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GROUP ELEMENTS CONJUGATE TO THEIR POWERS AND
BASS’ CONJECTURE

DIMITRIOS PANAGOPOULOS

(communicated by Jean-Louis Loday)

Abstract
In this paper, we use some specific properties that are enjoyed

by group elements with non-zero Hattori-Stallings rank function
and define, by homological means, a large class of groups that
satisfy Bass’ conjecture. We examine closure properties of that
class and exhibit certain examples of groups which are contained
therein.

1. Introduction

In 1976 Hyman Bass [1, 2] formulated a conjecture which can be expressed as
follows:

Let k be a subring of C with k ∩Q = Z and let G be a group. Then,
for every element g ∈ G with g 6= 1, the Hattori-Stallings rank function
rg : K0(kG) → k is identically zero.

Linnell [13], Schafer [18] and Moody [16] proved that if rg is not identically zero
then the element g has some very specific properties; in particular, it turns out that
rg = 0 if g 6= 1 and g has finite order. Using results of Karoubi [12], Connes [5] and
Burghelea [4], it follows that if g has infinite order, then the map rg can be factored
through the homology group H2n(N(g), k), where N(g) = C(g)/ 〈g〉 and C(g) is the
centralizer of g in G. More precisely, there is a commutative diagram

H2n(N(g), k)

²²
K0(kG)

chn(g)
77nnnnnnnnnnnn

rg

// H0(N(g), k) ' k,

where chn(g) is a component of the so-called Connes-Karoubi character map

chn : K0(kG) → HC2n(kG)

and HC2n(kG) is the 2n-th cyclic homology group of the group algebra kG. Here,
the map
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H2n(N(g), k) → H0(N(g), k) ' k

is the cap product map α(g)n ∩ , which is induced by the cohomology class α(g) ∈
H2(N(g),Z) that classifies the central extension

1 → Z g→ C(g) → N(g) → 1.

Using these facts, Eckmann defined in [6] a class of groups satisfying Bass’ con-
jecture, by examining the vanishing of the homology groups H2n(N(g),Q) for nÀ 0.
This line of attack was pushed forward by Emmanouil and Passi [7, 10]. Motivated
by the class A defined in [10], we define in this paper a new class AL of groups that
satisfy Bass’ conjecture. In order to examine whether a given group belongs to AL,
we restrict our attention only to those group elements that have Linnell’s property.
This allows us to prove, in a relatively simple way, that certain groups satisfy Bass’
conjecture by showing that they are contained in AL.

Following its definition, in Section 2 we examine closure properties of the new class.
In particular, it turns out that AL is residually closed. In Section 3 we mention some
group theoretic facts concerning elements in amalgamated free products and HNN-
extensions that have Linnell’s property. These facts will be used in the following
section in order to obtain some concrete examples of groups in AL (which thereby
satisfy Bass’ conjecture). Furthermore, in Section 4, we show that every countable
group in AL can be embedded in a group with two generators that is also contained
in AL.

Notation
Given an element g of a group G, we denote by CG(g) (or C(g) when the group G

is easily understood) the centralizer of g in G. We also denote by NG(g) (or N(g))
the quotient CG(g)/ 〈g〉 and let α(g) be the element in H2(N(g),Z) that classifies
the central extension

1 −→ Z g−→ CG(g) −→ NG(g) −→ 1.
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2. Definition of AL and basic closure properties

In this section we introduce the class AL and study some of its closure properties.

Definition 2.1. Let G be a group. We say that g ∈ G has Linnell’s property if there
exists u ∈ N, u 6= 0, such that the elements g and gnu

are conjugate for all n ∈ N,
n > 1.

It is immediate from the definition that the following lemma holds.
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Lemma 2.2. Let G be a group and g ∈ G an element having Linnell’s property. Then:
(i) if g 6= 1, then g has infinite order,
(ii) if φ : G→ H is a homomorphism, then φ(g) has Linnell’s property,
(iii) if K £G, then either g ∈ K or else 〈g〉⋂K = {1},
(iv) for every n ∈ N, n > 1, there exists h ∈ G such that g = hn.

Definition 2.3.

(i) AL The class AL consists of those groups G that satisfy the following condition:
for every element g ∈ Gr {1} having Linnell’s property there exists n ∈ N such
that the cap product map

α(g)n ∩ : H2n(N(g),Z) → H0(N(g),Z) ' Z (1)

is not surjective.
(ii) Let RAL be the class of groups that residually belong to AL.
(iii) Let A be the class of groups with the property that for every element g ∈ G

of infinite order there exists n ∈ N such that the cap product map (1) is not
surjective (cf. [10]).

