗(−) to the unstable Hurewicz map, X →
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BP (X) giving
BP∗(X)→ BP∗(BP (X)).

Recall that Γ = BP∗(BP ) is the Hopf algebroid of stable co-operations. Γ is a bi-
module over BP∗ and comes equipped with the following maps. A product, Γ⊗BP∗
Γ→ Γ, left and right unit maps, ηr, ηL : BP∗ → Γ, a diagonal Γ→ Γ⊗BP∗ Γ and a
canonical anti-isomorphism, c : Γ→ Γ that takes the left action to the right action.
The stable co-operation hi is in Γ2(pi−1). BP is a spectrum with two products. First
there is BP k ×BP k → BP k induced by loop multiplication which induces a ∗ prod-
uct BP∗(BP k)⊗BP∗ BP∗(BP k)→ BP∗(BP k). Second, there is a map BP k ×BP r
→ BP k+r coming from the ring spectrum structure which induces a circle product
◦ : BP∗(BP k)⊗BP∗ BP∗(BP r)→ BP∗(BP k+r). For a multi-index of non-negative
integers I = (ι1, . . . , ιk), hI = h◦ι11 ◦ · · · ◦ h◦ιkk ∈ BP∗(BP 2|I|).

The Primitive element functor P is a functor from the category of unstable G-co-
algebras to the category of positively graded BP∗-modules free or not.

Definition 4.10. For M ∈ G we define U(M) = (P ◦G)(M).

The module U(M) can be determined explicitly using the Ravenel-Wilson basis.
In fact, using the non-canonical description of G(M) = BP∗(

∏
BP k), it was shown

by [RW] that PBP∗(BP k) is generated as a Hopf ring by the classes [vI ] ◦ hJ with
certain condition on the multi-indices. Given a G resolution one can apply the functor
P to obtain a cochain complex by taking the alternating sums of the coface maps
to obtain a particular U complex. U is a functor of a cotriple on the category of
positively graded free BP∗-modules [BCM]. The category of unstable Γ-comodules,
A(U) consists of modules M with maps M → U(M), M → Γ⊗BP∗ M coming from
the cotriple structure. Maps between objects are maps that respect the U -comodule
structure.

Proposition 4.11. If M is a free left BP∗-module, then

1. U(M) = BP∗{hI ⊗m|2l(I) < |m|} ⊂ Γ⊗BP∗ M .
2. If M is an unstable Γ-comodule, free as a BP∗-module with co-action ψ : M →

U(M), then the unstable cobar complex is the chain complex Cs,t(M) = Us(M)t
with differential given by

d([γ1|γ2| · · · |γs]m) = [1|γ1| · · · |γs]m

+
s∑

j=1

(−1)j [γ1| · · · |γ′j |γ′′j | · · · |γs]m

+ (−1)s+1
∑

[γ1| · · · |γs|γ′]m′′,

where γj ∈ Γ, ψ(γj) =
∑
γ′j ⊗ γ′′j and ψ(m) =

∑
γ′ ⊗m′′.

Proof. See [BT, pp. 15, 16].

Since A(U) is an abelian category, Exts(BP∗(St),−) can be computed as the
homology of the unstable cobar complex described above. We can now define the
right G-derived functors of the functor T with respect to objects in C.
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Definition 4.12. The right G-derived functors of T of a G-co-algebra C are defined
by:

RiTG(C) = Hi(TGC).

As an example we will consider RiPG(M), where M ∈ S, S is the category of co-
associative, co-commutative, cofree co-algebras without co-unit overBP∗, and P is the
primitives functor. A more detailed description can be found in [BCM] and [BDM].

5. Injective extension sequences

In an attempt to keep the notation stable we adopt the following from [BCR].
Most of the details of this section can be found there. Once again, let S denote the
category of co-associative, co-commutative, cofree co-algebras without co-unit over
BP∗. A co-algebra refers to a homology co-algebra [Bous].

Definition 5.1. An injective extension sequence is a sequence of maps in S.

C ′
f−→ C

g−→ C ′′

such that
1. g is an epimorphism,
2. f is an inclusion,
3. C is injective as a C ′′-comodule,
4. C ′ = C¤C′′BP∗.

In other words

C ′
f−→ C

f−→ C
′

is a short exact sequence in the category S. Recall that modules are assumed to be
positively graded BP∗-modules which are free of finite type. Under this finite gener-
ation condition, the functor HomBP∗(−,−) allows for injective extension sequences
to be dualized to projective extension sequences.

Definition 5.2. A projective extension sequence is a sequence of maps in S∗

C ′′
g−→ C

f−→ C
′

such that
1. g is an injection,
2. f is a surjection,
3. C is projective as a C ′′-module,
4. C ′ = C ⊗C′′ BP∗.
In particular, a sequence is an injective extension sequence if and only if it is

dual to a projective extension sequence. Let A and B be free BP∗-algebras on even-
dimensional generators. More specifically, suppose A = BP∗[a1, . . . , ak], where |ai| is
even and B = BP∗[b1, . . . , br] such that |bj | is even. Suppose B is an A module via a
map f : A→ B.
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Definition 5.3. Suppose i 6= j. Let I and I ′ be two multi-indexes such that I 6= I ′

and I, I ′ ⊂ S = {ι1, . . . , ιm}. We call a relation of the form:

f(ai)
∏

k∈I
bk − f(aj)

∏

k′∈I′
bk′ = 0

in BP∗[b1, . . . , br] a relation among relations. We denote such a relation by R.

Definition 5.4. Let A and B be BP∗-algebras. The range where A is a free B-module
is the range where no relations among relations occur.

A strict upper bound on the range for which A is a free B-module is given by |α|,
where α is a relation among relations of minimal degree.

Remark 5.5. The theorems that follow hold in the range where C is projective as a
C ′′-module, or, dually, where C is injective as a C ′′-comodule.

Injective extension sequences give rise to long exact sequences of higher-derived
functors.

Theorem 5.6. Let

C ′
f−→ C

g−→ C ′′

be an injective extension sequence in S. There is a long exact sequence of abelian
groups:

0 −→ P (C ′) −→ P (C) −→ P (C ′) −→ RiP (Ci) −→ RiP (C) −→ RiP (C ′′) −→ · · · .
Proof. See [BCR].

Another useful property of injective extension sequences is the fact that they give
rise to a long exact sequence of Ext-terms in the category G.
Theorem 5.7. Let

C ′
f−→ C

g−→ C ′′

be an injective extension sequence in S. There is a long exact sequence of Ext-terms

· · ·Exts,tG (C ′)
f∗−→ Exts,tG (C)

g∗−→ Exts,tG (C ′′) δ−→ · · · ,
where the differential δ has bi-degree = (1, 0).

Proof. See [BCR]

The primitives of a co-algebra M are dual to the indecomposables in the dual
algebra F . The indecomposables lie in a quotient of F and are isomorphic to the
module of algebra generators. We have the following

Proposition 5.8. A co-algebra M is cofree if and only if RiPM = 0 for i > 1 and
M is nice if RiPM = 0 for i > 1.

Proof. [Bous, p. 479].
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Examples of nice co-algebras would include BP∗(ΩS2n+1) [Bend], as well as
BP∗(Ŝ2n), where Ŝ2n is the Toda sphere [BCR]. In the case that M is cofree as
a co-algebra we have the following

Theorem 5.9. Let M ∈ G and suppose that M is cofree as a co-algebra; then

Exts,tG (M) ∼= Exts,tA(U)(PM).

Proof. See [BCR].

The following result is also proven in [BCR].

Theorem 5.10. Let M ∈ G and suppose that M is nice. Then there is a long exact
sequence of Ext-terms:

· · ·Exts,tA(U)(PM) −→ Exts,tG (M) −→ Exts,tA(U)(R
1P (M)) ∂−→ · · · ,

where ∂ has bi-degree (2, 0).

In the case that M is not nice as a co-algebra, then the long exact sequence is
replaced by a composite functor spectral sequence.

Theorem 5.11. For each M ∈ G there is a Composite Functor Spectral Sequence
(CFSS) and an UANSS such that the following holds:

ExtrA(U)(BP∗(S
t), RsGP (M))⇒ Extr+sG (BP∗(St), BP∗(M)).

Proof. See [BCM].

6. Homotopy groups of toric spaces

In this section, the E2-term of the UANSS is set up through a range.

Generalities
BP∗(−) denotes unreduced BP -homology theory. We recall some facts and nota-

tion: Γ is the BP -analogue of the dual of the Steenrod algebra. Let K be an (n− 1)-
dimensional, q-neighborly simplicial complex on [m] and PK the n-dimensional q > 1
neighborly simple polyhedral complex which is dual to K. If K is a simplicial sphere,
then PK is a simple convex polytope. Fix K and write P for PK . Throughout this
section, m will denote the number of facets of P . We also assume that p is a prime
number. Recall that k(K) is the algebra

Z[v1, . . . , vm]/〈I〉,
where the vi are dual to the facets in P , |vi| = 2 and 〈I〉 is generated by square-
free monomials ri of degree |ri|. In what follows BTP will denote the Borel space
associated to P .

