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STRONG EXCISION AND STRONG SHAPE INVARIANCE ARE
EQUIVALENT FOR HOMOLOGY THEORIES ON THE

CATEGORY OF COMPACT METRIC PAIRS

PETER MROZIK

(communicated by Brooke Shipley)

Abstract
In 1960, Milnor gave an axiomatic characterization of Steen-

rod homology as an ordinary homology theory on the category
of compact metric pairs satisfying the strong excision axiom and
the cluster axiom. The subject of this paper is to explore the
role of the strong excision axiom on its own. It is proved that for
any homology theory on the category of compact metric pairs
strong excision is equivalent to strong shape invariance.

1. Introduction

Let CM2 be the category of compact metric pairs and continuous maps of pairs.
The category CM of compact metric spaces and continuous maps will be regarded
as a full subcategory of CM2 by identifying the pair (X, ∅) with the space X. Let
R : CM2 → CM be the restriction functor (R(X,A) = A), and let Ab be the cat-
egory of abelian groups. A homology theory on CM2 is a collection of covariant
functors Hn : CM2 → Ab and natural transformations ∂ : Hn+1 → Hn ◦R, n ∈ Z,
satisfying the axioms of homotopy invariance, exactness and excision.

In 1960 Milnor [9] showed that (ordinary) Steenrod homology can be characterized
uniquely as a homology theory satisfying the dimension axiom, the strong excision
axiom (SE) and the cluster axiom (C):

(SE) For each compact metric pair (X, A) with A 6= ∅, the quotient map

p : (X, A) → (X/A, ∗)
induces isomorphisms p∗ : Hn(X, A) → Hn(X/A, ∗) for all n ∈ Z.

(C) For each sequence (Xi, ∗), i ∈ N, of pointed compact metric spaces, the pro-
jections pk : Cl∞i=1(Xi, ∗) → (Xk, ∗) defined on the cluster Cl∞i=1(Xi, ∗) induce iso-
morphisms

πn : Hn(Cl∞i=1(Xi, ∗)) →
∞∏

i=1

Hn(Xi, ∗)

for all n ∈ Z.
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Remark 1.1. The concept of strong excision appeared first in 1952 in [12]. In [12]
Wallace proved that Alexander cohomology has the so-called map excision property.
This property is now better known under the name relative homeomorphism axiom
(RH). In its homological version on CM2 it says the following:

(RH) Each relative homeomorphism h : (X,A) → (Y, B) between compact metric
pairs induces isomorphisms h∗ : Hn(X, A) → Hn(Y, B) for all n ∈ Z.

Recall that a map of pairs h : (X, A) → (Y,B) is a relative homeomorphism if h
maps X\A homeomorphically onto Y \B. On CM2, (RH) and (SE) are obviously
equivalent. In Milnor’s original paper [9], (RH) appears instead of (SE).

In the almost 50 years since Milnor’s axiomatic characterization of Steenrod homol-
ogy a lot of work has been done to generalize his result. See e.g. [2, 3, 5], especially
Bauer’s papers [2, 3], which led to a deeper understanding of so-called generalized
Steenrod homology theories and their relation to strong shape theory. In particular,
Bauer showed that each homology theory, which is represented by a CW-spectrum
with certain mild connectivity properties and which satisfies the strong excision axiom
and the cluster axiom, extends over the strong shape category of compact metric pairs.
For instance, this applies to all generalized Steenrod homology theories.

Thus, roughly speaking, the strong excision axiom and the cluster axiom together
imply strong shape invariance. However, this leaves the question which property it
is precisely that forces a homology theory to be strong shape invariant. One might
be tempted to think that the cluster axiom, which is a weak continuity property
allowing a simple form of approximation of spaces, could be the reason. But it turns
out, perhaps surprisingly, that it is the strong excision axiom on its own which is
equivalent to strong shape invariance. See Theorem 2.3 below.

