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Abstract
Let C be an abelian category. We show that under certain

hypotheses, a cotorsion pair (A,B) in C may induce two nat-
ural homological model structures on Ch(C). One is such that
the (trivially) cofibrant objects form the class of (exact) com-
plexes A for which each An ∈ A. The other is such that the
(trivially) fibrant objects form the class of (exact) complexes B
for which each Bn ∈ B. Special cases of these model structures
such as Hovey’s “locally free” model structure and “flasque”
model structure have already appeared in the literature. The
examples support the belief that any useful homological model
structure comes from a single cotorsion pair on the ground cat-
egory C. Furthermore, one of the two types of model structures
we consider requires surprisingly few assumptions to exist. For
example, Theorem 4.7 implies that every cotorsion pair (A,B)
of R-modules which is cogenerated by a set gives rise to a cofi-
brantly generated homological model structure on Ch(R).

1. Introduction

In his study of abelian groups, Salce introduced in [Sal79] the notion of a cotorsion
pair (or cotorsion theory). The concept readily generalizes to any abelian category C.
In short, a cotorsion pair in an abelian category C is a pair of classes (A,B) which are
orthogonal with respect to Ext1C(−,−). As simple examples, any abelian category C
has the cotorsion pairs (P,A) and (A, I) where P is the class of projectives, I is the
class of injectives and A is the class of all objects in C. In the category of modules
over a ring R, we also have the standard example (F , C′) where F is the class of
flat modules and C′ is the class of cotorsion modules. In recent years we have seen
that the study of cotorsion pairs is especially relevant to the study of F-covers and
F-envelopes (where F may be any class of objects closed under isomorphisms) in
abelian categories. Enochs and several coauthors had long been studying covers and
envelopes when Eklof and Trlifaj’s result published in [ET01] helped Enochs settle
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his flat cover conjecture. This result says that any cotorsion pair in R-Mod which is
cogenerated by a set is necessarily complete. (See Section 2 for these definitions.)

Hovey noticed in [Hov02] that a Quillen model structure on any abelian category
C is equivalent to two complete cotorsion pairs in C which are compatible in a precise
way. This relationship is deepened by the fact that when these two cotorsion pairs
are each small (the appropriate generalization of “cogenerated by a set” to cotorsion
pairs in an arbitrary Grothendieck category C) the corresponding model structure is
cofibrantly generated.

In [Gil04] the author began the study of when a cotorsion pair (A,B) in an abelian
category C induces two compatible cotorsion pairs in the chain complex category
Ch(C). In that paper, following the methods of Enochs in [BBE01], he showed that
the flat cotorsion pair (F , C′) induces two compatible and complete cotorsion pairs
on Ch(R) where R is a commutative ring with 1. By Hovey’s correspondence this
gave a flat model structure on Ch(R), which is monoidal in the sense of [Hov99].
The cofibrant complexes are the dg-flat complexes, the fibrant complexes are the dg-
cotorsion complexes, and the trivial objects are the exact complexes. In [Gil07] we
see that the flat model structure generalizes to the category of complexes of quasi-
coherent sheaves on a quasi-compact, semi-separated scheme X.

The current paper continues the study of the interplay between cotorsion pairs in C
and homological model structures on Ch(C). The author calls them homological model
structures since they all are on chain complex categories and since we always require
the weak equivalences to be homology isomorphisms. We see that a nice cotorsion pair
(A,B) may give rise to two other “degreewise” model structures on Ch(C) besides
the type used to construct the flat model structures in [Gil04] and [Gil07]. One of
these model structures is such that the cofibrant objects form the class of complexes
A for which each An ∈ A. The other is such that the fibrant objects form the class
of complexes B for which each Bn ∈ B.

We now summarize the layout of the paper as well as give some detail as to how
these model structures are constructed. Section 2 provides relevant definitions and
notation which will be used throughout the paper. Since our theorems are about model
categories we assume the reader is familiar with and interested in model categories.
However, if one believes Hovey’s correspondence Theorem 2.2 from [Hov02] then
one really does not need to know anything about model categories to understand
the paper. A nice introduction to the basic idea of a model category can be found
in [DS95]. In Section 3 we define the two new pairs of cotorsion pairs in Ch(C). One
must also show that each of these pairs is small to get factorizations in our model
category. Since this process involves Quillen’s small object argument and since all
objects are small in a Grothendieck category we begin in Section 4 to assume C is
a Grothendieck category which we then denote by G. Here we show that if (A,B) is
a small cotorsion pair with cogenerating set {Ai}, and if A contains a generator of
finite projective dimension, then there is an induced model structure on Ch(G) where
the (trivially) fibrant objects are the (exact) complexes B with Bn ∈ B. The trivially
cofibrant objects are all the complexes A which are retracts of transfinite extensions
of the disks {Dn(G) , Dn(Ai)}. The cofibrant objects are the complexes which are
retracts of transfinite extensions of {Dn(G) , Dn(Ai), Sn(G)}. In Section 5 we tackle
the apparently dual model structure. Here we do not need the generator G ∈ A to
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have finite projective dimension. Any generator will do, as long as there is one in A.
However, we need to assume thatA is a Kaplansky class and closed under direct limits.
We use the definition of Kaplansky class from [Gil07] which is a categorical version of
the definition given by Edgar Enochs in [ELR02]. Section 5 is a little more technical
in that the reader will want to refer to [Gil07] for some definitions and theorems
that will be used. Throughout Sections 4 and 5 we give examples of cotorsion pairs
which induce such model structures. Some of the resulting model structures already
appeared in [Hov01] before the connection between model structures and cotorsion
pairs was realized.

2. Preliminaries

Definition 2.1. A pair of classes (A,B) in an abelian category C is a cotorsion pair
if the following conditions hold:

1. Ext1C(A,B) = 0 for all A ∈ A and B ∈ B.

2. If Ext1C(A,X) = 0 for all A ∈ A, then X ∈ B.

3. If Ext1C(X,B) = 0 for all B ∈ B, then X ∈ A.

As mentioned in the introduction, every abelian category C has the projective
cotorsion pair (P,A) and the injective cotorsion pair (A, I). When C has a tensor
product then we ought to have the flat cotorsion pair (F , C′) as well. For a proof
that (F , C′) is in fact a cotorsion pair when C is the category of R-modules, see
for example [EJ01]. In fact [EJ01] is a good reference for both cotorsion pairs and
cotorsion modules.

The cotorsion pair is said to have enough projectives if for any X ∈ C there is a
short exact sequence 0 −→ B −→ A −→ X −→ 0, where B ∈ B and A ∈ A. We say it has
enough injectives if it satisfies the dual statement. If both of these hold we say the
cotorsion pair is complete. All of the examples of cotorsion pairs in the last paragraph
are complete when the category is R-Mod. The phrases “enough projective” and
“enough injectives” are standard in reference to cotorsion pairs. Unfortunately, we
also use the phrase “enough projectives/injectives” in reference to a category. This
should not be confusing since we will always explicitly refer to either a category
or a cotorsion pair. Note however that saying that the projective cotorsion pair,
(P,A), has enough projecctives is equivalent to saying that the category has enough
projectives. Similarly for the injective cotorsion pair and “enough injectives”. So in
fact the terminology applied to a cotorsion theory is just a generalization of the usual
terminology. In addition however, for any class of objects F in an abelian category
C, the author will use the terminology enough F-objects to mean for any object
X ∈ C there exists an F ∈ F and an epimorphism F −→ X. Thus if (F , C) is the “flat”
cotorsion pair described above, saying we have enough F-objects means we can find a
surjection F −→M where F is flat. But we say (F , C) has enough projectives to mean
there exists a short exact sequence

0 −→ C −→ F −→M −→ 0,

where C ∈ C and F ∈ F .
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An abelian category C is called a Grothendieck category if C has a generator
G ∈ C and if direct limits are exact. The categories we are interested in, including
module categories, sheaf categories and their corresponding chain complex categories
are all examples of Grothendieck categories. For more information on Grothendieck
categories we refer the reader to Chapter V of [Sten75].