Proposition 6.1. Let E∗(−) be any complex orientable theory. If K is a simplicial
complex, then

E∗(BTP ) ∼= E∗[v1, . . . , vm]/〈I〉.
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Proof. In the proof of Theorem 4.8 in [DJ, p. 436], it suffices to work with a
simplex σ ∈ K. Davis and Januszkiewicz [DJ] show that there is a disk bundle
D2k → BTP∂σ → BT k, where Pσ is the simple polyhedral complex dual to σ. There
is also an associated sphere bundle, S2k−1 → BTP∂σ → BT k. Since E∗(−) is complex
orientable, there are generalized Chern classes cEi [A]. It was shown in [DJ] that the
generators of H∗(BT k) are the first Chern class on the line bundle induced from
the diagonal torus action. It is well known that E∗(

∏
k CP∞) ∼= E∗[v1, . . . , vk] via

an Atiyah-Hirzebruch spectral sequence argument [A]. By [S, p. 355], there is an E
version of the Gysin sequence for the spherical fibration S2k−1 → BTP∂σ → BT k. As
a result, there is an E∗(−)-analogue to Lemma 4.9 in [DJ, p. 436]. The proof follows
by induction on the dimension of K, as stated in [DJ].

We will call the algebra E∗(BTP ) ∼= E∗[v1, . . . , vm]/〈I〉 the E-face ring. For the
calculations in this paper we will work with the BP -face ring. Resolve the algebra in
the category of BP∗-algebras to give the following exact sequence where |xj | = |rj |,

BP ∗[x1, . . . , xk]
ι∗−→ BP ∗[v1, . . . , vm] −→ BP ∗(BTP ),

where ι∗(xi) = ri.

We will use a more specialized version of 5.3. In this case f = ι∗, where ι∗ is the
inclusion, one obtains by resolving the ideal I in the category of free BP∗-algebras.

Definition 6.2. Suppose i 6= j. Let I and I ′ be two multi-indexes such that I 6= I ′

and I, I ′ ⊂ S = {ι1, . . . , ιm}. We call a relation of the form:

ι∗(xi)
∏

k∈I
vk − ι∗(xj)

∏

k′∈I′
vk′ = 0

in BP ∗[v1, . . . , vm] a relation among relations. We denote such a relation by R.

Example 6.3. Consider the following two-dimensional simple convex polytope:

P =
¡

¡¡

@
@@rv2

r
v1

r
v5

r v4

r
v3

The BP -face ring is

F ∗ ∼= BP∗[v1, . . . , v5]/I = 〈v1v3, v2v4, v3v5, v4v1, v5v2〉.
The resolution above is

BP ∗[x1, . . . , x5]
ι∗−→ BP ∗[v1, . . . , v5] −→ BP ∗(BTP ),



452 DAVID ALLEN

where

ι∗(x1) = v1v3,

ι∗(x2) = v2v4,

ι∗(x3) = v3v5,

ι∗(x4) = v4v1,

ι∗(x5) = v5v2.

A relation among relations is R = ι∗(x1)v2v4 − ι∗(x2)v1v3. Clearly, |R| = 8.

Definition 6.4. Let < denote the set of all possible relations among relations. Define
<min to be the relation among relations such that |<min| 6 |r| ∀r ∈ <.

<min is a relation among relations of the smallest degree. In general, <min is not
unique.

Example 6.5. Given F ∗ from the previous example, pick x1 and x3. A relation among
relations <min is:

ι∗(x1)v5 − ι∗(x3)v1,

and it follows that
|<min| = 6.

When given a specific simplicial complex K and an ideal I explicitly, the degree of
the smallest relation among relations can be determined. To assess the power of the
homotopy calculations that follow we need a more explicit relation between |<min|
and q. We need to introduce some notation.

Definition 6.6. For any square-free monomial m′ ∈ BP ∗[v1, . . . , vm] we enumerate
the number of v’s that appear in m′ and call it l(m′).

We continue the bookkeeping by introducing the notion of the difference of the
lengths of relations.

Definition 6.7. Suppose ri, rj ∈ I such that |rj | > |ri|. Let kij = l(rj)− l(ri).
Proposition 6.8. Given P , and ri, rj ∈ I of minimal degree such that |rj | > |ri|, we
have 2q + 4 6 |<min| 6 4q + 2kij + 2.

Proof. For i 6= j, pick two relations ri, rj ∈ I of minimal degree such that the
gcd(ri, rj) 6= 1. This implies that the monomials ri and rj have a redundant ver-
tex. There are two cases to consider. First, suppose |rj | > |ri|. By Definition 6.2,
|<min| = 2q + 2 + d, where 2q + 2 is the degree of ri and d is the degree of the prod-
uct of vj ’s that appears in Definition 6.2. In the case |rj | = |ri| a similar argument
gives the desired expression for |<min|. We need a more convenient expression for d
and we make the following definition: let d = 2l( rj

gcd(ri,rj)
). This integer is the degree of∏

vj that appear in Definition 6.2. To obtain the upper and lower bounds we consider
the two extreme cases for the gcd(ri, rj). First, suppose ri and rj differ by at most
one vertex. This implies d = 2 from which it is easily deduced that |<min| = 2q + 4.
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Notice that this condition on the gcd forces |rj | = |ri|. In the second case suppose
that the relations have only one v in common, a redundant vertex. We determine that
gcd(ri, rj) = v. We claim that d = 2(l(rj)− 1). To see this we recall that rj is a certain
monomial and rj

v produces a monomial whose length is l(rj)− 1. By the minimality
of |ri| we observe that l(ri) = q + 1, hence, by Definition 6.7, l(rj) = kij + q + 1. This
implies d = 2kij + 2q. However, |<min| = 2q + 2 + d. The result follows.

BP ∗[v1, . . . , vm] is a BP ∗[x1, . . . , xk]-module induced by the map ι∗. The action
is given by

xi · v = ι∗(xi)v.

Lemma 6.9. BP ∗[v1, . . . , vm] is a free BP ∗[x1, . . . , xk]-module on <min up to dimen-
sion |<min| − 1.

Proof. It is clear that BP ∗[v1, . . . , vm] is a free BP ∗[x1, . . . , xk]-module in the range
where a relation among relations does not occur. <min appears in degree |<min|.
Hence, BP ∗[v1, . . . , vm] is a free BP ∗[x1, . . . , xk]-module in degrees less than the
degree of <min.

We now have the following

Theorem 6.10.

BP ∗[x1, . . . , xk]
ι∗−→ BP ∗[v1, . . . , vm] −→ BP ∗(BTP )

is a projective extension sequence up to dimension: |<min| − 1.

Proof. Resolve the BP -face ring in the category of BP∗-algebras to give the following
diagram

BP ∗[x1, . . . , xk]
ι∗−→ BP ∗[v1, . . . , vm] −→ BP ∗(BTP ).

The result follows from Definitions 5.2, 5.4, Remark 5.5 and Lemma 6.9.

We apply the functor Hom(−, BP∗) to the projective extension sequence to obtain
the following injective extension sequence:

BP ∗(BTP )] −→ BP ∗[v1, . . . , vm]] ι∗−→ BP ∗[x1, . . . , xk]]

up to dimension |<min| − 1. For convenience we make the following changes in nota-
tion:

C∗ = BP ∗(
∏
m

CP∞),

F ∗ = BP ∗(BTP ),
R∗ = BP ∗[x1, . . . , xk].

We write bases for these algebras over BP∗. We have the monomial basis for C∗:

BC∗ = {vI | I = (i1, . . . , im)},
a basis for F ∗

BF∗ = {vI | imι∗ - vI},
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and the monomial basis for R∗

BR∗ = {xI | I = (i1, . . . , ik)}.
We dualize to co-algebras so that we can compute the higher-derived functors

of the primitive element functor of the Borel space using the techniques described
in [Bous]. For notational convenience we will not use lower case ∗ to denote the dual
co-algebras. We write C, F and R. To determine the bases of these co-algebras we
consider the canonical pairings

BP ∗(−)⊗Hom(BP ∗(−), BP∗)→ BP∗

For example,

BP ∗[v1, . . . , vm]⊗Hom(BP ∗[v1, . . . , vm], BP∗)→ BP∗

is the canonical pairing for C∗. Define {βJ} to be the basis dual to BC∗ given by
〈vI , βJ 〉 = δI,J , and {λJ} the basis dual to BF∗ given by 〈vI , λJ 〉 = δI,J , where I and
J are subject to the condition defining the basis for F ∗. Finally, let {zJ} be the basis
dual to BR∗ given by 〈xI , zJ 〉 = δI,J .

Example 6.11. To illustrate how the algebras and co-algebras are dual we suppose K
is the simplicial complex:

¡
¡¡

@
@@

E
EEr

v1

r
v3

r
v2

r
v4

The BP ∗-face ring is BP∗[v1, v2, v3, v4]/I = 〈v1v2, v2v3v4〉. Clearly, C∗ ∼=
BP ∗{vI |ιj > 0} and F ∗ ∼= C∗/I. R∗ is a polynomial algebra whose generators are
in a one to one correspondence with the relations. R∗ ∼= BP ∗{xι11 xι22 |ι1, ι2 > 0}. The
Kronecker pairing 〈 , 〉 is used to write down the dual basis elements for the co-
algebras. For example, C ∼= BP−∗{βJ |J = (ι1, . . . , ι4)}. For the co-algebra F , we have,
for example, the element λ(1,0,1,0) which is dual to v1v3 ∈ F ∗. The bases in F and R
can be written down in a similar way as well as any dual elements.

Let l(J) =
∑l
i=1 ji for ji ∈ J . The following example will illustrate how one com-

putes the map F → C which comes from resolving the ideal I or more explicitly, from
BTP →

∏
m CP∞.

Example 6.12. Suppose M = {1, . . . , q} is a missing face of K. The element v1 · · · vq
= 0 in F ∗. In particular v1 · · · vq is not a basis element in F ∗ which implies that
ι∗(x) = v1 · · · vq for a basis element x ∈ R∗. It follows that

λ(1, . . . , 1︸ ︷︷ ︸
q−terms

,0,...,0)

does not exist in the co-algebra F .
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The degrees of the elements in the dual bases are as follows:

|βJ | = 2 · l(J),

|λJ | = |vI | where 〈vI , λJ〉 = δIJ and im ι∗ - vI ,

and

|zJ | = |ι∗(xI)|.

