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ON THE ALGEBRAIC CLASSIFICATION OF K-LOCAL SPECTRA

CONSTANZE ROITZHEIM

(communicated by Brooke Shipley)

Abstract
In 1996, Jens Franke proved the equivalence of certain trian-

gulated categories possessing an Adams spectral sequence. One
particular application of this theorem is that the K(p)-local sta-
ble homotopy category at an odd prime can be described as the
derived category of an abelian category. We explain this proof
from a topologist’s point of view.

1. Introduction

In 1985, Bousfield published a paper about the category of E(1)-local (or, equiv-
alently, K-local) spectra at an odd prime. There, he gave an algebraic description
of isomorphism classes of E(1)-local spectra in their homotopy category via E(1)-
homology and a certain “k-invariant” coming from a d2-differential in the Adams
spectral sequence. However, with this setup he could only describe the morphisms in
the E(1)-local stable homotopy category up to Adams filtration.

In 1996, Jens Franke constructed an abstract equivalence between certain trian-
gulated categories possessing an Adams spectral sequence. Applying Franke’s main
theorem to the special case of E(1)-local spectra, one obtains an algebraic description
of the homotopy category of E(1)-local spectra also covering the morphisms. In this
paper, we give a streamlined exposition of Franke’s result adapted to this special case:

Theorem (Franke). There is an equivalence of categories

R : D2p−2(B) −→ Ho(L1S),

where D2p−2(B) denotes the derived category of twisted chain complexes over the
abelian category B, and Ho(L1S) the homotopy category of E(1)-local spectra. Fur-
ther, there are natural isomorphisms

E(1)∗(R(C)) ∼=
2p−3⊕

i=0

Hi(C)[i].

This paper is organised as follows: In the first chapter, the categories playing the
main role for the construction are introduced: firstly, the category of so-called twisted
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chain complexes of E(1)∗E(1)-comodules and secondly, a certain diagram category
of spectra with a fixed diagram shape and a model structure related to the model
structure of E(1)-local spectra.

In the next section, a functorQ is constructed which gives an equivalence of twisted
chain complexes and the homotopy category of above diagram spectra. In the third
section this equivalence Q is extended to an equivalence of the derived category of
twisted chain complexes and the homotopy category of E(1)-local spectra. Further, as
Section 4 will show, this equivalence gives an “exotic model” for E(1)-local spectra:
the homotopy categories of the chain complexes and E(1)-local spectra are equivalent
as categories, yet there is no Quillen equivalence between them.

While we follow the overall structure of Franke’s argument, we supply new and
sometimes simpler proofs using methods which are more homotopy-theoretic. In par-
ticular, we show how this work is related to modern stable homotopy theory such as
rigidity questions first studied by Stefan Schwede in [Sch07] and later by the author
in [Roi07].

Acknowledgements

My special thanks go to Stefan Schwede and Sarah Whitehouse for their motivation
and support.

2. The main ingredients

2.1. E(1)∗E(1)-comodules
We begin with describing an abelian category denoted A, which is equivalent to

the category of E(1)∗E(1)-comodules [Bou85, 10.3]. Bousfield describes A as follows:
Let p be an odd prime and let B = B(p) denote the category of Z(p)-modules together
with Adams operations ψk, k ∈ Z∗(p), satisfying the following:

For each M ∈ B(p),

• There is an eigenspace decomposition

M ⊗Q ∼=
⊕

j∈Z
Wj(p−1)

such that for all w ∈Wj(p−1) and k ∈ Z(p):

(ψk ⊗ id)w = kj(p−1)w.

• For all x ∈M there is a finitely generated submodule C(x) containing x satis-
fying: for all m > 1 there is an n such that the action of Z∗(p) on C(x)

/
pmC(x)

factors through the quotient of (Z
/

(pn+1))∗ by its subgroup of order p− 1.

(Details can also be found in [CCW07].) To build the category A out of the above
category, we additionally need the following: Let T j(p−1) : B −→ B, j ∈ Z, denote the
following self-equivalence:

For all M ∈ B, T j(p−1)(M) = M as a Z(p)-module, but on T j(p−1)(M), the Adams
operation ψk now equals kj(p−1)ψk : M −→M for all k ∈ Z.
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Now an objectM∈ A is defined as a collection of modulesM = (Mn)n∈Z,Mn ∈ B,
together with isomorphisms

T p−1(Mn) −→Mn+2p−2 for all n ∈ Z.
In this paper we will often make use of the following: Let X be a spectrum. Then

the E(1)∗E(1)-comodule E(1)∗(X) is an object of A in the above sense by taking
Mn := E(1)n(X), and the operations ψk being the usual Adams operations.

From now on B will be viewed as the subcategory of A consisting of those objects
(Mn)n∈Z such that

Mn =

{
T j(p−1)M, if n = j(2p− 2)
0, else

for some module M as above.
This describes a so-called split of period 2p− 2 of A: B ⊂ A is a Serre class such

that
⊕

06i<2p−2

B −→ A

(Bi)06i<2p−2 7−→
⊕

06i<2p−2

Bi[i]

is an equivalence of categories, where [i] denotes the i-fold internal shift in the grading;
i.e., M [i]n = Mn−i.

Remark 2.1. There exists a similar splitting of period 2p− 2 for the category of
E(n)∗E(n)-comodules with arbitrary n and p odd. Moreover, the proof of the unique-
ness theorem will not only work for the case p odd and n = 1 but for all p and n
such that n2 + n < 2p− 2, i.e., when the maximal injective dimension of E(n)∗E(n)-
comodules is smaller than the splitting period [Fra96, Theorem 2.2.5].

2.2. Twisted chain complexes
In this section we describe the source of the equivalence to be constructed. Let B

and T be as before.

Definition 2.2. The category C2p−2(B) of twisted chain complexes is defined as fol-
lows:

The objects are chain complexes C∗ with Ci ∈ B for all i together with an isomor-
phism of chain complexes

αC : T (2p−2)(p−1)(C∗) −→ C∗[2p− 2] = C∗−2p+2.

