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A REFINEMENT OF MULTI-DIMENSIONAL PERSISTENCE

KEVIN P. KNUDSON

(communicated by Gunnar Carlsson)

Abstract
We study the multi-dimensional persistence of Carlsson and

Zomorodian and obtain a finer classification based upon the
higher tor-modules of a persistence module. We propose a vari-
ety structure on the set of isomorphism classes of these mod-
ules, and present several examples. We also provide a geometric
interpretation for the higher tor-modules of homology modules
of multi-filtered simplicial complexes.

1. Introduction

Persistent homology has become a popular tool in the study of point cloud data
sets. Given such a set X, one may attempt to approximate the topology of X by first
placing ε-balls around each point (call the union of the balls Xε), and then allowing
ε to grow. This yields a nested sequence of spaces Xε ⊂ Xε′ , ε < ε′, and one may
compute the homology of these spaces. For ε small, not much happens, since Xε is
simply a disjoint union of balls, but as ε increases the balls begin to overlap and
nontrivial cycles may appear. One may then measure how long such cycles “persist”;
that is, a cycle may appear in Xε and be filled in by a boundary in some Xε′ , ε′ > ε.
If the difference ε′ − ε is large relative to ε, then one may deduce that the cycle is a
real topological feature of the set X. For interesting applications of these ideas see,
for example, [2, 4, 5, 6].

The abstraction of this idea is the notion of a filtered space. Given a spaceX, which
in this paper will always be a simplicial complex, we take an increasing sequence of
subcomplexes

∅ = X−1 ⊂ X0 ⊂ X1 ⊂ · · · ⊂ Xr = X.

Let k be a field. We then obtain, for i > 0, a sequence of k-vector spaces

0 → Hi(X0; k) → Hi(X1; k) → · · · → Hi(X; k),

and we may observe how long a homology class persists in this sequence. This is
encapsulated neatly by Carlsson and Zomorodian [9] in the following way. Let M =⊕

j>0Hi(Xj ; k). This is a module over the polynomial ring k[x] where the action of
x on each Hi(Xj ; k) is given by the map Hi(Xj ; k) → Hi(Xj+1; k). The classification
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of modules over k[x] implies that M ∼= ⊕r
j=1 x

αjk[x]⊕⊕p
m=1 x

βmk[x]/xsm . In turn,
this yields a barcode for M . This is a set of intervals [αj ,∞), [βm, βm + sm] that shows
how long homology classes persist, the infinite intervals corresponding to classes that
live in Hi(X; k).

In applications, however, one may need to consider multiple filtration directions.
For example, the data set in question may have a natural filtration of its own (e.g.,
by density), and then we obtain another filtration direction by growing ε-balls. These
multi-filtrations are much more complicated, and the complete classification of [9]
has no analogue. Indeed, in [3], the authors show that for multi-filtrations there is
no complete discrete invariant analogous to the barcode. There are some discrete
invariants, but there is also a continuous piece obtained as a quotient of an algebraic
variety, RF(ξ0, ξ1). This is summarized in Section 3 below.

The main idea in [3] is to consider spaces X filtered by Xv ⊂ X for v ∈ Nn. For a
fixed i > 0, one then obtains a k[x1, . . . , xn]-module M =

⊕
v∈Nn Hi(Xv; k) just as in

the n = 1 case. Modules over An = k[x1, . . . , xn], n > 2, do not admit a neat classifica-
tion, however, and that is where the trouble lies. The authors consider two multisets
ξ0 and ξ1 which indicate the degrees in Nn where homology classes are born and
where they die, respectively. The problem is that there may be many (even uncount-
ably many) nonisomorphic modules with the same ξ0 and ξ1. These are parametrized
by the quotient of the variety RF(ξ0, ξ1) by the action of an algebraic group. In the
case n = 1, this quotient space is always finite (see Theorem 3.5 below), as one would
expect given the classification of these modules discussed above.

The multisets ξ0 and ξ1 consist of the elements in Nn where the module M has
generators and relations, respectively. These are obtained by computing the modules
TorAn

0 (M,k) and TorAn
1 (M,k). When n = 1, these are the only nontrivial Tor groups,

but for n > 2, there may be more. These higher Tor modules are the main objects
of study in this paper. For i > 0, let ξi(M) be the multiset of elements in Nn where
generators of TorAn

i (M,k) occur. Hilbert’s Syzygy Theorem implies that ξi = ∅ for
i > n and so we obtain a finite family of discrete invariants, ξ0(M), ξ1(M), . . . , ξn(M).
Using these, we may partition the set RF(ξ0, ξ1) of [3] into subsets RF(ξ2, . . . , ξn)
consisting of those modules M having ξi(M) = ξi. Let F (ξ0) be the free An-module
with basis ξ0 and let GL(F (ξ0)) be the group of degree-preserving automorphisms
of F (ξ0). This group acts on the various RF(ξ2, . . . , ξn) and we have the following
result.

Theorem 4.3. There is a projective variety Yξ2,...,ξn and a map

ϕ : GL(F (ξ0))\RF(ξ2, . . . , ξn) → Yξ2,...,ξn .

Often, the map ϕ is injective and we may use it to give the quotient set the struc-
ture of an algebraic variety. In turn, this yields a variety structure on the full quo-
tient GL(F (ξ0))\RF(ξ0, ξ1) by taking the disjoint union over the possible ξ2, . . . , ξn.
Morally, this is what one wants. However, this is not the quotient space obtained
by viewing RF(ξ0, ξ1) as a variety and then taking the quotient by GL(F (ξ0)). The
difference in our approach is that we have lost information about certain degeneracies
among the elements of RF(ξ0, ξ1) at the expense of gaining a variety structure on
the quotient. An example of this is given in Section 5.1.
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It may happen, however, that some ϕ is not injective. This may occur, for example,
if there are generators for M that are not co-located and the relations lie in unfor-
tunate locations. We provide a remedy for this in Section 4.3. For an example, see
Section 5.2.

The remainder of the paper explores geometric interpretations of the ξi, i > 2. To
do this, we back up a step and consider modules of chains on a multi-filtered space,
rather than the individual homology modules. Let X• be a complex filtered by Nn
and for each i > 0, denote by Ci(X•) the An-module of i-chains on X•: Ci(X•) =⊕

v∈Nn Ci(Xv; k). We then have a chain complex C•(X•) in the category of graded
An-modules and the associated hypertor modules TorAn

j (C•(X•), k). By examining
the spectral sequences that compute these modules, we obtain a natural map

d2
2q : TorAn

2 (Hq(X•), k) → TorAn
0 (Hq+1(X•), k).

This gives us a geometric interpretation of ξ2(Hq(X•)): elements in ξ2 possibly corre-
spond to locations of generators of Hq+1(X•). In Theorem 6.1, we describe the kernel
and image of this map.

The higher differentials in this spectral sequence provide a mechanism to relate
elements of TorAn

` (Hq(X•), k) to elements of TorAn
0 (Hq+`−1(X•), k). We shall not

investigate these more subtle relationships here.
In the final section, we use the other spectral sequence to obtain an interpretation

of the hypertor modules TorAn
j (C•(X•), k). If the filtration is such that at most one

simplex gets added at a time as we move from one degree to another adjacent to it,
then we have (Theorem 6.3)

TorAn

` (C•(X•), k) =
⊕

p+q=`

TorAn
q (Cp(X•), k).

Elements on the right-hand side may be thought of as “virtual” (p+ q)-cells that fill in
duplicated relations among cells of lower dimension. We also show that, by dropping
the grading in the vector spaces TorAn

q (Cp(X•), k), we may define a boundary operator
∂ : Tor` → Tor`−1 so that the homology of the resulting complex recovers H•(X; k).
Examples are discussed.