Example 6.13. In Example 6.11 the element z(1,0) ∈ R is dual to x1 ∈ R∗ and z(0,1) ∈
R is dual to x2 ∈ R∗ by the Kronecker pairing. Therefore,

|z(1,0)| = |x1| = |ι∗(x1)| = |v1v2| = 4

and, similarly, we have

|z(0,1)| = |x2| = |ι∗(x2)| = |v2v3v4| = 6.

The co-algebra structure maps are defined as follows;

C
ψ−→ C ⊗BP∗ C,

ψ(βI) = Σjp+kp=ip
16p6m

βj1,...,jm ⊗ βk1,...,km .

The co-algebra map R is defined similarly. The co-algebra map for F can be defined
with restrictions on the multi-indices as illustrated by the following.

Remark 6.14. Given F we have

λI →
∑

aKJλK ⊗ λJ .
The coefficients are given by

aKJ = 〈ψ(λI), vK ⊗ vJ〉
= 〈λI , vK+J 〉.

Hence,

aKJ =

{
1, if I = K + J

0, otherwise.

Let A be an algebra. The module of indecomposables of A, QA = A/AA, where
AA = {x ∈ A | x = yz : y, z ∈ A}.

Theorem 6.15. Given a simple polyhedral complex P , then up to dimension
|<min| − 1, the BP∗-module structure of RiPBP∗(BTP ) is as follows:

RiPBP∗(BTP )] ∼=





BP∗{a1, . . . , am}, i = 0, |ai| = 2
BP∗{e1, . . . , ek}, if i = 1, |ej | = |rj |
0, otherwise.
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Proof. By Theorem 6.10,

R∗ ι∗−→ C∗ −→ F ∗

is a projective extension through |<min| − 1. Dually,

F −→ C
ιast−→ R

is an injective extension sequence through the range |<min| − 1 giving rise to the
following long exact sequence

0 −→ PF −→ PC −→ PR −→ R1PF −→ R1PC −→ · · · .
Since C is cofree as a co-algebra we obtain the exact sequence

0 −→ PF −→ PC −→ PR −→ R1PF −→ 0

through the range |<min| − 1. By the neighborliness of P , the generators of R∗ are
at least degree four. The generators of C∗ are of degree two. Hence, QR∗ → QC∗

factors through zero which implies that the map PC → PR factors through zero.
Since R1PF is the co-kernel of the map PC → PR the result follows.

Remark 6.16. We will show that there is a Künneth theorem in the category of unsta-
ble G-co-algebras if we restrict attention to the bottom-dimensional classes. More
specifically, if M and N are free BP∗-modules on even-dimensional generators, then
the element x⊗ y ∈ G(M)⊗G(N) corresponds to the element x ∗ y ∈ G(M ⊗N).
This is an external star product which comes from the completed tensor product ⊗̂.

Let X and Y be topological spaces with free BP∗-homology. Let M and N be
the BP -homology of X and Y , respectively, where M = BP∗{x1, . . . , x2k} and N =
BP∗{y1, . . . , y2k} such that the generators are even-dimensional. For each generator
of M and N there is a copy of BP |x2k| and BP |y2j | in G(M) and G(N). Recall that

the lowest-dimensional generator bi(0) ∈ BP2i(BP 2i). Let x = b
|x|/2
(0) ∈ BP∗(BP |x|),

which is the bottom-dimensional generator for the copy of BP∗(BP |x|) correspond-
ing to x in G(M). For each module we can define a linear map on the generators
ρ : M → G(M) by ρ(x) = x. Similarly, there is a class b|y|/2(0) ∈ BP∗(BP |y|) for each
generator of N and a map can be defined from N → G(N). To state the next the-
orem we need to set up some notation. Given modules M and N as above we
have G(M) = BP∗(

∏
xi∈M BP |xi|) and similarly G(N) = BP∗(

∏
yi∈N BP |yi|). We

have G(M)⊗G(N) = BP∗(
∏
xi∈M BP |xi|)⊗BP∗(

∏
yi∈N BP |yi|), which is equal to

BP∗(
∏
BP |xi| ×BP |yi|). Note that G(M ⊗N) = G(BP∗(X × Y )).

Theorem 6.17. On the generators of M and N there exists a map

κG : G(M)⊗G(N)→ G(M ⊗N)

that sends x⊗ y to the completed tensor product x⊗̂y.
Proof. Given M and N as above let {x} and {y} be families of generators. We can
define a map

BP∗(X)⊗BP∗(Y )
ρ⊗ρ−→ G(M)⊗G(N)

by (ρ⊗ ρ)(x⊗ y) = x⊗ y on the generators. By the Künneth theorem we have the
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isomorphism
BP∗(X)⊗BP∗(Y ) κ−→ BP∗(X × Y ).

Define a map

BP∗(X × Y )
ρ

G (M ⊗N)

by
ρ(x⊗̂y) = ρ(x)⊗̂ρ(y) = x⊗̂y,

where x⊗̂y is the bottom generator of the factorBP|x⊗y|. Note that ⊗̂ is the completed
tensor product and x ∈ BP∗(X), y ∈ BP∗(Y ). The loop space product (Pontryagin
product) will be denoted by the ∗ product. Hence, x⊗̂y = x ∗ y. Define κG(x⊗ y) =
ρ(x⊗̂y) giving the following commutative diagram:

BP∗(X)⊗BP∗(Y )
ρ⊗ρ−−−−→ G(M)⊗G(N)

κ

y κG

y
BP∗(X × Y )

ρ−−−−→ G(M ⊗N).

κG depends on the basis and maps the product of the generators to the generator of
the factor of the product corresponding to the tensor product of the generators.

By x ∈ BP∗(X × Y ) we mean x⊗̂1 and similarly y means 1⊗̂y. In G(M)⊗G(N),
x corresponds to x⊗ 1. In G(M ⊗N), x corresponds to x ∗ 1; hence

x ∗ y = (x⊗̂1) ∗ (1⊗̂y)
= (x ∗ 1)⊗̂(1 ∗ y)
= x⊗̂y.

The class x⊗ y 6= x⊗ y. This is the difference between the class in

BP∗(BP |x| ×BP |y|) and BP∗(BP |x⊗y|).

Remark 6.18. The previous theorem does not say anything about the higher-dimen-
sional classes.

We summarize the above with the

Remark 6.19. x⊗ y ∈ G(M)⊗G(N) corresponds to the element x ∗ y ∈ G(M ⊗N)
and this is an eternal ∗ product that arises from chasing the diagram

BP∗(X)⊗BP∗(Y )
ρ⊗ρ−−−−→ G(M)⊗G(N)

κ

y κG

y
BP∗(X × Y )

ρ−−−−→ G(M ⊗N).

We want to apply this to C. Since BP∗(CP∞) is torsion free we have

BP∗(
∏
m

CP∞) ∼=
⊗
m

BP∗(CP∞)

by the Künneth theorem. Suppose for each j, Xj is a space such that BP∗(Xj) is
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torsion free and is generated by even-dimensional generators. We have the following
lemma whose proof we omit.

Lemma 6.20. The following diagram commutes.

BP∗(X1)⊗ · · · ⊗BP∗(Xm)
⊗mρ−−−−→ G(M1)⊗ · · · ⊗G(Mm)

⊗mκ

y
y⊗mκG

BP∗(X1 × · · · ×Xm)
⊗mρ−−−−→ G(M1 ⊗ · · · ⊗Mm).

The element x1 ⊗ · · · ⊗ xm ∈ G(M1)⊗ · · · ⊗G(Mm) corresponds to the element
x1∗,· · · , ∗xm ∈ G(M1 ⊗ · · · ⊗Mm). Let I and J be a multi-indices of non-negative
integers (ι1, . . . , ιm) and (j1, . . . , jm). From previous arguments 〈vI , βJ〉 = δIJ , where
vI are elements of C∗ and βJ are elements of the dual co-algebra C, respectively. We
can re-write the Kronecker pairing in the following way 〈v(ι1,...,ιm), β(j1,...,jm)〉 which
is the same as 〈vι11 ⊗ · · · ⊗ vιmm , β(j1,...,jm)〉. Since 〈−,−〉 respects the tensor product
we obtain 〈vι11 , βj1〉 ⊗ · · · ⊗ 〈vιmm , βjm〉. It follows that

βJ = βj1 ⊗ βj2 ⊗ · · · ⊗ βjm .
We introduce the following notation.

Definition 6.21. β1,j = β(0,...,0,1,0,...,0), where 1 is in the jth spot.

Remark 6.22. β1,j is not to be confused with a multi-index which is enclosed in paren-
thesis.

β1,j generates the jth factor of BP∗(CP∞) in the tensor decomposition of C.

Determination of the stable and unstable co-action
Lemma 6.23. ψ : C → Γ

⊗
BP∗ C sends β1,j to 1⊗ β1,j, and if I is a multi-index of

zeros and ones, then the map

ψ : C → Γ
⊗

BP∗

C

sends βI 7→ 1⊗ βI .

Proof. Since β1,j is a generator of the jth factor of C it is a bottom-dimensional class
and the result follows. The proof follows from the fact that ψ is multiplicative.

The next lemma will compute the unstable co-action on the classes βJ which is a
product of β1,j .

Lemma 6.24. For ψG(C) : C → G(C), ψG(C)(βJ ) = ∗j∈Jβ1,j + 1⊗ βJ , where 1⊗ βJ
is an element in G(C) that is mapped to 1⊗ βJ by the stabilization map σ∗.