Definition 2.2. A cotorsion pair (A,B) is said to be cogenerated by a set if there is
a set S ⊂ A (not just a class) such that S⊥ = B. Here S⊥ is the class of all objects
X ∈ C for which Ext1C(S,X) = 0 for all S ∈ S. If we furthermore assume that C is a
Grothendieck category and that A contains some generator G then a cotorsion pair is
called small if for each S ∈ S there is a monomorphism iS , with cok iS = S, satisfying
the following: For all X ∈ C, if C(iS , X) is surjective for all S ∈ S, then X ∈ B. We
denote by I the set of monomorphisms together with the monomorphism 0 −→ G, and
we say I is a set of generating monomorphisms for the cotorsion pair (A,B).

A cotorsion pair (A,B) in R-Mod is complete whenever it is cogenerated by a
set. This important result is due to Eklof and Trlifaj and can be found in [ET01].
More generally, if we are in a Grothendieck category and we have a generator G ∈ A,
then by Theorem 6.5 of [Hov02] we see that any small cotorsion is complete. Small
cotorsion pairs first appeared in [Hov02]. We also refer the reader to [Gil07] for
more detail on small cotorsion pairs. We give the definition of a Kaplansky class in
Section 5 but again the reader will probably want to refer to [Gil07] for more details.
In general we will cite theorems from [Hov02], [Gil07], and [Gil04] throughout the
paper.

We denote the category of chain complexes by Ch(C). The differentials d of our
chain complexes lower degree. Given an object C ∈ C, we denote its n-sphere by
Sn(C) and its n-disk by Dn(C). Note that, for each n, we have a short exact sequence
0 −→ Sn(C) −→ Dn+1(C) −→ Sn+1(C) −→ 0. Using Baer’s description of Ext, there is
a subgroup Ext1dw(X,Y ) of Ext1Ch(X,Y ) consisting of all short exact sequences
0 −→ Y −→ Z −→ X −→ 0 which are split in each degree n.

We now list two standard lemmas which will be used throughout the paper.

Lemma 2.3. Let G be an object in an abelian category C. G is a generator for C if
and only if given any morphism d : C −→ D, d is an epimorphism whenever d∗ is an
epimorphism. Here d∗ : C(G,C) −→ C(G,D) is defined by d∗(t) = dt.

Lemma 2.4. Let C be an abelian category with generator G. Let X be a chain com-
plex. If every chain map f : Sn(G) −→ X extends to Dn+1(G), then X is exact.

Proof. Let n be an arbitrary integer. By Lemma 2.3, showing exactness in degree n
requires showing that any morphism f : G −→ ZnX lifts over d : Xn+1 −→ ZnX. But it
is easy to see that this is the same as showing that the induced chain map Sn(G) −→ X
extends to a morphism Dn+1(G) −→ X.

3. Cotorsion pairs of complexes

Given a class of objects A in an abelian category C the author denotes by Ã
the class of all exact chain complexes X ∈ Ch(C) such that ZnX ∈ A. From [Gil04]
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and [Gil07] we saw that when (A,B) is a cotorsion pair in C (and with some hypothe-
ses on the cotorsion pair and C itself), the class Ã forms the trivially cofibrant objects
and the class B̃ forms the trivially fibrant objects for a homological model structure
on Ch(C). This model structure is intermediate to the degreewise model structures
we study in this paper. We now define the classes of complexes that will be the basis
for defining these model structures.

Definition 3.1. Let A be a class of objects in an abelian category C. We denote by
dw Ã the class of all complexes X ∈ Ch(C) such that Xn ∈ A and we denote by ex Ã
the class of all exact complexes X ∈ Ch(C) such that Xn ∈ A.

The “dw” is meant to be thought of as “degreewise” while the “ex” is meant to
be thought of as “exact”.

Proposition 3.2. Let (A,B) be a cotorsion pair in C. Then (dw Ã, (dw Ã)⊥) is a
cotorsion pair and (dw Ã)⊥ is the class of all complexes Y for which Yn ∈ B and for
which each map X −→ Y is null homotopic whenever X ∈ dw Ã. Similarly, the pair
(⊥(dw B̃), dw B̃) is a cotorsion pair and ⊥(dw B̃) is the class of all complexes X for
which Xn ∈ A and for which each map X −→ Y is null homotopic whenever Y ∈ dw B̃.

Proof. We just prove the first statement since the second follows by duality. For the
proof we will let B̂ denote the class of all complexes Y for which Yn ∈ B and for which
each map X −→ Y is null homotopic whenever X ∈ dw Ã. It is easy to check that B̂ is
closed under taking suspensions and also contains all disks Dn(B) whenever B ∈ B.
Now we simply wish to show that (dw Ã, B̂) is a cotorsion pair.

First we show Ext1Ch(A,B) = 0 for any A ∈ dw Ã and B ∈ B̂. In this case, it is
clear that any element of Ext1Ch(A,B) (That is, a short exact sequence B −→ Z −→ A) is
degreewise split and so is an element of Ext1dw(A,B). But using Lemma 2.1 of [Gil04],
it is clear that Ext1dw(A,B) = 0.

Next suppose Ext1Ch(A,X) = 0 for all A ∈ dw Ã. We wish to show X ∈ B̂. First,
given any A ∈ A, Dn(A) ∈ dw Ã. Using Lemma 3.1 of [Gil04] we have the isomor-
phism Ext1Ch(Dn(A), X) ∼= Ext1C(A,Xn) = 0. So Xn ∈ B. Now suppose A −→ X is a
chain map where A ∈ dw Ã. We would like to show that it is null homotopic. By
Lemma 2.1 of [Gil04], this will be the case if we can show Ext1dw(A,Σ−1X) = 0.
But clearly, Ext1dw(A,Σ−1X) = Ext1dw(ΣA,X) and this last group equals 0 since
ΣA ∈ dw Ã. Therefore X ∈ B̂.

Last we suppose Ext1Ch(X,B) = 0 for all B ∈ B̂. We wish to show X ∈ dw Ã, which
means we want to show Ext1C(Xn, B) = 0 for all B ∈ B. But for any such B, the disk
Dn+1(B) ∈ B̂, so Ext1C(Xn, B) ∼= Ext1Ch(X,Dn+1(B)) = 0.

Recall that if A is an object in an abelian category C, then we say A has finite
projective dimension if there exists a positive integer n such that Exti

C(A,C) = 0 for
all C ∈ C and i > n. Finite injective dimension is defined similarly using the other
variable.

Proposition 3.3. Let (A,B) be a cotorsion pair in C. If B contains a cogenerator
of finite injective dimension then (ex Ã, (ex Ã)⊥) is a cotorsion pair. Furthermore,
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(ex Ã)⊥ is the class of all complexes Y for which Yn ∈ B and for which every map
X −→ Y is null homotopic whenever X ∈ ex Ã. If A contains a generator of finite
projective dimension then we have the obvious dual statement about (⊥(ex B̃), ex B̃).

Proof. Again we will just prove one of the statements since the other is dual. We will
show that if A contains a generator of finite projective dimension then (⊥(ex B̃), ex B̃)
is a cotorsion pair. For the proof we will let Â denote the class of all complexes X for
which Xn ∈ A and for which every map X −→ Y is null homotopic whenever Y ∈ ex B̃.
Â is closed under taking suspensions and also contains all disks Dn(A) whenever
A ∈ A. We need to show (Â, ex B̃) is a cotorsion pair.

Showing that Ext1Ch(A,B) = 0 for all A ∈ Â and B ∈ ex B̃ is straightforward and
does not require having a generator of finite projective dimension. Similarly, showing
that Ext1Ch(X,B) = 0 for all B ∈ ex B̃ implies X ∈ Â is straightforward and does
not require a generator. This takes care of conditions (1) and (3) in the definition of
a cotorsion pair. We now prove condition (2) using a generator from A with finite
projective dimension.

Claim 1. For any A ∈ A with finite projective dimension and B ∈ ex B̃ we have
Ext1C(A,ZnB) = 0 for all n. Indeed from the short exact sequence 0 −→ Zn+1B −→
Bn+1 −→ ZnB −→ 0 we see that Exti

C(A,ZnB) ∼= Exti+1
C (A,Zn+1B) for all i > 1. But

this holds for all n and so one can argue that Exti
C(A,ZnB) ∼= Exti+j

C (A,Zn+jB)
for all i, j. Since A has finite projective dimension we conclude Ext1C(A,ZnB) = 0 for
all n.