Finally, we note that there may be a relationship between the ξi, i > 2, and the
rank invariant of [3]. This will be explored elsewhere.
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2. Multi-filtered spaces and persistence modules

In this section we establish notation and make some definitions. We keep the
notation and terminology of [3]. A multiset is a pair (S, µ), where S is a set and
µ : S → N specifies the multiplicity of each element of S. For example, the multiset
{a, a, a, b, b, c} has µ(a) = 3, µ(b) = 2 and µ(c) = 1; we represent this as ({a, b, c}, µ)
or as {(a, 3), (b, 2), (c, 1)}.

Given elements u, v ∈ Nn, we say u . v if ui 6 vi for each 1 6 i 6 n. If (S, µ) is a
multiset with S ⊆ Nn, then . is a quasi-partial order on (S, µ). If k is a field, denote
by k[x1, . . . , xn] the ring of polynomials in the variables x1, . . . , xn with coefficients
in k. If xv11 · · ·xvn

n is a monomial, we denote it by xv, where v = (v1, . . . , vn) ∈ Nn.
An n-graded ring is a ring R equipped with a decomposition R =

⊕
v∈Nn Rv

such that Ru ·Rv ⊆ Ru+v. The example we shall use is the polynomial ring An =
k[x1, . . . , xn], graded by setting Av = kxv for v ∈ Nn. An n-graded module over an
n-graded ring R is an R-module M with a decomposition M =

⊕
v∈Nn Mv such that

Ru ·Mv ⊆Mu+v.
Let X be a topological space. A multi-filtration of X is a collection of subspaces

{Xv}v∈Nn such that if u . v1, v2 . w, then the diagram of inclusions

Xv1
// Xw

Xu

O O

// Xv2

OO

commutes. Typically, X is a finite simplicial complex, in which case we assume that
each Xu is a subcomplex. Moreover, we assume that the filtration is eventually con-
stant in any coordinate direction of the multi-filtration. Also, we assume that the
filtration is finite in the sense that there is some w ∈ Nn with Xw = X.

Now, given a multi-filtered space X, we may calculate the homology of each sub-
space Xv with coefficients in a field k. The inclusion maps among the various sub-
spaces yield maps on homology. This information is encapsulated in the following
definition.

Definition 2.1. A persistence module M is a family of k-vector spaces {Mv}v∈Nn

together with homomorphisms ϕu,v : Mu →Mv for all u . v such that if u . v . w
we have ϕv,w ◦ ϕu,v = ϕu,w. A persistence module M is finite if each Mu is finite-
dimensional. Any persistence module M has the structure of an n-graded module
over An where the action of a monomial is determined by requiring xv−u : Mu →Mv

to be ϕu,v whenever u . v.

Conversely, given a finitely-generated n-graded An-module, we get a persistence
module by taking ϕu,v : Mu →Mv to be the map given by the action of xv−u on
Mu. Applying similar considerations to morphisms, one obtains an equivalence of
categories between finite persistence modules and finitely-generated n-graded An-
modules, a result of [9] for n = 1, and extended to arbitrary n in [3].

Note that for each j > 0, the homology modules {Hj(Xv)}v∈Nn , together with the
induced maps, yield a finite persistence module over An.
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Recall that if M is an n-graded module and v ∈ Nn, then the shifted module M(v)
is defined by M(v)u = Mu−v for all u ∈ Nn.
Definition 2.2. If ξ is a multiset in Nn, then the n-graded k-vector space with basis
ξ is the module

V (ξ) =
⊕

(v,i)∈ξ
k(v).

This is an An-module where the action of each variable is identically zero.

Definition 2.3. If ξ is a multiset in Nn, then the free n-graded An-module with basis
ξ is the module

F (ξ) =
⊕

(v,i)∈ξ
k[x1, . . . , xn](v).

Note that each F (ξ)v is a k-vector space of dimension equal to #{(u, i) ∈ ξ|u . v}.
Definition 2.4. If M is a free n-graded object with basis ξ, then we call ξ the type
of M and denote it by ξ(M).

2.1. Automorphisms
We now turn to automorphisms.

Definition 2.5. Let µ ∈ GL(V (ξ)). We say that µ respects the grading if for any
(v, i) ∈ ξ, µ(v) lies in the span of elements uij ∈ ξ with uij . v. Denote by GL.(V (ξ))
the set of all such automorphisms.

Note that GL.(V (ξ)) is an algebraic subgroup of GL(V (ξ)). In fact, more is true:
every element has upper triangular block form. To see this, note that we may order
the basis of V (ξ) in the following way. For each (v, i) ∈ ξ, order the basis elements of
V (ξ)v arbitrarily and then order the sets according to .. If v1 and v2 are incomparable
under ., then we order them arbitrarily. For example, if n = 2, (0, 1) and (1, 0) are
incomparable, so we may choose either one to come first in the order. Then, with
respect to this ordering, any µ ∈ GL.(V (ξ)) has block form

µ =




L1 V12 · · · V1r

0 L2 · · · V2r

0 0
. . . Vr−1,r

0 0 · · · Lr


 ,

where each Lj ∈ GL(V (vj , ij)) and Vj` ∈Mij ,i`(k). Note that if the degrees vk and
v` are incomparable, then Vk` = 0.

Now, denote by GL(F (ξ)) the group of automorphisms of the free n-graded An-
module F (ξ) that respect the grading. Then we have the following.

Proposition 2.6. The group GL(F (ξ)) is isomorphic to GL.(V (ξ)).

Proof. By ordering bases as above, we see that any automorphism that respects the
grading of F (ξ) has an upper-triangular block form. Observe that each diagonal block
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has entries in k since µ applied to any basis element cannot increase the grade. Finally,
note that, likewise, any block above the diagonal consists only of elements in k; for
if a nonconstant polynomial is applied to a basis element, then the grade increases.
But then µ−1 would have to undo this action, in effect multiplying by a monomial of
the form x−u, which cannot happen.

2.2. A family of discrete invariants
Suppose M is a finitely-generated n-graded An-module. A minimal generating set

for M may be obtained as follows. Let In be the ideal (x1, . . . , xn) ⊂ An. Let

V (M) = M/InM = k ⊗An
M.

This is a finite-dimensional n-graded vector space, and as such it has a basis ξ(V (M)).
This lifts to a minimal generating set for M which we denote by ξ0(M).

Note that there is a canonical surjection ϕM : F (ξ0(M)) →M . Set F0 = F (ξ0(M)).
The kernel of ϕM is not free in general, but we may choose a minimal free module
F1 so that the sequence F1 → F0 →M → 0 is exact. Continuing in this way we get
a minimal free resolution

0 → Fn → Fn−1 → · · · → F1 → F0 →M → 0

in the category of finitely-generated n-graded An-modules. That this resolution ter-
minates at Fn is a consequence of Hilbert’s Syzygy Theorem [7, p. 478]. We may use
this resolution to compute Tor groups. Note that for each i > 0, TorAn

i (M,k) is an
n-graded vector space.

Definition 2.7. If M is a finitely-generated n-graded An-module, then set

ξi(M) = ξ(TorAn
i (M,k)).

Note that the ξi(M) are multisets in Nn and ξi(M) = ∅ for i > n.

3. Relation families and the associated variety

3.1. Relation families
Let us focus on the invariants ξ0(M) and ξ1(M) for a moment. These correspond

to a minimal generating set and a minimal set of relations for M , respectively. The
following construction appears in [3].