Proof. Let J be a multi-index of zeros and ones. The following diagram shows the
relation between the unstable and stable co-actions. Note that σ∗ is the stabilization
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map

C
ψG(C)−−−−→ G(C)

∥∥∥
yσ∗

C
ψ−−−−→ Γ⊗BP∗ C.

It follows from Theorem 6.17 that the image of ψG(C) is given by

∗j∈Jβ1,j + u,

where u is a stable class. We claim that u = 1⊗ βJ . Since G(C) and C are co-
algebras we have maps ∆G : G(C)→ G(C)⊗G(C) and ∆C : C → C ⊗ C. Using the
stabilization map σ∗ and properties of the tensor product we have the commutative
diagram:

C −−−−→ G(C) ∆G−−−−→ G(C)⊗G(C)
∥∥∥

y ϕ

y
C −−−−→ Γ⊗ C 1Γ⊗∆C−−−−−→ Γ⊗ (C ⊗ C),

where ϕ is the composition of σ∗ ⊗ σ∗ with maps that come from the associative and
commutative properties of the tensor product along with the multiplication on Γ. By
abuse of notation, let β1 and β2 be star products of the bottom-dimensional classes
β1,j . Similarly, let β1 and β2 be tensor products of bottom-dimensional classes β
indexed by J . Now, ∆G(∗j∈Jβ1,j + u) = Σβ1 ⊗ β1 + ∆G(u). If we evaluate ϕ on this
class we obtain ∆G(u) = 1⊗ (

∑
β1 ⊗ β2) since ∗ products vanish under stabilization.

By commutativity, this implies that the stable class u is 1⊗ βJ .

Now that the higher-derived functors of the primitive element functor of the Borel
space have been computed through a range, the structure of RiPBP∗(BTP ) as an
unstable comodule in the category A(U) must be determined. To do this, the genera-
tors of RiPBP∗(BTP ) must be represented in a way that allows for the co-action to
be computed. The G resolution is a useful tool that allows for one to represent these
generators as external star products of bottom-dimensional classes in a particular
unstable G-co-algebra.

0 → C → G(C)
→
→ G2(C)

→
→
→
· · · .

We apply the primitive element functor P (−) to the previous chain complex to
obtain the following chain complex:

(∗) 0 → U(C)
→
→ U(G(C))

→
→
→
· · · .

Since G(C) is cofree as a co-algebra the homology of (*) are the derived functors
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of the primitives i.e., Hi(∗) = RiP (C). We obtain the following complexes:

G = {0→ G(C)→ G2(C)→ · · · }
U = {0→ U(C)→ U(G(C))→ · · · }.

Since U(C) ↪→ G(C) we obtain the following short exact sequence of chain com-
plexes:

0 −→ U −→ G −→ G/U −→ .

Taking homology we obtain the following exact sequence:

0 −→ H0U −→ H0G −→ H0G/U −→ H1U −→ H1G −→ 0.

Recall that the G resolution is a cobar resolution which is canonically acyclic
via the cosimplicial identities. For a complex N we have the isomorphism
HomG(BP∗, G(N)) ∼= N [BDM, p. 32]. In our case, let N be the un-augmented
chain complex obtained from the G resolution by taking the alternating sum of the
coface maps. We use the isomorphism above to deduce the acyclicity of G. We have
the exact sequence:

0 −→ H0U −→ H0G −→ H0G/U −→ H1U −→ 0.

Referring to the U and G complexes of C we use exactness to determine

H0G = ker: G(C) −→ G2(C)

and
H0U = ker: U(C) −→ U(G(C)).

H0G = C and H0U = PC. As a matter of notational convenience, let

φ : [
G(C)
U(C)

→ G2(C)
U(G(C))

].

The kerφ is H0G/U. U is a chain complex whose homology groups are the
derived functors of the co-algebra C. We immediately obtain the following long exact
sequence:

0 −→> PC −→ C
θ−→ H0G/U

h−→ R1PC −→ 0.

The map θ factors in the following way

C
θ−−−−→ H0(G/U)

π

y
∥∥∥

C/PC
τ−−−−→ H0(G/U),

where τ = θ ◦ π−1.

Proposition 6.25. R1P (C) ∼= kerφ modulo im C
PC .

Proof. The map h : H0G/U→ R1PC is surjective by the previous long exact sequence.
The first isomorphism theorem gives Kerφ

Ker h
∼= R1P (C). The result follows from the

factorization of θ.
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There is a shift that comes from the chain complex (∗) and the chain complexes
that follow by utilizing the isomorphism HomG(BP∗, G(N)) ∼= N . For example,

G2(C)
U(G(C))

=
G1(C)
U1(C)

.

If C were BP∗(
∏
mCP∞), then R1PC = 0 and the previous constructions would

not yield any new information. However, R1PF 6= 0. Hence, the constructions above
would be applied to the co-algebra F . Elements in R1PF must be represented in a
way that will allow for the determination of the unstable U -comodule structure map.

Recall that the data needed to work with the CFSS consists of the RiP (−) as
well as the unstable and stable co-actions. We will show that through a range the
generators of RiPF , where F = BP∗(BTP ) can be written as certain star products
in G(F ), then determining the unstable co-action reduces to determination of the
map G(F )→ U(G(F )).

Theorem 6.26. d : G(F )→ U(G(F )) is given by d(∗j∈Jβ1,j) = 1 ⊗(∗j∈Jβ1,j).

Proof. Consider the following commutative diagram with exact rows.

0 0 0
y

y
y

F/PF −−−−→ G(F )/U(F ) d−−−−→ G2(F )/U(G(F ))
y

y
yι

C/PC
ψGC−−−−→ G(C)/U(C) d−−−−→ G2(C)/U(G(C)).

By Lemma 6.24, ψG(C)(βJ) = ∗j∈Jβ1,j + 1⊗ βJ . Observe that d ◦ ψG(C) = 0.
Since d is a map of spaces we can write d(∗j∈Jβ1,j) = -d(1⊗ βJ). There exists a
a class α ∈ G(F )/U(F ) which hits ∗j∈Jβ1,j + 1⊗ βJ . We assert that α = ∗j∈Jβ1,j .
Notice the element 1⊗ βJ cannot pullback since F does not have a product structure
map. If α is a class that is not divisible by ∗j∈Jβ1,j , then it pulls back to a class in
P/PF , which would violate the commutativity of the first square. Suppose that α is a
class divisible by ∗j∈Jβ1,j , but not the class ∗j∈Jβ1,j , then we use injectivity to show
that α is as claimed. By commutativity we observe that (ι ◦ d)(∗j∈Jβ1,j) = 0. Since ι
is an injection, d(∗j∈Jβ1,j) = 0. Hence, ∗j∈Jβ1,j is a non-trivial cycle that represents
an element in R1PF which cannot be pulled back to F/PF . We immediately have
the following commutative diagram:

G(F )
γ−−−−→ U(G(F ))∥∥∥ γ

y
G(F ) −−−−→ G2(F ),

where γ is the lift one obtains from ∗j∈Jβ1,j being a cycle. The map d(1⊗ βJ) must
be determined. In filtration zero in the unstable cobar complex of Gs(Γ⊗ C) we have
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d(1⊗ βJ) = 1⊗ 1⊗ βJ − 1⊗ ψGC(βJ). Hence, by Lemma 6.24 we have

d(1⊗ βJ) = −1⊗ (∗j∈Jβ1,j)

giving the result.

If we define a bi-cosimplicial object Dp,q(F ) = UpGq(F ) with q = 1, p > 0, then it
becomes clear that we can realize the map G(F )→ U(G(F )). If all the primitives are
in the same degree then the triviality of the co-action follows from degree reasons.
The content of the earlier part of this section is to deal with mixed degrees.

The map between F and C is induced from a map of spaces. This allows for the
co-action on F to be deduced from the co-action on C.

Corollary 6.27. The Γ-co-action on F is trivial.

Proof. The map of co-algebras F → C is injective. The image of F in C is a co-
algebra with basis consisting of those {βJ} such that the dual basis elements {vI}
are not divisible by im ι∗. The result follows from Proposition 6.23.

Since the algebra R∗ is not realized as the BP -co-homology of a space, the Γ-co-
action on R cannot be deduced from the co-action on C or F . The map C → R is
not induced from a map of spaces.

Theorem 6.28. The Γ-co-action on R is trivial.

Proof. There are two cases to analyze. First, suppose that ∀i 6= j, |xi| = |xj | in R.
The co-action must be trivial by dimensional reasons since ψ(x) = 1⊗ x+

∑
γi ⊗ xi,

where deg(γi) > 0 and deg(xi) < deg(x). Now suppose the degrees of the relations are
not the same. Hence, there are multi-indexes J and Ji consisting of zeros and ones
such that for each i, |zJi | < |zJ |, where zJi and zJ are primitives in R. Let p be a
prime. Suppose there is a possible co-action

ψ(zJ) = 1⊗ zJ + ε1 · hI ⊗ zJ1 + · · ·+ {Other Terms}.
By Theorem 6.15, PR is isomorphic to R1PF as BP∗-modules within a specified

range. By the Kronecker pairing, zJi
is dual to xIi , which maps to products of v’s

coming from xIi via the map ι∗. Recall that vIi are dual to elements βJi ∈ C that can
be written as ∗ products of bottom-dimensional classes in G(F ) by Theorem 6.26.
Also recall that the classes βi,j in G(F ) can be identified as a ⊗ product and that
they come from various factors of CP∞.