Obviously A ⊆ AL. Furthermore, since Linnell’s property is a rather strong con-
dition for an element of a group, it follows immediately that certain types of groups
belong to AL. In particular, a group G is contained in AL if there is no element g ∈ G,
g 6= 1, having Linnell’s property. For example, finite, abelian, abelian by finite, tor-
sion, residually free groups (cf. [3]) and more generally residually finite groups (cf. [9,
Corollary 3.38]) belong to AL. We should note here that Sykiotis in [22] and Stro-
jnowski in [20] studied groups whose elements do not have Linnell’s property.

The relevance of the cap product map (1) in the study of the Hattori-Stallings
rank function rg : K0(kG) → k stems from the following result.

Lemma 2.4 (cf. [10, Lemma 4.1]). Let k be a commutative ring, which is torsion-free
as an abelian group. We consider a group G, an element g ∈ G of infinite order and
assume that there exists a positive integer n, such that the cap product map (1) is not
surjective. Then, the Hattori-Stallings rank function rg : K0(kG) → k is zero.

Working as in [10, Theorem 4.2], we may now obtain the following result.

Theorem 2.5. Groups in AL satisfy Bass’ conjecture.

Proof. Let G ∈ AL. If there exist a subring k ⊆ C with k ∩Q = Z and a non-trivial
element g ∈ G such that the Hattori-Stallings rank rg : K0(kG) → k is not zero, then
g has Linnell’s property [13, 16, 18]. Since G ∈ AL, it follows that the cap product
map (1) is not surjective for some n ∈ N. In view of Lemma 2.4, we conclude that the
Hattori-Stallings rank function rg : K0(kG) → k is zero, contrary to our hypothesis.

Proposition 2.6. The class AL is closed under:
(i) subgroups,
(ii) free products,
(iii) direct products.
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Proof.
(i) The result follows from [10, Remark 3.2(ii)] by considering the inclusion map

ι : H ↪→ G, since whenever g ∈ H has Linnell’s property (in H) then g has Lin-
nell’s property in G.

(ii) The result follows as in [7, Proposition 3.5(ii)] with the additional observation
that, due to the normal form theorem for free products, if g, h are conjugates
in G1 ∗G2 with g, h in one factor, then they are conjugates in the same factor.

(iii) Let G =
∏

iGi with Gi ∈ AL and g = (gi) ∈ G, g 6= 1, be an element having
Linnell’s property. Applying Lemma 2.2(ii) to the projection πi : G→ Gi, we
conclude that the element gi ∈ Gi has Linnell’s property for every i. Since g 6= 1,
there must exist an i such that gi 6= 1Gi

. For that particular i there exists n ∈ N
such that the cap product map

α(gi)n ∩ : H2n(NGi(gi),Z) → H0(NGi(gi),Z) ' Z
is not surjective. It follows that the cap product map (1) is not surjective either
(cf. [10, Remark 3.2(ii)]). Hence, we conclude that G ∈ AL.

Remark 2.7. The main argument used in the proof of assertion (ii) above, which is
proved in [7, Appendix A], concerns the centralizer of an element in a free product,
which is not conjugate to an element in a factor. As we will see later (Corollary 3.4),
the proof of assertion (ii) can be generalized to certain amalgamated free products.

Corollary 2.8. AL = RAL.

Proof. It is obvious that AL ⊆ RAL. On the other hand, every class of groups which
is closed under subgroups and direct products is residually closed. Indeed, let G be a
group that is residually contained in AL. Then, for every element g ∈ Gr {1} there
exists a group Hg which belongs to AL and a homomorphism φg : G→ Hg, such that
φg(g) 6= 1. We therefore have the embedding φ : G ↪→ ∏

g 6=1Hg with φ(h) = (φg(h))g.
Thus, G belongs to AL since it can be viewed as a subgroup of

∏
g 6=1Hg.

Working along the same lines as in [8, Lemma 3.4 and Corollary 3.5], we have the
following two results that concern the closure of AL under extensions.

Proposition 2.9. An extension of a group in AL by a torsion group is also contained
in AL.

Proof. Indeed, let H be a torsion normal subgroup of a group G such that Ḡ =
G/H ∈ AL. If g ∈ G, g 6= 1, has Linnell’s property, then g /∈ H and hence gH ∈ Ḡ is
a non-identity element having Linnell’s property; in particular, gH has infinite order
(cf. Lemma 2.2). The projection G→ Ḡ induces the following commutative diagram
of central extensions

1 −−−−→ Z g−−−−→ CG(g) −−−−→ NG(g) −−−−→ 1
∥∥∥

y
y

1 −−−−→ Z gH−−−−→ CḠ(gH) −−−−→ NḠ(gH) −−−−→ 1

and hence the element α(g) ∈ H2(NG(g),Z) that classifies the top row is a pullback of
the element α(gH) ∈ H2(NḠ(gH),Z) that classifies the bottom row. Since Ḡ ∈ AL,
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the cap product map α(gH)n ∩ is not surjective for some n ∈ N. The same is true
for α(g)n ∩ , in view of [10, Remark 3.2(ii)].