Definition 3.1. Let F (ξ0) and F (ξ1) be free n-graded An-modules. A relation family
is a collection {Vv}v∈ξ1 of vector spaces such that

1. Vv ⊆ F (ξ0)v;

2. dimVv = dimF (ξ1)v;

3. if u, v ∈ ξ1 with u . v, then xv−u · Vu ⊆ Vv.

The collection of all such relation families is denoted by RF(ξ0, ξ1).

Lemma 3.2. The group GL(F (ξ0)) acts on the left on RF(ξ0, ξ1).
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Proof. Any µ ∈ GL(F (ξ0)) induces an automorphism of the exact sequence

F (ξ1) → F (ξ0) →M → 0,

and hence maps a relation family to another relation family.

The canonical example of a relation family is given by a finitely-generated n-graded
An-module M . The map ψM in the exact sequence

F1
ψM→ F0 →M → 0

gives rise to a relation family η(ψM ) by setting Vv = ψM ((F1)v)) ⊆ (F0)v. In [3] the
authors prove the following.

Theorem 3.3 ([3, Theorem 2]). Let ξ0, ξ1 be multisets of elements from Nn and
let [M ] be the isomorphism class of finitely-generated n-graded An-modules M with
ξ0(M) = ξ0 and ξ1(M) = ξ1. Then the assignment [M ] 7→ η(ψM ) is a bijection from
the set of isomorphism classes to the set of orbits GL(F (ξ0))\RF(ξ0, ξ1).

3.2. The variety structure
Note that the set RF(ξ0, ξ1) can be given the structure of an algebraic variety.

Indeed, given a relation family {Vv}v∈ξ1 , each Vv determines a subspace of the vector
space F (ξ0)v and so we have an inclusion of sets

j : RF(ξ0, ξ1) →
∏

(v,i)∈ξ1
GrdimF (ξ1)v

(F (ξ0)v),

where Grm(W ) denotes the Grassmann variety of m-planes in W .

Proposition 3.4. The set RF(ξ0, ξ1) is a variety via the structure induced by the
map j.

Proof. This follows from the fact that the containment conditions xv−u · Vu ⊆ Vv are
algebraic.

Moreover, it is clear that the action of GL(F (ξ0)) on RF(ξ0, ξ1) is an algebraic
action. Unfortunately, the quotient space GL(F (ξ0))\RF(ξ0, ξ1) is not, in general, a
variety. In Section 4 we present one possible remedy for this. We shall discuss some
examples of the quotient spaces GL(F (ξ0))\RF(ξ0, ξ1) in Section 5.

3.3. The case n = 1
Before proceeding, we first discuss what happens when n = 1; that is, when we

have a single filtration direction. In the case of a filtered space, this corresponds to
the study of ordinary persistent homology [9]. A complete classification of persistence
modules over k[x] is known—the invariants ξ0 and ξ1 yield a barcode showing births
and deaths of homology classes.

The variety RF(ξ0, ξ1) makes sense when n = 1, however, and we discuss here the
structure of GL(F (ξ0))\RF(ξ0, ξ1).

As a simple example, suppose we are given that ξ0 = {0, 0, 2} and ξ1 = {4}; that
is, we have three generators appearing in filtration levels 0, 0, and 2 and a single
relation in level 4. In Figure 1 we show two different filtered spaces whose H0 modules
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0 1 2 3 4 5 0 1 2 3 4 5

Figure 1: Two filtered spaces associated to ξ0 = {0, 0, 2} and ξ1 = {4}

have these ξ0 and ξ1. The associated H0 modules are k[x]⊕ k[x]/x4 ⊕ x2k[x] and
k[x]⊕ k[x]⊕ x2k[x]/x4, respectively. Of course, these modules are not isomorphic,
but specifying only the locations of generators and relations does not reveal this.
Rather, the orbit space plays this role.

In this example, since there are three generators and only a single relation in
a degree greater than the degrees of all the generators, we see that RF(ξ0, ξ1) =
Gr1(k3) = P2. The group GL(F (ξ0)) has block form

(
GL2(k) V12

0 GL1(k)

)
.

It is easy to see that GL(F (ξ0)) has two orbits on P2 and so GL(F (ξ0))\RF(ξ0, ξ1)
consists of two points, as we expected.

In general, we have the following result.

Theorem 3.5. If n = 1, then the orbit space GL(F (ξ0))\RF(ξ0, ξ1) consists of a
finite set of points.

Proof. Since n = 1, we are dealing with N-graded modules over the principal ideal
domain k[x]. The classification of modules over this ring tells us that in the exact
sequence

0 → F (ξ1) → F (ξ0) →M → 0,

we must have rank(F (ξ1)) 6 rank(F (ξ0)).
Let m denote the number of elements in ξ0 so that GL(F (ξ0)) is a subgroup of

GLm(k). In this case, GL(F (ξ0)) is actually a parabolic subgroup of G = GLm(k)
since the ordering in N is linear; that is, there are no nonzero blocks above the diagonal
since all generator degrees are comparable. We claim that RF(ξ0, ξ1) is a flag variety;
that is, RF(ξ0, ξ1) = G/P for some parabolic P ⊂ G. Order the basis elements in ξ1
by degree: e11, . . . , e1`1 , e21 . . . , e2`2 , . . . , er1, . . . , er`r , with deg eij = di, j = 1, . . . , `i,
and d1 < d2 < · · · < dr. Then we have

RF(ξ0, ξ1) ⊆ Gr`1(F (ξ0)d1)×Gr`1+`2(F (ξ0)d2)× · · · ×Gr(Pj6r `j)
(F (ξ0)dr ).

Now observe that the containment conditions imply that if (p1, p2, . . . , pr) lies in
RF(ξ0, ξ1), where dim pj =

∑
i6j `i, then p1 ⊂ p2 ⊂ · · · ⊂ pr, that is, p1 ⊂ p2 ⊂ · · · ⊂

pr is a flag in km. It follows that we may identify RF(ξ0, ξ1) with the flag variety
F (d1, d2, . . . , dr) of flags V1 ⊂ · · · ⊂ Vr in km with dimVj =

∑
j6i `i. Thus there is a

parabolic subgroup P ⊂ G with F (d1, . . . , dr) = G/P .
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It is well-known (see e.g. [1]) that if B is the group of upper-triangular matrices,
then the quotient B\G/P is finite (indeed, the B-orbits in G/P give a decomposition
of the projective variety G/P into Schubert cells). Since B ⊆ GL(F (ξ0)), we see that
the quotient

GL(F (ξ0))\RF(ξ0, ξ1) ≈ GL(F (ξ0))\G/P
is finite.

4. Partitions of RF(ξ0, ξ1) and the associated varieties

When n > 2, the quotient GL(F (ξ0))\RF(ξ0, ξ1) is often not a variety (see [3]
and Section 5 below). In this section we present one remedy for this which has the
advantage of partitioning the quotient set GL(F (ξ0))\RF(ξ0, ξ1) into a collection of
varieties. This variety structure is different from that of [3] discussed in Section 3.2,
however, and does not carry quite as much information.

4.1. A partition of RF(ξ0, ξ1)
Recall that the set RF(ξ0, ξ1) consists of all relation families {Vv}v∈ξ1 . Recall

further that these are in one-to-one correspondence with finitely-generated n-graded
An-modules M with ξ0(M) = ξ0 and ξ1(M) = ξ1. Suppose we are given a collection
ξ0, ξ1, ξ2, . . . , ξn of multisets in Nn.