The co-action on R is computable since the relations come from the square-free
monomials that generate the ideal in the face ring. The co-action on the βi,j is trivial
by the geometry since they come from the vi that come from CP∞. If the relations
did not come from square-free monomials, then βJ is an element of C whose multi-
index does not consist of zeros and ones. Without the hypothesis of square-free,
Lemma 6.23 does not necessarily apply. Closer inspection of Lemmas 6.23 and 6.24
shows that square-free is reflected in the multi-indexes I and J consisting of zeros and
ones. The next example shows how the failure of square-free is reflected in terms of
the co-action. In this case, the primitives in the co-algebra of relations R have multi-
indexes consisting of zeros and ones. However, the elements that the primitives map
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to via ι∗ are dual to βJ , where J is a multi-index that consists of positive integers
other than ones and zeros. It is not clear how the co-action would be computed.
Compare with Lemma 6.23.

Example 6.29. Consider the element v2
1v2 which is represented in C by the element

β(2,1,0,0). At the prime p = 2 we have the possible non-trivial co-action:

ψ(β(2,1,0,0)) = 1⊗ β(2,1,0,0) + ε1 · hI1 ⊗ βJ1 + ε2 · hI2 ⊗ βJ2 + {other terms},
where εi = 1 or 0. We are not able to determine whether the coefficients εi are zero.

If there is a possible non-trivial co-action it is possible to pick a prime p that will
force the co-action to be trivial for dimensional reasons. One readily sees that the
co-action in the previous example is trivial if the prime is large enough. However,
this is much weaker than the argument given in the previous theorem. The following
example should be illuminating.

Example 6.30. Let K be the simplicial complex given in Example 6.11. Recall that
the BP ∗-face ring is the algebra F ∗ = BP ∗[v1, . . . , v4]/I = 〈v1v2, v2v3v4〉. As a BP∗-
module, the co-algebra of relations R has the following presentation.

R = BP−∗{zJ |J = (j1, j2)}.
For p > 2 prime there cannot be a stable co-action for dimensional reasons. How-

ever at the prime p = 2 there is a possible co-action:

ψ(z(0,1)) = 1⊗ z(0,1) + ε · h1 ⊗ z(1,0).
The primitives in R can be represented by the following products in G(F ):

z(1,0) = β1,1 ∗ β1,2

and
z(0,1) = β1,2 ∗ β1,3 ∗ β1,4.

We have ψ(z(0,1)) = ψ(β1,2 ⊗ β1,3 ⊗ β1,4) = 1⊗ (β1,2 ⊗ β1,3 ⊗ β1,4) = 1⊗ z(0,1)
and so ε = 0. Therefore, the stable co-action is trivial. In lieu of the previous remark,
the co-action is trivial for a prime p > 2 for dimensional reasons.

The Borel space and the UANSS
The UANSS based on a theory other than ordinary homology theory was first con-

structed in [BCM]. The E2-term was identified as an Ext in a certain non-abelian
category. The category of unstable G-co-algebras was constructed and a particu-
lar CFSS whose E2 converges to the E2-term of the UANSS was explicitly deter-
mined. The results of [RW] allowed for one to compute the E2-term of the UANSS
as the homology of the unstable cobar complex. In this section the E2-term of the
CFSS defined in [BCM] will be computed through a range. Let X be a space such
that BP∗(X) ∼= BP∗{x2k|k > 0} and call it M . Note that the generators are even-
dimensional.

Proposition 6.31. For every i > 0, RiPM are generated by even-dimensional
classes.
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Proof. Take the G resolution of M :

0→M → G(M)→ G2(M)→ · · ·
and the augmented chain complex to give:

G(M)→ G2(M)→ · · · .
Apply the primitive element functor P (−) to give the complex:

U(M)→ U(G(M))→ U(G2(M))→ · · · .
Recall that

U(M) = BP∗ − span{hI ⊗ x|2 · l(I) < |x|}.
Clearly, the degree of hI ⊗ x is even. Since M ∼= BP∗{x2k|k > 0} as a BP∗-module,
G(M) = BP∗(

∏
BP |xi|) which is

⊗
iBP∗(BP |xi|). Hence, U(G(M)) is generated by

classes of the form hI ⊗ (⊗ixi), which are clearly even-dimensional. We will prove by
induction over k that U(Gk(M)) is generated by even-dimensional classes. Suppose
that U(Gk−1(M)) is generated by even-dimensional classes. Since

U(Gk(M)) = U(Gk−1(G(M)))

and G(M) is generated by even-dimensional classes, the argument above implies that
U(Gk(M)) is generated by even-dimensional class.

This immediately gives

Corollary 6.32. If K is a simplicial complex and F the BP∗-face ring of BTP , then
RiPF are generated by even-dimensional classes for every i > 0.

Recall that F = BP∗(BTP ) is nice in the range |<min| − 1. The primitives in the
co-algebra of relations R are elements zJi , where Ji is a multi-index consisting of
one in the ith spot and zero elsewhere. Recall that |zJi | is equal to the degree of the
products of v’s that the dual element xIi map to via ι∗. We have the following

Theorem 6.33. If K is a simplicial complex and F is the BP∗-face ring associated
to P , then in filtration s > 0 and total degree t 6 s(2p− 2) + |<min| − 1. For i = 0, 1,
the classes in

Ext i+s,tG (F )

are those that come from the E2-terms:

Exts,tA(U)(BP∗(
∏

rj∈I
S|rj |))

for i = 1 and

Exts,tA(U)(BP∗{a1, . . . , ak})
for i = 0.

Proof. Since BTP is a space there exists a CFSS. By Corollary 6.32 the CFSS col-
lapses for dimensional reasons and the classes in Es,t∞ survive to the E2-term of the
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UANSS. We assert that for i = 1,

Exts,tA(U)(R
1PBP∗(BTP )) ∼= Exts,tA(U)(BP∗(

∏

rj∈I
S|rj |))

and for i = 0,

Exts,tA(U)(PBP∗(BTP )) ∼= Exts,tA(U)(BP∗{a1, . . . , ak}).
In the case i = 0, we have PF ∼= PC by Theorem 6.15 and the co-action is triv-

ial for dimensional reasons. By Theorem 6.15 the co-algebra F is nice in degrees
less than |<min|. We assert that there is an isomorphism, in this range, of BP∗ −
modules between R1P (F ) and BP∗(

∏
rj∈I S

|rj |), where the dimensions of the spheres
equals the degrees of the primitives in the co-algebra R. By Theorem 6.15, R1PF ∼=
BP∗{e1, . . . , ek}. The degrees of the ei are equal to the degrees of the square-free
monomials that generate the ideal I. Suppose there are k such monomials. Let Sei

denote a |ei|-dimensional sphere. The BP∗(Se1 × · · · × Sek) is isomorphic to the mod-
ule BP∗{ιe1 , . . . , ιek

}, where |ιe1 | = |ej | in the range ∗ 6 |<min| − 2. In the case that
the ideal I is generated by monomials rj such that for all i 6= j |rj | = |ri|, then
the isomorphism above, with the range restriction, shows that there is no mixing
of the generators. In the case that there exists a monomial rj such that for all
i 6= j, |rj | > |ri|, then the isomorphism above holds as long as |rj | 6 |<min| − 2.
Theorem 6.26 shows that the U -comodule structure on R1PF coincides with the
co-action on a sphere. This gives the following isomorphism of E2-terms of the CFSS
ExtsA(U)(R

1P (F )) ∼= ExtsA(U)((BP∗(
∏
rj∈I S

|rj |)). To obtain a least upper bound on

the total degree t let s > 0. The element

s︷ ︸︸ ︷
h1 ⊗ · · · ⊗ h1⊗r has degree s(2p− 2) + |r|.

However, |<min| is a strict upper bound on |r|. This is seen by observing that |<min|
is given by 2l(m) where m is the monomial that comes from one of the terms in
the difference Definition 6.2 and l(m) is defined in Definition 6.6. The condition
|r| 6 |<min| − 2 ensures l(r) < l(m), giving |h⊗s

1 ⊗ r| 6 s(2p− 2) + |<min| − 1. The
upper bound on the total degree t is obvious when s = 0.

Theorem 6.33 shows that within a specified range, one understands what classes
survive to the E2-term of the UANSS. By re-labeling the axes from (t− s, s) to (t, s)
and using the condition on the total degree t 6 s(2p− 2) + |<min| − 1 a picture of
the E2-term of the UANSS can be obtained. There is a line of slope

−|<min|+ 1
2p− 2|<min|+ 1

through
−|<min|+ 1

2p− 2
and |<min| − 1.

Since the UANSS is a first quadrant spectral sequence this implies that all the
classes above the “line” are understood, before further analysis of the differentials.
Assuming that I = 〈r1, . . . , rk〉 the E2 page of the UANSS will consist of a collection
of η towers (one for each monomial ri ∈ I). Each of these towers will have a homo-
topy tower corresponding to the elements α, ηα, η2α · · · with a d3-differential such
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that d3(α) = η4, where η4 represents the element h1 ⊗ h1 ⊗ h1 ⊗ h1 ⊗ ιk. Hence, the
elements η4, η5 · · · in each tower will be killed by the d3-differential (also a derivation)
out of the corresponding homotopy tower. It should be noted that there is an abuse
of notation in Theorem 6.33. The element α is called α̃4k+2 in [Bend2] and the d3-
differential comes out of α̃4k+2 into the element (η3α̃4k+1) where α1 = η when k = 0.
For the definition of α̃k and the determination of the unstable 1-line for S2n+1 the
reader should refer to [Bend2]. Classes in stem degree |<min| − 2 have the possibility
of surviving to πt−s localized at p.

