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Abstract
We study mathematical expectations of Betti numbers of

configuration spaces of planar linkages, viewing the lengths of
the bars of the linkage as random variables. Our main result
gives an explicit asymptotic formulae for these mathematical
expectations for two distinct probability measures describing
the statistics of the length vectors when the number of links
tends to infinity. In the proof we use a combination of geomet-
ric and analytic tools. The average Betti numbers are expressed
in terms of volumes of intersections of a simplex with certain
half-spaces.

1. Introduction

In various fields of applications, such as topological robotics, configuration spaces
of mechanical systems depend on a large number of parameters, which typically are
only partially known and often can be considered as random variables. Since these
parameters determine the topology of the configuration space, the latter can be viewed
in such a case as a random topological space or a random manifold. To control such
a system one has to understand geometry, topology and control theory of random
manifolds.

One of the most natural notions to investigate is the mathematical expectation of
the Betti numbers of random manifolds. Clearly, these average Betti numbers encode
valuable information for engineering applications; for instance they provide an average
lower bound for the number of critical points of a Morse function (i.e. observable) on
such manifolds.

In this paper we consider a specific instance of this general problem. We study
closed planar n-gons whose sides have fixed positive lengths l1, . . . , ln. The “polygon”
space

M` = {(u1, . . . , un) ∈ S1 × · · · × S1;
n∑

i=1

liui = 0 ∈ C} /SO(2) (1)

parametrizes the variety of all possible shapes of such planar n-gons with sides of
length l1, . . . , ln. The unit vector ui ∈ C indicates the direction of the i-th side of the

Received June 5, 2007; published on February 22, 2008.
2000 Mathematics Subject Classification: 55R80.
Key words and phrases: linkage, polygon space, random linkage, Betti number.
This article is available at http://intlpress.com/HHA/v10/n1/a8

Copyright c© 2008, Michael Farber and Thomas Kappeler. Permission to copy for private use granted.



206 MICHAEL FARBER and THOMAS KAPPELER

polygon. The condition
∑
liui = 0 expresses the property of the polygon being closed.

The rotation group SO(2) acts on the set of side directions (u1, . . . , un) diagonally.
The polygon space M` emerges in topological robotics as the configuration space

of the planar linkage, a simple mechanism consisting of n bars of length l1, . . . , ln
connected by revolving joints forming a closed planar polygonal chain. The positions
of two adjacent vertices are fixed but the other vertices are free to move and the angles
between the bars are allowed to change. The spaces M` also appear in molecular

biology, where they describe the space of shapes of closed molecular chains.
Statistical shape theory is another subject where the spaces M` play a role: they

describe the space of shapes having certain geometric properties with respect to the
central point; see [8].

The configuration space M` depends on the length vector

` = (l1, . . . , ln) ∈ Rn
+ (2)

in an essential way. Here Rn
+ denotes the set of vectors in Rn having nonnegative

coordinates. Clearly, M` = Mt` for any t > 0.

The length vector ` is called generic if
n∑

i=1

liεi 6= 0 for any choice εi = ±1. It is

known that for a generic length vector ` the space M` is a closed smooth manifold of
dimension n− 3. If the length vector ` is not generic, then M` is a compact (n− 3)-
dimensional manifold having finitely many singular points.

The moduli spaces M` of planar polygonal linkages were studied extensively by
W. Thurston and J. Weeks [11], K. Walker [13], A. A. Klyachko [9], M. Kapovich and
J. Millson [7], J.-Cl. Hausmann and A. Knutson [6] and others. The Betti numbers of
M` as functions of the length vector ` are described in [4]; we recall the result of [4]
later in Section 2. A. A. Klyachko [9] found the Betti numbers of spatial polygon
spaces.

In this paper we view the length vector ` ∈ Rn
+ as a random variable whose sta-

tistical behavior is described by a probability measure µ on Rn
+. The p-dimensional

Betti number bp(M`) is then a function

bp : Rn
+ → Z, ` 7→ bp(M`) ∈ Z. (3)

Our goal is to find the asymptotics for n large of the average Betti numbers, defined
by

bp(n, µ) =
∫

Rn
+

bp(M`)dµ. (4)
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The choice of measure µ reflects a priori information about the problem. We study
in detail two special choices for µ:

(a) µ = µa is the probability measure on Rn
+ supported on the unit simplex ∆n−1

such that µ|∆n−1 coincides with the Lebesgue measure on ∆n−1 ⊂ Rn
+ normal-

ized so that µ(∆n−1) = 1. Recall that ∆n−1 ⊂ Rn
+ is described by the inequal-

ities li > 0,
∑
li = 1.