Definition 4.1. For multisets ξ0, ξ1, . . . , ξn, define

RF(ξ2, . . . , ξn) = {M ∈ RF(ξ0, ξ1)|ξ(TorAn
i (M,k)) = ξi, i = 2, . . . , n}.

Note that only finitely many RF(ξ2, . . . , ξn) are nonempty. Indeed, once ξ0 and
ξ1 are fixed, there are only finitely many possibilities for locations and numbers of
syzygies among the elements in ξ1, showing that there are only finitely many possi-
bilities for ξ2. In turn there are only finitely many possibilities for ξ3, and so on. Note
also that it is possible to have some ξi = ∅ (and then ξj = ∅ for j > i). Moreover, the
various RF(ξ2, . . . , ξn) are pairwise disjoint and their union is all of RF(ξ0, ξ1).

4.2. The action of GL(F (ξ0))
It is clear that each RF(ξ2, . . . , ξn) is stable under the action of GL(F (ξ0)) since

isomorphic modules have isomorphic Tor groups. More is true, however.

Lemma 4.2. Let M be a finitely-generated n-graded An-module with minimal reso-
lution

0 → Fn
dn→ Fn−1

dn−1→ · · · → F2
d2→ F1

d1→ F0 →M → 0.

Let µ ∈ GL(F0) and let M ′ = µ(M). Then M ′ has minimal resolution

0 → Fn
dn→ Fn−1

dn−1→ · · · → F2
d2→ F1

d′1→ F0 →M ′ → 0,

where d′1 = d1 ◦ µ.
Proof. This is an easy exercise and is left to the reader.

As a consequence, we see that each isomorphism class of modules has the same
syzygies, not just the same types ξ2, . . . , ξn. It is this fact we shall exploit now.
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4.3. A different variety structure
Given a module M with a minimal free resolution

0 → Fn
dn→ Fn−1

dn−1→ · · · → F2
d2→ F1

d1→ F0 →M → 0,

we may think of the map dj : (Fj)v → (Fj−1)v, v ∈ ξj , as giving us a subspace of
dimension dim(Fj)v inside (Fj−1)v. Denote this subspace by dj(M). Define a variety
Yξ2,...,ξn by

Yξ2,...,ξn
=

n∏

j=2

∏

(v,i)∈ξj

GrdimF (ξj)v
(F (ξj−1)v).

We may now construct a map ϕ : RF(ξ2, . . . , ξn) → Yξ2,...,ξn
by

ϕ(M) = (d2(M), d3(M), . . . , dn(M)).

As a consequence of Lemma 4.2, we obtain the following result.

Theorem 4.3. The map ϕ induces a map

ϕ : GL(F (ξ0))\RF(ξ2, . . . , ξn) → Yξ2,...,ξn .

Via the map ϕ we may put a variety structure on each GL(F (ξ0))\RF(ξ2, . . . , ξn)
as follows. For each orbit, choose a representative M . The module M determines a
point on RF(ξ0, ξ1) and the orbit determines a point on Yξ2,...,ξn . We therefore may
assemble these to obtain a map

Φ: GL(F (ξ0))\RF(ξ0, ξ1) →
∐

ξ2,...,ξn

RF(ξ0, ξ1)× Yξ2,...,ξn

defined by Φ([M ]) = (M, (d2(M), d3(M), . . . , dn(M))). If there is a collection of orbits
parametrized in some way (see the examples below), then we choose representatives
parametrized in the same way. We note that when the various ϕ are injective it is
not necessary to include the variety RF(ξ0, ξ1) in the definition of the map Φ. This
happens, for example, if all the generators in ξ0 are co-located. However, in Section 5.2
below, we give an example to show that the maps ϕ need not be injective if there are
generators in ξ0 in incomparable locations. Adding in the variety RF(ξ0, ξ1) forces Φ
to be injective.

The map Φ allows us to put a variety structure on GL(F (ξ0))\RF(ξ0, ξ1), but it
is not the same as the structure of the quotient space defined in Section 3.2. We have
lost some information in our construction. This will be discussed further in the next
section.

5. Examples

5.1. An example from [3]
Consider n = 2 and the modules with generators and relations ξ0 = {((0, 0), 2)}

and ξ1 = {((0, 3), 1), ((1, 2), 1), ((2, 1), 1), ((3, 0), 1)}, respectively. Since there are two
generators which are co-located, we have GL(F (ξ0)) = GL2(k). The set RF(ξ0, ξ1)
is obtained by choosing, for each generator ev ∈ ξ1, a relation between the two gener-
ators of F (ξ0), that is, a line in k2 = F (ξ0)v. Since the relations are not comparable
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in the order ., there are no containment conditions in RF(ξ0, ξ1), and we obtain

RF(ξ0, ξ1) = P1
k × P1

k × P1
k × P1

k.

The action of GL2(k) on this is the usual diagonal action. The results of this section
are true for arbitrary fields, but in the case k = F2, we make the following remark.
For F2, the variety P1 − {0, 1,∞} is empty. This does not affect the description of the
GL2(k)-orbits on RF(ξ0, ξ1); it merely indicates that certain pieces of the description
are not there.

In [3], the authors show that the orbit space GL2(k)\RF(ξ0, ξ1) contains a copy
of P1

k − {0, 1,∞} and deduce that it is impossible to obtain a complete family of
discrete invariants parametrizing these modules (in contrast to the n = 1 case, where
the barcode suffices). Let us examine this example further from the point of view of
Section 4.3.

Since n = 2, the only higher ξi we need to consider is ξ2. Since elements of ξ2
effectively provide syzygies among the generators in ξ1, we see that if e ∈ ξ2, we
must have deg e . (3, 3) since (3, 3) is the least upper bound in N2 for the set
{(0, 3), (1, 2), (2, 1), (3, 0)}. (This follows from the fact that A2 = k[x, y] is an integral
domain.) Thus, there are only six possible locations for generators in ξ2: (1, 3), (2, 2),
(3, 1), (2, 3), (3, 2), (3, 3).

To enumerate the orbits of the GL2(k)-action on (P1)4, note that since the GL2(k)-
action on P1 is 3-transitive, we have two cases to consider:

1. Ω = {(`1, `2, `3, `4) ∈ (P1)4|`i 6= `j , i 6= j}, and

2. those 4-tuples where at least two of the `i are the same.

The second case admits further refinement as well. Note that if k = F2, then the set
Ω is empty.

Consider the set Ω. Since GL2(k) acts 3-transitively on P1, we see immediately
that

GL2(k)\Ω = {(0,∞, 1, `)|` ∈ P1 − {0, 1,∞}}
∼= P1 − {0, 1,∞}.