Given that the classes in the UANSS are understood through a range one cannot
immediately conclude homotopy computations. In fact, a careful analysis of the dif-
ferentials is required. It may be possible for classes in the E2-term to be killed by a
differential. Recall that only the classes that survive to the E∞-term of the UANSS
are the classes that contribute to the homotopy groups of BTP . It turns out that
the underlying combinatorics can be used to resolve the differentials. Given a BP -
face ring the notion of killing relations must be developed. In what follows it will be
convenient to work with the simplicial complex K dual to P .

We need to recall certain operations on two simplicial complexes. Suppose K1

and K2 are simplicial complexes on [m1] and [m2] and suppose σi ∈ Ki for i = 1, 2.
Let K1 and K2 be as above with the property that a vertex set S satisfies S =
[m1] ∪ [m2], where [m1]

⋂
[m2] is not necessarily empty. The join of K1 and K2,

K1 ∗K2 = {σ ⊂ S|σ = σK1 ∪ σK2 , σK1 ∈ K1, σK2 ∈ K2}. It is important to note that
φ ∈ K1. When K2 is a point we obtain the cone on K1, cone(K1). It is also the case
that σ ∗ ∅ = σ. we say K is q-neighborly if any subset of the vertex set of cardinality
q − 1 is a simplex.

Construction 6.34. Let K be a simplicial complex and suppose its BP -face ring is

BP∗[v1, . . . , vm]/I = 〈r1, . . . , rk〉.
We kill a relation by the following procedure. Pick r1 = vι1 · · · vιq+1 . Split it in

such a way as to produce two subcomplexes of K. Let K1 be the simplicial complex
on the vertex set {vι1 · · · vιq} and let K2 be the subcomplex on the vertex {vιq+1}.
Let K = K1 ∗K2. It is clear that this simplicial complex will contain the simplex
σ = {vι1 · · · vιq+1}. Form a new simplicial complex K ′ from K and the subcomplexes,
K1 andK2 in the following way. LetK ′ = K ∪ σ, where σ ∈ K. It follows immediately
that the BP -face ring of K ′ is

BP∗[v1, . . . , vm]/I = 〈r2, . . . , rk〉.
In other words, the relation r1 has been killed.

This construction gives a prescription for “killing” relations in the ideal I. In other
words, one can “fill” in missing faces of a simplicial complex. This makes it possible to
find simplicial maps from a certain K on a vertex set, to another simplicial complex
on the same vertex set with fewer missing faces. To resolve the differentials in the
UANSS it is necessary to find such simplicial maps.
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Theorem 6.35. Given P and total degree t as in Theorem 6.33, let BTP be the
associated Borel space. We have

πt−s−1(BTP )(p) = πt−s−1((
∨

rj∈I
S|rj |−1))(p) for t− s 6 |<min| − 1,

and, in filtration s = 0, π2(BTP ) = Z⊕m.

Proof. In filtration s > 0 the E2-term of the UANSS is given by Theorem 6.33. To
complete the proof it must be shown that there are no possible differentials in the
UANSS. Suppose I = 〈r1, . . . , rk〉 and |ri| > |rj |. Assume there is a possible non-
trivial differential from the η tower generated by a class that comes from ri into the
tower generated by the class that comes from rj . By Construction 6.34 it is possible to
kill relations by filling in the appropriate missing face. Hence, one can find a simplicial
map from φ : Km1,...,mk

→ Km1,cmi,...,mk
where Km1,...,mk

is a simplicial complex with
missing faces m1, . . . ,mk and Km1,cmi,...,mk

is a simplicial complex with the missing
face mi filled in. Clearly, φ induces a map of Borel spaces which induces a map of E2-
terms of the UANSS that must commute with differentials. This implies that there is
a non-trivial differential from a zero class to a non-zero class which is a contradiction.
Therefore, the differential must be trivial. Hence, there are no non-trivial differentials
between η towers in the E2-term of the UANSS. By Theorem 6.33, the only classes
that appear in stem degree are those that come from spheres via the CFSS and in
the specified range there is either only one class in each stem degree or |I| classes. In
either case, the extension problem is trivial.

In the case that K is a simplicial sphere we have the following:

Proposition 6.36. Suppose M2n(λ) is quasi-toric manifold with orbit space P . For
4 6 ∗ 6 |<min| − 1, we have

π∗−1(M2n(λ))(p) ∼= π∗−1((
∨

rj∈I
S|rj |−1))(p).

Proof. There is a fibration M2n(λ)→ BTP → BTn. Apply π∗(−) and the result
follows from Theorem 6.35.

As an application, a non-trivial higher homotopy group computation can be
obtained.

Proposition 6.37. If P 2 is a polygon with m > 5 vertices and M4(λ) the correspond-
ing family of quasi-toric manifolds, then

π4(]m−2CP 2)(p) ∼= π4(
∨

rj∈I
S3)(p).

Proof. For m > 4, Orlik and Raymond [OR] proved that four-dimensional quasi-toric
manifolds are connected sums of the Hirzebruch surface with two-dimensional com-
plex projective space. Observe |<min| = 6. The result follows from Propositions 6.36
and 6.56.
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The case m = 4 is handled by the toric geometry. It is well known in this case
that for ∗ > 2, π∗(M4(λ)) ∼= π∗(S3 × S3). We recall that quasi-toric manifolds do not
necessarily exist over P when K is not a simplicial sphere. Moreover, for such K, ZK
exists but it is not necessarily a manifold. However, the Borel space always exists.

Corollary 6.38. Let K be a simplicial complex and ZK the associated moment angle
complex. We have for, 4 6 ∗ 6 |<min| − 1,

π∗−1(ZK)(p) ∼= π∗−1((
∨

rj∈I
S|rj |−1))(p).

Proof. Follows from the fibration ZK → BTZK → BTm in combination with Theo-
rem 6.35.

Recall that PR are the primitives in the co-algebra R that represent the relations.
Using the bi-graded minimal resolution of k(K) ([BP1] and [BP4]), it is easily seen
that the bottom-dimensional cells of ZK are in degrees |PR| − 1. By the connectivity
of ZK and the above we immediately obtain the

Corollary 6.39. π∗−1(ZK)(p) ∼= π∗−1(
∨
rj∈I S

|rj |−1)(p).

Theorem 2.15 in [BP4] states that the first non-trivial homotopy group is a free
abelian group on a set whose cardinality is given by |I|. Notice that Corollary, 6.39
exhibits the isomorphism explicitly.

We define a simplicial complex such that the homotopy type of the associated
moment angle complex can be determined by using filtration arguments in the
UANSS.

Definition 6.40. For each integer m > 4, define

r = [(m+ 1)/2],

where [n] is the greatest integer value of n.

We make

Definition 6.41. Let K[m] be the simplicial complex on [m] with the missing faces
{1, . . . , r} and {r, r + 1, . . . ,m}.

In the next section we prove some basic facts about K[m].

Proposition 6.42. Given the complex K[m], let ZK[m] be the associated moment
angle complex. The top-dimensional cell e2m−2 of ZK[m] gives rise to a Z in π2m−2

detected by the class in the Ext-term

Ext0,|<min|
A(U) (R2PF ).
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Proof. There are three Ext-terms that have the possibility of contributing classes to
the E2-term of the UANSS. First,

Ext0,|<min|−1
A(U) (R1P (F )).

This term is zero by Proposition 6.31 and Corollary 6.32. Next, consider the E2-term,

Ext1,|<min|
A(U) (R1P (F )).

The bottom-dimensional cells of ZK[m] are given in Theorem 6.49. The classes in

Ext1,|<min|
A(U) (R1P (F )) contribute to the homotopy of

S2r−1
∨
S2r−1 or S2r−1

∨
S2m−2r+1

localized at p. No new classes that detect the cell e2m−2 are produced. The only way
the cell e2m−2 is detected is by the term

Ext0,|<min|
A(U) (R2P (F )).

Notice that |<min| is outside the range where the spectral sequence is known. We
have absolutely no control over R2PF . Clearly, π2m−2(F ) 6= 0. Hence, the cell e2m−2

must be detected. This can only happen if

Ext0,|<min|
A(U) (R2P (F )) 6= 0.

Therefore, R2PF 6= 0.

There is no systematic way to construct an unstable G resolution in such a way as
to get a handle on R2P . However, the previous proposition gives the following:

Corollary 6.43. If F is the BP∗-face ring of the simplicial complex Definition 6.41,
then

R2PBP∗F ∼= BP∗{ι},
where |ι| = |<min|.

By Proposition 6.42 we obtain the

Corollary 6.44. Given the moment angle complex ZK[m] of Definition 6.41 we have,
for ∗ 6 |<min| − 1,

π∗−1(ZK[m])(p) =

{
π∗−1(S2r−1

∨
S2r−1)(p), m odd

π∗−1(S2r−1
∨
S2m−2r+1)(p), m even.

Remark 6.45. Through a range, the homotopy of the complex ZK[m] localized at a
prime looks like a wedge of spheres by the classes contributed by Exts, tA(U)(R

1P (F )).

The homotopy type of the moment angle complex associated to certain
simplicial complexes

In this section we prove some facts about the simplicial complex K[m] and use
filtration arguments to determine the homotopy type of the associated moment angle
complex. We recall, K[m] is the simplicial complex on [m] with the missing faces
{1, . . . , r} and {r, r + 1, . . . ,m}, where r = [(m+ 1)/2] for each integer m > 4.
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Lemma 6.46.

dim K[m] =

{
2r − 3, m odd
2r − 2, m even.

Let I be a square-free monomial ideal generated by

r1 = v1 · · · vr and r2 = vrvr+1 · · · vm.

Proposition 6.47. The face ring of K[m] is the algebra Z[v1, . . . , vm]/〈I〉.

