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GROUP HOMOLOGY AND EXTENSIONS OF GROUPS

IOANNIS EMMANOUIL and INDER BIR S. PASSI

(communicated by Jean-Louis Loday)

Abstract
Using Quillen’s description of cyclic cohomology in terms of

traces on algebra extensions and Burghelea’s computation of the
cyclic homology of the group algebra of a group Π, we derive a
description of the homology of Π with coefficients in a field of
characteristic 0 as the inverse limit of a functor on the category
of extensions of Π.

0. Introduction

It is well-known that the study of the cyclic cohomology groups HC∗(A) of an
algebra A over a field k of characteristic 0 is essentially equivalent to the study of
higher traces on A (cf. [3]) or on a differential graded algebra resolution of A (cf. [6]).
Quillen [11] represented cyclic cohomology classes of A by means of certain traces on
an algebra extension A = R/I and showed that if the algebra R is free, then any cyclic
cohomology class can be realized as the class attached to a trace on this extension.
Furthermore, Quillen obtained a description of cyclic homology as the inverse limit of
a suitable functor on the category of extensions of the algebra A.

The computation of the cyclic homology groups of A, in the special case where
A = kΠ is the group algebra of a group Π, is due to Burghelea [2] (see also Chapter 7
of Loday’s book [8]). It turns out that the groups HC∗(kΠ) admit a decomposition,
indexed by the conjugacy classes of Π, into the direct sum of certain components,
which can themselves be expressed in terms of the homology groups of certain subquo-
tients of Π. In particular, the homology groups of Π appear as subgroups of HC∗(kΠ).

Using the above circle of ideas, we describe in this paper the homology groups of
Π as the inverse limit of suitable functors on the category of extensions Π = G/H.
More precisely, our main result (Theorems 5.2 and 5.5) is that for all n > 1, there are
isomorphisms

H2n(Π, k) ' lim
←−

hn + (kH ∩ [kG, kG])
hn+1 + (kH ∩ [kG, kG])

and

H2n+1(Π, k) ' lim
←−

hn+1 ∩ [h · kG, hn−1 · kG]
hn+1 ∩ [h · kG, hn · kG]

,
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where the inverse limits are over the category of extensions of the group Π. Here, for
any extension Π = G/H, we denote by h = hk the augmentation ideal of the group
algebra kH, whereas for any two subspaces U, V ⊆ kG we denote by [U, V ] the k-linear
span of the commutators xy − yx, x ∈ U , y ∈ V . In particular, since kH ∩ [kG, kG] ⊆
h for any extension Π = G/H, there is an isomorphism

H2(Π, k) ' lim
←−

h

h2 + (kH ∩ [kG, kG])
.

In [10] it has been noted that, given a free presentation Π = F/N , the homology
groups H2n(Π, k) embed à la Gruenberg into suitable subquotients of the group alge-
bra kF . Our analysis provides (Corollary 5.3) a similar embedding for the odd dimen-
sional homology groups H2n+1(Π, k).

We observe that Hopf’s formula for the second integral homology of a group may
be restated as the assertion that there is an isomorphism

H2(Π,Z) ' lim
←−

hZ
h2
Z + (ZH ∩ [ZG,ZG])

,

where hZ is the augmentation ideal of the group ring ZH for any extension Π = G/H.
This indicates that some of the results obtained in this paper, under the assumption
that k is a field of characteristic 0, may be valid over the ring Z as well. It may be
mentioned here that Emmanouil and Mikhailov [5] have obtained a formula for the
even dimensional homology of a group with coefficients in an arbitrary module as the
inverse limit of a certain functor over the category of free presentations of the group.
However the latter formula does not include our result for the even dimensional homol-
ogy as a special case. It thus remains a challenging goal for the future to understand
the relation between the methods of [5] and the formulae of the present paper, as
well as their relation to the terms of the Gruenberg resolution [7]. Even though one
cannot claim that our results provide an effective tool for computing group homology,
we believe that (in the opposite direction) the evaluation of these inverse limits as
group homology is intriguing and demands further investigation.

The contents of the paper are as follows: In Section 1, we record a few elemen-
tary observations relating the extensions of a group to those of the corresponding
group algebra. In the subsequent section, we detail the behavior of Quillen’s spec-
tral sequences in the case where the extension of the group algebra is induced by
a free presentation of the group. In Section 3, we examine the behavior of Connes’
homomorphisms γ with respect to the periodicity operator S in cyclic homology. As a
motivation for our main result, in Section 4, we reformulate Hopf’s formula for H2 by
establishing the existence of an isomorphism as mentioned above. Finally, in the last
section, we obtain our main result, describing the homology of a group as the inverse
limit of a functor on the category of extensions of the group.

Notation
Let k be a commutative ring.

(i) If ϕ : G −→ H is a group homomorphism, then we denote by ϕ̃ : kG −→ kH its
k-linear extension to the respective group algebras. In other words, ϕ̃ is the k-
algebra homomorphism, which is defined by mapping any element

∑
g∈G agg ∈
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kG onto the element
∑
g∈G agϕ(g) ∈ kH.

(ii) Given a group H, we adopt Gruenberg’s notation [7] and denote by h the aug-
mentation ideal of the group algebra kH. In the case where the dependence upon
the ground ring k is to be emphasized, we denote h by hk. If H is a normal sub-
group of a group G and n a non-negative integer, then we denote by hn · kG the
ideal of kG generated by the ideal hn ⊆ kH. We adopt an analogous notation
for groups H ′,H0, N, . . . and denote their augmentation ideals by h′, h0, n, . . .
respectively.

(iii) If R is a k-algebra, then for any two k-submodules U, V ⊆ R we denote by [U, V ]
the k-linear span of the commutators xy − yx, x ∈ U , y ∈ V .

1. Group extensions and extensions of group algebras

We fix a commutative ring k and a group Π and define the category Egrp(Π) of
extensions of Π, as follows: The objects of Egrp(Π) are the short exact sequences of
groups of the form

1 −→ H −→ G
ρ−→ Π −→ 1 (1)

and its morphisms are the commutative diagrams of the form

1 −→ H −→ G
ρ−→ Π −→ 1

↓ ↓ ϕ ‖
1 −→ H ′ −→ G′

ρ′−→ Π −→ 1
(2)

where ϕ is a group homomorphism. In order to guarantee that the category Egrp(Π)
be small, we require that any object of Egrp(Π) is such that the group G therein can
be obtained as a quotient of the free group on c generators, where c is some fixed
cardinal number; for our purposes, we may choose c = max{ℵ0, card(k), card(Π)}.