Claim 2. For any A ∈ A with finite projective dimension we have Sn(A) ∈ Â. Indeed
suppose Sn(A) −→ B is a chain map where B ∈ ex B̃. This corresponds to a map
A −→ ZnB. Applying Hom(A,−) to the short exact sequence Zn+1B −→ Bn+1 −→ ZnB
and using the fact that Ext1C(A,Zn+1B) = 0, we see that the map A −→ ZnB lifts over
Bn+1. In other words, the map Sn(A) −→ B is null homotopic.

Finally, suppose G ∈ A is a generator of finite projective dimension. We show
that if X is a complex for which Ext1Ch(A,X) = 0 for all A ∈ Â, then X ∈ ex B̃.
Indeed, for such an X apply the functor Hom(−, X) to the short exact sequence
Sn(G) −→ Dn+1(G) −→ Sn+1(G). Since Sn+1(G) ∈ Â we have Ext1Ch(Sn+1(G), X) = 0
and so we see that any map Sn(G) −→ X extends over Dn+1(G). Therefore X is exact
by Lemma 2.4. It is left to see that Xn ∈ B. But for all A ∈ A we have Dn(A) ∈ Â
and so 0 = Ext1Ch(Dn(A), X) = Ext1C(A,Xn). So Xn ∈ B.

In the above, we started with a cotorsion pair (A,B) on C and a suitable class of
complexes and defined cotorsion pairs of complexes using the notion of null homotopy.
All of the classes that arose in these cotorsion pairs are closed under suspensions and
contain the appropriate disks Dn(A) and Dn(B). We end this section by noting that
any such cotorsion pair on Ch(C) comes from a cotorsion pair on the ground category
C in this way. To make this precise we make the following definition.

Definition 3.4. A cotorsion pair (J ,K) on Ch(C) is degreewise orthogonal if for
every pair i, j of integers we have Ext1C(Ji,Kj) = 0 whenever J ∈ J and K ∈ K.
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For the rest of this section we fix the following notation: If (J ,K) is a cotorsion
pair on Ch(C) then we let J ′ be the class of all objects in C which appear as an entry
to a complex in J . That is, if X ∈ J ′, then X = Jn for some J ∈ J . Similarly, we
let K′ denote the class of all entries from complexes in K.

Lemma 3.5. The following are equivalent for a cotorsion pair (J ,K) of complexes:
(1) (J ,K) is degreewise orthogonal.
(2) J and K each contain all disks on entries. In other words, if J ∈ J , then we

have Dn(Ji) ∈ J for each integer i and n. Similarly for K.
(3) (J ′,K′) is a cotorsion pair on C.

Proof. (3) implies (1) is clear. We now show (2) implies (3). First, if A ∈ J ′ and
B ∈ K′, then Ext1C(A,B) = Ext1Ch(D0(A), D1(B)) = 0. Second, suppose Ext1C(X,B)
= 0 whenever B ∈ K′. We want to show X ∈ J ′. Now for any K ∈ K, we must
have Ext1Ch(Dn(X),K) = Ext1C(X,Kn) = 0 since Kn ∈ K′. Therefore Dn(X) ∈ J . So
X ∈ J ′. Conversely, say Ext1C(A, Y ) = 0 whenever A ∈ J ′. Then for any J ∈ J , we
have Ext1Ch(J,Dn(Y ) = Ext1C(Jn−1, Y ) = 0, so Y ∈ K′.

Finally (1) implies (2). For example, suppose J ∈ J . We want to showDn(Ji) ∈ J .
But this is true since for any K ∈ K, we have Ext1Ch(Dn(Ji),K) = Ext1C(Ji,Kn) = 0.

Note that (2) implies (1) can easily be proved directly using the easy fact that
Ext1C(A,B) = Ext1Ch(D0(A), D1(B)) = 0.

Note that if J and K are each closed under suspensions, then degreewise orthogonal
just means Ext1 C(J0,K0) = 0 for all J ∈ J and K ∈ K. One can check that J is
closed under suspensions if and only if K is closed under suspensions. Similarly, J
contains all disks on entries if and only if K does.

Example 3.6. Let R be a commutative ring with 1. There are cotorsion pairs in Ch(R)
which are neither closed under suspensions nor degreewise orthogonal. For example,
let S = {S0(F )} be the singleton set where F is a flat module which cogenerates the
flat cotorsion pair in R-Mod. Then (⊥(S⊥),S⊥) is a cotorsion pair in Ch(R). It can
be shown that every complex X ∈ ⊥(S⊥) is a retract of a transfinite extension of the
set {Dn(R), S0(F )}. Since retracts and transfinite extensions are taken degreewise
we see that for all n 6= 0, Xn is a projective R-module, while X0 need only be a flat
R-module. In particular Sn(F ) ∈ ⊥(S⊥) only for n = 0. So ⊥(S⊥) is not closed under
suspensions. It is also not degreewise orthogonal since it does not contain the disk
D1(F ).

Proposition 3.7. Let (J ,K) be a degreewise orthogonal cotorsion pair of complexes
where J , and K are closed under suspensions. Let (J ′,K′) be the corresponding cotor-
sion pair on C. Then J equals the class of all complexes X for which Xn ∈ J ′ and
such that X −→ K is null homotopic whenever K ∈ K. Similarly, K equals the class of
all complexes Y for which Yn ∈ K′ and such that J −→ Y is null homotopic whenever
J ∈ J .

Proof. We will just prove the first statement. First suppose we are given an X for
which Xn ∈ J ′ and such that X −→ K is null homotopic whenever K ∈ K. We show
that X ∈ ⊥K. So let K ∈ K be given. Since each Xn ∈ J ′ and each Kn ∈ K′ we have
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that Ext1Ch(X,K) = Ext1dw(X,K). But if we let ∼ represent the relation of chain
homotopy, then it is easy to check that

Ext1dw(X,K) = Ch(C)(X,ΣK)/ ∼
and by hypothesis this last group is zero. Thus X ∈ ⊥K.

Conversely, say X ∈ ⊥K. Then for any K ∈ K′, we have Dn+1(K) ∈ K, and so
Ext1C(Xn,K) ∼= Ext1Ch(X,Dn+1(K)) = 0. Therefore Xn ∈ J ′. Also, if we are given a
map X −→ K where K is a complex in K, then it is null homotopic since
0 = Ext1Ch(X,Σ−1K) implies

0 = Ext1dw(X,Σ−1K) = Ch(C)(X,K)/ ∼ .

4. Model structures from small cotorsion pairs

Again we let C be an abelian category. In this section we prove that any small cotor-
sion pair (A,B) where the class A contains a generator of finite projective dimension
induces a homological model structure on Ch(C). The class ⊥(ex B̃) will be the class of
cofibrant complexes and the class dw B̃ will be the class of fibrant complexes. We will
then look at a few examples of this type of model structure, some of which already
appeared in [Hov01].

We refer the reader to Section 6 of [Hov02] and Section 3 of [Gil07] for the
definition of small cotorsion pair. In particular we use the notation of [Gil07]. The
utility of small cotorsion pairs is that if we are in a Grothendieck category then the
cotorsion pair is (functorially) complete. This was proved by Hovey in Theorem 6.5
of [Hov02], where the notion of a small cotorsion pair first appeared. Hovey’s proof
makes use of Quillen’s “small object argument”.

We start by providing a correction to parts (7) and (8) of Lemma 3.1 in [Gil04].
References to these lemmas that the author knows about are still correct by using
arguments pointing to the corrected versions in Lemma 4.2 below.

Lemma 4.1. Suppose we have a morphism of short exact sequences as shown:

0 −−−−→ A
j−−−−→ B

p−−−−→ C −−−−→ 0

f

y g

y h

y

0 −−−−→ X
j′−−−−→ Y

p′−−−−→ Z −−−−→ 0.
If h is an isomorphism, then the left square is both a pullback and a pushout square.
If f is an isomorphism, then the right square is both a pullback and a pushout square.