Proof. Follows immediately from Definition 6.41 and the definition of face ring.

Recall that a simplicial complexK is said to be k-neighborly if any set of cardinality
k − 1 is a simplex of K.

Lemma 6.48. For m > 4 an integer, K[m] is (r − 1)-neighborly.

Proof. There are two cases to consider. First, we assume the cardinality of the miss-
ing faces are equal. In this case we have m = 2k + 1 where k > 2. It follows that
r = k + 1. Since the missing faces consist of consecutive positive integers we have
|{r, r + 1, . . . ,m}| = m− r + 1, which in this case is k + 1 = |{1, . . . , r}|. When m =
2k, r = [k + 1

2 ] = k. In this instance, we have

|{1, .., r}| = k = r and |{r, r + 1, . . . ,m}| = r + 1.

We will use the minimal resolution of the face ring k(K[m]) as described in [BP4,
pp. 42, 106], to determine the bi-graded Betti-numbers of the moment angle complex
associated to K[m]. As a matter of notational convenience, let P = Z[v1, . . . , vm] and
p ∈ P . To determine β−i,2j take the the minimal resolution of k(K[m]). This gives
the following chain complex, where x<min corresponds to a relation among relations,
|x<min | = |<min| and the maps are defined in the obvious way:

0 d4−→ R3
d3−→ R2

d2−→ R1
d1−→ k(K[m]) −→ 0.

Here, R3 = P ⊗ {x<min}, R2 = P ⊗ {v1···r, vr·(r+1)···m} and R1 = P ⊗ {α0}. We eas-
ily obtain

Theorem 6.49. For m > 4 an integer, let ZK[m] be the associated moment angle
complex. The Betti numbers of ZK[m] are

bk =





2, k = 2r − 1
1, k = 2m− 2
0, otherwise,

when m is odd and

bk =

{
1, k = 2r − 1, 2m− 2r + 1, 2m− 2
0, otherwise

when m is even.
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We immediately have

Corollary 6.50. For m > 4, an integer the moment angle complex ZK[m] is 2r − 2
connected.

We will now determine the homotopy type of ZK[m] . One must employ the CFSS
and represent <min by the appropriate class; determine its co-action and show that
the appropriate differentials are trivial. More specifically, we are particularly inter-
ested in the d2-differential in the CFSS. We recall parts of the construction of the
CFSS [BCM] relevant to understanding this differential. Consider the following dia-
gram with exact rows and columns.

• −−−−→ • −−−−→ • −−−−→ •
x

x
x

U2[U(F )] −−−−→ U2[U(G(F ))] −−−−→ U2[U(G2(F ))] −−−−→ •
x

x
x

U [U(F )] −−−−→ U [U(G(F ))] −−−−→ U [U(G2(F ))] −−−−→ •
x

x d1

x
[U(F )] −−−−→ [U(G(F ))] −−−−→ [U(G2(F ))] −−−−→ • .

Let xt ∈ [U(G2(F ))] be the t-dimensional class that corresponds to a cycle of
Ext0,t

A(U)(R
2PF ). HH ·HV collapses to H∗(Tot) = H∗(F → G(F ) · · · ), which con-

verges to Ext∗,∗G (F ). Hence, HV ·HH is the E2-term of a spectral sequence that
converges to the E2-term of the Novikov spectral sequence; i.e., Ext∗,∗G (F ). d1(xt) = 0
in the vertical homology of U [R2PF ]. Hence, it is in the image of a class β ∈
U [U(G(F ))]. Push β vertically; this is the d2-differential that is internal to the CFSS.
Note that there are differentials internal to the UANSS. One of the main goals of this
section is to prove the following lemma.

Lemma 6.51. If K is a simplicial complex with exactly two missing faces, then the
differential

Ext0,|<min|
A(U) (R2PF ) d−2−→ Ext2,|<min|

A(U) (R1PF )

is trivial.

For multi-indexes I = (i1, . . . , im) and J = (j1, . . . , jm) consisting of zeros and
ones, the pair (I, J) is said to be complimentary if I + J = (i1 + j1, . . . , im + jm) =
(1, . . . , 1) and if the jth spot in I is one then the jth spot in J must be zero. For
bookkeeping purposes we introduce pairs of complimentary multi-indexes, (J1, J2)
and (J3, J4). Consider the classes

∗j∈J1βi,j ◦ βJ2

and
∗j∈J3βi,j ◦ βJ4 .

Note that the classes βJ2 and βJ2 are the unstable names for the stable classes
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1⊗ βJ2 and 1⊗ βJ4 . Recall that these classes came from the relations in the face
ring and they did not pullback to G(F )/U(F ). Hence, any class divisible by these
classes will not pullback to G(F )/U(F ) as well. In fact, this observation is essential
in constructing the class that will represent the generator of R2PF in the U com-
plex. Referring to the previous double complex we specialize to the case at hand. Let
x|<min| ∈ [U(G2(F ))] be the |<min|-dimensional class that corresponds to a cycle of
Ext0,|<min|

A(U) (R2PF ). d1(x|<min|) = 0 in the vertical homology of U [R2PF ]. Hence,
it is in the image of a class β ∈ U [U(G(F ))]. Push β vertically. This is the d2-
differential. We must show that d2(x|<min|) = 0. If d1(x|<min|) = 0, then d2(x|<min|) =
0. Recall that the generators of R1PF can be represented by star products of bottom-
dimensional classes in G(F ). This was used to show that the co-action is trivial
(through a range). A relation among relations is a difference in C∗ that is zero. A
similar argument will be used to construct the class that represents R2PF . Consider
the following commutative diagram:

G(F ) −−−−→ G2(F ) −−−−→ G3(F )
y

y
y

G(C) d−−−−→ G2(C) −−−−→ G3(C) .

It follows immediately that Gi(C) is a Gi(F )-module induced by the vertical maps.
We need the

Lemma 6.52. ψ : G(F )→ G2(F ) is a ring map when evaluated on the product of
primitives in G(F ).

Proof. Consider the following commutative diagram:

G(F ) ∆−−−−→ G(F )⊗G(F )

ψ

y ψ⊗ψ
y

G2(F ) ∆G−−−−→ G2(F )⊗G2(F ).

We have

∆G(ψ(x ∗ y)) = (ψ ⊗ ψ)(∆(x ∗ y))
= (ψ ⊗ ψ)(∆(x) ∗∆(y)).

At this stage one should note that (∆(x) ∗∆(y)) is a bottom-dimensional class in
G(F )⊗G(F ) since the composition

G(F ) ∆−−−−→ G(F )⊗G(F ) 1⊗ε−−−−→ G(F )

is the identity. It was shown that ∗ products of bottom-dimensional classes can be
identified with the completed tensor product of the same classes. We have

(ψ ⊗ ψ)(∆(x) ∗∆(y)) = ψ(∆(x))⊗ ψ(∆(y))
= ψ(∆(x)) ∗ ψ(∆(y))
= ∆(ψ(x)) ∗∆(ψ(y))
= ∆(ψ(x) ∗ ψ(y)) .
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This is precisely the co-product on G2(F ). In other words, the map G(F )→ G2(F )
is a ring map on the primitives.

We wish to compute d0 − d1 on a class that represents the generator of the second
higher-derived functor of P for the BP -face ring associated to simplicial complexes
with exactly two missing faces. This map comes from taking the alternating sum of
the coface maps in the cosimplicial object that arises from the G resolution [Bous,
p. 487]. It was shown earlier that ψG(C)(βJ) = ∗j∈Jβ1,j + 1⊗ βJ . The map we wish
to compute is

(d0 − d1)((∗j∈J1β1,j ◦ βJ2)− (∗j∈J3β1,j ◦ βJ4)).

Recall that x = b
|x|
2

(0) is the bottom-dimensional class in G(M), where M is a free
BP∗-module on even-dimensional generators. The map G(M)→ G2(M) sends x to
x. The copy of BP associated with x is BP |x|, and the copy of BP associated with
x is BP |x|. Since d0 − d1 is linear we obtain

(d0 − d1)((∗j∈J1β1,j ◦ βJ2)− (d0 − d1)(∗j∈J3β1,j ◦ βJ4)).

Since (d0 − d1) is a map of Hopf rings we obtain

d0((∗j∈J1β1,j ◦ βJ2))− d1((∗j∈J1β1,j ◦ βJ2))

− d0((∗j∈J3β1,j ◦ βJ4))− d1((∗j∈J3β1,j ◦ βJ4)).

Recall that from the triple structure we have d0 = η ◦G and d1 = G ◦ η.
We obtain

d0((∗j∈J1β1,j) ◦ d0(βJ2)− d1((∗j∈J1β1,j)) ◦ d1(βJ2)

− [d0((∗j∈J3β1,j) ◦ d0(βJ4)]− d1((∗j∈J3β1,j)) ◦ d1(βJ4)).

To compute the map d1(βJ), we compute the unstable co-algebra map ψG(C) on the
β whose image under this map is the stable part of the class in G(C). In addition
to this observation, we use the map G(M)→ G2(M) and the Hopf ring relation
a ◦ (b ∗ c) = (a ◦ b) ∗ (a ◦ c) to obtain the class

∗j∈J3β1,j ◦ ∗j∈J4β1,j − ∗j∈J1β1,j . ◦ ∗j∈J2β1,j .

Call this class <min. It is important to note that the notation can be misleading. The
following example should be illuminating.