(b) µ = µb is the probability measure on Rn
+ supported on the unit cube ¤n ⊂ Rn

+

such that µ|¤n is the Lebesgue measure. Here ¤n is given by the inequalities
0 6 li 6 1, i = 1, . . . , n and µ(¤n) = 1.

The main result of this paper states that in cases (a) and (b) for any fixed p > 0
and large n the following asymptotic formula holds:

bp(n, µ) ∼
(
n− 1
p

)
. (5)

This can be expressed by saying that for large n the random manifold M` is con-
nected, its first Betti number is n− 1, the second is (n− 1)(n− 2)/2 and so on. More
precisely, our main result is the following:

Theorem 1.1. Let µ be either of the measures µa or µb described above. Then for
any p > 0 there exist constants C > 0 and 0 < a < 1 such that for any n the average
Betti number bp(n, µ), given by (4), satisfies

∣∣∣∣bp(n, µ)−
(
n− 1
p

)∣∣∣∣ < Can. (6)

This result is quite surprising for two reasons. Firstly, it states that the asymptotic
values of the average Betti number bp(n, µ) as n→∞ are equal for the measures
µa and µb and raises the intriguing question about the universality of the obtained
asymptotic values.

Secondly, the binomial coefficient which appears in estimate (6) equals the p-
dimensional Betti number bp(M`∗) of the configuration space of the equilateral linkage
`∗ = (1, . . . , 1) for any p satisfying 2p < n− 3; see [4, Examples 3 and 4]. Hence
the Betti numbers of the moduli space M`∗ approximate the average Betti numbers
bp(n, µ) for n large. On the other hand, by Theorem 2 of [4] the total Betti number,∑n

p=0 bp(M`), viewed as a function of the length vector ` ∈ Rn
+, is maximal for the

equilateral linkage ` = `∗. This comparison shows that at least for some values of p
the maximum of the individual Betti numbers bp(M`) viewed as a function of ` must
be higher than bp(M`∗).

Indeed, this is the case since for the length vector `ε = (1, 1, 1, ε, . . . , ε), where ε is
a small positive number which appears n− 3 times, the Betti number bp(M`ε) equals

2 ·
(
n− 3
p

)
= 2 · (n− 2− p)(n− 1− p)

(n− 1)(n− 2)
·
(
n− 1
p

)

(see [4, Example 2]), which for large n is nearly twice the average Betti number



208 MICHAEL FARBER and THOMAS KAPPELER

bp(n, µ). However if p ∼ n/2x, then

bp(M`ε
) ∼ 1

2

(
n− 1
p

)
.

In a subsequent work we shall describe a generalization of Theorem 1.1 which
allows the dimension p to grow with n. See also [3] where the average Betti numbers
of polygon spaces in R3 are calculated. Paper [3] also contains results for more general
probability measures which explain the “universality phenomenon”.

2. Reduction of the problem

In this section we express the average Betti numbers in terms of certain volumes.
To state this result we need to introduce some more notation. For a subset

J ⊂ {1, . . . , n} we denote by φJ : Rn → R the linear functional given by

φJ(l1, . . . , ln) =
∑

i∈J

li −
∑

i/∈J

li, (7)

and by HJ the half-space

HJ = {` ∈ Rn;φJ(`) < 0}. (8)

Further, Cn denotes the cone

Cn = {(l1, . . . , ln); l1 > l2 > . . . ln > 0} ⊂ Rn
+. (9)

The main result of this section provides a reduction of the problem of computing
the average Betti numbers.

Proposition 2.1. Let µ be a probability measure on Rn
+ having the following two

properties:

(I) µ is invariant with respect to the action of the symmetric group Σn on Rn
+

permuting coordinates;

(II) µ(L ∩Rn
+) = 0 for any proper linear subspace L ⊂ Rn.

Then the average Betti number bp(n, µ) equals

bp(n, µ) = n! ·
∑

J

µ(HJ ∩ Cn), (10)

where J runs over all subsets J ⊂ {1, 2, . . . , n} containing 1 and having cardinality
either |J | = p+ 1 or |J | = n− 2− p.

Proof. First, recall the result of [4] stating that the Betti numbers bp(M`), as func-
tions of the length vector ` = (l1, . . . , ln), can be computed by counting certain subsets
of the index set {1, . . . , n}. A subset J ⊂ {1, . . . , n} is called short if

∑

i∈J

li <
∑

i/∈J

li.

A subset is called long if its complement is short. A subset J ⊂ {1, . . . , n} is called
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median if
∑

i∈J

li =
∑

i/∈J

li.