2. The strong excision axiom and strong shape invariance

We assume that the reader is familiar with strong shape theory (see e.g. [1, 7]). Let
SSh2 be the strong shape category of compact metric pairs and S : CM2 → SSh2

be the strong shape functor. The category SSh2 is perhaps not as well-known as
the strong shape category SSh of compact metric spaces. Fortunately, all we have
to know about it here are the following two facts:

Fact 1. The functor S : CM2 → SSh2 localizes CM2 at the class of strong shape
equivalences of pairs of compact metric spaces.

Fact 2. A map of pairs f : (X,A) → (Y, B) is a strong shape equivalence of pairs if
and only if the absolute map f : X → Y and the restriction R(f) : A → B are strong
shape equivalences of compact metric spaces.

Concerning Fact 1 see the Appendix. For Fact 2 see [6] (cf. also [7, Theorem 10]).

Definition 2.1. A homology theory (Hn, ∂) on CM2 is called strong shape invariant
if it satisfies the following axiom:

(SSI) For each strong shape equivalence of pairs f : (X, A) → (Y, B), the induced
morphisms f∗ : Hn(X, A) → Hn(Y,B) are isomorphisms for all n ∈ Z.

Remark 2.2. As a consequence of Fact 1, (SSI) is equivalent to the existence of covari-
ant functors hn : SSh2 → Ab such that Hn = hn ◦ S for all n ∈ Z. These functors
hn are of course uniquely determined.
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Theorem 2.3. A homology theory (Hn, ∂) on CM2 is strong shape invariant if and
only if it satisfies the strong excision axiom.

Proof. 1) Let (Hn, ∂) satisfy the strong excision axiom. It is known from [10] that
the strong shape functor S : CM → SSh localizes CM at the class of cylinder
base embeddings. Recall from [10] that a closed subspace B of a compact metric
space C is called a cylinder base if C\B ≈ X × (0, 1] for some compact metric space
X. Consider such a cylinder base B ⊂ C. By strong excision we have isomorphisms
p∗ : Hn(C,B) → Hn(C/B, ∗) for all n ∈ Z. But C/B is nothing but the cone CX on
X. This implies Hn(C/B, ∗) = Hn(CX, ∗) = 0. Hence Hn(C, B) = 0. The long exact
sequence of the pair (C, B)

→ Hn+1(C, B) → Hn(B) → Hn(C) → Hn(C,B) →
shows then that inclusion induces isomorphisms Hn(B) → Hn(C) in all dimensions.
That is, the absolute functors Hn : CM → Ab take cylinder base embeddings to
isomorphisms. Therefore the absolute functors Hn expand uniquely to functors
hn : SSh → Ab such that Hn = hn ◦ S for all n ∈ Z. A fortiori the absolute functors
Hn take all strong shape equivalences to isomorphisms. Next consider a strong shape
equivalence of pairs f : (X, A) → (Y, B). By Fact 2, the absolute map f : X → Y
and the restriction R(f) : A → B are strong shape equivalences of compact metric
spaces. The long exact sequences of the pairs (X, A) and (Y, B) and the induced
morphisms f∗ : Hn(X,A) → Hn(Y, B), f∗ : Hn(X) → Hn(Y ), and R(f)∗ : Hn(A) →
Hn(B) form an infinite commutative diagram. Now, f∗ : Hn(X) → Hn(Y ) and
R(f)∗ : Hn(A) → Hn(B) are isomorphisms. The Five Lemma shows then that all
f∗ : Hn(X, A) → Hn(Y, B) are isomorphisms. This means that (Hn, ∂) is strong shape
invariant.

2) Let (Hn, ∂) be strong shape invariant. Consider a pair (X, A) with A 6= ∅. Let
CA be the cone on A, where A is identified with the base of CA. It is well-known that
the inclusion i : (X,A) → (X ∪ CA, CA) induces isomorphisms in homology (this is
a consequence of ordinary excision). The quotient map

q : (X ∪ CA,CA) → ((X ∪ CA)/CA, ∗) = (X/A, ∗)
is a strong shape equivalence of pairs (recall Fact 2 and apply [7, Corollary 10.8]).
This implies that the quotient map p : (X,A) → (X/A, ∗) induces isomorphisms in
homology since p = q ◦ i. This means that (Hn, ∂) satisfies the strong excision
axiom.