Proof. The two statements are dual and we will prove the first one. So suppose h is
an isomorphism. First we will see why gj = j′f is a pullback square. Suppose there
is an object D and arrows α and β such that j′α = gβ. One can see that pβ = 0
and since j = ker p, there exists ξ : D −→ A such that jξ = β. Then one argues that
j′α = j′fξ and since j′ is left cancellable we get α = fξ. Therefore the left square is
a pullback.
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Now we show the square is a pushout. Let P be the pushout of j, f and form the
diagram below (where the maps ξ and φ are yet to be explained):

0 −−−−→ A
j−−−−→ B

p−−−−→ C −−−−→ 0

f

y f ′′
y

∥∥∥

0 −−−−→ X
j′′−−−−→ P

p′′−−−−→ C −−−−→ 0
∥∥∥ ξ

y φ

y

0 −−−−→ X
j′−−−−→ Y

p′−−−−→ Z −−−−→ 0.

Since gj = j′f , there exists a unique map ξ : P −→ Y such that j′ = ξj′′ and
ξf ′′ = g. (The plan is to show ξ is an isomorphism.) Now since (p′ξ)j′′ = 0 and
p′′ = cok j′′ there exists a unique map φ : C −→ Z such that φp′′ = p′ξ. We have
φp = φp′′f ′′ = p′ξf ′′ = p′g = hp. Since p is right cancellable, φ = h. In particular,
φ is an isomorphism and the snake lemma tells us that ξ is also an isomorphism.

Lemma 4.2. Let C be an abelian category. For any object C ∈ C and chain complex
X, we have monomorphisms

Ext1C(C,ZnX) −→ Ext1Ch(C)(S
nC,X),

Ext1C(Xn/BnX,C) −→ Ext1Ch(C)(X,S
nC).

If X is an exact complex, then these are actually isomorphisms.

Proof. The two statements are dual. We will prove the first statement. Suppose S
is the short exact sequence 0 −→ ZnX

f−→ D
g−→ C −→ 0 in Ext1C(C,ZnX). Taking the

pushout of f and the inclusion i : ZnX −→ Xn, we get a commutative diagram

0 0
y

y
0 −−−−→ ZnX

f−−−−→ D
g−−−−→ C −−−−→ 0

i

y i′
y

∥∥∥

0 −−−−→ Xn
f ′−−−−→ P

g′−−−−→ C −−−−→ 0

dn

y
yh

0 −−−−→ Bn−1X Bn−1Xy
y

0 0.
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Now form the short exact sequence indicated below. (The middle complex is indeed
a complex since Imh ⊆ Bn−1X.)

...
...

...

0 −−−−→ Xn+1 Xn+1 −−−−→ 0 −−−−→ 0

d

y f ′d

y
y

0 −−−−→ Xn
f ′−−−−→ P

g′−−−−→ C −−−−→ 0

dn

y
yh

y
0 −−−−→ Xn−1 Xn−1 −−−−→ 0 −−−−→ 0.

...
...

...

This short exact sequence is an element of Ext1Ch(C)(S
nC,X) which we denote by

φ(S). This gives us a morphism φ : Ext1C(C,ZnX) −→ Ext1Ch(C)(S
nC,X). The reader

can check that φ is a well-defined homomorphism of abelian groups. Now we argue
that φ is a monomorphism. Suppose the above complex splits and s = {sn} is a
section. By commutativity of the diagram we have hsn = 0. Since i′ = kerh, there
is a unique morphism s′ : C −→ D such that i′s′ = sn. Now s′ is a section for g since
gs′ = g′i′s′ = g′sn = 1C . So the sequence 0 −→ ZnX

f−→ D
g−→ C −→ 0 also splits.

Now suppose X is an exact complex. In this case we can construct an inverse ψ
for φ. Let 0 −→ X −→ Y −→ SnC −→ 0 be a short exact sequence in Ext1Ch(C)(S

nC,X)
and denote it by T . Define ψ : Ext1Ch(C)(S

nC,X) −→ Ext1C(C,ZnX) by sending T to
0 −→ ZnX −→ ZnY −→ C −→ 0. Note that this sequence is exact since X is an exact
complex. (Truncate T above degree n and apply the fundamental lemma of homo-
logical algebra. We actually only need Hn−1X = 0 here.) It is clear that if S is the

short exact sequence 0 −→ ZnX
f−→ D

g−→ C −→ 0 in Ext1C(C,ZnX), then ψ(φ(S)) = S.
On the other hand, let T be 0 −→ X −→ Y −→ SnC −→ 0 in Ext1Ch(C)(S

nC,X). Then
we may assume it has the form:

...
...

...

0 −−−−→ Xn+1 Yn+1 −−−−→ 0 −−−−→ 0

d

y αd

y
y

0 −−−−→ Xn
α−−−−→ Yn

β−−−−→ C −−−−→ 0

dn

y
yh

y
0 −−−−→ Xn−1 Yn−1 −−−−→ 0 −−−−→ 0.

ydn−1

ydn−1

...

Since Y is a complex we have Imh ⊆ Zn−1Y = Zn−1X = Bn−1X. But since hα = dn

we have Bn−1X ⊆ Imh. Therefore Bn−1X = Imh. So T gives rise to the diagram
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below with exact rows and columns:
0 0y

y

0 −−−−→ ZnX
α|ZnX−−−−→ ZnY −−−−→ C −−−−→ 0

i

y
y

∥∥∥
0 −−−−→ Xn

α−−−−→ Yn
β−−−−→ C −−−−→ 0

dn

y
yh

0 −−−−→ Bn−1X Bn−1Xy
y

0 0.

By Lemma 4.1 the upper-left square is a pushout. Therefore we have φ(ψ(T )) = T .
So φ and ψ are inverse isomorphisms.

In [Gil07] the author proved the following proposition which appeared as Propo-
sition 3.8.

Proposition 4.3. Let (A,B) be a cotorsion pair in an abelian category C which has a
generator G ∈ A. If (A,B) is cogenerated by a set {Ai}i∈I0 , then the induced cotorsion
pair (⊥B̃, B̃) is cogenerated by the set

S = {Sn(G)|n ∈ Z} ∪ {Sn(Ai)|n ∈ Z, i ∈ I0}.
Furthermore, suppose (A,B) is small with generating monomorphisms the map 0 −→ G
together with monomorphisms ki as below (one for each i ∈ I0):

0 −→ Yi
ki−→ Zi −→ Ai −→ 0.

Then (⊥B̃, B̃) is small with generating monomorphisms the set

I = {0 −→ Dn(G)} ∪ {Sn−1(G) −→ Dn(G)} ∪ {Sn(Yi)
Sn(ki)−−−−→ Sn(Zi)}.

Using an approach similar to the one used in [Gil07], we will find sets which
cogenerate (⊥(dw B̃), dw B̃) and (⊥(ex B̃), ex B̃). We included the statement of Propo-
sition 4.3 here to compare the statement to the ones in Propositions 4.4 and 4.6.

Proposition 4.4. Let (A,B) be a cotorsion pair in a abelian category C. If (A,B)
is cogenerated by a set {Ai}i∈I0 , then the induced cotorsion pair (⊥(dw B̃), dw B̃) is
cogenerated by the set

S = {Dn(Ai)|n ∈ Z, i ∈ I0}.
Furthermore, suppose A contains a generator G and (A,B) is small with generating
monomorphisms the map 0 −→ G together with monomorphisms ki as below (one for
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each i ∈ I0):
0 −→ Yi

ki−→ Zi −→ Ai −→ 0.

Then (⊥(dw B̃), dw B̃) is small with generating monomorphisms the set

J = {0 −→ Dn(G)} ∪ {Dn(Yi)
Dn(ki)−−−−→ Dn(Zi)}.

Proof. We have already noted that ⊥(dw B̃) contains all disks on objects in A and
so S ⊆ ⊥(dw B̃). It follows that S⊥ ⊇ dw B̃. Conversely if X ∈ S⊥, then we have
0 = Ext1Ch(C)(D

n(Ai), X) for all i ∈ I0. But Ext1Ch(C)(D
n(Ai), X) ∼= Ext1C(Ai, Xn) (by

Lemma 3.1 in [Gil04]). So Ext1C(Ai, Xn) = 0 which implies Xn ∈ B since the set {Ai}
cogenerates (A,B). Therefore S⊥ = dw B̃.

Next we prove the statement about smallness. First note that since G generates C,
the complexes Dn(G) generate Ch(C). Also since G ∈ A, we have ⊥(dw B̃) contains
the generators {Dn(G)}. Now let X be any chain complex. We wish to show that
“extending through monomorphisms in J” implies X ∈ dw B̃. But any map Yi −→ Xn

determines a morphism Dn(Yi) −→ X, which we assume extends over Dn(ki) to a map
Dn(Zi) −→ X. In particular, any map Yi −→ Xn extends over ki to a map Zi −→ Xn.
By the smallness hypothesis this implies Xn ∈ B. So X ∈ dw B̃.