Proposition 2.10. A central extension of a group in AL is also contained in AL.

Proof. Let H be a central subgroup of a group G, such that G/H ∈ AL, and consider
an element g ∈ Gr {1} having Linnell’s property. Since H is central in G, g is not
contained in H. Therefore, Lemma 2.2(ii) implies that gH is a non-identity element
of G/H having Linnell’s property. Since G/H ∈ AL we may use the same argument as
in the proof Proposition 2.9, in order to conclude that the cap product map α(g)n ∩
is not surjective for some n ∈ N.

3. Elements having Linnell’s property in amalgams and HNN-
extensions

In this section we will use some group theoretic results on generalized free products
of groups, in order to provide some examples of groups in AL.

We recall that according to the Bass-Serre theory of groups acting on trees [19,
I.5.4], for every amalgam of groups G = A ∗H B (or HNN-extension G = 〈A, t |
t −1Ht = H ′

〉
), there exists a tree T on which the group G acts without inversions,

such that the vertex stabilizers are conjugates of A or B (or just A in the case
of an HNN-extension) and the edge stabilizers are conjugates of H. The distance
d(x, y) between two vertices x, y of T is the length of the unique path (also called
geodesic) connecting them. For an element g in G the translation length is the num-
ber τ(g) = min{d(x, gx) | x ∈ T}. The set Tg = {x ∈ T | d(x, gx) = τ(g)} constitutes
the vertex set of a subtree of T . An element g in G is called elliptic if τ(g) = 0 and
in that case Tg is the set of fixed points of g. If τ(g) > 0, then the element g is called
hyperbolic and in that case Tg is a line on which g acts with amplitude τ(g) [19,
I.6.4, Prop. 24]. Since every element of G can be seen as an isometry of T via the
group action, it follows that the translation lengths of two conjugate elements are
equal. Furthermore, τ(gn) = nτ(g) for every g ∈ G and n ∈ N.

Lemma 3.1. Let G = A ∗H B be an amalgam (or G =
〈
A, t | t−1Ht = H ′

〉
an HNN-

extension) and g ∈ Gr {1} an element having Linnell’s property. Then g is conjugate
to an element of A or B (or just A in the case of an HNN-extension). Furthermore, if
g is not conjugate to an element of H, then it has Linnell’s property in that conjugate
of A or B (or just A in the case of an HNN-extension).

Proof. Let T be the Bass-Serre tree associated to the group G. Since g has Linnell’s
property, there exists a positive natural number u such that g and gnu

are conjugate
for all n > 1. Then τ(g) = τ(gnu

) = nuτ(g) and hence τ(g) = 0. Therefore, g is elliptic
and fixes a vertex x. Since the stabilizers of vertices are conjugates of A or B it
follows that g is contained in a conjugate of A or B (or just A in the case of an
HNN-extension).

If g is not conjugate to an element in H it cannot fix two distinct vertices x, y,
for then it would fix the geodesic from x to y. It would then had to stabilize an
edge and it would follow that g is in a conjugate of H. Now for a fixed n let h ∈ G
be an element such that g = hgnu

h−1. Then the vertex hx is stabilized by g since
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ghx = hgnu

h−1hx = hgnu

x = hx. Thus hx = x and it follows that h is contained in
the stabilizer Gx of x. Hence, g has Linnell’s property in Gx.

Remark 3.2. Let G be a group acting on a tree T as in the proof of the previous
lemma. For every element g ∈ G we may observe that the centralizer CG(g) of g acts
on Tg. That is because d(hx, ghx) = d(hx, hgx) = d(x, gx) for every h ∈ CG(g), since
h acts as an isometry on T . In particular, if Tg = {x} then it follows that CG(g) fixes
x and hence it is a subgroup of Gx, i.e. CG(g) is in the same conjugate of A or B (or
just A) as the element g.

Remark 3.3. Let G = A ∗H B be the amalgam of two groups A,B ∈ AL along a com-
mon subgroup H of theirs (or G =

〈
A, t | t−1Ht = H ′

〉
an HNN-extension of a group

A ∈ AL). In order to show that G ∈ AL, we have to examine elements g ∈ G having
Linnell’s property. In view of Lemma 3.1 and Remark 3.2, we have to consider the
following two cases:
(i) The element g is conjugate to an element g′, which is contained in a factor but is

not conjugate to an element of H. In this case, the centralizer of g is conjugate
to the centralizer of g′, which is contained in that factor. Furthermore, g′ has
Linnell’s property and so the cap product map (1) is not surjective for some
nÀ 0 (since the factor is contained in AL).