Let α ∈ k − {0, 1} correspond to the line `. Then the relations of the associated
isomorphism class of modules are

[y3, 0], [0, xy2], [−x2y, x2y], [−x3, αx3];

that is, the first generator dies at (0, 3), the second at (1, 2), the generators become
equal at (2, 1) and α times the second equals the first at (3, 0). An easy calculation
shows that there are two syzygies among these:

x2[y3, 0]− xy[0, xy2] + y2[−x2y, x2y]

(1− α)[0, xy2]− xy[−x2y, x2y] + y2[−x3, αx3]

in degrees (2, 3) and (3, 2), respectively. It follows that Ω ⊂ RF({(2, 3), (3, 2)}. The
space Yξ2 for ξ2 = {((2, 3), 1), ((3, 2), 1)} is Gr1(k3)×Gr1(k3) = P2 × P2 and the map
ϕ : GL2(k)\Ω → Yξ2 is given by

ϕ((0,∞, 1, `)) = ([1 : −1 : 1], [1− α : −1 : 1]),
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orbit rep ξ2 Yξ2 imϕ

(0, 1,∞, α) (2, 3), (3, 2) P2 × P2 ([1 : −1 : 1], [1− α : −1 : 1])
(0, 0,∞, 1) (1, 3), (3, 2) P1 × P2 ([1 : −1], [1 : −1 : 1])
(0,∞, 0, 1) (2, 3), (3, 2) P2 × P2 ([1 : 0 : −1], [1 : −1 : −1])
(0,∞, 1, 0) (2, 3), (3, 3) P2 × P3 ([1 : −1 : 1], [1 : 0 : 0 : −1])
(0,∞,∞, 1) (2, 2), (3, 3) P1 × P3 ([1 : −1], [1 : 0 : −1 : 1])
(0,∞, 1,∞) (2, 3), (3, 2) P2 × P2 ([1 : −1 : 1], [1 : 0 : −1])
(0,∞, 1, 1) (2, 3), (3, 1) P2 × P1 ([1 : 1 : −1], [1 : −1])
(0, 0,∞,∞) (1, 3), (3, 1) P1 × P1 ([1 : −1], [1 : −1])
(0,∞, 0,∞) (2, 3), (3, 2) P2 × P2 ([1 : 0 : −1], [1 : 0− 1])
(0,∞,∞, 0) (2, 2), (3, 3) P1 × P3 ([1 : −1], [1 : 0 : 0 : −1])
(0, 0, 0,∞) (1, 3), (2, 2) P1 × P1 ([1 : −1], [1 : −1])
(0, 0,∞, 0) (1, 3), (3, 2) P1 × P2 ([1 : −1], [1 : 0 : −1])
(0,∞, 0, 0) (2, 3), (3, 1) P2 × P1 ([1 : 0 : −1], [1 : −1])
(∞, 0, 0, 0) (2, 2), (3, 1) P1 × P1 ([1 : −1], [1 : −1])
(0, 0, 0, 0) (1, 3), (2, 2), (3, 1) P1 × P1 × P1 ([1 : −1], [1 : −1], [1 : −1])

Table 1: The GL2(k) orbits

as revealed by the syzygies above. Note that the image of ϕ is a copy of P1 − {0, 1,∞}
inside P2 × P2, embedded in the second factor.

There are other elements in RF(ξ2) for ξ2 = {((2, 3), 1), ((3, 2), 1)} besides those
in Ω, and these fall in the category of those points in (P1)4 having fewer than four
distinct coordinates. Since GL2(k) acts 3-transitively on P1, we see that dividing up
points in (P1)4 into groups by numbers and locations of distinct points, there are
finitely many GL2(k) orbits in (P1)4 − Ω. These are enumerated in Table 1. The
orbit representative column indicates which elements of a 4-tuple are the same. For
example, (0,∞, 0, 1) means that the first and third coordinates of any element in the
orbit are equal. The ξ2 column shows the degrees of generators for the syzygies among
the relations in ξ1. For each ξ2, we have the variety Yξ2 defined above, and finally
imϕ indicates the point on Yξ2 mapped to by the particular orbit. In this example,
the various ϕ are injective, and so we may ignore the RF(ξ0, ξ1) portion.

Observe that there are nine distinct ξ2’s and that via the map

Φ: GL2(k)\RF(ξ0, ξ1) →
∐

ξ2

Yξ2

we may put a variety structure on the quotient set GL2(k)\RF(ξ0, ξ1). Of course,
this is not the quotient of RF(ξ0, ξ1) in the category of varieties and we have lost a
great deal of information in the process. For example, consider ξ2 = {(2, 3), (3, 2)}.
This includes the generic set Ω along with the hyperplanes H13 = {(`1, `2, `1, `4)},
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H24 = {(`1, `2, `3, `2)}, and their intersection H13 ∩H24. The map Φ, restricted to
GL2(k)\RF(ξ2) has image

{([1 : −1 : 1], [1− α : −1 : 1])|α 6= 0, 1}
∪ {([1 : 0 : −1], [1 : −1 : −1]), ([1 : −1 : 1], [1 : 0 : −1]), ([1 : 0 : −1], [1 : 0 : −1])}.

Note that the three points are separated from GL2(k)\Ω = P1 − {0, 1,∞}. However,
if one uses the variety structure on RF(ξ0, ξ1) and considers the induced quotient
topology on GL2(k)\RF(ξ0, ξ1), then the three points are in the closure of GL2(k)\Ω.
Thus, with our approach, information about degeneracies is lost at the expense of
obtaining a description of the collection of isomorphism classes of modules as a variety.

5.2. An example with containment conditions
Consider the following multisets:

ξ0 = {((0, 1), 1), ((1, 0), 2)}
ξ1 = {((2, 0), 1), ((1, 1), 1), ((1, 2), 1)}.

Then we have

RF(ξ0, ξ1) = {(`1, `2, p) ∈ P1
(2,0) × P2

(1,1) ×Gr2(k3)(1,2)|`2 ⊂ p}
(here, the subscript on each factor indicates the degree of the relation). The group
GL(F (ξ0)) is isomorphic toGL1(k)×GL2(k) and if we order the generators by letting
the first lie at (0, 1), then GL(F (ξ0)) has block form

(
GL1(k) 0

0 GL2(k)

)
.

The orbits of the action on RF(ξ0, ξ1) are shown in Table 2. An element of Gr2(k3)
is denoted {ab}, where a and b are coordinate directions or sums of such (e.g., x or
x+ z). The final orbit in the table is isomorphic to P1 − {0,∞}.

Notice that the map ϕ is not injective. This happens because there are noniso-
morphic modules with the same higher syzygies. This is a consequence of having
generators in different, incomparable locations. A typical such occurrence is when
the same relation is imposed among the generators in degree (1, 0) at locations (2, 0)
and (1, 1), yielding a syzygy at (2, 1). We may then choose several inequivalent rela-
tions at (1, 2) that yield no higher syzygies. That is why we need to use the variety
RF(ξ0, ξ1) to distinguish orbits in this case.

6. Geometric interpretation of ξi, i > 2

Consider the filtration of the circle shown in Figure 2. The H0 and H1 mod-
ules for this filtration are shown in Figure 3. For H0, we have ξ0 = {((0, 0), 3)},
ξ1 = {((0, 1), 1), ((1, 0), 1), ((2, 0), 1)}, and ξ2 = {((2, 1), 1)}, whileH1 is free with ξ0 =
{((2, 1), 1)}. Note the connection between ξ2 for H0 and ξ0 for H1. This occurs in
almost every example one writes down. In this section, we provide an explanation for
this.
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orbit rep ω ξ2 Yξ2 imϕ imΦ

([1 : 0], [0 : 1 : 0], {yz}) (2, 1) P1 [1 : −1] (ω, [1 : −1])
([1 : 0], [0 : 1 : 0], {xy}) (2, 1) P1 [1 : −1] (ω, [1 : −1])

([1 : 0], [0 : 1 : 0], {x+ z, y}) (2, 1) P1 [1 : −1] (ω, [1 : −1])
([1 : 0], [0 : 0 : 1], {xz}) ∅ ∗ ∗ (ω, ∗)

([1 : 0], [0 : 0 : 1], {x+ y, z}) ∅ ∗ ∗ (ω, ∗)
([1 : 0], [0 : 0 : 1], {yz}) (2, 2) P2 [1 : 0 : −1] (ω, [1 : 0 : −1])
([1 : 0], [1 : 0 : 0], {xy}) (2, 2) P2 [1 : 0 : −1] (ω, [1 : 0 : −1])
([1 : 0], [1 : 0 : 0], {xz}) ∅ ∗ ∗ (ω, ∗)
([1 : 0], [1 : 1 : 0], {xy}) (2, 2) P2 [1 : 1 : −1] (ω, [1 : 1 : −1])