In the same way, for any k-algebra A we define the category Ealg(A) of algebra
extensions of A, as follows: The objects of Ealg(A) are the short exact sequences

0 −→ I −→ R
p−→ A −→ 0,

where p is a k-algebra homomorphism, and its morphisms are the commutative dia-
grams of the form

0 −→ I −→ R
p−→ A −→ 0

↓ ↓ f ‖
0 −→ I ′ −→ R′

p′−→ A −→ 0

where f is a k-algebra homomorphism. As before, in order to guarantee that the cate-
gory Ealg(A) be small, we require that any object of Ealg(A) is such that the algebra R
therein can be obtained as a quotient of the free k-algebra on c generators, where c is
some fixed cardinal number; for our purposes, we may choose c = max{ℵ0, card(A)}.

We now consider the group algebra kΠ and define the functor t : Egrp(Π) −→
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Ealg(kΠ), as follows: Any group extension (1) is mapped under t onto the extension

0 −→ h · kG −→ kG
eρ−→ kΠ −→ 0

of the group algebra kΠ, whereas any morphism (2) of Egrp(Π) is mapped onto the
morphism of algebra extensions

0 −→ h · kG −→ kG
eρ−→ kΠ −→ 0

↓ ↓ eϕ ‖
0 −→ h′ · kG′ −→ kG′

eρ′−→ kΠ −→ 0

An extension
0 −→ I −→ R

p−→ kΠ −→ 0 (3)

of the group algebra kΠ will be called admissible if there is at least one group exten-
sion (1), such that there is a morphism of algebra extensions

0 −→ h · kG −→ kG
eρ−→ kΠ −→ 0

↓ ↓ f ‖
0 −→ I −→ R

p−→ kΠ −→ 0
(4)

In what follows, we need the following property of admissible extensions.

Proposition 1.1. Consider an admissible extension (3) of the group algebra kΠ.
Then there is an extension

1 −→ H0 −→ G0
ρ0−→ Π −→ 1

of the group Π and a morphism of algebra extensions

0 −→ h0 · kG0 −→ kG0
fρ0−→ kΠ −→ 0

↓ ↓ f0 ‖
0 −→ I −→ R

p−→ kΠ −→ 0
(5)

having the following property: For any extension (1) of the group Π and any mor-
phism (4) of algebra extensions, there exists a morphism of group extensions

1 −→ H −→ G
ρ−→ Π −→ 1

↓ ↓ ϕ ‖
1 −→ H0 −→ G0

ρ′−→ Π −→ 1
(6)

such that f = f0 ◦ ϕ̃.

Proof. Let U(R) ⊆ R be the unit group of R and define G0 = {r ∈ U(R) : p(r) ∈ Π}.
Then, the admissibility condition implies that p(G0) = Π. (In fact, it is easily seen that
the admissibility condition is equivalent to the equality p(G0) = Π.) Let ρ0 : G0 −→
Π be the group homomorphism obtained by restricting p to G0 and consider the
kernel H0 = ker ρ0. We define the k-algebra homomorphism f0 : kG0 −→ R using the
embedding of G0 into the group of units U(R) ⊆ R, obtaining thereby a morphism of
algebra extensions as in (5). If we are given a morphism of algebra extensions as in (4),
then f maps G ⊆ kG into G0 and hence we may consider the group homomorphism
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ϕ : G −→ G0, which is defined by restricting f to G. In this way, we obtain a morphism
of group extensions as in (6), for which we obviously have f = f0 ◦ ϕ̃.

Remark 1.2. Using the language of category theory (cf. [9]), an object p of Ealg(kΠ)
is admissible if and only if the comma category (t↓p) of t-objects over p is non-empty.
If p is such an object, then Proposition 1.1 can be expressed by saying that (t↓p) has
a quasi-terminal object, i.e. an object f0 such that Hom(t↓p)(f, f0) 6= ∅ for any object
f of (t↓p).

Proposition 1.1 will be used in the form of the following corollary.

Corollary 1.3. Let F be a functor from the category Ealg(kΠ) of algebra extensions
of kΠ to the category of k-modules. We consider an extension (1) of the group Π, the
k-module V obtained by applying the composition F ◦ t to it and assume that ξ ∈ V
is an element having the following property: For any parallel pair of morphisms in
Egrp(Π)

1 −→ H −→ G
ρ−→ Π −→ 1

↓↓ ϕ ↓↓ ϕ′ ‖
1 −→ H ′ −→ G′

ρ′−→ Π −→ 1

we have (F ◦ t)(ϕ)(ξ) = (F ◦ t)(ϕ′)(ξ) ∈ V ′, where V ′ is the k-module obtained by
applying the functor F ◦ t to the extension of Π at the bottom of the above diagram.
Then, for any parallel pair of morphisms in Ealg(kΠ)

0 −→ h · kG −→ kG
eρ−→ kΠ −→ 0

↓↓ f ↓↓ f ′ ‖
0 −→ I −→ R

p−→ kΠ −→ 0

we have F(f)(ξ) = F(f ′)(ξ) ∈W , where W is the k-module obtained by applying the
functor F to the extension of kΠ at the bottom of the above diagram.

Proof. Let (f, f ′) be a parallel pair of morphisms as in the statement. Then, the
extension

0 −→ I −→ R
p−→ kΠ −→ 0

is admissible. If
1 −→ H0 −→ G0

ρ0−→ Π −→ 1

and

0 −→ h0 · kG0 −→ kG0
fρ0−→ kΠ −→ 0

↓ ↓ f0 ‖
0 −→ I −→ R

p−→ kΠ −→ 0

are as in the statement of Proposition 1.1, then we have f = f0 ◦ ϕ̃ and f ′ = f0 ◦ ϕ̃′
for a suitable parallel pair (ϕ,ϕ′) of morphisms in Egrp(Π). It follows that

F(f) = F(f0 ◦ ϕ̃)= F(f0) ◦ F(ϕ̃)= F(f0) ◦ (F ◦ t)(ϕ)

and, similarly, F(f ′) = F(f0) ◦ (F ◦ t)(ϕ′). Since we have (F ◦ t)(ϕ)(ξ) = (F ◦ t)(ϕ′)(ξ),
in view of our assumption on ξ, we may conclude that F(f)(ξ) = F(f ′)(ξ).
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2. Quillen’s spectral sequences

We fix a field k of characteristic 0. Let Π be a group and consider an algebra exten-
sion of the group algebra kΠ. Quillen has constructed in [11] two spectral sequences,
which converge to the (reduced) cyclic homology of kΠ, with E1-terms described by
means of the given extension, and studied them carefully in the special case of a free
algebra presentation. We are interested in the case where the algebra extension is
induced by a free presentation of the group Π. More precisely, let F be a free group
which maps surjectively onto Π and consider the kernel N of the homomorphism
F −→ Π and the associated algebra extension