(ii) The element g is conjugate to an element g′ ∈ H. It is in this case that it may
happen that the cap product map (1) is surjective for all n ∈ N.

In particular, we obtain the following corollary which generalizes Proposition 2.6(ii).

Corollary 3.4. If A,B ∈ AL and H is a common torsion subgroup of theirs, then
A ∗H B ∈ AL. Moreover, if H ′ ⊆ A is a subgroup isomorphic with H, then

〈A, t | t−1Ht = H ′
〉 ∈ AL.

We note that Sykiotis has proved in [21, Theorem 3.1] the statement corresponding
to Corollary 3.4 for the class of groups defined in [7] instead of AL.

For use in the following section, we note the following.

Definition 3.5. Let G∗ =
〈
G, t | t−1At = B, φ

〉
be an HNN-extension. Pinch is a

word of the form t−εutε, where u ∈ A if ε = 1 and u ∈ B if ε = −1. An element
g = g0t

ε1g1 . . . t
εngn ∈ G∗ that does not contain a pinch is called reduced. In that

case the number |g| = n is called the length of g.

Lemma 3.6. Let G∗ =
〈
G, t | t−1At = B, φ

〉
be an HNN-extension and u ∈ G ⊆ G∗.

If CG∗(u) contains an element g with g /∈ G, then u is conjugate with an element in
A (and thus it is conjugate with an element in B as well).

Proof. Let g = g0t
ε1g1 . . . t

εngn ∈ CG∗(u) in normal form. Then,

u−1g−1
n t−εn . . . t−ε1g−1

0 ug0t
ε1g1 . . . t

εngn = 1 (∗)
and hence there must exist a pinch. Since g is in normal form, it is only t−ε1g−1

0 ug0t
ε1

that can be a pinch. Hence, z1 = t−ε1g−1
0 ug0t

ε1 ∈ A or B. Then, (∗) becomes

u−1g−1
n t−εn . . . t−ε2g−1

1 z1g1t
ε2g2 . . . t

εngn = 1

and continuing like this we arrive at u−1g−1
n zngn = 1 with zn ∈ A or B. Therefore, u

is conjugate with an element in A or B.
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We should note here that results similar to those in this section can be obtained
using [15, Chapter 4, Theorems 4.5 and 4.6] and [14, Chapter IV, Theorem 2.5], by
noticing that the length of powers of elements grows.

4. Two examples of groups in AL

4.1. An amalgam in AL

In this subsection we will show that the group K constructed in [8, pages 168–170]
is contained in AL. In particular, it will follow that K satisfies Bass’ conjecture. First
of all, we give a brief description of its construction.

Let Γ = Z o Z be the wreath product of Z by Z. We have the following short exact
sequence:

1 → N → Γ → Z→ 1,

where N =
⊕+∞

i=−∞ Zei and Z ' 〈ψ〉 acts on N in such a way that ψ(ei) = ei+1 for
all i ∈ Z. In view of [10, Proposition 5.3], the group Γ is contained in A ⊆ AL. In
[8, Proposition 2.1] and [11, Paragraph 3] it is proved that if k is a commutative ring,
then Hn(N, k) is the inverse limit lim

←t
Λn

t , where Λn
t is the component of degree n of

the k-exterior algebra generated by degree 1 elements {fi}t
i=−t.

If β =
∑+∞

i=−∞ fi ∧ fi+1 ∈ H2(N,Z), then βn ∈ H2n(N,Z) is the formal sum con-
sisting of terms of the form n!fi1 ∧ fi1+1 ∧ . . . ∧ fin ∧ fin+1 with i1 + 1 < i2, . . . , in−1

+ 1 < in; hence, β is not nilpotent. Furthermore, as discussed in [11, Paragraph 3],
β ∈ Im(H2(Γ,Z) res→ H2(N,Z)) and hence we can view β as an element in H2(Γ,Z).

Let α = ι∗(β), where ι : Z→ Q is the inclusion, classify the central extension

1 → Q 1 7→g−→ G→ Γ → 1.

Then, Proposition 2.10 implies that G ∈ AL. In fact, we shall prove the following.

Proposition 4.1. The group G is contained in A.