Next we prove a similar statement for the cotorsion pair (⊥(ex B̃), ex B̃).

Lemma 4.5. Let G be a generator for C and let S be any set containing {Sn(G)}.
Then every complex in S⊥ is exact.

Proof. Let X ∈ S⊥. Consider the short exact sequence

0 −→ Sn−1(G) −→ Dn(G) −→ Sn(G) −→ 0.

It induces an exact sequence of abelian groups

HomCh(C)(Dn(G), X) −→ HomCh(C)(Sn−1(G), X) −→ Ext1Ch(C)(S
n(G), X) = 0.

It now follows from Lemma 2.4 that X is exact.

Proposition 4.6. Let (A,B) be a cotorsion pair in an abelian category C and let
G ∈ A be a generator with finite projective dimension. If (A,B) is cogenerated by a
set {Ai}i∈I0 , then the induced cotorsion pair (⊥(ex B̃), ex B̃) is cogenerated by the set

S = {Sn(G)|n ∈ Z} ∪ {Dn(Ai)|n ∈ Z, i ∈ I0}.
Furthermore, if (A,B) is small with generating monomorphisms, then the map 0 −→ G
together with monomorphisms ki as below (one for each i ∈ I0):

0 −→ Yi
ki−→ Zi −→ Ai −→ 0.

Then (⊥(ex B̃), ex B̃) is small with generating monomorphisms the set

I = {0 −→ Dn(G)} ∪ {Sn−1(G) −→ Dn(G)} ∪ {Dn(Yi)
Dn(ki)−−−−→ Dn(Zi)}.

Proof. We already know that each Dn(Ai) ∈ ⊥(ex B̃). Also, we showed in the proof
of Proposition 3.3 that Sn(G) ∈ ⊥(ex B̃). Therefore S ⊆ ⊥(ex B̃) and so S⊥ ⊇ ex B̃.
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Conversely, we will show S⊥ ⊆ ex B̃. If X ∈ S⊥ we know from Lemma 4.5 that
X is exact. So it is left to show that Xn ∈ B. But 0 = Ext1Ch(C)(D

n(Ai), X) for
all i ∈ I0 and Ext1Ch(C)(D

n(Ai), X) ∼= Ext1C(Ai, Xn) by Lemma 3.1 in [Gil04]. So
Ext1C(Ai, Xn) = 0 which implies Xn ∈ B since the set {Ai} cogenerates the cotorsion
theory.

Next we prove the statement about smallness. First note that since G ∈ A, the
class ⊥(ex B̃) contains the generators {Dn(G)}. Now let X be any chain complex. We
wish to show that “extending through monomorphisms in I” implies X ∈ ex B̃. But
any map Yi −→ Xn determines a morphism Dn(Yi) −→ X, which we assume extends
over Dn(ki) to a map Dn(Zi) −→ X. In particular, any map Yi −→ Xn extends over
ki to a map Zi −→ Xn. By the smallness hypothesis this implies Xn ∈ B. Also, as we
have already seen from Lemma 2.4, extending over the morphisms Sn−1(G) −→ Dn(G)
forces X to be exact. So X ∈ ex B̃.

Theorem 4.7. Let (A,B) be a cotorsion pair in a Grothendieck category G and
suppose G ∈ A is a generator with finite projective dimension. Furthermore, sup-
pose (A,B) is small with generating monomorphisms the map 0 −→ G together with
monomorphisms ki as below (for each i ∈ I0, where {Ai}i∈I0 cogenerates (A,B)):

0 −→ Yi
ki−→ Zi −→ Ai −→ 0.

Then we have a cofibrantly generated model structure on Ch(G) described as fol-
lows: The weak equivalences are the homology isomorphisms. The cofibrations (respec-
tively, trivial cofibrations) are the monomorphisms whose cokernels are in ⊥(ex B̃)
(respectively, ⊥(dw B̃)). The fibrations (respectively, trivial fibrations) are the epi-
morphisms whose kernels are in dw B̃ (respectively, ex B̃). Furthermore, we have
⊥(dw B̃) = ⊥(ex B̃) ∩ E and ex B̃ = dw B̃ ∩ E, where E is the class of exact complexes.
The set I given in the statement of Proposition 4.6 form the generating cofibrations.
The set J given in the statement of Proposition 4.4 form the generating trivial cofi-
brations.

Proof. This all follows from work in [Hov02] and we just give an outline of the
proof. First, the Grothendieck category hypothesis ensures that every object in G is
small, and so we can apply the small object argument to argue (as in the proof of
Theorem 6.5 of [Hov02]) that (⊥(dw B̃), dw B̃) and (⊥(ex B̃), ex B̃) are functorially
complete cotorsion pairs.

It is clear from the definitions that ex B̃ = dw B̃ ∩ E . We now show that ⊥(dw B̃) =
⊥(ex B̃) ∩ E . First, if A ∈ ⊥(dw B̃), then clearly A ∈ ⊥(ex B̃). Also A must be exact.
Indeed by Lemma 3.5 of [Gil07], A must be a retract of a transfinite extension
of complexes appearing as cokernels of some map in the set J . But all of these
complexes are in E , and E is closed under transfinite extensions and retracts.
So A must be exact. Therefore ⊥(dw B̃) ⊆ ⊥(ex B̃) ∩ E . On the other hand, say
X ∈ ⊥(ex B̃) ∩ E . Since (⊥(dw B̃), dw B̃) is complete we can find a short exact sequence
0 −→ B −→ A −→ X −→ 0 where B ∈ dw B̃ and A ∈ ⊥(dw B̃). Since A and X are exact
it follows (from the induced long exact sequence of homology objects) that B is
exact. So B ∈ dw B̃ ∩ E = ex B̃. Since (⊥(ex B̃), ex B̃) is a cotorsion pair the sequence
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0 −→ B −→ A −→ X −→ 0 must split, making X a direct summand of A. But then X
must belong to ⊥(dw B̃) since the left side of a cotorsion pair is always closed under
retracts. This completes the proof that ⊥(dw B̃) = ⊥(ex B̃) ∩ E .

The existence of the model structure comes from Theorem 2.2 of [Hov02] and one
can see that the cofibrations, fibrations, weak equivalences, and generating (trivial)
cofibrations are how we describe by looking at Sections 5 and 6 of [Hov02]. In
particular, see Definition 5.1 and the proof of Lemma 6.7 in [Hov02].

4.1. Examples concerning modules over a ring.
Suppose R is a commutative ring with 1. If G is the category of R-modules, then

every cotorsion pair (A,B) which is cogenerated by a set S is small. Indeed we can
find a set of generating monomorphisms by taking, for each S ∈ S, a monomorphism
K ↪→ P where P/K ∼= S. Furthermore, the class A will always contain the projective
generator R. Therefore any cotorsion pair of R-modules which is cogenerated by a
set gives rise to a homological model structure as in Theorem 4.7.

In particular, the injective cotorsion pair (A, I) is small. Indeed Baer’s criterion
implies that it is cogenerated by the set S = {R/I} where I ranges through all possible
ideals of R. Thus Theorem 4.7 gives an alternate injective model structure on Ch(R)
where the (trivially) fibrant objects are the (exact) complexes I for which each In is
injective. The cofibrant complexes in this model structure are all of the complexes X
which have the property that any chain mapX −→ I, where I is trivially fibrant, is null
homotopic. Note that in general, for the class dgĨ of dg-injective complexes, we have
dgĨ ⊆ dw Ĩ. But also bounded above complexes in dw Ĩ are in dgĨ by Lemma 3.4
of [Gil04].

If we start with the projective cotorsion pair (P,A), then since this pair is small
(take S = {R}) we have an induced model structure where the fibrant objects are in
dw Ã. However, it is clear that dw Ã is the class of all complexes. Therefore ⊥(dw Ã)
is the class of all projective complexes. So in the notation of [Gil04], (P̃, dgÃ) =
(⊥(dw Ã), dw Ã) and (dgP̃, Ã) = (⊥(ex Ã), ex Ã). In short, Theorem 4.7 just recovers
the usual projective model structure on Ch(R).