The morphisms in this category are morphisms of chain complexes f : C∗ → D∗ that
are compatible with those isomorphims; i.e., the following diagram commutes

T (2p−2)(p−1)(C∗)
αC //

T (2p−2)(p−1)(f)

²²

C∗[2p− 2]

f [2p−2]

²²

T (2p−2)(p−1)(D∗)
αD // D∗[2p− 2].
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Such a chain complex C∗ is called injective if each Ci is injective in B. A morphism
in C2p−2(B) is called a quasi-isomorphism if it induces an isomorphim in cohomology.
C∗ is called strictly injective if it is injective and for each acyclic complex D∗, the
chain complex Hom∗

C2p−2(B)(D∗, C∗) is again acyclic.

Proposition 2.3 (Franke). There is a model structure on C2p−2(B) such that

• weak equivalences are the quasi-isomorphisms,

• cofibrations are the monomorphisms,

• fibrations are the degreewise split epimorphisms with strictly injective kernel.

Notation. D2p−2(B) denotes the derived category of C2p−2(B), i.e., the homotopy
category of this model category with respect to the above model structure.

2.3. Diagram categories of spectra
By a spectrum we mean the following: A spectrumX is a collection of simplicial sets

Xn for n > 0 together with morphisms of simplicial sets σn : ΣXn → Xn+1. A mor-
phism f : X → Y of spectra is a collection of morphisms fn : Xn → Yn of simplicial
sets that commute with the structure maps σn; i.e., σn ◦ Σfn = fn+1 ◦ σn [BF78]. Let
L1S denote the category of spectra together with the following model structure which
is a localisation of the Bousfield-Friedlander model structure: a map f : X −→ Y is

• a weak equivalence if E(1)∗(f) is an isomorphism in A,

• a cofibration if each gn : Xn

⋃
ΣXn−1

ΣYn−1 −→ Yn is a cofibration of simplicial

sets,

• a fibration if f has the right lifting property with respect to acyclic cofibrations.

(For a reference for this model structure, see e.g. the introduction of [Bou79].)
Note that Ho(L1S) is equivalent to the homotopy category of E(1)-local spectra.

By a poset we mean a partially ordered finite set. For a poset C, L1SC denotes the
category of C-shaped diagrams with values in L1S. For each c ∈ C and X ∈ L1SC , let
Xc denote the value of X at the vertex c. For example, taking the poset 1 = (0→ 1),
an object of L1S1 is determined by a morphism X0 −→ X1 in L1S.

For fixed C, there is a model structure on L1SC : A morphism f : X −→ Y of
diagrams is

• a weak equivalence if it is a vertexwise weak equivalence in L1S (i.e., fc : Xc →
Yc induces an isomorphism in E(1)-homology for each c ∈ C),

• a fibration if it is vertexwise a fibration in L1S,

• a cofibration if for all c ∈ C, Xc

∐
colimc′<c Xc′

Yc′ −→ Yc is a cofibration.

This gives L1SC the structure of a stable model category [DS95, 10.13]; thus
Ho(L1SC) is a triangulated category (see e.g. [Hov99]).
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From now on, C will be the poset consisting of elements βi and γi for i ∈ Z/
(2p−2)

such that βi > γi and βi > γi−1 for i ∈ Z/
(2p−2); i.e.,

β1 βi−1 βi . . . β2p−2

γ1

OO

. . .

==

γi−1

OO =={{{{{{{{
γi

OO
>>

γ2p−2.

OO
ll

So an object X of Ho(L1SC) is a diagram of spectra

Xβ1 Xβi−1 Xβi
. . . Xβ2p−2

Xγ1

OO

. . .

<<

Xγi−1

OO <<xxxxxxxx
Xγi

>>
OO

Xγ2p−2 .

ll
OO

N.B. It should be pointed out that we work in the homotopy category of a diagram
category of spectra and not with diagrams taking values in the homotopy category
of spectra.

In this particular case it is not too hard to characterise the fibrant and cofibrant
objects of L1SC :

• X ∈ L1SC is fibrant if and only if each Xβi , Xγi is fibrant in L1S;

• X ∈ L1SC is cofibrant if and only if each Xβi , Xγi is cofibrant in L1S and for
all i ∈ Z/

(2p−2),

Xγi−1 ∨Xγi −→ Xβi

is a cofibration in L1S.

2.4. Generalised E(1)∗-Moore spectra
Let us briefly recover the notion of E(1)∗-Moore spectra and their properties, as

established in [Bou85, 8.7 and 9.5]. They will provide a useful tool for the proofs in
the following sections.

Definition 2.4. Let i ∈ Z and M ∈ B[i]. A spectrum X ∈ Ho(L1S) is called an
E(1)∗-Moore spectrum of type (M, i) if E(1)∗(X) ∼= M .

The E(1)∗-Moore spectra satisfy the following properties:

• For each M ∈ B[i], an E(1)∗-Moore spectrum of type (M, i) exists and is unique
up to weak equivalence.

• For two Moore spectra X of type (M, i) and Y of type (N, i), E(1)∗-homology
induces an isomorphism

E(1)∗ : [X,Y ]L1S∗
∼=−→ HomB(M,N).

(Here, [A,B]E(1)
k denotes HomHo(L1S)(ΣkA,B).) Further, one can use the E(1)-

Adams spectral sequence to compute homotopy classes of morphisms between sums
of E(1)∗-Moore spectra.As the splitting index of B in A is larger than the injective
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dimension of B (i.e., p > 2), the Adams spectral sequence collapses and one obtains

Proposition 2.5 (Bousfield). Let k ∈ Z, Mi, Ni ∈ B[i], Xi and Yi Moore spectra of
type (Mi, i) and (Ni, i), respectively,

X =
2p−3∨

i=0

Xi and Y =
2p−3∨

i=0

Yi.

Then

[X,Y ]L1S
k
∼=

2⊕
s=0

Exts
B(E(1)∗(X), E(1)∗+s+k(Y )).

In particular,

[Xi, Yi]L1S
0
∼= HomB(Mi, Ni), [Xi, Yi]

L1S
1 = 0,

[Xi−1, Yi]
L1S
0
∼= Ext1B(Mi−1, Ni), [Xi−1, Yi]

L1S
1
∼= HomB(Mi−1, Ni).

3. The functor Q
3.1. Defining Q

We would now like to build twisted chain complexes out of diagrams of spectra.
Let X be an object of Ho(L1SC). The given morphism

pi : Xγi −→ Xβi

as a part of the diagram X induces a morphism in A
πi := E(1)∗(pi)[−i] : E(1)∗(Xγi)[−i] −→ E(1)∗(Xβi)[−i].