Proof. Let x ∈ G be an element of infinite order. We will show that the cap product
map (1) is not surjective for some n ∈ N. The proof splits in two cases.

x /∈ Q: Since Γ is torsion-free, we conclude that if we consider the projection π : G→
Γ the element π(x) is of infinite order and we have the following commutative
diagram of central extensions:

1 −−−−→ Z x−−−−→ CG(x) −−−−→ NG(x) −−−−→ 1y π

y
∥∥∥

1 −−−−→ Z π(x)−−−−→ CΓ(π(x)) −−−−→ NΓ(π(x)) −−−−→ 1.

Since Γ ∈ A, the cap product map α[π(x)]n ∩ associated with the bottom row
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is not surjective for nÀ 0. In view of [10, Remark 3.2(ii)], it follows that this
is also true for the cap product map α(x)n ∩ .

x ∈ Q: Then x = rg, r ∈ Q, r 6= 0, and we obtain the following commutative diagram
of central extensions:

1 −−−−→ Z x−−−−→ G −−−−→ G/ 〈x〉 −−−−→ 1

φ=r◦ι
y

∥∥∥
yπ

1 −−−−→ Q 1 7→g−−−−→ G −−−−→ Γ −−−−→ 1.

Here φ : Z→ Q is the additive map with φ(1) = r and ι : Z→ Q the inclusion.
Let γ = α(x) classify the extension

1 −→ Z x−→ G −→ G/ 〈x〉 −→ 1.

Then, π∗(α) = rι∗(γ) and hence we have π∗(α)n = rnι∗(γ)n for all n > 0. In
particular, there is a commutative diagram:

H2n (G/ 〈x〉 ,Z)
γn∩−−−−→ Z

ι∗

y
yι

H2n (G/ 〈x〉 ,Q)
ι∗(γ)n∩−−−−−−→ Q

π∗

y
yrn

H2n (Γ,Q) αn∩−−−−→ Q.

If the cap product map at the top γn ∩ : H2n (G/ 〈x〉 ,Z) → Z is surjective for
all n ∈ N, then rn ∈ Im((αn ∩ ) ◦ π∗ ◦ ι∗) for all n ∈ N.

Since α = ι∗(β), we have the following commutative diagram:

H2n (G/ 〈x〉 ,Z) H2n (G/ 〈x〉 ,Z)

ι∗

y π∗

y

H2n (G/ 〈x〉 ,Q) H2n (Γ,Z)
βn∩−−−−→ Z

π∗

y ι∗

y
yι

H2n (Γ,Q) H2n (Γ,Q) αn∩−−−−→ Q.

Furthermore (cf. [11, Paragraph 3]), βn = n!
∑
fi1 ∧ fi1+1 ∧ . . . ∧ fin ∧ fin+1,

where the sum runs over the sequences (i1, . . . , in) with i1 + 1 < i2, . . . , in−1 +
1 < in. Since the element

∑
fi1 ∧ fi1+1 ∧ . . . ∧ fin ∧ fin+1 ∈ H2n(N,Z) is con-

tained in the image of res : H2n(Γ,Z) → H2n(N,Z), it follows that Im(βn ∩ ) ⊆
n!Z.

Since (αn ∩ ) ◦ π∗ ◦ ι∗ = (αn ∩ ) ◦ ι∗ ◦ π∗ = ι ◦ (βn ∩ ) ◦ π∗, we conclude that
Im((αn ∩ ) ◦ π∗ ◦ ι∗) = Im(ι ◦ (βn ∩ ) ◦ π∗) ⊆ n!Z.
But rn ∈ Im((αn ∩ ) ◦ π∗ ◦ ι∗) and hence rn ∈ n!Z for all n ∈ N. Equivalently,
we have rn

n! ∈ Z for all n ∈ N, which is absurd since rn

n! tends to zero as n tends
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to infinity. This completes the proof of the assertion that the cap product map
γn ∩ : H2n (G/ 〈x〉 ,Z) → Z is not surjective for nÀ 0 in this case as well.

Let G′ = G× (⊕
i∈Z∗ Qui

)
and consider the following commutative diagram of

central extensions:

1 −−−−→ Q g−−−−→ G −−−−→ Γ −−−−→ 1

1 7→u0

y
y

∥∥∥
1 −−−−→ V =

⊕
i∈ZQui −−−−→ G′ −−−−→ Γ −−−−→ 1,

as in [8]. We have the following result.

Corollary 4.2. The group G′ is contained in A.

Proof. This is immediate from the fact that G as well as the abelian group
⊕

i∈Z∗ Qui

are both contained in A, which is itself closed under finite direct products (cf. [10,
Proposition 5.1]).