0 −→ I −→ kF
p−→ kΠ −→ 0,

where I = n · kF . In the terminology of [4], the group algebra R = kF is quasi-free,
i.e. the R-bimodule of non-commutative differential 1-forms

Ω1
R = ker

(
R⊗R

m−→ R
)

is projective. (Here, m denotes the multiplication of R.) The ideal I is known to be
free (and hence flat) both as a left and right R-module (cf. [7]) and the Hochschild
homology groups Hn(R, ) vanish for all n > 2. In view of the flatness of I, the cyclic
group Z/nZ = <σn> acts naturally on the Hochschild homology groups H∗(R, In)
and H∗(R,R/In), in such a way that the exact sequence

0 → H1(R, In) → H1(R,R) → H1(R,R/In) → H0(R, In)
→ H0(R,R) → H0(R,R/In) → 0

is Z/nZ-equivariant, where σn acts trivially on H∗(R,R) (cf. [11, Prop, 2.16]). It
follows that σn acts trivially on H1(R, In) and H0(R,R/In).

Using Burghelea’s computation [2] of the cyclic homology of group algebras, the fact
that the centralizer of any non-trivial element of F is infinite cyclic and the vanishing
of the homology groups Hn(F, k) for all n > 2, we obtain the following result.

Proposition 2.1. The cyclic homology groups of the free group algebra R = kF are
given by

HCn(R) =
{
H0(F, k) if n > 0 is even
H1(F, k) if n > 1 is odd.

In particular, the reduced cyclic homology HC2n(R) of R vanishes if n > 0.

2.1. The odd Connes homomorphisms
Letting R = kF and I = n · kF as above, the first of Quillen’s spectral sequences

has E1-term (located in the first quadrant) given by:

E1
pq =

{
HCq(R) if p = 0

Hq−p+1(R, Ip)σ if p > 1
=⇒ HCn(kΠ).

Here, Hq−p+1(R, Ip)σ denotes the coinvariance of the Hochschild homology group
Hq−p+1(R, Ip) under the action of the cyclic group <σp> of order p. It follows that
the E1-term of the spectral sequence is concentrated on the p = 0 axis and the lines



GROUP HOMOLOGY AND EXTENSIONS OF GROUPS 243

q = p and q = p− 1. Moreover, we have E1
0 2n = 0 for all n > 0. It follows that, besides

the differentials

d1 : E1
n+1n −→ E1

nn, n > 0,

the only possibly non-zero differentials of the spectral sequence are

d1 : E1
11 −→ E1

01

and the higher order differentials

E2
n+1n+1 = En+1

n+1n+1
dn+1

−→ En+1
0 2n+1 = E1

0 2n+1, n > 1.

We conclude that there is an exact sequence

E1
0 2n+1

edge−→ HC2n+1(kΠ)
edge−→ E1

n+1n
d1−→ E1

nn

for all n > 0. The edge homomorphism

HC2n+1(kΠ) −→ E1
n+1n = In+1/[I, In]

is, by definition, the odd Connes homomorphism γ2n+1 (cf. [3, I, Prop. 4] and [11]).
Identifying the kernel of the differential d1 as in [11, Prop. 4.9], we obtain the following
result.

Theorem 2.2. (cf. [11, Thm. 5.11]) Let F be a free group mapping surjectively onto
Π and consider the kernel I of the associated algebra homomorphism p : kF −→ kΠ.

(i) For all n > 1, there is an exact sequence

HC2n+1(kF )
p∗−→ HC2n+1(kΠ)

γ2n+1−→ In+1/[I, In] d1−→ H1(kF, In),

where γ2n+1 is Connes’ homomorphism. The kernel of d1 : In+1/[I, In] −→
H1(kF, In) coincides with the kernel of the map δ : In+1/[I, In] −→
Ω1
kF /[kF,Ω

1
kF ] induced by the de Rham differential d : kF −→ Ω1

kF .

(ii) There is an exact sequence

HC1(kF )
p∗−→ HC1(kΠ)

γ1−→ I/[I, kF ] −→ kF/[kF, kF ],

where γ1 is Connes’ homomorphism and the unlabelled arrow is induced by the
inclusion I ↪→ kF .

Remark 2.3. Let F , p : kF −→ kΠ and I = ker p be as above.

(i) We consider the semi-direct product kF ⊕ Ω1
kF of kF by the kF -bimodule Ω1

kF

(which is an ideal of square zero in kF ⊕ Ω1
kF ). The algebra homomorphism

p′ : kF ⊕ Ω1
kF −→ kΠ, which is defined as the projection onto kF followed by p,

has kernel J = I ⊕ Ω1
kF . Let

u, v : kF −→ kF ⊕ Ω1
kF

be the algebra homomorphisms, which are defined by letting u(x) = (x, 0) and
v(x) = (x, dx) for all x ∈ kF . (Here, we denote by d : kF −→ Ω1

kF the de Rham
differential.) Since both u and v lift the identity of kΠ, there are induced k-linear
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maps
u∗, v∗ : In+1/[I, In] −→ Jn+1/[J, Jn]

for all n > 1, which have the following property: If a ∈ In+1/[I, In] is an element
such that u∗(a) = v∗(a) ∈ Jn+1/[J, Jn], then a = γ2n+1(b) for a suitable element
b ∈ HC2n+1(kΠ), where γ2n+1 : HC2n+1(kΠ) −→ In+1/[I, In] is the odd Connes
homomorphism. This follows from the exact sequence of Theorem 2.2(i), by
repeating the argument used in the proof of [11, Thm. 5.17].

(ii) The exact sequences of Theorem 2.2 provide us with an answer to the question
raised in [10, bottom of p. 995]. Indeed, it follows that the kernel of the odd
Connes homomorphism

γ2n+1 : HC2n+1(kΠ) −→ In+1/[I, In]

coincides with the image of the induced map

p∗ : HC2n+1(kF ) −→ HC2n+1(kΠ)

for all n > 0. On the other hand, the image of the latter map is easily seen to
be equal to

H1(Π, k) ⊆ H2n+1(Π, k)⊕ · · · ⊕H3(Π, k)⊕H1(Π, k)
= HC2n+1(kΠ)[1] ⊆ HC2n+1(kΠ).

Here, we denote by HC2n+1(kΠ)[1] the component corresponding to the conju-
gacy class of 1 in the Burghelea decomposition of HC2n+1(kΠ) (cf. [2]).

2.2. The even Connes homomorphisms
As far as the second of the spectral sequences that Quillen constructed in [11] is

concerned, we note that the assumption that the presenting algebra is free can be
replaced by the assumption that it be quasi-free without any change in the analysis
therein. In particular, letting R = kF , where F is a free group mapping onto Π, and
denoting by I the kernel of the associated algebra homomorphism kF −→ kΠ, the
E1-term of the spectral sequence (located in the first quadrant) is given by

E1
pq = Hq−p(R,R/Ip+1)σ =⇒ HCn(kΠ).