Of course there are many other cotorsion pairs of R-modules, each inducing a
model structure on Ch(R). For example, it was shown in [BBE01] that the cotorsion
pair (F , C) where F is the class of flat R-modules and C is the class of cotorsion
R-modules is cogenerated by the set S of all flat modules with cardinality less than
or equal to max{ω, |R|}. Therefore we get a homological model structure where the
cofibrant objects are in ⊥(ex C̃) and the fibrant objects are in dw C̃.

4.2. The dimensionwise injective model structure in Grothendieck cate-
gories.

The dimensionwise injective model structure on Ch(R) from the above example
generalizes to any Grothendieck category G which has a generator G of finite pro-
jective dimension. This is because Proposition V.2.9 of [Sten75] generalizes Baer’s
criterion. From this proposition, the set of all monomorphisms V ↪→ G is a set of
generating monomorphisms for (A, I). In particular we recover Hovey’s “locally free
model structure” (Proposition 2.3 of [Hov01]) on the category of chain complexes of
quasi-coherent sheaves on a nice enough Noetherian scheme X.
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4.3. A flasque model structure on complexes of sheaves
As another example, we will construct a “flasque” model structure on Ch(OX -Mod)

when X is a finite- dimensional and Noetherian topological space. The existence of
this model structure is interesting since it is a formalization of the fact that sheaf
cohomology is computable using flasque coresolutions (which need not be injective).
This model structure also first appeared in [Hov01], although there it was referred to
as a “flat” model structure rather than a “flasque” model structure. One advantage
of the cotorsion pair approach to defining this model structure is that the cofibrant
objects are more easily understood. They form the class ⊥(ex F̃) where (⊥F ,F) is
the flasque cotorsion pair discussed below.

Henceforth, we let (X,OX) denote any ringed space, and we will specify explicitly
when we want X to be finite- dimensional and Noetherian. We let F denote the class
of all flasque sheaves in OX -Mod. That is, F ∈ F if for all open U ⊆ X, the restriction
map F (X) −→ F (U) is a surjection. Although our language of small cotorsion pairs
was not used, one can see by examining the proof Proposition 2.2 in [EO01], that
(⊥F ,F) is a small cotorsion pair. We will now show this in detail.

First let us recall the standard set of generators forOX -Mod. For each open U ⊆ X,
extend O|U by 0 outside of U to get a presheaf, we denote as OU . Now sheafify to
get an OX -module, which we will denote j!(OU ). One can prove without difficulty
that we have isomorphisms Hom(OU , G) ∼= G(U). So by the universal property of
sheafification we get Hom(j!(OU ), G) ∼= G(U). It follows at once that the set {j!(OU )}
forms a generating set since the modules j!(OU ) “pick out points”. Hence the direct
sum

⊕
U⊆X j!(OU ) is a generator. Note that each j!(OU ) is a flat OX -module since

[j!(OU )]p ∼= (OU )p, which equals Op if p ∈ U and 0 if p ∈ X\U .
For each open U ⊆ X, we have a commutative diagram

0 −−−−→ OU
kU−−−−→ OX

pU−−−−→ OX/OU −−−−→ 0

ξOU

y ξOX

y ξU

y

0 −−−−→ j!(OU )
k+

U−−−−→ (OX)+
p+

U−−−−→ (OX/OU )+ −−−−→ 0,

where kU is the obvious inclusion. This makes the top row presheaf exact. The bottom
row is obtained by sheafification and is therefore sheaf exact. In fact, using basic sheaf
isomorphisms, we can replace this diagram with

0 −−−−→ OU
kU−−−−→ OX

pU−−−−→ OX/OU −−−−→ 0

ξOU

y
∥∥∥ ξU

y

0 −−−−→ j!(OU )
k+

U−−−−→ OX
p+

U−−−−→ OX/j!(OU ) −−−−→ 0.

In light of the above discussion, the following lemma is easy to prove.

Lemma 4.8. An OX-module F is flange if and only if for every open U ⊆ X, the
map (k+

U )∗ : Hom(OX , F ) −→ Hom(j!(OU ), F ) is surjective.

Lemma 4.9. The generators {j!(OU )} are in ⊥F .
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Proof. For an open set U , the functor Hom(j!(OU ),−) is isomorphic to Γ(U, (−)|U ).
Also, the restriction functor (−)|U preserves injectives, so we have isomorphisms

Extn(j!(OU ),−) ∼= Hn(U, (−)|U ).

Now given F ∈ F , the restriction F |U is also flasque. So by Proposition III.2.5
of [Har77] we have Ext1(j!(OU ), F ) ∼= H1(U,F |U ) = 0.

Lemma 4.10. For any flasque sheaf F , we have Ext1(OX/j!(OU ), F ) = 0.

Proof. Suppose F is flasque. Given U ⊆ X, we have the short exact sequence

0 −→ j!(OU )
k+

U−−→ OX
p+

U−−→ OX/j!(OU ) −→ 0.

By applying Hom(−, F ) and using Lemma 4.9 we get the exact sequence

Hom(OX , F )
(k+

U )∗−−−−→ Hom(j!(OU ), F ) −→ Ext1(OX/j!(OU ), F ) −→ 0.

But (k+
U )∗ is surjective by Lemma 4.8. Therefore Ext1(OX/j!(OU ), F ) = 0.

Proposition 4.11. Let (X,OX) be any ringed space and F be the class of flasque
OX-modules. Then (⊥F ,F) is a small cotorsion pair. The generating monomorphisms
are the maps 0 −→ j!(OU ), along with the maps k+

U : j!(OU ) −→ OX .

Proof. Given any set S in an abelian category, (⊥(S⊥),S⊥) is a cotorsion pair, cogen-
erated by S. If we take classS = {classOX/j!(OU ) : U ⊆ X}, then by Lemmas 4.8
and 4.10 we have that F = S⊥ and so (⊥F ,F) is a cotorsion pair cogenerated by
{OX/j!(OU ) : U ⊆ X}. Finally, it is clear from Lemmas 4.9 and 4.8 that the set

I0 = {0 −→ j!(OU )} ∪ {j!(OU ) −→ OX}
is a set of generating monomorphisms for (⊥F ,F).

Of course to get the model structure of Theorem 4.7 induced by (⊥F ,F) we need
to know that the generators j!(OU ) each have finite projective dimension. However,
as in the proof of Lemma 4.9, we know that for any open set U ⊆ X, we have

Exti(j!(OU ),−) ∼= Hi(U, (−)|U ).

This suggests that the generators j!(OU ) each have finite projective dimension if and
only if (X,OX) has finite hereditary global dimension which we define below.

Definition 4.12. A ringed space (X,OX) has finite global dimension if there is a
positive integer n for which the sheaf cohomology Hi(X,G) = 0 for all OX -modules
G and i > n. We say (X,OX) has finite hereditary global dimension if for every open
U ⊆ X, the ringed space (U,O|U ) has finite global dimension.

It follows from Grothendieck’s vanishing theorem (Theorem III.2.7 of [Har77])
and exercises I.1.7(c) and I.1.10(a) of [Har77] that (X,OX) has finite hereditary
global dimension whenever X is a finite-dimensional Noetherian topological space, in
particular when (X,OX) is a finite-dimensional Noetherian scheme. Also, as pointed
out by Hovey in [Hov01], a finite-dimensional compact manifold has finite hereditary
global dimension. The next theorem shows we have re-arrived at a model structure
constructed by Hovey in [Hov01].
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Theorem 4.13. Let (X,OX) be a ringed space with finite hereditary global dimen-
sion. Let G denote the category of sheaves of OX-modules and let F denote the class of
flasque OX-modules in G. Then the small cotorsion pair (⊥F ,F) induces a cofibrantly
generated model structure on Ch(G) described as follows: The weak equivalences are
the homology isomorphisms. The cofibrations (respectively, trivial cofibrations) are the
monomorphisms whose cokernels are in ⊥(ex F̃) (respectively, ⊥(dw F̃)). The fibra-
tions (respectively, trivial fibrations) are the epimorphisms whose kernels are in dw F̃
(respectively, ex F̃). Furthermore, the set I of generating cofibrations is the set

{0 −→ Dn(j!(O|U ))} ∪ {Sn−1(j!(O|U )) −→ Dn(j!(O|U ))} ∪ {Dn(k+
U )}

while the set J of generating trivial cofibrations is the set

{0 −→ Dn(j!(O|U ))} ∪ {Dn(k+
U )}.