Notation. Gi(X) := E(1)∗(Xγi)[−i] and Bi(X) := E(1)∗(Xβi)[−i].

The objects Bi(X) will play the role of the boundaries in the chain complex C∗(X)
to be built, and the Gi(X)’s will play the role of the quotient of the chains by the
boundaries.

Now we would like to assign to each ki : Xγi−1 −→ Xβi ∈ Ho(L1S1) (see Section
1.5) an exact triangle

Xγi−1

ki−→ Xβi −→ cone(ki) −→ ΣXγi−1

in a functorial(!) way. This is done by using Franke’s cone functor

cone: Ho(L1S1) −→ Ho(L1S), (f : A→ B) 7→ Hocolim(∗ ← A
f→ B).

Notation. Define Ci(X) := E(1)∗(cone(ki))[−i] ∈ A.

Applying E(1)∗ to the above exact triangle we obtain a long exact sequence

· · · → Gi−1(X)[−1]→ Bi(X)→ Ci(X)→ Gi−1(X)→ Bi(X)[1]→ . . . . (1)
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Now let L be the full subcategory of Ho(L1SC) consisting of all objects X such
that:

• Gi(X) and Bi(X) are not just objects in A but actually objects in the splitting
B of A (see Section 1.1). This implies that Xγi

and Xβi
are E(1)∗-Moore spectra

of type (Gi(X), i) and (Bi(X), i), respectively.

• πi : Gi(X) −→ Bi(X) is surjective for all i.

So if X is an object of L, what does this mean for the long exact sequence (1)? If
X ∈ L, then by definition

Gi−1(X)[−1] ∈ B[−1] and Bi(X) ∈ B.
Therefore, by definition of B, the maps

Gi−1(X)[−1] −→ Bi(X) and Gi−1(X) −→ Bi(X)[1]

in the long exact sequence (1) are zero. Thus, (1) splits into short exact sequences

0 −→ Bi(X) ιi−→ Ci(X)
ρi−→ Gi−1(X) −→ 0. (2)

To make a chain complex out of the objects Ci(X), we need a differential
d : Ci(X) −→ Ci−1(X) which we define as the composition

Ci(X)
ρi−→ Gi−1(X)

πi−1−→ Bi1(X)
ιi−1−→ Ci−1(X). (3)

Then d2 is indeed zero since it factors over ρi−1 ◦ ιi−1, which is part of the short
exact sequence (2) and thus zero itself. The morphisms ρi and πi are surjective since
X ∈ L, so im(d) = B∗(X). Also, because of the shape of the underlying poset we
work with, C∗(X) is 2p− 2-twistperiodic. So this construction gives a functor

Q : L −→ C2p−2(B), X 7−→ C∗(X).

Theorem 3.1. The functor Q is an equivalence of categories.

The proof will follow in the next two subsections.

3.2. Q is full and faithful
Proposition 3.2. The functor Q is full and faithful.

Proof. We have to prove that for objects X and X̃ of L, the map

M := HomHo(L1SC)(X, X̃)
q−→ N (4)

with

N :=
⊕

i

HomB1

(
(Bi(X)→ Ci(X̃)), (Bi(X̃)→ Ci(X̃))

)

induced by Q is injective and its image consists of those morphisms that are mor-
phisms of chain complexes. A morphism f = (fi)i ∈ N is also a morphism of chain
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complexes if and only if it is compatible with the differentials, i.e. (remembering the
definition of d) if and only if it makes the outer square in the following diagram
commute.

Ci(X)
ρi //

fi

²²

Gi−1(X)
πi−1

//

fi

²²

Bi−1(X)
ιi−1

//

fi−1

²²

Ci−1(X)

fi−1

²²

Ci(X̃)
ρi // Gi−1(X̃)

πi−1
// Bi−1(X̃)

ιi−1
// Ci−1(X̃).

Since f ∈ N and Gi−1
∼= Ci

/
Bi, we know that the first and the third small square

commute. So, f is a morphism of chain complexes if and only if the middle small
square commutes, i.e. if and only if f lies in the kernel of the map

D : N −→
⊕

i

HomA
(
Gi(X), Bi(X̃)

)
,

where D sends f = (fi)i ∈ N to fi ◦ πi − πi ◦ f i+1, with f i : Gi−1(X)→ Gi−1(X̃)
induced by fi.

So, showing that Q is full and faithful is equivalent to showing that

0 −→M
q−→ N

D−→
⊕

i

HomA
(
Gi(X), Bi(X̃)

)
(5)

is exact. To show the exactness of (5), we would first like to get a description of M
and N in terms of some other exact sequences.

We start with M . A morphism of HomHo(L1SC)(X, X̃) consists of the following
data: the morphisms at each vertex plus commutativity conditions coming from the
shape of C. To be more precise, the mapping space mapL1SC (X, X̃) (see Section 5)
is the upper left corner of the following pullback square of mapping spaces

mapL1SC (X, X̃) //

²²

∏
i

mapL1S(Xβi , X̃βi)

²²∏
i

mapL1S(Xγi , X̃γi) //
∏
i

mapL1S(Xγi−1 , X̃βi)×
∏
i

mapL1S(Xγi , X̃βi),

where the lower left and upper right corner contain the information about the maps
at each vertex and the lower right corner plus the maps into it give the commutativity
conditions. The right vertical map is the precomposition with the maps

Xγi−1 ∨Xγi −→ Xβi , (6)

and the lower horizontal map is the composition with the maps

X̃γi −→ X̃βi , resp. X̃γi −→ X̃βi+1 .

Without loss of generality one can assume X to be cofibrant and X̃ to be fibrant (see
Section 1.3). Since (6) is then a cofibration for each i and L1S is a simplicial model
category [GJ99, II.3], the right vertical map in the pullback square is a fibration.
Therefore, the pullback square is a homotopy pullback square, and the left vertical
map is a fibration as well.
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From a homotopy pullback square one obtains a long exact homotopy sequence.
Since X is cofibrant and X̃ fibrant, we have as homotopy groups

πk mapL1S(Xγi
, X̃γi

) ∼= [Xγi
, X̃γi

]E(1)
k

(analogously for the other indices), and

π0 mapL1SC (X, X̃) = M ∼= HomHo(L1SC)(X, X̃).