Remark 2.4. Of course, Theorem 2.3 has a version for cohomology. Details can safely
be left to the reader.

As a final application we observe that the homology theory ε∗ which has been
constructed by Brown, Douglas and Fillmore [4] satisfies the strong excision axiom.

Corollary 2.5. The homology theory ε∗ is strong shape invariant.

Remark 2.6. Bauer has shown that ε∗ is naturally isomorphic to strong shape BU∗-
homology on the category of finite-dimensional compact metric spaces. Whether this
is true for all compact metric spaces remains open.
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Appendix A. Representing SSh2 as a quotient category

It is well-known that in the absolute case the strong shape functor S : CM → SSh
localizes CM at the class of strong shape equivalences (see e.g. [7, §10.7]). This is
also true for pairs (Fact 1), but it seems that there is no reference in the literature.
The Appendix is therefore devoted to supply a proof of Fact 1. We only give a sketch
since for pairs everything works completely analogous to the absolute case where all
the necessary steps have been published in detail.

There are various different constructions of the strong shape category SSh (yield-
ing isomorphic categories when restricted to compact metric spaces). All these con-
structions have analogues for pairs, but not all of them have been presented in the
literature. As the standard construction of SSh2 we can regard that of [7, §8.2] (see
also [8]). The morphisms (X,A) → (Y, B) in SSh2 are determined by coherent homo-
topy classes of coherent maps between cofinite strong HPol2-expansions of (X, A)
and (Y,B) (cf. [7, Remark 7.20]). For compact metric pairs one can choose these
HPol2-expansions to be inverse sequences of compact polyhedral pairs whose inverse
limit is (X, A) resp. (Y,B).

For our purposes it will be convenient to work with the Quigley strong shape
category of compact metric pairs which we shall denote by QSSh2 (see [11] for the
absolute case). The objects of QSSh2 are all compact pairs (X, A) such that X ⊂ Q,
where Q is the Hilbert cube. To define morphisms, we proceed as follows.

A map ϕ : Q× (0, 1] → Q is called an approaching map from (Q,X, A) to (Q,Y, B),
written as ϕ : (Q,X, A) ⇒ (Q,Y, B), if each pair of neighbourhoods (V, V ′) of (Y,B)
in Q admits a pair of neighbourhoods (U,U ′) of (X, A) in Q and an ε > 0 such that
ϕ((U,U ′)× (0, ε]) ⊂ (V, V ′). An approaching homotopy between approaching maps is
defined in the obvious way as an approaching map

φ : (Q,X,A)× I = (Q× I,X × I, A× I) ⇒ (Q,Y,B),

i.e. a map φ : Q× I × (0, 1] → Q such that each pair of neighbourhoods (V, V ′) of
(Y, B) in Q admits a pair of neighbourhoods (U,U ′) of (X,A) in Q and an ε > 0 such
that φ((U,U ′)× I × (0, ε]) ⊂ (V, V ′); cf. [7, 10, 11].

The set of morphisms QSSh2((X, A), (Y, B)) is then defined as the set of ap-
proaching homotopy classes of approaching maps ϕ : (Q,X,A) ⇒ (Q,Y, B).

The resulting category QSSh2 is equivalent to the strong shape category SSh2 as
described above. This can be shown by copying the arguments of [7, §9.1]. Under this
equivalence the strong shape functor S : CM2 → SSh2 corresponds to the Quigley
strong shape functor QS : CM2(Q) → QSSh2, where CM2(Q) is the full sub-
category of CM2 having the same objects as QSSh2. To see what QS(f) is for a
given map f : (X,A) → (Y, B), choose any extension F : Q → Q of f : X → Y . Define
ϕ : Q× (0, 1] → Q by ϕ(x, t) = F (x). This is an approaching map ϕ : (Q,X, A) ⇒
(Q,Y,B), and we have QS(f) = [ϕ], where [.] denotes approaching homotopy class.
For later use, let us call ϕ an approaching extension of f .