Proof. This follows from our comments above and by applying Theorem 4.7 to the
small cotorsion pair (⊥F ,F) from Proposition 4.11.

We will call this model structure the “dimensionwise flasque” model structure on
Ch(OX -Mod). It is interesting to note that there is also a “dimensionwise cotorsion”
model structure on Ch(OX -Mod) whenever (X,OX) is a ringed space with finite
hereditary global dimension. This model structure is induced by the flat cotorsion
pair and is a direct generalization of the model structure we described in Section 4.1.
Since one can argue that the set S = {OX/j!(OU ) : U ⊆ X} is contained in the class of
flat OX -modules we see that all cotorsion OX -modules are flasque. Therefore the class
of “dimensionwise cotorsion” complexes is contained in the class of “dimensionwise
flasque” complexes.

5. Model structures from Kaplansky classes

We now turn to the problem of finding conditions on (A,B) which will guarantee
that (ex Ã, (ex Ã)⊥) and (dw Ã, (dw Ã)⊥) induce a model structure. We will need the
notion of a Kaplansky class that was given in [Gil07]. This definition was inspired by
the definition for R-Mod given in [ELR02]. The reader may want to consult [Gil07]
if the definition appears abstruse.

Definition 5.1. Let F be a class of objects in an abelian category and let κ be a
regular cardinal. We say F is a κ-Kaplansky class if the following property holds:
Given X ⊆ F 6= 0 where F ∈ F and X is κ-generated, there exists a κ-presentable
object S 6= 0 such that X ⊆ S ⊆ F and S, F/S ∈ F . We say F is a Kaplansky class
if it is a κ-Kaplansky class for some regular cardinal κ.

In [Gil07] the author showed that if we start with a nice enough Kaplansky class
F , in a Grothendieck category G, then (F̃ , dgC̃) is a small cotorsion pair, where
C = F⊥. It follows that the cotorsion pairs (dgF̃ , C̃) and (F̃ , dgC̃) give rise to a model
structure on Ch(G). We use a similar technique here to show that (ex F̃ , (ex F̃)⊥)
and (dw F̃ , (dw F̃)⊥) are each small cotorsion pairs whenever F is a nice enough
Kaplansky class. Since we clearly have ex F̃ = dw F̃ ∩ E , where E is the class of exact
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complexes, it will be automatic that (ex F̃ , (ex F̃)⊥) and (dw F̃ , (dw F̃)⊥) induce
another model structure on Ch(G). Our “nice enough” assumption will include F
being closed under direct limits, so our methods work well when F is some class of
flat objects in a Grothendieck category.

Proposition 5.2. Let F be a κ-Kaplansky class where κ > ω is a regular cardinal.
Then the class dw F̃ is a locally κ-cogenerated class.

Proof. dw F̃ is the class of all chain complexes F with Fn ∈ F . Suppose 0 6= F ∈ dw F̃
is given. We wish to construct a nonzero subcomplex S ⊆ F in such a way that
(i) Sn is κ-generated, (ii) Sn ∈ F , and (iii) Fn/Sn ∈ F .

Since 0 6= F , there must exist an n such that Fn 6= 0. Using the κ-Kaplansky
class hypothesis we can find 0 6= Sn ⊆ Fn such that (i) Sn is κ-presentable (hence
κ-generated too), (ii) Sn ∈ F , and (iii) Fn/Sn ∈ F . Now dn(Sn) is κ-generated, and
is contained in Fn−1 ∈ F . If Fn−1 = 0 we can stop. Otherwise, use the κ-Kaplansky
hypothesis again to find dn(Sn) ⊆ Sn−1 ⊆ Fn−1 such that (i) Sn−1 is κ-presentable,
(ii) Sn−1 ∈ F , and (iii) Fn−1/Sn−1 ∈ F . Now it is clear that we can continue down-
ward to construct a bounded above subcomplex S ⊆ F such that S, F/S ∈ dw F̃ and
each Sn is κ-generated. Since κ > ω it follows from Lemma 4.10 of [Gil07] that S is
a κ-generated complex.

From Appendix B of [Gil07] we know that in any Grothendieck category we can
find a regular cardinal κ large enough so that the κ-generated objects coincide with
the κ-presentable objects. As a result all subobjects and quotient objects of a κ-
generated object are also κ-generated.

Lemma 5.3. Suppose G is a locally κ-generated Grothendieck category. We assume
that κ > ω is a regular cardinal chosen so that the κ-generated and κ-presentable
objects coincide. Let F be a κ-Kaplansky class, and let S ⊆ F where F ∈ ex F̃ and
S is an exact κ-generated subcomplex. Given any integer n for which Fn 6= 0, we can
find an exact κ-generated subcomplex T ⊆ F containing S and such that Tn 6= 0, and
Tn, Fn/Tn ∈ F .

Proof. Without loss of generality we let n = 0 and suppose Fn 6= 0. By Lemma 4.10
of [Gil07] S is κ-generated if and only if each Sn is κ-generated. Using the Kaplansky
class condition, we can find a κ-generated T0 containing S0 for which T0 and F0/T0

are both in F . So all we need to do is extend T0 into an exact κ-generated subcomplex
containing S. We build down by setting T−1 = S−1 + d(T0) and Ti = Si for all i < −1.
One can check that

T0 −→ S−1 + d(T0) −→ S−2 −→ · · ·
is exact. In particular, we have exactness in degree −1 since d(S0) ⊆ d(T0).

Next we build up from T0. To do this we use Lemma 4.4 of [Gil07]. For exam-
ple, take the kernel of T0 −→ T−1 and find a κ-generated T ′1 ⊆ F1 such that T ′1 maps
surjectively onto this kernel. Then take T1 = S1 + T ′1. Now T1 also maps surjectively
onto this kernel. We continue upward to build T2, T3, · · · in the same way. Since each
Tn is κ-generated we are done.
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Proposition 5.4. Suppose G is a locally κ-generated Grothendieck category. Assume
that κ > ω is a regular cardinal chosen so that the κ-generated and κ-presentable
objects coincide. If F is a κ-Kaplansky class and is closed under direct limits, then
the class ex F̃ is locally κ-cogenerated.

Proof. ex F̃ is the class of all exact chain complexes F with Fn ∈ F . Suppose
0 6= F ∈ ex F̃ is given. We wish to construct a nonzero exact complex S ⊆ F in such
a way that (i) Sn is κ-generated, (ii) Sn ∈ F , and (iii) Fn/Sn ∈ F .

We start by choosing an n for which Fn 6= 0. Without loss of generality suppose that
n = 0. Using Lemma 5.3 (with S = 0), find a κ-generated subcomplex T 1 ⊆ F such
that 0 6= (T 1)0 ∈ F and F0/(T 1)0 ∈ F . Now use the lemma again, with S = T 1, to get
a κ-generated subcomplex T 2 containing T 1 and such that (T 2)−1 and F−1/(T 2)−1

are each in F . Lets say that T 1 was constructed using a “degree 0 operation” and T 2

was constructed using a “degree −1 operation”. Then we can continue to build an
increasing union of subcomplexes, {T k}, using the following “back and forth” pattern
and using “degree n operations”:

0, −1, 0, 1, −2,−1, 0, 1, 2, −3,−2,−1, 0, 1, 2, 3 · · · .
Finally set S =

⋃
k∈N T

k. Since F is closed under direct limits, we see (by a cofi-
nality argument) that Sn ∈ F for each n. By a similar cofinality argument we see
that Fn/Sn ∈ F for each n. Also each Sn is κ-generated since it is only a countable
union of κ-generated objects and κ > ω. Therefore S is the desired subcomplex.