Writing down the first five terms of the long exact homotopy sequence we obtain

⊕
i

[Xγi , X̃γi ]
E(1)
1 ⊕⊕

i

[Xβi , X̃βi ]
E(1)
1

²²⊕
i

[Xγi−1 , X̃βi ]
E(1)
1 ⊕⊕

i

[Xγi , X̃βi ]
E(1)
1

²²

M

²²⊕
i

[Xγi , X̃γi ]
E(1)
0 ⊕⊕

i

[Xβi , X̃βi ]
E(1)
0

²²⊕
i

[Xγi−1 , X̃βi ]
E(1)
0 ⊕⊕

i

[Xγi , X̃βi ]
E(1)
0 .

(7)

Next, we would like to simplify the terms of this sequence using the results of Sub-
section 2.4 for E(1)∗-Moore spectra. By definition of L, the spectra Xγi and Xβi are
E(1)∗-Moore spectra of type (Gi(X), i) and (Bi(X), i), respectively. Using Proposi-
tion 2.5, we have

[Xβi , X̃βi ]
E(1)
1 = 0 = [Xγi , X̃γi ]

E(1)
1 = [Xγi , X̃βi ]

E(1)
1

and

[Xβi , X̃βi ]
E(1)
0
∼= HomB(Bi(X), Bi(X̃)),

[Xγi , X̃γi ]
E(1)
0
∼= HomB(Gi(X), Gi(X̃)),

[Xγi , X̃βi ]
E(1)
0
∼= HomB(Gi(X), Bi(X̃)),

[Xγi−1 , X̃βi ]
E(1)
1
∼= HomB(Gi−1(X), Bi(X̃)),

[Xγi−1 , X̃βi ]
E(1)
0
∼= Ext1B(Gi−1(X), Bi(X̃)).
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Putting this into the sequence (7), we obtain the exact sequence

0

²²⊕
i

HomB(Gi−1(X), Bi(X̃))

²²

M

²²⊕
i

HomB(Gi(X), Gi(X̃))⊕⊕
i

HomB(Bi(X), Bi(X̃))

²²⊕
i

Ext1B(Gi−1(X), Bi(X̃))⊕⊕
i

HomB(Gi(X), Bi(X̃)).

(8)

Now we would like to find a similar description of

N =
⊕

i

HomB1

(
(Bi(X)→ Ci(X)), (Bi(X̃)→ Ci(X̃))

)
.

As mentioned before, morphisms in N can be viewed as morphisms of the short exact
sequences

0 // Bi(X) //

fi

²²

Ci(X) //

fi

²²

Gi−1(X) //

fi

²²

0

0 // Bi(X̃) // Ci(X̃) // Gi−1(X̃) // 0.

Thus, we get a canonical map

N −→ N ′ :=
⊕

i

HomB(Bi(X), Bi(X̃))⊕
⊕

i

HomB(Gi(X), Gi(X̃)) (9)

by sending f ∈ N to (fi, f i)i. The kernel of this map consists of morphisms of the
same exact sequences of the form

0 // Bi(X) //

0

²²

Ci(X) //

Φ

²²

Gi−1(X) //

0

²²

0

0 // Bi(X̃) // Ci(X̃) // Gi−1(X̃) // 0.

Every Φ of the form

Ci(X) −→ Gi−1(X)
φ−→ Bi(X̃) −→ Ci(X̃)

lies in the kernel of (10). From applying the snake lemma to the above diagram it
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also follows that every Φ in the kernel looks exactly like this. Therefore, the kernel of
(10) is isomorphic to

⊕
i

HomB(Gi−1(X), Bi(X̃)). Consequently,

0 −→
⊕

i

HomB(Gi−1(X), Bi(X̃)) −→ N −→ N ′ (10)

is exact.

The next question is: when is an element of N ′ hit by an element of N? In other
words, given fB : Bi(X)→ Bi(X̃) and fG : Gi−1(X)→ Gi−1(X̃), when is there a map
fC : Ci(X)→ Ci(X̃) making the following diagram commute?

0 // Bi(X) //

fB

²²

Ci(X) //

fC

²²

Gi−1(X) //

fG

²²

0

0 // Bi(X̃) // Ci(X̃) // Gi−1(X̃) // 0.

The upper sequence corresponds to an element S ∈ Ext1B(Gi−1(X), Bi(X)), the
lower one to an element S̃ ∈ Ext1B(Gi−1(X̃), Bi(X̃)). The maps fB and fG give rise
to maps

(fB)∗ : Ext1B(Gi−1(X), Bi(X)) −→ Ext1B(Gi−1(X), Bi(X̃)),

(fG)∗ : Ext1B(Gi−1(X̃), Bi(X̃)) −→ Ext1B(Gi−1(X), Bi(X̃)).

So for given fB and fG there is a morphism fC making the above diagram commute
if and only if (fB)∗(S) = (fG)∗(S̃). It follows that

0

²²⊕
i

HomB(Gi−1(X), Bi(X̃))

²²

N

²²

N ′ =
⊕
i

HomB(Bi(X), Bi(X̃))⊕⊕
i

HomB(Gi(X), Gi(X̃))

²²⊕
i

Ext1B(Gi−1(X), Bi(X̃))k

(11)

is exact, where the last map sends a pair (fB , fG) to (fB)∗(S)− (fG)∗(S̃). Putting
this sequence together with the sequence (9), we obtain
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0

²²

0

²²⊕
i

HomB(Gi−1(X), Bi(X̃))

a

²²

⊕
i

HomB(Gi−1(X), Bi(X̃))

b

²²

M

²²

q
// N

²²⊕
i

HomB(Bi(X), Bi(X̃))

⊕⊕
i

HomB(Gi(X), Gi(X̃))

²²

⊕
i

HomB(Bi(X), Bi(X̃))

⊕⊕
i

HomB(Gi(X), Gi(X̃))

²²

⊕
i

Ext1B(Gi−1(X), Bi(X̃))

⊕⊕
i

HomB(Gi(X), Bi(X̃))

pr
//
⊕
i

Ext1B(Gi−1(X), Bi(X̃)),

where the second horizontal arrow is the morphism induced by the functor Q and
the last one is the projection onto the first summand. One has to check that all the
squares actually commute, which they do.

Then, a small diagram chase shows that q is injective. Also, by construction of q,
in

0 −→M
q−→ N

D−→
⊕

i

HomA
(
Gi(X), Bi(X̃)

)
, (12)

the image of q lies in the kernel of D. With a slightly bigger diagram chase, it follows
that the image of q is the entire kernel of D.