By a cylinder base embedding of pairs we mean an embedding of compact metric
pairs f : (B,B0) → (C,C0) such that

(C, C0)\f(B,B0) = (C\f(B), C0\f(B0)) ≈ (X, X0)× (0, 1]
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for some compact metric pair (X,X0). This concept has been introduced in [10] for
the absolute case. Copying the proof of [10, Theorem 4.2], we obtain

Theorem A.1. Each cylinder base embedding f : (B,B0) → (C, C0) in CM2(Q) is
a strong shape equivalence of pairs, i.e. QS(f) is an isomorphism in QSSh2.

The concept of cylinder base embeddings generalizes the concept of mapping cylin-
ders of approaching maps ϕ : (Q,X, A) ⇒ (Q,Y, B) (cf. [10]). For an approaching
map of pairs, the mapping cylinder C2(ϕ) is the pair (C(ϕabs), (C(ϕrel)), where
ϕabs : (Q,X) ⇒ (Q,Y ) is ϕ considered as an ordinary approaching map (Q,X) ⇒
(Q,Y ) and ϕrel : (Q,A) ⇒ (Q,B) is ϕ considered as an ordinary approaching map
(Q,A) ⇒ (Q,B) and C(ϕabs), C(ϕrel) are the corresponding mapping cylinders
as constructed in [10]. As sets we have C2(ϕ) = (X,A)× (0, 1] + (Y,B), where +
denotes disjoint union. The right-hand side is given a compact metric topology
depending on ϕ such that (X, A)× (0, 1] and (Y, B) retain their original topologies.
We then have two canonical embeddings i(X,A) : (X, A) → C2(ϕ) and j(Y,B) : (Y, B) →
C2(ϕ) (i(X,A) identifies (X, A) with the top (X, A)× {1} of C2(ϕ)). Since C2(ϕ) is a
pair of compact metric spaces, we may assume that C2(ϕ) is an object of QSSh2.
By the construction of the mapping cylinder, we have the following result.

Theorem A.2. j(Y,B) is a cylinder base embedding of pairs. [ϕ] decomposes as

[ϕ] = QS(j(Y,B))−1 ◦QS(i(X,A)).

The proof can be copied from that of [10, Corollary 6.4].

Remark A.3. Let f : (X,A) → (Y, B) be a map of pairs and ϕ : (Q,X, A) ⇒ (Q, Y, B)
be an arbitrary approaching extension of f . Then C2(ϕ) is the ordinary mapping
cylinder C2(f) = (C(f), C(R(f)) of f (cf. Proposition 2.5 of [10]).

In [10] we introduced the concept of a generalized calculus of left fractions.
We do not repeat the definition here but recommend the reader to consult [10].
Let HCM2(Q) be the homotopy category of CM2(Q) (the morphisms are
homotopy classes of maps of pairs f : (X, A) → (Y,B), where of course all homo-
topies are required to be maps of pairs H : (X, A)× I → (Y,B)). Let H : CM2(Q) →
HCM2(Q) be the canonical functor taking maps to homotopy classes. Let ΣCBE be
the set of cylinder base embeddings of compact metric pairs contained in the Hilbert
cube Q and let HΣCBE be the set of homotopy classes of maps in ΣCBE . Theorem
6.5 of [10] easily generalizes to

Theorem A.4. HΣCBE admits a generalized calculus of left fractions in HCM2(Q).

Fact 1 is covered by

Theorem A.5. QS : CM2(Q) → QSSh2 localizes CM2(Q) at ΣCBE. A fortiori
QS localizes CM2(Q) at strong shape equivalences of compact metric pairs in Q.

Proof. Let us first consider any functor Θ: CM2(Q) → K taking ΣCBE to iso-
morphisms in the category K. Then Θ is homotopy invariant, i.e. factorizes as
Θ = HΘ ◦H with HΘ: HCM2(Q) → K. This comes from the fact that the inclu-
sions ik : (X, A) → (X,A)× I, ik(x) = (x, k), k = 0, 1 are cylinder base embeddings
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of pairs and therefore induce isomorphims Θ(ik). Hence Θ(i0) = Θ(i1) since Θ(p),
where p : (X, A)× I → (X, A) denotes the projection map, is a common right inverse
for both. This implies that homotopic maps have the same image under Θ.