([1 : 0], [1 : 1 : 0], {x+ y, x+ z}) ∅ ∗ ∗ (ω, ∗)
([1 : 0], [1 : 0 : 1], {xz}) ∅ ∗ ∗ (ω, ∗)

([1 : 0], [1 : 0 : 1], {x+ z, y}) (2, 2) P2 [1 : 0 : −1] (ω, [1 : 0 : −1])
([1 : 0], [1 : 0 : 1], {x+ z, y + tz}), t 6= 0 ∅ ∗ ∗ (ω, ∗)

Table 2: Orbits of the GL(F (ξ0)) action

Figure 2: A filtration of the circle

k2 k k 0 0 k

k3 k2 k 0 0 0

H0 H1

Figure 3: The modules H0 and H1
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6.1. Chain complexes of n-graded modules
Suppose that X is a finite simplicial complex filtered by Nn; denote the filtered

space by X•. For each i > 0, we have the n-graded An-module

Ci(X•) =
⊕

v∈Nn

Ci(Xv)

of i-chains. Since the boundary map is functorial with respect to maps of simplicial
complexes, we obtain a chain complex in the category of n-graded An-modules:

C•(X•) = {· · · → Ci(X•)
∂→ Ci−1(X•) → · · · }.

The i-th homology of this complex is the n-graded module Hi(X•) =
⊕

v∈Nn Hi(Xv).
In previous sections, we studied these homology modules individually. This point

of view, however, allows us to draw connections between them as hinted at by the
example above. For this we need the hypertor groups of the complex C•(X•). A
reference for this material is Section 5.7 of [8].

The hypertor modules of C•(X•) are the Tor groups in the category of n-graded
An-modules:

TorAn
p (C•(X•),M),

where M is any n-graded An-module. Here, we are interested only in M = k, sitting
in degree (0, . . . , 0) ∈ Nn. These are obtained by taking a Cartan-Eilenberg resolution
P•• → C•(X•) (see p. 145 of [8]) or K•• → k, and taking the homology of the total
complex of the resulting double complex obtained by tensoring two objects:

P•• ⊗An k or C•(X•)⊗An K•• or P•• ⊗An K••.

As usual, there are two spectral sequences for computing the homology of the total
complex. One of these has (by taking horizontal homology first)

E2
pq = TorAn

p (Hq(X•), k) ⇒ TorAn
p+q(C•(X•), k).

We shall discuss the abutment in the next section. For now, let us focus on the
E2-term itself. Set p = 2 and note that we have a map

d2
2q : TorAn

2 (Hq(X•), k) → TorAn
0 (Hq+1(X•), k).

In other words, we have a functorial way to relate elements of ξ2(Hq(X•)) to elements
of ξ0(Hq+1(X•)).

In the circle example above, we have a map of graded modules

d2
20 : TorA2

2 (H0(X•), k) → TorA2
0 (H1(X•), k).

As H1(X•) is a free A2-module with generator at (2, 1), we have the resolution

0 → A2(2, 1)
∼=→ H1(X•) → 0

and so TorA2
i (H1(X•), k) is the i-th homology of the complex

0 → A2(2, 1)⊗A2 k → 0.

Thus, we get only Tor0 and it is a single copy of k in degree (2, 1).



274 KEVIN P. KNUDSON

To compute the Tor groups of H0(X•), we use the resolution

0 → A2(2, 1) d2→ A2(1, 0)⊕A2(0, 1)⊕A2(2, 0) d1→ A2(0, 0)3 → H0(X•) → 0,

where the maps di are given by

d2 =



−xy
x2

−y


 d1 =




x y 0
−x 0 x2

0 −y −x2


 .

Applying −⊗A2 k we obtain the complex

0 → k(2, 1) 0→ k(1, 0)⊕ k(0, 1)⊕ k(2, 0) 0→ k(0, 0)3 → 0,

from which we deduce that TorA2
2 (H0(X•), k) = k(2, 1). The map d2

20 is then a map
k(2, 1) → k(2, 1).

The easy way to see that this map is an isomorphism is to note that since C0(X•)
and C1(X•) are free A2-modules, we have TorA2

i (C•(X•), k) = Hi(C•(X•)⊗A2 k). It
is easy to see that

TorA2
0 (C•(X•), k) = k(0, 0)3

TorA2
1 (C•(X•), k) = k(0, 1)⊕ k(1, 0)⊕ k(2, 0),

and these modules occur in the E2-term of the spectral sequence in degrees (0, 0) and
(1, 0), respectively. Since E3 = E∞ in this case, we must have that d2

20 : k(2, 1) →
k(2, 1) is an isomorphism.

In fact, this map is −id, as can be seen by choosing a Cartan-Eilenberg resolution
of the complex C•(X•). Upon applying the functor −⊗A2 k to this resolution, we
find that the E0-term of the (transposed) spectral sequence is

k(1, 0)⊕ k(0, 1)
⊕

k(2, 0)⊕ k(2, 1)
k(2, 1) 0

k(0, 0)3 ⊕ k(1, 0)
⊕

k(0, 1)⊕ k(2, 0)

k(1, 0)⊕ k(0, 1)
⊕

k(2, 0)⊕ k(2, 1)
k(2, 1),

where the horizontal and vertical maps are either 0 or ±id as allowed by grading
(horizontal maps are id, vertical maps −id in column 1 and id in column 0). It follows
that the E1-term is

k(2, 1) 0 0

k(0, 0)3 k(1, 0)⊕ k(0, 1)⊕ k(2, 0) k(2, 1),

and hence E1 = E2. Given the description of the E0-term, it is now clear, by con-
struction, that d2

20 : E2
20 → E2

01 is −id.
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Geometrically, this may be interpreted as follows. The generator of the module
TorA2

2 (H0(X•), k) represents the first location where a collection of relations in H0

is not an independent set. This can occur due to duplications of relations, or, as in
this example, because these have come together to form a 1-cycle. This is a general
result.

Theorem 6.1. The kernel of the map

d2
2q : TorAn

2 (Hq(X•), k) → TorAn
0 (Hq+1(X•), k)

is generated by syzygies resulting from the same relation being imposed in Hq(X•)
in multiple degrees. If a nonzero w ∈ TorAn

0 (Hq+1(X•), k) is in the image of d2
2q, say

d2
2qz = w, then w =

∑
αiwi for some (q + 1)-simplices wi where each wi corresponds

to an element of TorAn
1 (Bq(X•), k) and z gives a syzygy among the wi.

Proof. If one constructs a Cartan-Eilenberg resolution of C•(X•) as in [8, p. 146],
one discovers that the differential d2

2q is built as follows. For each q, we have exact
sequences of An-modules,

0 → Bq(X•) → Zq(X•) → Hq(X•) → 0

and
0 → Zq+1(X•) → Cq+1(X•) → Bq(X•) → 0,

together with the associated long exact sequence of Tor groups. We may piece these
together as follows:

TorAn
2 (Hq, k)

f→ TorAn
1 (Bq, k) → TorAn

0 (Zq+1, k) → TorAn
0 (Hq+1, k).

Denote the composite of the last two maps by g. Then d2
2q = g ◦ f .