Here, Hq−p(R,R/Ip+1)σ denotes the coinvariance of Hq−p(R,R/Ip+1) under the ac-
tion of the cyclic group <σp+1> of order p+ 1. Since the E1-term is concentrated on
the lines q = p and q = p+ 1, we obtain the following result, which is a special case
of [11, Thm. 5.13].

Theorem 2.4. Let F be a free group mapping surjectively onto Π and consider the
kernel I of the associated algebra homomorphism p : kF −→ kΠ. Then, for any n > 0
there is an exact sequence

0 −→ HC2n(kΠ)
γ2n−→ kF/([kF, kF ] + In+1) d1−→

H1(kF, kF/In)σ −→ HC2n−1(kΠ) −→ 0,

where γ2n is (by definition) the even Connes homomorphism. The kernel of

d1 : kF/([kF, kF ] + In+1) −→ H1(kF, kF/In)σ
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coincides with the kernel of the map

δ : kF/([kF, kF ] + In+1) −→ Ω1
kF /([kF,Ω

1
kF ] + InΩ1

kF ),

which is induced by the de Rham differential d : kF −→ Ω1
kF .

Remark 2.5. Let F , p : kF −→ kΠ and I = ker p be as above. We also consider the
semi-direct product R′ = kF ⊕ Ω1

kF and the algebra homomorphism p′ : R′ −→ kΠ
with kernel J , defined in Remark 2.3(i). Since the homomorphisms u, v defined in loc.
cit. lift the identity of kΠ, there are induced k-linear maps

u∗, v∗ : kF/([kF, kF ] + In+1) −→ R′/([R′, R′] + Jn+1)

for all n > 0, which have the following property: If a ∈ kF/([kF, kF ] + In+1) is an
element such that u∗(a) = v∗(a) ∈ R′/([R′, R′] + Jn+1), then a = γ2n(b) for a suitable
element b ∈ HC2n(kΠ), where γ2n : HC2n(kΠ) −→ kF/([kF, kF ] + In+1) is the even
Connes homomorphism. This follows from the exact sequence of Theorem 2.4, by
repeating the argument used in the proof of [11, Thm. 5.18].

3. Connes homomorphisms and the operator S

Let A be an algebra over a field k of characteristic 0 and fix an extension

0 −→ I −→ R −→ A −→ 0.

Our goal in this section is to make explicit the relation between the operator S in the
cyclic homology of A and Connes homomorphisms associated with the given extension.

3.1. The odd case
For any linear map τ : Im+1 −→ V , which vanishes on [R, Im+1], and all n > m

there is a cyclic cohomology class cn2n+1(τ) ∈ HC2n+1(A, V ), which is induced by
the Chern character form associated with τ and any linear lifting of the projection
R −→ A (cf. [11, Part II, § 1.2]). The following properties are immediate consequences
of the definitions:

• Let f : V −→ V ′ be a linear map and consider the induced map

f∗ : HC2n+1(A, V ) −→ HC2n+1(A, V ′).

Then we have f∗(cn2n+1(τ)) = cn2n+1(f ◦ τ) for all n > m.

• Let m′ > m and consider the restriction τ ′ : Im
′+1 −→ V of τ on Im

′+1. Then
we have cn2n+1(τ) = cn2n+1(τ ′) for all n > m′.

As shown in [11, Thm. 3], the odd Connes homomorphism

γ2n+1 : HC2n+1(A) −→ In+1/[I, In]

is the linear map associated with the cyclic cohomology class (n+ 1)! cn2n+1(τ2n+1),
where

τ2n+1 : In+1 −→ In+1/[I, In]

is the canonical projection.
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Lemma 3.1. The following diagram is commutative for all n > 1

HC2n+1(A)
γ2n+1−→ In+1/[I, In]

(n+1)S ↓ ↓
HC2n−1(A)

γ2n−1−→ In/[I, In−1].

Here, S is the periodicity operator in cyclic homology and the unlabelled vertical arrow
is induced by the inclusion In+1 ↪→ In.

Proof. In view of the discussion above, the composition

HC2n+1(A)
γ2n+1−→ In+1/[I, In] −→ In/[I, In−1]

is associated with the element (n+ 1)! cn2n+1(τ ′2n+1) ∈ HC2n+1(A, In/[I, In−1]),
where τ ′2n+1 is the composition

In+1 τ2n+1−→ In+1/[I, In] −→ In/[I, In−1].

On the other hand, the composition

HC2n+1(A)
(n+1)S−→ HC2n−1(A)

γ2n−1−→ In/[I, In−1]

is associated with the element (n+ 1)S′(n! cn2n−1(τ2n−1))∈ HC2n+1(A, In/[I, In−1]),
where S′ denotes the periodicity operator in cyclic cohomology. In view of [11,
Thm. 1], we have

S′(cn2n−1(τ2n−1))= cn2n+1(τ2n−1) ∈ HC2n+1(A, In/[I, In−1]).

The result follows, since τ ′2n+1 is the restriction of τ2n−1 : In −→ In/[I, In−1] to In+1.

3.2. The even case
For any linear map τ : R −→ V , which vanishes on [R,R] + In+1, there is a cyclic

cohomology class cn2n(τ) ∈ HC2n(A, V ), which is induced by the Chern-Simons form
associated with τ and any linear lifting of the projection R −→ A (cf. [11, Part II,
§ 1.2]). Let f : V −→ V ′ be a linear map and consider the induced map

f∗ : HC2n(A, V ) −→ HC2n(A, V ′).

Then, as in the odd case, we have f∗(cn2n(τ)) = cn2n(f ◦ τ). As shown in [11, Thm. 3],
the even Connes homomorphism

γ2n : HC2n(A) −→ R/([R,R] + In+1)

is associated with the element (n+ 1)! cn2n(τ2n) ∈ HC2n(A, R/([R,R] + In+1)),
where

τ2n : R −→ R/([R,R] + In+1)

is the canonical projection.
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Lemma 3.2. The following diagram is commutative for all n > 1

HC2n(A)
γ2n−→ R/([R,R] + In+1)

(n+1)S ↓ ↓
HC2n−2(A)

γ2n−2−→ R/([R,R] + In).

Here, we denote by S the periodicity operator in cyclic homology, while the unlabelled
vertical arrow is induced by the identity map of R.