It is therefore sufficient to show that the functor HQS : HCM2(Q) → QSSh2

localizes HCM2(Q) at HΣCBE .
Let HCM2(Q)/HΣCBE be the standard category of left fractions and let

Λ: HCM2(Q) → HCM2(Q)/HΣCBE be the quotient functor which localizes
HCM2(Q) at HΣCBE . Because HQS takes HΣCBE to isomorphims (Theorem 3.1),
there exists a unique functor Ω: HCM2(Q)/HΣCBE → QSSh2 such that HQS =
Ω ◦ Λ.

By Theorem 3.3, Ω is a full functor. To show that Ω is faithful, consider two left
fractions [ek]\[fk] ∈ HCM2(Q)/HΣCBE((X, A), (Y,B)) such that Ω([e0]\[f0]) =
Ω([e1]\[f1]). Here, [fk] : (X, A) → (Zk, Ck) and [ek] : (Y,B) → (Zk, Ck) are homo-
topy classes such that [ek] ∈ HΣCBE . Since HΣCBE admits a generalized calculus
of left fractions there are [vk] : (Zk, Ck) → (Z ′, C ′) such that [v0] ◦ [e0] = [v1] ◦ [e1]
and [v0] ∈ HΣCBE . Moreover, there exists [w] : (Z ′, C ′) → (Z, C) such that
[w] ◦ [v0] ◦ [e0] ∈ HΣCBE (see [10] for the latter property). Let [e] = [w] ◦ [v0] ◦ [e0]
and [gk] = [w] ◦ [vk] ◦ [fk]. By construction, [ek]\[fk] = [e]\[gk]. Thus

HQS([e])−1 ◦HQS([g0]) = Ω([e]\[g0]) = Ω([e]\[g1]) = HQS([e])−1 ◦HQS([g1]),

whence HQS([g0]) = HQS([g1]). We now construct [e′] ∈ HΣCBE such that
[e′] ◦ [g0] = [e′] ◦ [g1]. This will prove that Ω is faithful since we can choose [w′] such
that [w′] ◦ [e′] ◦ [e] ∈ HΣCBE which implies that

[e]\[g0] = ([w′] ◦ [e′] ◦ [e])\([w′] ◦ [e′] ◦ [g0])
= [w′] ◦ [e′] ◦ [e])\([w′] ◦ [e′] ◦ [g1]) = [e]\[g1].

To get [e′], choose approaching extensions ϕk : (Q,X, A) ⇒ (Q,Z, C) of gk : (X, A) →
(Z, C). By assumption, there exists an approaching homotopy

φ : (Q,X,A)× I ⇒ (Q,Z,C)

connecting ϕ0 and ϕ1. We identify the mapping cylinders C2(ϕk) = C2(gk) with the
left and right face of the mapping cylinder C2(φ) (as sets, C2(gk) = (X,A)× {k}+
(Z, C) ⊂ (X,A)× I + (Z, C) = C2(φ)). Let αk : C2(gk) → C2(φ) be the correspond-
ing embeddings and let i

(k)
(X,A) : (X, A) → C2(gk) and j

(k)
(Z,C) : (Z,C) → C2(gk) as well

as j(Z,C) : (Z, C) → C2(φ) be the canonical embeddings as above (cf. Theorem 3.2).
Then

j(Z,C) ◦ g0 = α0 ◦ j
(0)
(Z,C) ◦ g0 ' α0 ◦ i

(0)
(X,A) ' α1 ◦ i

(1)
(X,A)

' α1 ◦ j
(1)
(Z,C) ◦ g1 ' j(Z,C) ◦ g1.

Since j(Z,C) is a cylinder base embedding, we are done.
The a fortiori -part of the theorem holds because strong shape equivalences of pairs

are precisely the morphisms which are taken to isomorphisms by QS.
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