Example 6.53. Let K be a simplicial complex on the vertex set [5] with missing
faces {1, 2, 3} and {3, 4, 5}. Clearly, the relation among relations in this example
is ι∗(x1)v4v5 − ι∗(x2)v1v2. Let x10 ∈ [U(G2(F ))] be the ten-dimensional class that
corresponds to a cycle of Ext0,10

A(U)(R
2PF ). We want to show that the differential

Ext0,10
A(U)(R

2PF ) d2−→ Ext2, 10
A(U)(R

1PF )

is trivial. In this example, β(1,1,1,0,0) is the unstable name for the stable class
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1⊗ β(1,1,1,0,0). Consider the class:

(β1,4 ∗ β1,5) ◦ β(1,1,1,0,0) .

Similarly, we have the class

(β1,1 ∗ β1,2) ◦ β(0,0,1,1,1) .

We must compute (d0 − d1)(β1,4 ∗ β1,5) ◦ β(1,1,1,0,0) − (β1,1 ∗ β1,2) ◦ β(0,0,1,1,1)).

To illustrate the computation we will compute (d0 − d1)(β1,4 ∗ β1,5) ◦ β(1,1,1,0,0)).

(d0 − d1)(β1,4 ∗ β1,5) ◦ β(1,1,1,0,0))

= d0(β1,4 ∗ β1,5) ◦ β(1,1,1,0,0))− d1(β1,4 ∗ β1,5) ◦ β(1,1,1,0,0))

= (β1,4 ∗ β1,5) ◦ β(1,1,1,0,0))− d1(β1,4 ∗ β1,5) ◦ β(1,1,1,0,0))

= (β1,4 ∗ β1,5) ◦ β(1,1,1,0,0))− d1(β1,4 ∗ β1,5)) ◦ d1(β(1,1,1,0,0))

= (β1,4 ∗ β1,5) ◦ β(1,1,1,0,0))− (β1,4 ∗ β1,5) ◦ d1(β(1,1,1,0,0)).

To compute d1(β(1,1,1,0,0)) We compute ψG(C) on the β whose image gives the
stable part of the class in G(C) whose unstable name is (β(1,1,1,0,0)). Then we push
into G2(C). Therefore,

d1(β(1,1,1,0,0)) = β1,1 ∗ β1,2 ∗ β1,3 + β(1,1,1,0,0).

Combining this with the computation above we have

(d0 − d1)(β1,4 ∗ β1,5) ◦ β(1,1,1,0,0))

= (β1,4 ∗ β1,5) ◦ β(1,1,1,0,0))− (β1,4 ∗ β1,5) ◦ (β1,1 ∗ β1,2 ∗ β1,3 + β(1,1,1,0,0)).

Distributing and canceling gives

−(β1,4 ∗ β1,5) ◦ (β1,1 ∗ β1,2 ∗ β1,3).

Similarly, for the second class, we have, after distributing and cancellation the class

−(β1,1 ∗ β1,2) ◦ (β1,3 ∗ β1,4 ∗ β1,5).

Using the linearity of d0 − d1 along with the Hopf ring relation described earlier,
we obtain the class

(β1,1 ∗ β1,2) ◦ (β1,3 ∗ β1,4 ∗ β1,5)− (β1,4 ∗ β1,5) ◦ (β1,1 ∗ β1,2 ∗ β1,3).

This class represents the generator of R2PF .

Now we give the proof of Lemma 6.51.
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Proof. Consider the following commutative diagram:

0 0 0y
y

y
G(F )/U(F ) −−−−→ G2(F )/U(G(F )) d−−−−→ G3(F )/U(G2(F ))

y
y

yι

G(C)/U(C) −−−−→ G2(C)/U(G(C)) d−−−−→ G3(C)/U(G2(C)).

Since d(d(<min))) = 0, the class d(<min) pulls back to G2(F ). If we start with the
class <min, then it follows from the observations above that d(<min) is a cycle in this
complex representing a class in R2PF that cannot be pulled back to G(F )/U(F ).
It follows immediately from this diagram that the map R2PF → U(R2PF ) is zero.
Hence, d1(x|<min|) = 0. Therefore, the d2-differential above is zero.

Theorem 6.54. Let m > 4 be an integer and ZK[m] the associated moment angle
complex. We have

ZK[m] '
{
S2r−1

∨
S2m−2r+1

∨
S2m−2, m even

S2r−1
∨
S2r−1

∨
S2m−2, m odd.

Proof. The dimension of the top-dimensional cell is 2m− 2 independent of the
parity of m. Suppose f : S2m−3 → Si

∨
Sj is a non-trivial attaching map, where

i = j = 2r − 1 if m is odd and i = 2r − 1, j = 2m− 2r + 1 otherwise. Since f is non-
trivial, the smallest possible differential in the UANSS is a d2-differential out of
(2, 2m) into (4, 2m+ 1). The classes ηi · ι for i 6 3 are even-dimensional. Hence, the
smallest possible differential is a d3 which jumps to filtration 5. Therefore, all the
classes survive. Hence, f is trivial. The same argument works for m even. The only
possible differential internal to the CFSS that can possibly kill classes that may sur-
vive to the E2-term of the UANSS is the d2 described earlier. The proof follows by
Lemma 6.51.

K[m] is not shifted. This can been seen by observing that the missing faces of this
simplicial complex are {1, . . . , r} and {r, r + 1, . . . ,m}. Let

σ = {1, . . . , r − 1, r + 1, r + 2, . . . ,m}.
It follows from the definition of K[m] that

σ \ {r + 1} = {1, . . . , r − 1, r + 2, . . . ,m} ∈ K[m].

However, σ \ {r + 1} ∪ {r} /∈ K[m].

Proposition 6.55. k(K[m]) is a Golod ring.

Proof. By Theorem 6.54, ZK[m] is a wedge of spheres. The result follows from [GT2,
Theorem 1.5].

In [GT2] the homotopy type of ZK is determined when K is a shifted complex.
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Miscellaneous results on the homotopy groups of certain quasi-toric man-
ifolds, connected sums and wedges via toric geometry

In this section we gather some miscellaneous results on the homotopy groups of
M2n(λ) that are probably known. However, they do not appear in the literature. The
following proposition is enormously important and was communicated by A. Bahri.
We assume that P is a n-dimensional simple convex polytope and that M2n(λ) is
the family of quasi-toric manifolds that sit over P . Even though quasi-toric manifolds
depend on the choice of λ their homotopy groups do not as illustrated by

Proposition 6.56. Let M2n(λ1) and M2n(λ2) be two quasi-toric manifolds on the
same underlying polytope, then π∗(M2n(λ1)) ∼= π∗(M2n(λ2)) for ∗ > 3.

Proof. Let λ1 and λ2 be two maps from Zm → Zn satisfying condition (∗) such that
λ1 6= λ2. LetM2n(λ1) andM2n(λ2) be the corresponding quasi-toric manifolds. Using
the fibration

M2n → BTP →
∏
n

CP∞,

we obtain
M2n(λ1)→ BTP →

∏
n

CP∞

and
M2n(λ2)→ BTP →

∏
n

CP∞.

The Borel space BTP is fixed for each λ and only depends on P . Apply π∗(−) and
the result follows.

In other words the higher homotopy groups of a quasi-toric manifold are indepen-
dent of λ.
Bn, first introduced in [BR1], is the quasi-toric manifold of all bounded flags in

Cn+1 [BR2]. Its quotient polytope is the cube In.

Proposition 6.57. For ∗ > 3, π∗(Bn) ∼= π∗(
∏
n S

3).

Proof. In is combinatorially equivalent to the simple convex polytope
∏
n ∆1. By

[BP1], ZQ
n ∆1 ∼= ∏

n S
3. The result follows by applying π∗(−) to the fibration:

Tm−n → ZP →M2n.

Recall from [BR2] and [BR3] Bi,j-the family of quasi-toric manifolds that sit over
Ii ×∆j−1. This leads to our next observation:

Proposition 6.58. For ∗ > 3, π∗(Bi,j) ∼= π∗(
∏
i S

3 × S2j−1).

Proof. Apply the argument given in the proof of Proposition 6.57.

There is no known technique that allows for the computation of π∗(
∨
m CP∞).

It will be shown that the homotopy of
∨
mCP∞ is given by the homotopy of a

particular wedge of spheres. Of course, the Milnor-Hilton theorem can be used to
make homotopy computations.
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Theorem 6.59. For ∗ > 3, π∗(CPn]CPn) ∼= π∗(S3)⊕ π∗(S2n−1).

Proof. [BR2] proved that CPn]CPn is a quasi-toric manifold over ∆n]∆n. This poly-
tope is combinatorially equivalent to the simple convex polytope ∆1 ×∆n−1 [BP4].
The result follows by applying π∗(−) to the fibration Tm−n → ZP →M2n and observ-
ing that the moment angle complex behaves well with respect to products.

Lemma 6.60. If K is the disjoint union of m vertices, then

DJ(K) =
∨
m

CP∞.

Proof. Using the Strickland construction DJ(K) = K•(CP∞), one computes

K•(CP∞, ∗) =
⋃

σ∈K
(
∏

i∈σ
CP∞ ×

∏

i/∈σ
{∗}).

More explicitly we have

K•(CP∞, ∗) = CP∞ × {∗} × · · · × {∗}
⋃
· · ·

⋃
{∗} × · · · × {∗} × CP∞

with the obvious identifications along the boundary.

When K is the disjoint union of m, vertices [GT] shows that U(K) is a wedge of
spheres. This leads to the following

Theorem 6.61. For ∗ > 3, π∗(
∨
mCP∞) ∼= π∗(

∨n
k=2(k − 1)

(
n
k

)
Sk+1).

Proof. The result follows from Lemma 6.60 combined with the fact that DJ(K) is a
deformation retract of BTZK and U(K) is a deformation retract of ZK .
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