This completes the proof that Q is full and faithful.

3.3. Q is essentially surjective
To complete the proof of Theorem 3.1, i.e. that

Q : L −→ C2p−2(B)

is an equivalence of categories, it is left to show that Q is essentially surjective; i.e.,
each C∗ ∈ C2p−2(B) is isomorphic to an object in the image of Q.

Proposition 3.3. The functor Q is essentially surjective.

Proof. So let C∗ be an object of C2p−2(B), and let B∗(C) denote the boundaries of
C∗ and G∗−1(C) = C∗

/
B∗ the quotient of C∗ by its boundaries. We know that in a
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potential preimage of C∗

Xβ1 Xβi−1 Xβi
. . . Xβ2p−2

Xγ1

OO

. . .

<<

Xγi−1

OO
ki

<<xxxxxxxx
Xγi

pi

OO
>>

Xγ2p−2

OO
ll

in L the vertices Xγi
and Xβi

have to be E(1)∗-Moore spectra of type (Gi(C), i)
and (Bi(C), i), respectively. (Remember that such E(1)∗-Moore spectra exist and are
unique up to weak equivalence.) Now we have to construct the correct morphisms

pi : Xγi
−→ Xβi

and ki : Xγi−1 −→ Xβi
.

The differential d of C∗ can be factored as

di : Ci
∂i−→ Bi−1(C)

ιi−1−→ Ci−1,

where ∂i is a surjection and ιi−1 the inclusion of the boundaries into the chains. Since
∂i(Bi+1(C)) = 0, we have a morphism πi : Gi(C) −→ Bi(C). From Subsection 2.4 we
know that

E(1)∗ : [Xγi , Xβi ]
L1S
0

∼=−→ HomB(Gi(C), Bi(C))

is an isomorphism, so let pi : Xγi −→ Xβi be the morphism pi = E(1)−1
∗ (πi). We also

know from Proposition 2.5 that

[Xγi−1 , Xβi ]
L1S
0
∼= Ext1B(Gi−1(C), Bi(C)). (13)

Let κi denote the class in Ext of the exact sequence

0 −→ Bi(C) ιi−→ Ci
ρi−→ Gi−1(C) −→ 0

and ki the corresponding morphism Xγi−1 −→ Xβi under the isomorphism (13).
With the above choices, the diagram X satisfies Q(X) ∼= C∗. This completes the

proof that Q is essentially surjective and consequently the proof of Theorem 3.1 that
Q is an equivalence of categories.

4. The reconstruction functor R
4.1. Defining R

In the last section we showed that

Q : L −→ C2p−2(B)

is an equivalence of categories. To prove the main theorem, we would like to build an
equivalence of categories

R : D2p−2(B) = Ho(C2p−2(B)) −→ Ho(L1S)

with the help of Q. Define

R′ := Hocolim ◦ Q−1 : C2p−2(B) −→ Ho(L1SC) −→ Ho(L1S).

We would like to show that R′ factors over the derived category of C2p−2(B). This
will give us the desired reconstruction functor R. We will show in this section that it
is an equivalence of categories.
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However, we first look at some properties of

E(1)∗ ◦ R′ : C2p−2(B) −→ A.

Lemma 4.1.

E(1)∗(HocolimCX) ∼=
⊕

i

Hi(Q(X))[i].

Proof. By definition,

HocolimCX = colimCX
cof ,

where Xcof denotes a cofibrant replacement of X ∈ L1SC . Now let us look at the
colimit of a diagram

Xβ1 Xβi−1 Xβi
. . . Xβ2p−2

Xγ1

OO

. . .

<<

Xγi−1

OO <<xxxxxxxx
Xγi

OO
>>

Xγ2p−2 .

OO
ll

We have morphisms

Xγi ∨Xγi−1 −→ Xβi

for each i. Taking the wedge sum of those morphisms for even i, one obtains a mor-
phism

2p−2∨

i=1

Xγi −→
∨

i even

Xβi ,

and simultaneously, for odd i,

2p−2∨

i=1

Xγi −→
∨

i odd

Xβi .

The colimit of the diagram X is the same as the colimit of the following diagram

∨

i odd

Xβi ←−
2p−2∨

i=1

Xγi −→
∨

i even

Xβi ;

i.e., the colimit of X is the pushout of the upper left corner in

2p−2∨
i=1

Xγi

²²

//

∨
i even

Xβi

²²∨
i odd

Xβi // colimCX.

Without loss of generality, let X be cofibrant, so that the colimit of X models the
homotopy colimit. Then the left vertical and upper horizontal maps in the square are
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cofibrations, and the pushout diagram is also a homotopy pushout diagram. Therefore,
2p−2∨

i=1

Xγi
→

∨

i odd

Xβi
∨

∨

i even

Xβi
∼=

2p−2∨

i=1

Xβi
→ HocolimCX → Σ

( 2p−2∨

i=1

Xγi

)

is an exact triangle in Ho(L1S). Applying E(1)-homology, one obtains a long exact
sequence

· · ·
⊕

i

E(1)n(Xγi
)→

⊕

i

E(1)n(Xβi
)→ E(1)n(HocolimCX)

→
⊕

i

E(1)n−1(Xγi
)→

⊕

i

E(1)n−1(Xβi
) . . . . (14)

The map

⊕πi[i+ 1] :
⊕

i

E(1)n−1(Xγi)→
⊕

i

E(1)n−1(Xβi)

is surjective for all n by assumption since X ∈ L, so
⊕

i

E(1)n(Xγi) −→ E(1)n(HocolimCX)

is the zero map. So we get a short exact sequence in A

0→ E(1)∗(HocolimCX) −→
⊕

i

E(1)∗−1(Xγi)
⊕πi[i+1]−−−−−−→ E(1)∗−1(Xβi)→ 0.

Therefore,

E(1)∗(HocolimCX) ∼=
⊕

i

ker(πi)[i+ 1].

Now we prove that ker(πi) is isomorphic to Hi+1(Q(X)). Let us remember how
the differential d of C∗(X) = Q(X) had been defined (see Section 2.1). Here is d2:

Ci(X)
ρi−→ Gi−1(X)

πi−1−→ Bi−1(X)
ιi−1−→ Ci−1(X)

ρi−1−→ Gi−2(X)
πi−2−→ Bi−2(X)

ιi−2−→ Ci−2(X).