Let H be Hall’s group. Recall that H is the semidirect product of V =
⊕

i∈ZQui

and Λ = 〈x, y〉 ⊆ AutQ(V ), where x(ui) = ui+1 and y(ui) = piui for all i ∈ Z; here,
{pi : i ∈ Z} is an enumeration of all primes. In view of [8, Lemma 4.2], we haveH ∈ A.

Let K = G′ ∗V H. In the very end of [8] it was stated that “one cannot prove
whether K satisfies Bass’ conjecture using either Linnell’s result or the cyclic homol-
ogy approach”. We will prove that K ∈ AL; in particular, it will follow that K does
satisfy Bass’ conjecture. To that end, we will need the following lemmas.

Lemma 4.3. Let 0 6= u ∈ V 6 K. If g ∈ CK(u) and its normal form is

φ1g1 . . . φngnh,

where gi ∈ G′ are coset representatives of V in G′, φi ∈ Λ are coset representatives
of V in H and h ∈ V (for notational purposes we use this slightly changed “normal”
form, where it is possible to have φ1 = 1 or gn = 1), then φ1 . . . φn = 1Λ. Conversely,
any element of K with normal form φ1g1 . . . φngnh, such that φ1 . . . φn = 1Λ, is con-
tained in the centralizer CK(u) of u.

Proof. We note that the following assertions are valid for all elements v ∈ V :
(i) gv = vg for all g ∈ G′, since V is central in G′,
(ii) vφi = φiφi

−1(v) for all φi ∈ Λ, since

φi
−1vφi = (0, φi

−1)(v, 1Λ)(0, φi) = (φi
−1(v), 1Λ) =: φi

−1(v).

Let φ1g1 . . . φngnh ∈ CK(u). Then, by using (i) and (ii) above, we obtain that

φ1g1 . . . φngnhuh
−1g−1

n φn
−1 . . . g−1

1 φ1
−1 = φ1 . . . φn(u)

and hence φ1 . . . φn(u) = u ∈ K. In view of the normal form theorem for amalgams,
we have φ1 . . . φn(u) = u ∈ H and finally, since the stabilizer of u in H is equal to
{1Λ} (cf. [9, page 104]), we conclude that φ1 . . . φn = 1 ∈ H.

Conversely, let φ1g1 . . . φngnh be an element of K with φ1 . . . φn = 1 ∈ Λ. Then,
by using (i) and (ii) we have uφ1g1 . . . φngnh = φ1g1 . . . φngnhu.
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Corollary 4.4. For any u ∈ V r {0}, the centralizer CK(u) is the normal subgroup
of K generated by the elements of G′.

Lemma 4.5. Let u ∈ V , u 6= 0. Then, the map π : CK(u) → G′ which sends any ele-
ment φ1g1 . . . φngnh ∈ CK(u) to g1g2 . . . gnh is a surjective group homomorphism.

Proof. The map is well-defined since from the normal form theorem every x ∈ K can
be written in a unique way as φ1g1 . . . φngnh.

Let x = φ1g1 . . . φngnh, x′ = φ′1g
′
1 . . . φ

′
mg
′
mh
′ ∈ CK(u). Then, π(x) = g1 . . . gnh

and π(x′) = g′1 . . . g
′
mh
′. It follows that

π(x)π(x′) = g1 . . . gnhg
′
1 . . . g

′
mh
′ = g1 . . . gng

′
1 . . . g

′
mhh

′.

Since φ′1 . . . φ
′
m = 1, the latter product equals

π(φ1g1 . . . φngnφ
′
1g
′
1 . . . φ

′
mg
′
mhh

′) = π(φ1g1 . . . φngnhφ
′
1g
′
1 . . . φ

′
mg
′
mh
′) = π(xx′)

if neither gn nor φ′1 is equal to 1. If φ′1 = 1, then (using the equality φ′2 . . . φ
′
m = 1)

we have

xx′ = φ1g1 . . . φngnhg
′
1 . . . φ

′
mg
′
mh
′

= φ1g1 . . . φngng
′
1 . . . φ

′
mg
′
mhh

′

= φ1g1 . . . φnzvφ
′
2 . . . φ

′
mg
′
mhh

′

= φ1g1 . . . φnzφ
′
2 . . . φ

′
mg
′
mvhh

′.

Here gng
′
1 = zv with v ∈ V and z ∈ G′ a coset representative of V in G′. Hence,

π(xx′) = g1 . . . gn−1zg
′
2 . . . g

′
mvhh

′, whereas

g1 . . . gng
′
1 . . . g

′
mhh

′ = g1 . . . gn−1zvg
′
2 . . . g

′
mhh

′ = g1 . . . gn−1zg
′
2 . . . g

′
mvhh

′.