Proof. In view of the discussion above, the composition

HC2n(A)
γ2n−→ R/([R,R] + In+1) −→ R/([R,R] + In)

is associated with the element (n+ 1)! cn2n(τ2n−2) ∈ HC2n(A,R/([R,R] + In)). On
the other hand, the composition

HC2n(A)
(n+1)S−→ HC2n−2(A)

γ2n−2−→ R/([R,R] + In)

is associated with the element (n+ 1)S′ (n! cn2n−2(τ2n−2)) ∈ HC2n(A,R/([R,R] +
In)), where S′ denotes the periodicity operator in cyclic cohomology. The result follows
since

S′(cn2n−2(τ2n−2))= cn2n(τ2n−2) ∈ HC2n(A,R/([R,R] + In))

(cf. [11, Thm. 1]).

4. Extensions and H2( ,Z)

As a motivation for our main result, which is to be presented in the next section,
we describe the second integral homology of a group as the inverse limit of a certain
functor on the category of extensions of the group.

4.1. Some generalities on inverse limits
Let C be a small category, A the category of modules over a ring k and F : C −→ A

a functor. Then, the inverse limit lim
←−

F of F is the k-module consisting of all families

(xc)c ∈
∏
c∈C F(c), which are compatible in the following sense: For any two objects

c, c′ ∈ C and any morphism a ∈ HomC(c, c′), we have F(a)(xc) = xc′ ∈ F(c′).
Assume that C has an initial object c0; then the set HomC(c0, c) is a singleton for

any object c ∈ C (cf. [9, Ch. I, § 5]). In that case, it is easily seen that the linear map

pc0 : lim
←−

F −→ F(c0), (7)

which is given by letting (xc)c 7→ xc0 for any (xc)c ∈ lim
←−

F, is an isomorphism. We

say that an object c0 of C is quasi-initial if the set HomC(c0, c) is non-empty for any
object c ∈ C.

Example 4.1. Let Π be a group and consider the category of extensions Egrp(Π) of Π.
Then, any free presentation

1 −→ N −→ F
σ−→ Π −→ 1 (8)

of Π is easily seen to be a quasi-initial object of the category Egrp(Π).
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Lemma 4.2. Assume that C has a quasi-initial object c0. Then for any functor
F : C −→ A the linear map (7) is injective, whereas its image consists of those ele-
ments x ∈ F(c0) which are such that for any object c ∈ C and any morphisms a, b ∈
HomC(c0, c) we have F(a)(x) = F(b)(x) ∈ F(c).

Proof. The proof is straightforward.

Let F,G be two functors from C to A. Then a natural transformation η : F −→ G
induces a linear map

lim
←−

η : lim
←−

F −→ lim
←−

G,

by mapping any element (xc)c ∈ lim
←−

F onto (ηc(xc))c ∈ lim
←−

G. In this way, lim
←−

itself

becomes a functor from the functor category AC to A.

Lemma 4.3. The inverse limit functor lim
←−

: AC −→ A is left exact.

Proof. Since the kernel of a linear map is easily seen to be the limit of a certain
functor from the category • −→−→ • to A (cf. [9, Ch. VIII, § 1]), the result follows from
the fact that limits commute with each other (cf. [9, Ch. IX, § 8]).

4.2. A reformulation of Hopf’s formula
Let Π be a group and consider the category Egrp(Π) of extensions of Π. We define

the functor

Λ: Egrp(Π) −→ Ab,

where Ab is the category of abelian groups, as follows: An extension (1) of Π is mapped
onto the kernel H/[H,G] of the associated central extension

1 −→ H/[H,G] −→ G/[H,G]
ρ−→ Π −→ 1,

while a morphism of extensions (2) is mapped onto the induced additive map between
the kernels of the associated central extensions.

Proposition 4.4. There is an isomorphism lim
←−

Λ ' H2(Π,Z).

Proof. Let us fix a free presentation (8) of the group Π. Then, in view of Example 4.1
and Lemma 4.2, the natural map p : lim

←−
Λ −→ N/[N,F ] is injective. Therefore, the

result will follow from Hopf’s formula (cf. [1, Ch. II, Thm. 5.3]), provided that we
establish the equality im p = (N ∩ [F, F ])/[N,F ].

Proof of the inclusion ⊆: Let us consider an element ξ ∈ im p. We have to show that ξ
is contained in the kernel of the group homomorphismN/[N,F ] −→ F/[F, F ], which is
induced by the inclusion N ↪→ F . We note that F/[F, F ] is the abelian group obtained
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by applying the functor Λ to the trivial extension

1 −→ F −→ F ×Π −→ Π −→ 1.

We also consider the morphisms of extensions

1 −→ N −→ F
σ−→ Π −→ 1

ϕ′ ↓↓ ψ′ ϕ ↓↓ ψ ‖
1 −→ F −→ F ×Π −→ Π −→ 1

where ϕ(x) = (x, σ(x)) and ψ(x) = (1, σ(x)) for any element x ∈ F . It is clear that
the map ϕ′ : N −→ F is the inclusion, whereas ψ′ : N −→ F is trivial. On the other
hand, being a component of an element of lim

←−
Λ, the element ξ is equalized by the

parallel pair of maps
ϕ′, ψ′ : N/[N,F ] −→ F/[F, F ].

We conclude that ξ is indeed contained in the kernel of the map N/[N,F ] −→
F/[F, F ], which is induced by the inclusion of N into F .

Proof of the inclusion ⊇: Let x ∈ N ∩ [F, F ] and consider the class x ∈
(N ∩ [F, F ])/[N,F ]. For any extension (1), we fix a morphism of extensions

1 −→ N −→ F
σ−→ Π −→ 1

↓ ϕ′ ↓ ϕ ‖
1 −→ H −→ G

ρ−→ Π −→ 1

and consider the induced morphism between the associated central extensions

1 −→ N/[N,F ] −→ F/[N,F ] σ−→ Π −→ 1
↓ ϕ′ ↓ ϕ ‖

1 −→ H/[H,G] −→ G/[H,G]
ρ−→ Π −→ 1

We claim that the residue class ϕ′(x) of ϕ′(x) ∈ H in the quotient H/[H,G] does not
depend upon the choice of the homomorphism ϕ : F −→ G, which lifts the identity
of Π. Indeed, let ψ : F −→ G be another homomorphism lifting the identity of Π and
consider the induced homomorphism ψ : F/[N,F ] −→ G/[H,G]. Since both ϕ and ψ
lift the identity of Π, it is easily seen that there is a (unique) group homomorphism

θ : F/[N,F ] −→ H/[H,G]

such that ψ(ω) = ϕ(ω)θ(ω) for all ω ∈ F/[N,F ]. Since x ∈ [F, F ] and the group
H/[H,G] is abelian, we conclude that θ(x) is trivial and hence ψ(x) = ϕ(x) ∈
G/[H,G], as needed.