We have im(ιi−1) = ker(ρi−1) since they are part of the short exact sequence (2).
Since ρi and πi−1 are surjective, im(d) = im(ιi−1). We also have

ker(d) = ker(πi−2 ◦ ρi−1).

By basic algebra,

ker(πi−2) ∼= ker(πi−2 ◦ ρi−1)
ker(ρi−1)

∼= ker(d)
im(ιi−1)

∼= ker(d)
im(d)

∼= Hi−1(Q(X)).

It follows that

E(1)∗(HocolimCX) ∼=
⊕

i

Hi(Q(X))[i].

Because of the lemma we now see that the functor E(1)∗ ◦ R′ sends weak equiv-
alences (i.e. quasi-isomorphisms) in C2p−2(B) to isomorphisms in A and thus factors
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over D2p−2(B) = Ho(C2p−2(B)). In other words, for C∗, D∗ quasi-isomorphic chain
complexes we get

E(1)∗(R′(C∗)) ∼=
⊕

i

Hi(C∗)[i] ∼=
⊕

i

Hi(D∗)[i] ∼= E(1)∗(R′(D∗)).

However, two objects of Ho(L1S) are isomorphic if and only if there is a morphism
of spectra inducing an isomorphism in E(1)-homology, so R′(C∗) ∼= R′(D∗) for quasi-
isomorphic C∗ and D∗, and consequently R′ itself factors over the derived category
D2p−2(B). So we have obtained a functor

R : D2p−2(B) −→ Ho(L1S).

4.2. The main theorem
Theorem 4.2. R is an equivalence of categories.

Proof. First again, we prove that R is full and faithful; i.e., for

C1
∗ , C

2
∗ ∈ D2p−2(B),

the map

r : HomD2p−2(B)(C1
∗ , C

2
∗) −→ [R(C1

∗),R(C2
∗)]

E(1)

induced by R is an isomorphism.
To show this, we once more make use of the Adams spectral sequence [Fra96,

2.1.1]

Es,t
2 = Exts

A
( ⊕

i

Hi(C1
∗)[i+ t],

⊕

i

Hi(C2
∗)[i]

)
⇒ Homt−s

D2p−2(B)(C
1
∗ , C

2
∗), (15)

where C1
∗ , C

2
∗ ∈ D2p−2(B). This spectral sequence arises as follows: We begin with an

injective resolution of
⊕
i

Hi(C2
∗)[i]:

⊕
Hi(C2

∗)[i]
Â Ä // I0

d1 //

²²²²

I1
d2 //

²²²²

I2 // 0.

im(d1)
, ¯

::uuuuuuuuuu
im(d2)

- °

<<yyyyyyyyy

(16)

(This resolution stops at I2 since the injective dimension of an object in A is at
most 2.)

This resolution gives rise to an Adams resolution

C2
∗ = C2

(0)

²²

C2
(1)

oo

²²

C2
(2)

oo

²²

0.oo

EI0

+

::uuuuuuuuuu
EI1

+

==zzzzzzzz
EI2

+

>>~~~~~~~~

(17)
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The Adams resolution is characterised by the following: First, by applying
⊕

i

Hi(−)[i]

to the diagram

C2
∗ = C2

(0)
// EI0 //

²²

EI1 //

²²

EI2 // 0,

C
(1)
2

=={{{{{{{{

C
(2)
2

>>||||||||

(18)

one obtains exactly the diagram (16). Besides, each triangle in (17) is an exact triangle
in D2p−2(B) (the diagonal maps are maps raising the degree by one). Further, EI

denotes the Eilenberg-MacLane object for I ∈ A; i.e.,

HomA(
⊕

i

Hi(C∗)[i], I) ∼= HomD2p−2(B)(C∗, EI) for all C∗ ∈ D2p−2(B),

and for C∗ = EI , the image of the identity in

HomA(
⊕

i

Hi(EI)[i], I)

is an isomorphism. (Note that by Lemma 2.1.1 of [Fra96], C2
(2) is indeed an Eilenberg-

MacLane object for I2!) Applying HomD2p−2(B)(C1
∗ ,−) to the resolution (17) gives

an exact couple, and with it the desired spectral sequence.
We now apply the reconstruction functor R to (17) and claim that the result

R(C2) = R(C2
(0))

²²

R(C2
(1))oo

²²

R(C2
(2))oo

∼=
²²

0oo

R(EI0)

+

77ooooooooooo
R(EI1)

+

99ttttttttt
R(EI2)

+

<<zzzzzzzzzz

(19)

is an Adams resolution for R(C∗2 ) with respect to E(1)-homology.
We have to prove the following:
• applying E(1)∗ to (19) gives an injective resolution of E(1)∗(R(C2

∗)),
• each triangle in (19) is exact,
• R(EI) is again an Eilenberg-MacLane object in Ho(L1S).
The first point is clear after Lemma 4.1, which says that

E(1)∗(R(C∗)) ∼=
⊕

i

Hi(C∗)[i].

To prove the second point we make use of the following fact without giving the details
of its proof:

Let C0
∗ → C1

∗ → C2
∗ → C0

∗ [1] be an exact triangle in D2p−2(B) with H∗(C0
∗)→

H∗(C1
∗) a monomorphism. Then

R(C0
∗)→R(C1

∗)→R(C2
∗)→R(C0

∗ [1])

is an exact triangle in Ho(L1S).
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Using Lemma 4.1 again, we see that the vertical arrows in (17) give monomor-
phisms in cohomology. So, applying the above fact, we have that the triangles in (17)
are indeed exact.

To show thatR(EI) is again an Eilenberg-MacLane object in Ho(L1S) for injective
I ∈ A, we have to show that

HomA(E(1)∗(X), I) ∼= [X,R(EI)]E(1) for all X ∈ Ho(L1S).