Theorem 5.5. Suppose G is a locally κ-generated Grothendieck category where κ > ω
is a regular cardinal chosen large enough so that the κ-generated and κ-presentable
objects coincide. Let F be a κ-Kaplansky class which contains a κ-presentable gener-
ator G. Furthermore, suppose F is closed under extensions, retracts and direct limits
and let C = F⊥. Then (dw F̃ , (dw F̃)⊥) is a small cotorsion pair with generating
monomorphisms the set

I = {0 −→ Dn(G)} ∪ {X −→ Y },
where X −→ Y ranges over all (representatives from isomorphism classes of) mono-
morphisms where Y is a κ-generated complex and Y/X ∈ dw F̃ . Similarly, the pair
(ex F̃ , (ex F̃)⊥) is a small cotorsion pair with generating monomorphisms the set

J = {0 −→ Dn(G)} ∪ {X −→ Y },
where X −→ Y ranges over the monomorphisms where Y is a κ-generated complex
and Y/X ∈ ex F̃ . Furthermore these cotorsion pairs are compatible in the sense that
ex F̃ = dw F̃ ∩ E and (dw F̃)⊥ = (ex F̃)⊥ ∩ E where E is the class of exact complexes.

Proof. Since F is a κ-Kaplansky class it is also a locally κ-cogenerated class. Since
it also contains a κ-presentable generator G and is closed under extensions, retracts,
and direct limits we see by Propositions 4.8 of [Gil07] that (F ,F⊥) is a small, and
hence complete, cotorsion pair. From Proposition 3.2 we get that (dw F̃ , (dw F̃)⊥) is
a cotorsion pair. Since any Grothendieck category contains an injective cogenerator,
and since such a cogenerator is necessarily in F⊥, we get from Proposition 3.3 that
(ex F̃ , (ex F̃)⊥) is a cotorsion pair.
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Now we collect some facts on dw F̃ and ex F̃ . Being the left side of a cotorsion
pair, dw F̃ and ex F̃ are themselves closed under extensions and retracts. Each class
clearly contains the generators Dn(G). Since direct limits are exact and since they are
taken degreewise for chain complexes, it is clear that dw F̃ and ex F̃ are both closed
under direct limits. Finally each class is locally κ-cogenerated by Propositions 5.2
and 5.4. It now follows from Proposition 4.8 of [Gil07] that (dw F̃ , (dw F̃)⊥) and
(ex F̃ , (ex F̃)⊥) are each small cotorsion pairs with generating monomorphisms as we
describe.

It is left to show that ex F̃ = dw F̃ ∩ E and (dw F̃)⊥ = (ex F̃)⊥ ∩ E where E is the
class of exact complexes. Obviously ex F̃ = dw F̃ ∩ E , and so we can argue as in the
proof of Theorem 4.7 that (dw F̃)⊥ = (ex F̃)⊥ ∩ E .

Corollary 5.6. Suppose G is a locally κ-generated Grothendieck category where κ > ω
is a regular cardinal chosen large enough so that the κ-generated and κ-presentable
objects coincide. Let F be a κ-Kaplansky class which contains a κ-presentable gener-
ator G. Furthermore, suppose F is closed under extensions, retracts and direct limits.
Then we have a cofibrantly generated model structure on Ch(G) described as follows:
The weak equivalences are the homology isomorphisms. The cofibrations (respectively,
trivial cofibrations) are the monomorphisms whose cokernels are in dw F̃ (respec-
tively, ex F̃). The fibrations (respectively, trivial fibrations) are the epimorphisms
whose kernels are in (ex F̃)⊥ (respectively, (dw F̃)⊥). The set I in the statement of
Theorem 5.5 are the generating cofibrations while J is the set of generating trivial
cofibrations.

Proof. This is immediate from Hovey’s Theorem 2.2 of [Hov02].

We now look at several examples of homological model structures that come from
Kaplansky classes using Corollary 5.6.

5.1. The injective model structure.
Let G be any Grothendieck category and let (A, I) be the injective cotorsion pair.

Then as explained in Corollary 7.1 of [Gil07], we can always find a regular κ > ω
large enough that (1) G is locally κ-generated, (2) the the κ-generated objects coincide
with the κ-presentable objects, and (3) G contains a κ-presentable generator G. It
is trivial that A (the class of all objects in G) satisfies the rest of the hypotheses of
Corollary 5.6. So we have an induced model structure on Ch(G) where the cofibrant
(resp. trivially cofibrant) objects are complexes in dw Ã (resp. ex Ã) and the fibrant
(resp. trivially fibrant) complexes are those in (ex Ã)⊥ (resp. (dw Ã)⊥). However, it is
clear that dw Ã is the class of all complexes and so (dw Ã)⊥ is the class of all injective
complexes. Similarly, it is clear that ex Ã is the class of all exact complexes and so
(ex Ã)⊥ must be the class of all dg-injective complexes. So the model structure on
Ch(G) induced by Corollary 5.6 is just the usual injective model structure.

5.2. Examples concerning modules over a ring.
Now suppose that R is a commutative ring with 1 and G is the category of R-

modules. Then G is locally finitely presentable. (For a proof of this fact, see the
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footnote to Theorem 4.34 of [Lam99].) So G is locally κ-presentable (and therefore
locally κ-generated) for every regular cardinal κ by facts in Appendix A of [Gil07].
Let κ be a regular cardinal with κ > max{|R|, ω}. Then by Lemma B.2 of [Gil07],
the κ-generated modules coincide with the κ-presentable modules and such modules
M are characterized by the condition |M | < κ. So Corollary 5.6 can be applied to
any such κ-Kaplansky class F which is closed under retracts, extensions, and direct
limits, and which contains the generator R. Since it was shown in [BBE01] that the
class F of flat R-modules is such a κ-Kaplansky class, there is a homological model
structure on Ch(G) where the cofibrant objects are the complexes which are flat in
each degree. The trivially cofibrant objects are the exact complexes which are flat in
each degree. The model structure is cofibrantly generated but it is NOT monoidal in
the sense defined in Chapter 4 of [Hov99]. If this were true, then X ⊗Ch(G) Y would
be trivially cofibrant for all cofibrant X and trivially cofibrant Y . However, we give
a counterexample to show that in general X ⊗Ch(G) Y need not be trivially cofibrant
even when both X and Y are trivially cofibrant. For this example, take R to be the
ring of integers mod 4. Let Y be the chain complex where each Yn = R and each
differential is R ×2−−→ R. Then Y ∈ ex F̃ , but Y ⊗Ch(R) Y is not even exact.

The author is convinced that there is also an analogous model structure on Ch(G)
coming from the projective cotorsion pair (P,A). We already know that we have
induced cotorsion pairs (dw P̃, (dw P̃)⊥) and (ex P̃, (ex P̃)⊥). These can be shown
to be cogenerated by a set using Kaplansky’s Theorem 1 of [Kap58] and arguments
similar to those in the proofs of Propositions 5.2 and 5.4. So there is a model structure
on Ch(G) where the cofibrant objects are the complexes with a projective module in
each degree.

5.3. Examples concerning sheaf categories.
The flat model structure above can be generalized to sheaf categories. First, as in

Subsection 4.3 above, take G = OX -Mod where OX is a sheaf of rings on a topological
space X. Here X may be any space. Let F be the class of flat OX -modules. We define
the cardinality of an OX -modules (or any presheaf), F , to be |F | = |∐U⊆X F (U)|,
where U ⊆ X ranges over all the open sets in X. From Section 7 of [Gil07] one
can see that we have the following facts: Let β be an infinite cardinal such that
β > max{|X|, |OX |}. Now let κ = 2β . We may also assume, and do assume, that κ
is large enough that each j!(OU ) is κ-generated. Then (1) the κ-generated objects
coincide with the κ-presentable objects, (2) G is a locally κ-presentable (and locally
κ-generated) category, and (3) F is a κ-Kaplansky class. Also, F is closed under
direct limits, retracts, and extensions, and contains the generators j!(OU ). Therefore,
we have a homological model structure on Ch(OX -Mod) where the cofibrant objects
are the degreewise flat complexes.

Finally, let G be the category Qco(X) of quasi-coherent OX -modules, where X is
any scheme in which Qco(X) has a flat generator. Then Ch(Qco(X)) has an analogous
model structure. To obtain the model structure from Corollary 5.6, we let F be the
class of flat quasi-coherent OX -modules and take κ > max{ω, |OX |}. We can assume
that κ is large enough so that Qco(X) is locally κ-generated and also so that the flat
generator is κ-presentable. Then all the hypotheses of Corollary 5.6 hold with this
choice of κ. We refer the reader to [Gil07] and [EE05] for more details.
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