The assignment of the element ϕ′(x) ∈ H/[H,G] to the extension (1) defines a
family, which is easily seen to be compatible. (This is an immediate consequence of
the already established independence of the element ϕ′(x) upon the choice of ϕ.) Let X
be the element of the inverse limit lim

←−
Λ defined in this way. Considering the identity

map of F , it follows that the component of X corresponding to the free presentation (8)
is precisely the residue class x ∈ N/[N,F ] of x ∈ N . Therefore, x = p(X) ∈ im p.
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Remark 4.5. Let Π be a group.

(i) In view of [10, Prop. 1], the functor Λ defined above is naturally isomorphic to
the functor Λ′ : Egrp(Π) −→ Ab, which maps an extension (1) onto the abelian
group

hZ
h2
Z + (ZH ∩ [ZG,ZG])

,

where hZ is the augmentation ideal of ZH, and a morphism (2) onto the induced
additive map

ϕ∗ :
hZ

h2
Z + (ZH ∩ [ZG,ZG])

−→ h′Z
h′2Z + (ZH ′ ∩ [ZG′,ZG′])

.

In particular, there are isomorphisms lim
←−

Λ′ ' lim
←−

Λ ' H2(Π,Z).

(ii) If k is a commutative ring, then we may define a functor Λ′k in analogy with
the functor Λ′ defined in (i) above, by considering group rings with coefficients
in k instead of Z. In the special case where k is a field of characteristic 0, we
shall relate below the functor Λ′k and certain higher order versions of it that are
obtained by considering powers of the relevant augmentation ideals to the even
homology groups of Π with coefficients in k (cf. Theorem 5.5 and Remark 5.6(ii)).

5. Group homology as an inverse limit

Let Π be a group. Our goal in this section is to describe the homology groups of Π
with coefficients in a field k of characteristic 0 as the inverse limit of suitable functors
on the category of extensions Egrp(Π).

5.1. Odd group homology
We fix a non-negative integer n and define two functors Q2n+1 and P2n+1 from

Egrp(Π) to the category of k-vector spaces, as follows:

• The functor Q2n+1 maps a group extension (1) onto the vector space
In+1/[I, In], where I = h · kG, while a morphism of extensions (2) is mapped
onto the induced linear map ϕ∗ : In+1/[I, In] −→ I ′n+1/[I ′, I ′n], where I ′ = h′ ·
kG′.

• The functor P2n+1 maps a group extension (1) onto hn+1/(hn+1 ∩ [I, In]), where
I = h · kG, while a morphism of extensions (2) is mapped onto the induced linear
map ϕ∗ : hn+1/(hn+1 ∩ [I, In]) −→ h′n+1/(h′n+1 ∩ [I ′, I ′n]), where I ′ = h′ · kG′.

We now define two natural transformations

η2n+1 : P2n+1 −→ Q2n+1 and θ2n+1 : Q2n+1 −→ P2n+1,

by letting their components corresponding to the extension (1) be the linear maps1

η2n+1 : hn+1/(hn+1 ∩ [I, In]) −→ In+1/[I, In]

1In order to simplify the notation, we use the same symbols for the components of the natural
transformations η2n+1 and θ2n+1.
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and
θ2n+1 : In+1/[I, In] −→ hn+1/(hn+1 ∩ [I, In]),

which are defined as follows: The map η2n+1 is induced by the inclusion h ↪→ h ·
kG = I, while θ2n+1 is induced by the map ν : kG −→ kH, which maps any ele-
ment

∑
g∈G agg ∈ kG onto the element

∑
g∈H agg ∈ kH. As shown in [10, Thm. 2],

these maps are well-defined and the composition θ2n+1 ◦ η2n+1 is the identity on
hn+1/(hn+1 ∩ [I, In]). In order to verify the naturality of η2n+1 and θ2n+1, we note
that, given any morphism (2) of extensions, there are induced commutative diagrams

h ↪→ h · kG
eϕ ↓ ↓ eϕ
h ↪→ h′ · kG′

and
kG

ν−→ kH
eϕ ↓ ↓ eϕ
kG′ ν′−→ kH ′

where the vertical arrows ϕ̃ are induced by the group homomorphism ϕ and ν′ is the
linear map defined in analogy with ν.

The arguments of [10, § 3] show that the linear maps η2n+1 and θ2n+1 are compat-
ible with the Burghelea decomposition of the cyclic homology group HC2n+1(kΠ), in
the sense that there is a commutative diagram

HC2n+1(kΠ)[1] −→ HC2n+1(kΠ) −→ HC2n+1(kΠ)[1]
γ2n+1,[1] ↓ γ2n+1 ↓ γ2n+1,[1] ↓

hn+1/(hn+1 ∩ [I, In])
η2n+1−→ In+1/[I, In]

θ2n+1−→ hn+1/(hn+1 ∩ [I, In]).
(9)

Here, γ2n+1 is the odd Connes homomorphism, γ2n+1,[1] is the composition

HC2n+1(kΠ)[1] ↪→ HC2n+1(kΠ)
γ2n+1−→ In+1/[I, In]

θ2n+1−→ hn+1/(hn+1 ∩ [I, In])

and the unlabelled horizontal arrows are the canonical inclusion and projection respec-
tively associated with the component HC2n+1(kΠ)[1] in the Burghelea decomposition
of the cyclic homology group HC2n+1(kΠ). Identifying the component HC2n+1(kΠ)[1]
with the vector space H2n+1(Π, k)⊕ · · · ⊕H3(Π, k)⊕H1(Π, k), we obtain the linear
map

γ2n+1,[1] : H2n+1(Π, k)⊕ · · · ⊕H3(Π, k)⊕H1(Π, k) −→ hn+1/(hn+1 ∩ [I, In]).

This map is natural with respect to the extension (1) of the group Π and hence there
is an induced linear map

γ2n+1,[1] : H2n+1(Π, k)⊕ · · · ⊕H3(Π, k)⊕H1(Π, k) −→ lim
←−

P2n+1. (10)

Proposition 5.1. The linear map (10) defined above is surjective for all n > 1,
while its kernel is identified with the group H1(Π, k) for all n > 0.

Proof. We fix a free presentation (8) of the group Π and let I = n · kF . Then, in
view of Example 4.1 and Lemma 4.2, the inverse limit lim

←−
P2n+1 is the subspace

of nn+1/(nn+1 ∩ [I, In]), consisting of those vectors that are equalized by the linear
maps induced by all parallel pairs of morphisms from the free presentation (8); let
ξ ∈ nn+1/(nn+1 ∩ [I, In]) be such a vector. In view of the naturality of η2n+1, the
vector η2n+1(ξ) ∈ In+1/[I, In] is also equalized by the linear maps induced by all
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parallel pairs of morphisms from the free presentation (8). Then, Corollary 1.3 implies
that η2n+1(ξ) is equalized by the linear maps induced by the parallel pair of morphisms

u, v : kF −→ kF ⊕ Ω1
kF ,

defined in Remark 2.3(i). Assuming that n > 1, it follows from loc. cit. that

η2n+1(ξ) ∈ im
[
HC2n+1(kΠ)

γ2n+1−→ In+1/[I, In]
]
.