We know that
E(1)∗(R(EI)) ∼=

⊕

i

Hi(EI)[i] ∼= I,

so R(EI) has injective E(1)-homology.
Now we look at the classical Adams spectral sequence

Es,t
2 = Exts

A(E(1)∗(X)[t], E(1)∗(R(EI))) = Exts
A(E(1)∗(X)[t], I)

⇒ [X,R(EI)]
E(1)
t−s

for X ∈ Ho(L1S). Since I is injective in A, the Ext-term vanishes unless s = 0, so the
spectral sequence collapses, and

Ext0A(E(1)∗(X)[t], I) = HomA(E(1)∗(X)[t], I) ∼= [X,R(EI)]
E(1)
t

as desired.
Applying [R(C1

∗),−]E(1) to (19) gives an exact couple leading to the Adams spec-
tral sequence

Es,t
2 = Exts

A(E(1)∗(R(C1
∗))[t], E(1)∗(R(C2

∗)))⇒ [R(C1
∗),R(C2

∗))]
E(1)
t−s .

So R induces a morphism of exact couples that is also an isomorphism on the
E1-terms

r : Homt
D2p−2(B)(C

1
∗ , EIs) −→ [R(C1

∗),R(EIs)]E(1)
t .

By definition of an Eilenberg-MacLane object, the left side is isomorphic to

Homt
A(

⊕

i

Hi(C1
∗)[i], I

s).

Since R(EIs) is an Eilenberg-MacLane object with respect to E(1)∗, the right side is
isomorphic to

Homt
A(E(1)∗(R(C∗1 )), Is).

So because of Lemma Lemma 4.1, the two sides are isomorphic. It follows that r is an
isomorphism on the targets of the spectral sequences, and thus, R is full and faithful.

Now it remains to show that R is essentially surjective. Let Y be an object of
Ho(L1S) and let

Y = Y (0)

²²

Y (1)oo

²²

Y (2)oo

∼=
²²

0oo

EI0

+

99tttttttttt
EI1

+

<<xxxxxxxx
EI2

+

>>}}}}}}}}

(20)

be an Adams resolution for Y . First, we show that all Eilenberg-MacLane objects
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EI ∈ Ho(L1S) lie in the essential image of R: Let EI be the Eilenberg-MacLane
object for I in D2p−2(B). We already showed that R(EI) is an Eilenberg-MacLane
object for I in Ho(L1S), and thus, EI ∼= R(EI), so EI lies in the essential image of R.

Next, we would like to show that Y lies in the essential image. We start
with showing this for Y (1). We know that there are Eilenberg-MacLane objects
EI1 , EI2 ∈ D2p−2(B) such that R(EI1) ∼= EI1 and R(EI2) ∼= EI2 . We started with an
injective resolution

E(1)∗(Y )→ I0 → I1 → I2 → 0

for E(1)∗(Y ) ∈ A. Using Lemma 4.1, this resolution equals

E(1)∗(Y )→
⊕

i

Hi(EI0)[i] d1

→
⊕

i

Hi(EI1)[i] d2

→
⊕

i

Hi(EI2)[i]→ 0 (21)

with Eilenberg-MacLane objects in D2p−2(B) as above. We take those Eilenberg-
MacLane objects and complete them to an exact triangle

EI2 → D∗ → EI1 → EI2 [1] (22)

in D2p−2(B). Applying ⊕

i

Hi(−)[i]

to this triangle gives rise to a long exact sequence in A. Since d2 in (21) is a surjec-
tion, the third morphism in this triangle induces a surjection in cohomology as well.
Consequently, the second morphism D → EI1 must give an injection in cohomology.
So we can apply the formerly stated fact that in this case,

R(EI2)→R(D∗)→R(EI1)→R(EI2 [1])

is an exact triangle in Ho(L1S).
Consider

EI2 //

∼= R
²²

Y (1) //

²²

EI1 //

∼= R
²²

ΣEI2

∼= R
²²

R(EI2) // R(D∗) // R(EI1) // R(EI2 [1])

with the upper row being an exact triangle coming from (20). The third square
commutes since R is full. By the axioms of a triangulated category there exist a
morphism Y (1) →R(D∗) making the whole diagram commute. By the 5-lemma, this
is an isomorphism; thus Y (1) ∼= R(D∗), and so Y (1) lies in the essential image of R.
Similarly, this also follows for Y , which completes the proof that R is an equivalence
of categories.

Corollary 4.3. R preserves the Adams filtration.

Remark 4.4. Nora Ganter recently proved in [Gan07] that, for the case of E(1)-local
spectra, R is not just an equivalence of categories but R also carries tensor products
of chain complexes into smash products of spectra. (This is not known to be true for
arbitrary n with n2 + n < 2p− 2.)
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5. A further application

As proved, R provides an equivalence of triangulated categories which also happen
to be homotopy categories of model categories. The next question now is if D2p−2(B)
and Ho(L1S) are equivalent as categories, can their model structures also be positively
compared; i.e., is there a Quillen equivalence between them? The answer to that is
remarkable:

Proposition 5.1. The categories D2p−2(B) and Ho(L1S) are not Quillen equivalent.
In particular, R is not derived from a Quillen equivalence.

Proof. To prove this, we compare the homotopy types of certain mapping spaces for
each category. Let us first collect the necessary definitions. For a pointed simplicial
model category C, there is a mapping space functor

mapC(−,−) : Cop × C −→ sSet*

to the category of pointed simplicial sets satisfying

mapC(X,Y )0 = HomC(X,Y )

for all X,Y ∈ C and certain adjointness properties [GJ99, II.2.1]. However, C2p−2(B)
is not a simplicial category. The next best thing we can achieve for an arbitrary
pointed model category C is a notion of a mapping space that is well-defined up to
homotopy, which will do for our purposes.

To achieve this, we look at the category C∆ of cosimplicial objects in C and view
X as a constant object in C∆. The category C∆ of cosimplicial objects in a model
category C can be given a model structure, the so-called Reedy model structure. For
details of this, see [Hov99, Section 5.2]. We now define a special replacement of X
in C∆, a so-called frame. To do this, we first need the following:

Definition 5.2. Via the methods of [Hov99, Remark 5.2.3 and Example 5.2.4], there
are functors l•, r• : C −→ C∆ with the following properties:

Let X ∈ C:
• the nth level space of the object l•X is the n+ 1-fold coproduct of A;

• l• : C −→ C∆ is a left adjoint to the evaluation functor ev0 : C∆ −→ C that sends
A• to A•[0];

• the nth level space of the object r•X is X itself;

• r• : C −→ C∆ is a right adjoint to ev0 : C∆ −→ C.

Remark 5.3. One can prove that r• is the constant cosimplicial functor. There is a
natural transformation l• −→ r• that is the identity in degree zero and the fold map
in higher degrees.