If gn = 1, then (using φ′1 . . . φ
′
m = 1) we obtain

xx′ = φ1g1 . . . gn−1φnhφ
′
1g
′
1 . . . φmg

′
mh
′ = φ1g1 . . . gn−1φnφ

′
1g
′
1 . . . φmg

′
mhh

′,

so π(xx′) = g1 . . . gn−1g
′
1 . . . g

′
mhh

′ = g1 . . . gng
′
1 . . . g

′
mhh

′. It follows that π(x)π(x′) =
π(xx′) and hence π is a homomorphism. Finally it is obvious from the definition that
π is surjective.

We are ready to prove the following theorem.

Theorem 4.6. The group K constructed above is contained in AL.

Proof. If x ∈ K is an element having Linnell’s property, then Lemma 3.1 implies that
x is conjugate with an element of G′ or H. Since the cap product map that we are
interested in is not surjective if the cap product map associated with any conjugate of
x is not, we can restrict our attention to those elements in K with Linnell’s property,
which are contained in a factor of K. We distinguish three cases.
x ∈ H\V : Remark 3.2 implies that CK(x) = CH(x) and hence the extension

1 −→ Z x−→ CK(x) −→ NK(x) −→ 1

coincides with
1 −→ Z x−→ CH(x) −→ NH(x) −→ 1.

Since H ∈ A, the corresponding cap product map (1) is not surjective for some
n ∈ N.
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x ∈ G′\V : Remark 3.2 implies that CK(x) = CG′(x) and hence the extension

1 −→ Z x−→ CK(x) −→ NK(x) −→ 1

coincides with
1 −→ Z x−→ CG′(x) −→ NG′(x) −→ 1.

Since G′ ∈ A (Corollary 4.2), the corresponding cap product map (1) is not
surjective for some n ∈ N.

x ∈ V : We have the following commutative diagram of central extensions:

1 −−−−→ Z x−−−−→ CK(x) −−−−→ NK(x) −−−−→ 1∥∥∥ π

y
y

1 −−−−→ Z π(x)=x−−−−−→ G′ = CG′(x) −−−−→ NG′(x) −−−−→ 1,

where π : CK(x) → G′ = CG′(x) is the surjective homomorphism defined in
Lemma 4.5. Since x ∈ V , the element π(x) = x has infinite order. Let β ∈
H2(NG′(x),Z) be the element that classifies the bottom row. Since G′ ∈ A,
the cap product map βn ∩ : H2n(NG′(x),Z) → H0(NG′(x),Z) ' Z is not sur-
jective for some n ∈ N. The same is true for the cap product map (1), in view
of [10, Remark 3.2(ii)].

4.2. An HNN-extension in AL

In this subsection we will show that if G is a countably infinite group contained
in AL, then G can be embedded in a group G∗ ∈ AL, which is generated by two
elements. Of course, the latter statement is also true for every finite group, since such
a group can be embedded in a permutation group Sn, for some n ∈ N.

Theorem 4.7 (Higman, Neumann and Neumann, 1949). Every countable infinite
group G can be embedded in a two generator group G∗ = 〈t, y〉, where both t and y
have infinite order.

Sketch of proof. We slightly modify the argument in the proof of [17, Corollary
11.80], by enumerating the infinite group G using the integers instead of the natural
numbers. If G = {gi | i ∈ Z} with g0 = 1 and F is the free group on two generators
x, y, then

G∗ =
〈
G ∗ F, t | t−1x−nyxnt = gny

−nxyn, n ∈ Z〉
=

〈
G ∗ F, t | t−1At = B

〉
,

where A = 〈x−nyxn | n ∈ Z〉 and B = 〈gny
−nxyn | n ∈ Z〉.

Lemma 4.8. Let u ∈ F = 〈x, y〉 be an element such that the sum of the powers of x
in u is zero. Then, u ∈ A = 〈x−nyxn | n ∈ Z〉.
Lemma 4.9. Let F = 〈x, y〉 be the free group on two generators,

D =
〈
F, t | t−1x−nyxn t = y−nxyn, n ∈ Z〉

and u, v ∈ F ⊆ D two elements having the following properties:
(i) the sum of the powers of x and the sum of the powers of y in u are equal to zero

(i.e. u ∈ ¿ xÀ ∩ ¿ y À);
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(ii) there exists f ∈ D with |f | even, such that f−1uf = v (i.e. u, v are conjugates
by an element of even length).

Then, there exists w ∈ F such that w−1uw = v (i.e., u, v are conjugates in F ).