Denote the minimal resolutions of Hq(X•) and Bq(X•) by Pq• → Hq and Qq• →
Bq. The differentials in these resolutions will be denoted dP and dQ, respectively.
Recall that I denotes the ideal (x1, . . . , xn) ⊂ An. Suppose d2

2qz = 0, z 6= 0. We have
two cases.

1. f(z) = 0. Then we have f(z) ∈ I ·Qq1; that is, f(z) =
∑
xvzv, where

zv ∈ ξ(Qq1). It is easy to see that dQ ◦ f = 0 and so dQ(
∑
xvzv) = 0. That

is,
∑
xvdQzv = 0. This element is trivial in TorAn

1 (Bq, k). It therefore gives
an inessential relation among the generators of Bq. Let uv = dqzv. Then
uv ∈ Qq0 and

∑
xvuv = 0. The uv correspond to (q + 1)-chains and the relation∑

xvuv = 0 shows that the uv are a redundant set of relations; i.e., we have
imposed the same relations (uv) among q-chains in different grades. Thus, the
syzygy z arises from imposing these redundant relations.

2. f(z) 6= 0. Then f(z) =
∑
zv +

∑
xvwv for some zv, wv ∈ ξ(Qq1), and we have

g(f(z)) =
∑
xvuv for some uv ∈ Pq+1,0. Again, this element is trivial, this time

in TorAn
0 (Hq+1(X•), k), and so it must be that we have imposed the same rela-

tions (uv) among q-simplices in different grades.
Finally, if d2

2q(z) = w 6= 0, then w =
∑
uv +

∑
xvwv for some uv, wv ∈ ξ(Pq+1,0).

Write f(z) =
∑
yv +

∑
xvzv, yz, wz ∈ ξ(Qq1). Note that

∑
yv represents a nontrivial

element of TorAn
1 (Bq(X•), k), and the (q + 1)-dimensional homology class w is built

from q-boundaries yv with z giving a syzygy among them.
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In the case n = 2, this gives the complete picture since E3 = E∞. For n > 3,
however, we have higher differentials in the spectral sequence. In particular, the dif-
ferential d``q : E``q → E`0,q+`−1 is a map from a subquotient of TorAn

` (Hq(X•), k) to
a quotient of TorAn

0 (Hq+`−1(X•), k). This is a much more subtle and complicated
relationship that we shall not investigate here.

6.2. The abutment
In this section we investigate the groups TorAn

i (C•(X•), k) that form the abutment
of the spectral sequence investigated above. Recall the filtration of the circle shown
in Figure 2 above. We had

TorAn
0 (C•(X•), k) = k(0, 0)3

TorAn
1 (C•(X•), k) = k(0, 1)⊕ k(1, 0)⊕ k(2, 0).

Note that each of these groups is generated by elements that correspond to actual
simplices in the space X; the three points for Tor0 and the three edges for Tor1.
As it stands, the grading prevents the existence of a nontrivial map between these
groups, but if we drop the grading, there is an obvious map ∂ : Tor1 → Tor0 given
by the geometric boundary. The homology of this complex is then the homology of
the underlying space.

This example is particularly nice since the chain groups Ci(X•) are free A2-
modules. Still, we shall now show that in certain cases it is possible to construct a
boundary map ∂i : Tori(C•(X•), k) → Tori−1(C•(X•), k), after forgetting the grad-
ing, so that the homology of the resulting complex is the homology of the space
X.

There is another spectral sequence converging to the modules Tori(C•(X•), k); its
E1-term satisfies

E1
pq = TorAn

q (Cp(X•), k)

and the q-th row of the E2-term is obtained by taking the homology of the complex
E1
•q = {Torq(C•(X•), k), d1}, where d1 is induced by the boundary map in C•(X•).

The bottom row, E1
•0 is simply the complex C•(X•)⊗An k. Each Ci(X•)⊗An k is an

n-graded k-vector space with basis the i-simplices inX, but possibly with duplications
if a particular cell enters the filtration in different grades.

When n = 1, there can be no such duplications; it therefore follows that if we
ignore the grading and use the geometric boundary map, then the bottom row
is just C•(X)⊗ k. Note also that when n = 1, the modules Ci(X•) are necessar-
ily free (because of the lack of duplications), and so Tork[x]1 (Ci(X•), k) = 0 for all
i > 0. It follows that Tori(C•(X•), k) = Ci(X•)⊗k[x] k, and with the boundary map
∂i : Tori → Tori−1, we see that

Hi(Tork[x]• (C•(X•), k), ∂•) ∼= Hi(X; k).

For n > 2, things are more complicated. Note that the d1-map is mostly zero for
degree reasons. For example, on the bottom row, the only way an i-simplex σ might
map to something nonzero is if σ and some part of ∂σ entered the filtration in the
same degree. Otherwise, there is nowhere for σ to go. In the result below, we shall
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get around this by assuming that at most one simplex is added at a time as we move
in any direction in the filtration.

We first note the following fact.

Proposition 6.2. For all j > n+ dimX, we have TorAn
j (C•(X•), k) = 0.

Proof. For j > n+ dimX, this follows by noting that in the spectral sequence above,
we have E1

pq = 0 for p > dimX or q > n. More is true, however. We claim that
Torn(Cp(X•), k) = 0 as well, and this implies that TorAn

n+dimX(C•(X•), k) = 0. To see
this, let K• → k be the Koszul complex, where each term sits in degree (0, 0, . . . , 0) ∈
Nn. This is a free resolution of k in the category of n-graded An-modules, and so we
may use it to compute TorAn

q (Cp(X•), k). In this way, it is easy to see that

TorAn
n (Cp(X•), k) = {σ ∈ Cp(X•) : xjσ = 0, j = 1, . . . , n},

and this is clearly zero since chains never die (in contrast to homology classes, where
Torn could be nonzero).

Heuristically speaking, an element of TorAn
q (Cp(X•), k), q > 0 may be thought of

as a virtual (p+ q)-cell in the following way. If q = 1, then we get elements that
tell us to identify two p-simplices in the space X that are copies of the same cell in
different filtration levels. We may view this element as a (p+ 1)-cell that fills in the
void created by attaching two copies of the p-simplex. An example of this is shown in
Figure 4, where a 2-cell has been added in filtration levels (1, 2) and (3, 0) (note that
this is a cellular filtration, not a simplicial one, but the principles are the same). The
corresponding relation gives rise to an element of TorA2

3 (C•(X•), k) in degree (3, 2)
(coming from an element of TorA2

1 (C2(X•), k)), which we can picture as a 3-cell filling
in the sphere created by attaching two copies of the 2-cell to a cylinder. Elements in
Torq may be thought of similarly—higher syzygies arise from syzygies appearing in
multiple places— and these get filled in by virtual cells.

We may therefore think of the elements of TorAn
j (C•(X•), k) as j-cells, some of

which correspond to real j-cells in the space X (if they come from TorAn
0 (Cj(X•), k)),

others of which correspond to virtual cells filling in spheres created by duplica-
tions. We now define a map ∂ : TorAn

` (C•(X•), k) → TorAn

`−1(C•(X•), k), ignoring
the grading. Note that Tor` =

⊕
i+j=`E

∞
ij , and that each E∞ij is a subquotient of

TorAn
j (Ci(X•), k). If j > 0, then we view an element of E∞ij as a virtual (i+ j)-cell

giving a relation among elements of E1
i,j−1; say z ∈ E1

ij yields a syzygy among ele-
ments zi in E1

i,j−1. We then define ∂[z] =
∑

[zi]. Note that if we do not ignore the
degrees of the elements of these modules, then this would often be the zero map.
However, ignoring the grading, this makes sense. For j = 0, we have elements of E∞i,0
coming from actual cells in the space X. For such a simplex σ, define ∂[σ] = [∂σ], the
geometric boundary of σ.