With these functors, we can now define cosimplicial frames:

Definition 5.4. Let C be a model category, X an object of C. A cosimplicial frame
for X is a cosimplicial object X• ∈ C∆ together with a factorisation of the map
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l•X −→ r•X in C∆
l•X // // X• ∼ // r•X,

where the weak equivalence X• ∼−→ r•X in degree zero induces a weak equivalence
in C.

For the existence of such framings, see [Hov99, Theorem 5.2.8].
We now use this definition to define mapping spaces:

Definition 5.5. Let X,Y be objects of C, X• a cosimplicial frame for X and

Y // ∼ // Y fib // // ∗

a factorisation of Y → ∗. Then the (left) mapping space for X and Y is defined via

mapC(X,Y ) := C(X•, Y fib) ∈ sSet*,

where C(X•, Y fib) is the simplicial set with

C(X•, Y fib)n := HomC(X•[n], Y fib).

However, it is not clear whether this definition actually deserves to be called a
definition since it depends on two choices: firstly, the cosimplicial frame for X and
secondly, the fibrant replacement for Y . So, for this definition to make sense we need
the following:

Lemma 5.6. Let X•
1 , X

•
2 be two cosimplicial frames for cofibrant X in C, and let

Y fib
1 , Y fib

2 be two fibrant replacements for Y . Then

C(X•
1 , Y

fib
1 ) ' C(X•

2 , Y
fib
2 )

in sSet*.

Proof. First, let X•
1 and X•

2 be two cosimplicial frames for X. By definition, the
frames X•

1 and X•
2 are linked by a zig-zag of weak equivalences

X•
1

∼−→ r•X ∼←− X•
2 .

For fibrant Y , the functor C(−, Y ) preserves weak equivalences [SS02, Lemma 6.3],
so for fibrant Y and X•

1 , X•
2 as above, we have

C(X•
1 , Y ) ' C(X•

2 , Y ).

For the second part we quote [Hov99, Corollary 5.4.4], which says that for cofi-
brant X in C, the functor

C(X•,−) : C −→ sSet*

preserves fibrations and acyclic fibrations, in particular between fibrant objects. So
Ken Brown’s lemma applies [Hov99, Lemma 1.1.12], and it follows that C(X•,−)
takes weak equivalences between fibrant objects in C to weak equivalences in sSet*,
which proves the claim of our lemma.

Now we look at the behaviour of mapping spaces under Quillen functors and
Quillen equivalences.



410 CONSTANZE ROITZHEIM

Lemma 5.7. Let L : C À D : R be a Quillen equivalence, X,X ′ ∈ C both cofibrant.
Then

mapC(X,X
′) ∼= mapD(LX,LX ′)

in Ho(sSet*).

Proof. First of all, let L : C À D : R be a Quillen adjoint functor pair, X ∈ C and
Y ∈ D. Then

mapD(LX, Y ) = D((LX)•, Y fib)

by definition. Since L is a left Quillen functor, L(X•) ∈ D∆ is also a cosimplicial
frame for LX [Hov99, Lemma 5.6.1], so

D((LX)•, Y fib) ∼= D(L(X•), Y fib)

by Lemma 5.6. By adjointness,

HomD(L(X•)[n], Y fib) ∼= HomC(X•[n], R(Y fib)),

so

D(L(X•), Y fib) ∼= C(X•, R(Y fib)).

Since R is a right Quillen functor, R(Y fib) is a fibrant replacement for RY . Conse-
quently by Lemma 5.6,

C(X•, R(Y fib)) ' C(X•, (RY )fib) = mapC(X,RY ).

Thus, altogether we have

mapC(X,RY ) ' mapD(LX, Y ). (23)

Next, let L : C À D : R be a Quillen equivalence and X ′ ∈ C cofibrant. Then

LX ′ ∼−→ (LX ′)fib

is a weak equivalence in D with cofibrant source and fibrant target, so by definition
of a Quillen equivalence, the adjoint map

X ′ ∼−→ R((LX ′)fib)

is a weak equivalence in C. Since R is a right Quillen functor, R((LX ′)fib) is fibrant
in C. Consequently, R((LX ′)fib) is a fibrant replacement for X ′ in C. By Lemma 5.6
and the above adjointness result for mapping spaces (23), it follows that

mapC(X,X
′) ' mapC(X,R((LX ′)fib)) ' mapD(LX,LX ′)

in sSet* which proves the lemma.

Now we return to our special case: We will see that for all C,D ∈ C2p−2(B),
mapC2p−2(B)(C,D) is weakly equivalent to a product of Eilenberg-MacLane spaces.
However, the mapping space mapL1S(S0, S0) is not a product of Eilenberg-MacLane
spaces, so as a consequence of Lemma 5.7, there is no Quillen equivalence between
those two model categories which was the claim of the proposition.
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The category C2p−2(B) is abelian, so for all C,D ∈ C2p−2(B), the n-simplices of
mapC2p−2(B)(C,D),

C(C•, Dfib)n = Hom(C•[n], D),

form an abelian group, and the simplicial structure maps are group homomorphisms;
thus

C(C•, Dfib) = mapC2p−2(B)(C,D)

is not just a simplicial set but a simplicial abelian group. From Proposition III.2.20
of [GJ99], it follows that

mapC2p−2(B)(C,D) ∼=
∏

n>0

K(πn mapC2p−2(B)(C,D)n, n),

where K(G,n) denotes the nth Eilenberg-MacLane space for the abelian group G.
However, there are spectra for which the mapping spaces over L1S are not products

of Eilenberg-MacLane spaces, for example,

mapL1S(S0, S0) ∼= QL1S
0 = colimn ΩnL1S

n.

Thus, C2p−2(B) and L1S cannot be Quillen equivalent and C2p−2(B) provides an
exotic model for L1S.

So we have seen that C2p−2(B) provides an exotic model for Ho(L1S). For the sta-
ble homotopy category itself such exotic models do not exist, as proved by Schwede
in [Sch07]. At the prime 2, the author has shown in that the E(1)-local stable homo-
topy category cannot have an exotic model, either [Roi07]. However, this is not
true for the chromatic localisations of the stable homotopy category in the cases
n2 + n < 2p− 2 (shown here explicitly for n = 1). It is not yet known how many such
exotic models exist and what can be said about the other chromatic localisations.
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