Proof. We note that if an element w1 ∈ F has the property stated in (i) above, then
tεw1t

−ε, ε = ±1 is equal to w1 ∈ F , where w1 is the element that we obtain from w1

by interchanging x and y in the normal form of w1. Furthermore, w1 also has the
property stated in (i) above and w1 = w1. Finally, for any two elements w1, w2 in F
we have w1w2 = w1 w2.

If f = f0t
ε1f1 · · · tε2nf2n is the normal form of f and f−1uf = v, then we have:

f−1
2n t
−ε2n · · · t−ε1f−1

0 uf0t
ε1 · · · tε2nf2n = v.

Since f−1
0 uf0 has also the property stated in (i) above, we obtain:

f−1
2n t
−ε2n · · · t−ε2f−1

1 f0
−1
uf0f1t

ε2 · · · tε2nf2n = v.

Now f−1
1 f0

−1
uf0f1 has also the same property and hence:

f−1
2n t
−ε2n · · · t−ε3f−1

2 f1
−1
f0
−1
uf0 f1f2t

ε3 · · · tε2nf2n = v,

i.e.

f−1
2n t
−ε2n · · · t−ε3f−1

2 f1
−1
f−1
0 uf0f1f2t

ε3 · · · tε2nf2n = v.

Continuing like this, we arrive to the following equality

f−1
2n f2n−1

−1 · · · f1−1
f−1
0 uf0f1 · · · f2n−1f2n = v,

which shows that u, v are conjugate in F .

Corollary 4.10. Let G∗ be as in the proof of Theorem 4.7 and v 6= 1 an element
in G∗ having Linnell’s property in G∗. Then, v is conjugate to an element u with
CG∗(u) ⊆ G ∗ F . Furthermore, u has Linnell’s property in G ∗ F .

Proof. By Lemma 3.1, v is conjugate to an element u ∈ G ∗ F . If CG∗(u) 6⊆ G ∗ F ,
then (in view of Lemma 3.6) u is conjugate to an element w ∈ A that has Linnell’s
property.

Since w ∈ A, the sum of the powers of x in w is zero. This is also true for the
sum of the powers of y. Indeed, let π1 be the projection π1 : G∗ → 〈x〉 where t 7→ 1,
h 7→ 1 for all h ∈ G and x, y 7→ x. If the image of w, π1(w), is non-trivial, then it is an
element of 〈x〉 other than 1 that has Linnell’s property. The last assertion is absurd
since 〈x〉 is the free abelian group in one generator. Therefore, π1(w) = 1 and hence
the sum of the powers of y in w is zero.

Let π2 be the projection π2 : G∗ → D, where

D =
〈
F, t | t−1x−nyxnt = y−nxyn, n ∈ Z〉

and π2(h) = 1 for all h ∈ G. Then, π2(w) is a non-trivial element (since w ∈ A) and
has Linnell’s property. It follows that there exists f ∈ D with |f | even such that
f−1π2(w)f = π2(w)m for some m ∈ N, m > 0. (Indeed, there exist f0 ∈ D and k ∈
N, k > 0, such that f−1

0 π2(w)f0 = π2(w)k. Then, |f2
0 | is even and f−2

0 π2(w)f2
0 =
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π2(w)k2
.) In view of the previous lemma, π2(w) is conjugate with π2(w)m in F . But

then we have a non-trivial element of F that is conjugate to one of its powers in F ,
which is impossible (cf. [15, Theorem 4.6]). The contradiction shows that u cannot
be conjugate to any element w ∈ A and hence CG∗(u) ⊆ G ∗ F .

Furthermore, if T is the tree associated to the group G∗, then u fixes only one
vertex since in the opposite case, it would fix an edge (cf. the proof of Lemma 3.1)
and then u would be conjugate to an element of A. It follows just as in the proof of
Lemma 3.1 that u has Linnell’s property in G ∗ F .

Remark 4.11. From the proof above it follows that the group D defined in the state-
ment of Lemma 4.9 contains no element having Linnell’s property. It follows that
D ∈ AL.

Theorem 4.12. Let G be a countable group and G∗ the HNN-extension defined in
the proof of Theorem 4.7. If G ∈ AL then G∗ ∈ AL.

Proof. Let g ∈ G∗ be an element having Linnell’s property. Since the cap product map
that we are interested in is not surjective if the cap product map associated with any
conjugate of g is not, we may invoke Corollary 4.10 and assume that CG∗(g) ⊆ G ∗ F ,
with g having Linnell’s property in G ∗ F . In that case, the extension

1 −→ Z g−→ CG∗(g) −→ NG∗(g) −→ 1

coincides with the extension

1 −→ Z g−→ CG∗F (g) −→ NG∗F (g) −→ 1.

Since G ∗ F ∈ AL, the cap product map (1) is not surjective for nÀ 0.
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