While a general description of the Torj is unwieldy, we do have the following
result. Denote by ej the element (0, 0, . . . , 0, 1, 0, . . . , 0) ∈ Nn, where the 1 is in the
j-th position.
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Figure 4: A filtered sphere with duplicated cells in degrees (1, 2) and (3, 0). The
horizontal edge in the bottom of the picture in degree (2, 1) is a 1-cell joining the two
vertices. The 2-cell attached in degree (2, 1) creates a cylinder with boundary the two
circles.

Theorem 6.3. Suppose the filtration X• is such that for every v ∈ Nn,
dimk((Ci(X•)v+ej )) 6 1 + dimk((Ci(X•)v),

j = 1, . . . , n (that is, we add at most one simplex at a time moving in any coordinate
direction). Then for all ` > 0,

TorAn

` (C•(X•), k) =
⊕

i+j=`

TorAn
j (Ci(X•), k),

and using ∂ : Tor`(C•(X•), k) → Tor`−1(C•(X•), k) defined above, we have

H•(Tor•(C•(X•), k), ∂) ∼= H•(X; k).

Proof. Note that the condition on the filtration implies that in the E0-term of the
spectral sequence, the horizontal differential is identically zero for degree reasons (i.e.,
the boundary of any simplex lives in a lower degree, a relation involves objects in lower
degrees, etc., and so after tensoring with k, the differential vanishes). It follows that
E1 = E∞ and so, for ` > 0,

TorAn

` (C•(X•), k) =
⊕

i+j=`

E∞ij =
⊕

i+j=`

TorAn
j (Ci(X•), k).

Denote the group TorAn

` (C•(X•), k), with grading dropped, by T`. We have an
inclusion of chain complexes

ϕ : C•(X; k) → T•

defined as follows. Let σ be a generator of Ci(X; k). Then σ ∈ TorAn
0 (Ci(X•), k),

perhaps in multiple locations. Choose the copy in degree v = (v1, . . . , vn), where
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v1, . . . , vn are minimized in order. For example, if n = 3 and σ occurs in grades (0, 1, 2)
and (0, 2, 1), then we would choose the generator in grade (0, 1, 2) for ϕ(σ). Since we
have dropped the grading in Ti, this choice is unimportant and gives a well-defined
chain map. Denote by Q• the quotient complex so that we have an exact sequence

0 → C•(X; k)
ϕ→ T• → Q• → 0.

We claim that H•(Q•) ≡ 0.
Note that for each ` > 0,

Q` =
⊕

i+j=`,j>1

TorAn
j (Ci(X•), k)⊕ TorAn

0 (C`(X•), k)/ϕ(C`(X; k)),

and hence Q• is the total complex of the double complex obtained from E∞ by taking
the quotient of the bottom row by the image of C•(X; k) under ϕ. We claim that the
vertical homology of this double complex vanishes so that H•(Q•) ≡ 0. To see this,
note that the map

E∞i,1 → E∞i,0/ϕ(Ci(X; k))

is surjective since the elements in TorAn
1 (Ci(X•), k) serve to identify duplications of

simplices in X. Since we have set one of these simplices equal to zero, the others
get hit by the appropriate element of TorAn

1 (Ci(X•), k). Similarly, a syzygy z in E∞ij
corresponds to a virtual (i+ j)-cell that fills in the 2 (i+ j − 1)-cells it relates. It
follows that any vertical cycle may be filled with a vertical boundary and hence
E1 ≡ 0, as required.

6.3. Examples
1. Consider the filtered circle shown in Figure 5. The chain groups of this space

are:

C0(X•) =
A2(0, 0)⊕A2(0, 1)⊕A2(1, 0)⊕A2(2, 1)⊕A2(4, 0)

x(0, 1, 0, 0, 0) = y(0, 0, 1, 0, 0), x2(0, 0, 0, 1, 0) = y(0, 0, 0, 0, 1)

C1(X•) =
A2(1, 1)⊕A2(2, 0)⊕A2(3, 2)⊕A2(4, 1)⊕A2(4, 2)

x(1, 0, 0, 0, 0) = y(0, 1, 0, 0, 0), x(0, 0, 1, 0, 0) = y(0, 0, 0, 1, 0)
.

The E1 = E∞-term of the spectral sequence for computing TorAn• (C•(X•), k) is then

k(1, 1)⊕ k(4, 1) k(2, 1)⊕ k(4, 2)

k(0, 0)⊕ k(0, 1)⊕ k(1, 0)⊕ k(2, 1)⊕ k(4, 0) k(1, 1)⊕ k(2, 0)⊕ k(3, 2)⊕ k(4, 1)⊕ k(4, 2).

We therefore have T0 = E1
0,0, T1 = E1

0,1 ⊕ E1
1,0, and T2 = E1

1,1, and the complex T•
is then

k2 B→ k2 ⊕ k5 A→ k5,

where the matrices A and B are
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Figure 5: A circle with one simplex entering at a time

A =




0 0 1 1 0 0 1
1 0 0 0 0 0 0

−1 0 −1 −1 −1 −1 0
0 1 0 0 1 1 0
0 −1 0 0 0 0 −1




B =




0 0
0 0
1 0

−1 0
0 1
0 −1
0 0




.

It is easy to see that A has rank 4, B has rank 2, and so the homology of this complex
is k in degrees 0 and 1, and 0 in degree 2. The inclusion ϕ : C•(X; k) → T• takes the
three vertices to those in degrees (0, 0), (0, 1), and (2, 1), and the three edges to those
in degrees (1, 1), (3, 2), and (4, 2). The map ϕ is a quasi-isomorphism.

2. Observe that the filtered sphere shown in Figure 4 fails the criterion imposed in
the statement of the theorem since we add multiple cells when passing to degree (2, 1).
However, we may still recover the homology of X = S2 from the hypertor groups. The
chain groups of this filtered space are as follows:

C0(X•) = A2(0, 0)2

C1(X•) = A2(0, 0)2 ⊕A2(2, 1)

C2(X•) =
A2(0, 3)⊕A2(1, 2)⊕A2(2, 1)⊕A2(3, 0)

x2(0, 1, 0, 0) = y2(0, 0, 0, 1)
.

The spectral sequence for calculating TorAn• (C•(X•), k) has E1-term

0 0 k(3, 2)

k(0, 0)2 k(0, 0)2 ⊕ k(2, 1)0oo k(0, 3)⊕ k(1, 2)⊕ k(2, 1)⊕ k(3, 0).0oo
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Since the horizontal differential is zero, this is the E∞-term as well. Note that
we have isomorphisms ϕ : C0(X; k) → T0 and ϕ : C1(X; k) → T1, while the inclusion
ϕ : C2(X; k) → T2 is given by

σ1 7→ σ1(0, 3),
σ2 7→ σ2(1, 2),
τ 7→ τ(2, 1),

where σ1 is the 2-cell entering in degree (0, 3), σ2 enters at (1, 2) and τ enters at (2, 1)
to create the cylinder. For clarity, we have indicated the degree of each element in Ti,
but we have dropped the grading for calculations. We therefore have Q0 = 0, Q1 = 0,
Q2 = k(3, 0), and Q3 = k(3, 2). The map ∂ : Q3 → Q2 is the identity; the group Q3

is generated by a virtual 3-cell filling in the two copies of σ2. Note that H•(Q•) ≡ 0,
and so ϕ : C•(X; k) → T• is a quasi-isomorphism.
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