Invoking the commutativity of the right-hand square in diagram (9), we conclude that
the element ξ = θ2n+1(η2n+1(ξ)) is contained in the image of the map

γ2n+1,[1] : HC2n+1(kΠ)[1] −→ nn+1/(nn+1 ∩ [I, In]).

Therefore, the linear map (10) is surjective for n > 1. Its kernel equals H1(Π, k) for
all n > 0, in view of Remark 2.3(ii) and the commutativity of the left-hand square in
diagram (9).

For any positive integer n there is a natural transformation of functors

λ2n+1 : P2n+1 −→ P2n−1,

whose component on the extension (1) of Π is the linear map

λ2n+1 : hn+1/(hn+1 ∩ [I, In]) −→ hn/(hn ∩ [I, In−1]), (11)

which is induced by the inclusion hn+1 ↪→ hn. The functor

Λ2n+1 = kerλ2n+1

associates with the extension (1) the vector space

(hn+1 ∩ [I, In−1])/(hn+1 ∩ [I, In]),

whereas a morphism (2) is mapped onto the induced linear map

ϕ∗ : (hn+1 ∩ [I, In−1])/(hn+1 ∩ [I, In]) −→ (h′n+1 ∩ [I ′, I ′n−1])/(h′n+1 ∩ [I ′, I ′n]).

We note that for all n > 1 there is a commutative diagram

HC2n+1(kΠ)[1] ↪→ HC2n+1(kΠ)
γ2n+1−→ In+1/[I, In]

θ2n+1−→ hn+1/(hn+1 ∩ [I, In])
(n+1)S

y (n+1)S
y y yλ2n+1

HC2n−1(kΠ)[1] ↪→ HC2n−1(kΠ)
γ2n−1−→ In/[I, In−1]

θ2n−1−→ hn/(hn ∩ [I, In−1])
(12)

where S is the Connes periodicity operator and the unlabelled vertical arrow is
induced by the inclusion In+1 ↪→ In. The commutativity of the square in the mid-
dle follows from Lemma 3.1. Taking into account the behavior of S on the compo-
nent HC2n+1(kΠ)[1] of HC2n+1(kΠ), we conclude that the image of the subspace
H2n+1(Π, k) ⊆ HC2n+1(kΠ)[1] under the map

γ2n+1,[1] : HC2n+1(kΠ)[1] −→ hn+1/(hn+1 ∩ [I, In])

is contained in the kernel of the map (11). We may therefore define the linear map

β2n+1 : H2n+1(Π, k) −→ (hn+1 ∩ [I, In−1])/(hn+1 ∩ [I, In])
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by restricting γ2n+1,[1]. This map depends naturally upon the extension (1) of Π;
hence, there is an induced linear map

β2n+1 : H2n+1(Π, k) −→ lim
←−

Λ2n+1. (13)

Theorem 5.2. The linear map (13) defined above is an isomorphism for all n > 1.

Proof. We consider the diagram

0 −→ H2n+1(Π, k) −→ HC2n+1(kΠ)[1]
(n+1)S−→ HC2n−1(kΠ)[1] −→ 0

β2n+1 ↓ γ2n+1,[1] ↓ γ2n−1,[1] ↓
0 −→ lim

←−
Λ2n+1 −→ lim

←−
P2n+1

λ2n+1−→ lim
←−

P2n−1.

The left-hand square is commutative in view of the definition of β2n+1 and the commu-
tativity of the right-hand square follows from the commutativity of diagram (12). The
top row of the diagram is obviously exact, and the exactness of the bottom row follows
from the left exactness of the inverse limit functor, in view of the exact sequence of
functors

0 −→ Λ2n+1 −→ P2n+1
λ2n+1−→ P2n−1

(cf. Lemma 4.3). Since the maps γ2n+1,[1] and γ2n−1,[1] have kernel H1(Π, k), and
γ2n+1,[1] is surjective (cf. Proposition 5.1), the result follows by applying the snake
lemma.

In the special case where n = 1, the following result was noted in [10, Thm. 4].

Corollary 5.3. Consider a free presentation (8) of the group Π and the ideal I =
n · kF ⊆ kF . Then the linear map

β2n+1 : H2n+1(Π, k) −→ (nn+1 ∩ [I, In−1])/(nn+1 ∩ [I, In])

is injective for all n > 1.

Proof. This follows from Theorem 5.2, in view of Example 4.1 and Lemma 4.2.

5.2. Even group homology
The approach is completely analogous to the odd case. We fix a non-negative integer

n and define two functorsQ2n and P2n from Egrp(Π) to the category of k-vector spaces,
as follows:

• The functor Q2n maps a group extension (1) onto kG/([kG, kG] + In+1), where
I = h · kG, while a morphism of extensions (2) is mapped onto the induced
linear map ϕ∗ : kG/([kG, kG] + In+1) −→ kG′/([kG′, kG′] + I ′n+1), where I ′ =
h′ · kG′.

• The functor P2n maps a group extension (1) onto the vector space kH/(hn+1 +
B), where B = kH ∩ [kG, kG], while a morphism of extensions (2) is mapped
onto the induced linear map ϕ∗ : kH/(hn+1 +B) −→ kH ′/(h′n+1 +B′), where
B′ = kH ′ ∩ [kG′, kG′].
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We now define two natural transformations

η2n : P2n −→ Q2n and θ2n : Q2n −→ P2n

by letting their components corresponding to the extension (1) be the linear maps

η2n : kH/(hn+1 +B) −→ kG/([kG, kG] + In+1)

and

θ2n : kG/([kG, kG] + In+1) −→ kH/(hn+1 +B),

which are defined as follows: The map η2n is induced by the inclusion kH ↪→ kG,
while θ2n is induced by the map ν : kG −→ kH, which maps any element∑
g∈G agg ∈ kG onto the element

∑
g∈H agg ∈ kH. As shown in [10, Thm. 1], these

maps are well-defined and the composition θ2n ◦ η2n is the identity on kH/(hn+1 +B).
In order to verify the naturality of η2n and θ2n, we note that given a morphism (2)
of extensions, there are induced commutative diagrams

kH ↪→ kG
eϕ ↓ ↓ eϕ
kH ′ ↪→ kG′

and
kG

ν−→ kH
eϕ ↓ ↓ eϕ
kG′ ν′−→ kH ′

where the vertical arrows ϕ̃ are induced by the group homomorphism ϕ and ν′ is the
linear map defined in analogy with ν.

The arguments of [10, § 3] show that the linear maps η2n and θ2n are compatible
with the Burghelea decomposition of the cyclic homology group HC2n(kΠ), in the
sense that there is a commutative diagram

HC2n(kΠ)[1] −→ HC2n(kΠ) −→ HC2n(kΠ)[1]
γ2n,[1] ↓ γ2n ↓ γ2n,[1] ↓

kH/(hn+1 +B)
η2n−→ kG/([kG, kG] + In+1) θ2n−→ kH/(hn+1 +B).

(14)

Here, γ2n is the even Connes homomorphism, γ2n,[1] is the composition

HC2n(kΠ)[1] ↪→ HC2n(kΠ)
γ2n−→ kG/([kG, kG] + In+1) θ2n−→ kH/(hn+1 +B)

and the unlabelled horizontal arrows are the canonical inclusion and projection respec-
tively associated with the component HC2n(kΠ)[1] in the Burghelea decomposition of
the cyclic homology group HC2n(kΠ). Identifying the component HC2n(kΠ)[1] with
the vector space H2n(Π, k)⊕ · · · ⊕H2(Π, k)⊕H0(Π, k), we obtain the linear map

γ2n,[1] : H2n(Π, k)⊕ · · · ⊕H2(Π, k)⊕H0(Π, k) −→ kH/(hn+1 +B).

This map is natural with respect to the extension (1) of the group Π and hence there
is an induced linear map

γ2n,[1] : H2n(Π, k)⊕ · · · ⊕H2(Π, k)⊕H0(Π, k) −→ lim
←−

P2n. (15)

Proposition 5.4. The linear map (15) defined above is an isomorphism for all n > 0.

Proof. We fix a free presentation (8) of the group Π and let I = n · kF . Then, in
view of Example 4.1 and Lemma 4.2, the inverse limit lim

←−
P2n is the subspace of
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kN/(nn+1 +B), consisting of those vectors that are equalized by the linear maps
induced by all parallel pairs of morphisms from the free presentation (8); let us consider
such a vector ξ ∈ kN/(nn+1 +B). In view of the naturality of η2n, the vector η2n(ξ) ∈
kF/([kF, kF ] + In+1) is also equalized by the linear maps induced by all parallel pairs
of morphisms from the free presentation (8). Then, Corollary 1.3 implies that η2n(ξ)
is equalized by the linear maps induced by the parallel pair of morphisms

u, v : kF −→ kF ⊕ Ω1
kF

of Remark 2.5. It follows from loc. cit. that

η2n(ξ) ∈ im
[
HC2n(kΠ)

γ2n−→ kF/([kF, kF ] + In+1)
]
.

Invoking the commutativity of the right-hand square in diagram (14), we conclude
that the element ξ = θ2n(η2n(ξ)) is contained in the image of the map

γ2n,[1] : HC2n(kΠ)[1] −→ kN/(nn+1 +B).

Therefore, the linear map (15) is surjective. Its injectivity follows from the exact
sequence of Theorem 2.4, in view of the commutativity of the left-hand square in
diagram (14).

For any positive integer n there is a natural transformation of functors

λ2n : P2n −→ P2n−2,

whose component on the extension (1) of Π is the linear map

λ2n : kH/(hn+1 +B) −→ kH/(hn +B), (16)

which is induced by the identity map of kH. The functor

Λ2n = kerλ2n

associates with the extension (1) of Π the vector space

(hn +B)/(hn+1 +B),

while a morphism (2) is mapped onto the induced linear map

ϕ∗ : (hn +B)/(hn+1 +B) −→ (h′n +B′)/(h′n+1 +B′).

We note that for all n > 1 there is a commutative diagram

HC2n(kΠ)[1] ↪→ HC2n(kΠ)
γ2n−→ kG/([kG, kG] + In+1) θ2n−→ kH/(hn+1 +B)

(n+1)S
y (n+1)S

y y yλ2n

HC2n−2(kΠ)[1] ↪→HC2n−2(kΠ)
γ2n−2−→ kG/([kG, kG] + In)

θ2n−2−→ kH/(hn +B)

(17)

where S is the Connes periodicity operator and the unlabelled vertical arrow is induced
by the identity of kG. The commutativity of the square in the middle follows from
Lemma 3.2. Taking into account the behavior of S on the component HC2n(kΠ)[1]
of HC2n(kΠ), we conclude that the image of the subspace H2n(Π, k) ⊆ HC2n(kΠ)[1]
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under the map

γ2n,[1] : HC2n(kΠ)[1] −→ kH/(hn+1 +B)

is contained in the kernel of the map (16). We may therefore define the linear map

β2n : H2n(Π, k) −→ (hn +B)/(hn+1 +B)

by restricting γ2n,[1]. This map depends naturally upon the extension (1) of Π; hence
there is an induced linear map

β2n : H2n(Π, k) −→ lim
←−

Λ2n. (18)

Theorem 5.5. The linear map (18) defined above is an isomorphism for all n > 1.

Proof. We consider the diagram

0 −→ H2n(Π, k) −→ HC2n(kΠ)[1]
(n+1)S−→ HC2n−2(kΠ)[1] −→ 0

β2n ↓ γ2n,[1] ↓ γ2n−2,[1] ↓
0 −→ lim

←−
Λ2n −→ lim

←−
P2n

λ2n−→ lim
←−

P2n−2.

The left-hand square is commutative, in view of the definition of β2n, while the com-
mutativity of the right-hand square follows from the commutativity of diagram (17).
The top row of the diagram is obviously exact, while the exactness of the bottom
row follows from the left exactness of the inverse limit functor, in view of the exact
sequence of functors

0 −→ Λ2n −→ P2n
λ2n−→ P2n−2

(cf. Lemma 4.3). Since the maps γ2n,[1] and γ2n−2,[1] are both bijective (cf. Proposi-
tion 5.4), the result follows by applying the snake lemma.

Remark 5.6. Let Π be a group.

(i) We consider a free presentation (8) of Π and the subspace B = kN ∩ [kF, kF ]
⊆ kN . Then, in view of Theorem 5.5, Example 4.1 and Lemma 4.2, the linear
map

β2n : H2n(Π, k) −→ (nn +B)/(nn+1 +B)

is injective for all n > 1. This assertion was noted in [10, Thm. 3].

(ii) Since kH ∩ [kG, kG] ⊆ h for any extension (1) of Π, the functor Λ2 coincides with
the functor Λ′k defined in Remark 4.5(ii). In this way, Proposition 4.4 indicates
that some of the results obtained in this section may be valid over more general
coefficient rings as well.
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