Fix an index 1 6 i 6 n such that li is maximal among l1, . . . , ln. Denote by ap(`)
the number of short subsets J ⊂ {1, . . . , n} of cardinality |J | = 1 + p containing i.
Denote by ãp(`) the number of median subsets J ⊂ {1, . . . , n} containing i and such
that |J | = 1 + p. It was proven in [4] that for p = 0, 1, . . . , n− 3 one has

bp(M`) = ap(`) + ãp(`) + an−3−p(`). (11)

It is easy to see that the manifolds M`1 and M`2 are diffeomorphic if the length
vector `1 ∈ Rn

+ is obtained from `2 ∈ Rn
+ by permuting the components. In other

words, for our purposes, the order of the coordinates l1, . . . , ln in the length vector
` = (l1, . . . , ln) is irrelevant.

Let µ be a probability measure on Rn
+ having properties (I) and (II). Property

(II) implies that
∫

Rn
+

ãp(`)dµ = 0 (12)

since the function ` 7→ ãp(`) is zero on the complement of a union of finitely many
linear hyperplanes. Integrating (11) we have

bp(n, µ) = ap(n, µ) + an−3−p(n, µ), (13)

where

ap(n, µ) =
∫

Rn
+

ap(`)dµ = n! ·
∫

Cn

ap(`)dµ. (14)

The latter identity follows from property (I) of µ. The function ap|Cn is quite simple.
Denote by σ the step function

σ(x) =

{
1, if x < 0,
0, if x > 0,

where x ∈ R. Then we may write

ap(`) =
∑

J

σ((φJ(`)), (15)

where J runs over all subsets of {1, . . . , n} of cardinality p+ 1 containing 1. Integrat-
ing we find

ap(n, µ) = n! ·
∫

Cn

ap(`)dµ (16)

= n! ·
∑

J

∫

Cn

σ(φJ(`))dµ.

In formula (16), J runs over all subsets J ⊂ {1, . . . , n} satisfying 1 ∈ J , |J | = p+ 1.
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Obviously,
∫

Cn

σ(φJ(`))dµ = µ(HJ ∩ Cn), (17)

where HJ is given by (8). Our statement (10) now follows by combining (13), (14),
(16) and (17).

3. Simplices and volumes

In this section we give a geometric interpretation of the quantities appearing on
the right-hand side of formula (10).

Recall that we denote by µa the measure on Rn
+ with support on the unit sim-

plex ∆n−1 ⊂ Rn
+ such that µa|∆n−1 coincides with the normalized Lebesgue measure,

µa(∆n−1) = 1. Similarly, µb denotes the probability measure on Rn
+ supported on the

unit cube ¤n ⊂ Rn
+ such that µb|¤n coincides with the Lebesgue measure.

Denote by A ⊂ Rn
+ the simplex of dimension n having the vertices

c0 = (0, . . . , 0),
c1 = (1, 0, . . . , 0),

c2 =
1
2
(1, 1, 0, . . . , 0), (18)

. . .

cn =
1
n

(1, 1, . . . , 1).

Similarly, denote by B ⊂ Rn
+ the simplex of dimension n having the vertices

c′i = (1, . . . , 1︸ ︷︷ ︸
i times

, 0, . . . , 0) = i · ci, (19)

where i = 0, 1, . . . , n.

Proposition 3.1. For any subset J ⊂ {1, . . . , n}, one has

n! · µa(HJ ∩ Cn) =
vol(HJ ∩A)

vol(A)
, n! · µb(HJ ∩ Cn) =

vol(HJ ∩B)
vol(B)

. (20)

In other words, the quantities appearing in Proposition 2.1 can be interpreted as ratios
of volumes of certain simplices and the parts cut off by a half-space.

Proof. One checks that the intersection ∆n−1 ∩ Cn coincides with the (n− 1)-dimen-
sional simplex A′ ⊂ A with vertices c1, . . . , cn, and that the intersection ¤n ∩ Cn

equals B. Clearly

µa(A′) =
voln−1(A′)
voln−1(A)

= (n!)−1, µb(B) = vol(B) = (n!)−1.

Here voln−1 denotes the (n− 1)-dimensional Euclidean volume. Hence we find that

n! · µa(HJ ∩ Cn) =
voln−1(HJ ∩A′)

voln−1(A′)
=

vol(HJ ∩A)
vol(A)

(21)
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and

n! · µb(HJ ∩ Cn) =
vol(HJ ∩B)

vol(B)
. (22)

This completes the proof.

We are led to consider the following simple geometric problem.

Proposition 3.2. Given n+ 1 points v0, . . . , vn ∈ Rn in general position and a lin-
ear functional φ : Rn → R, consider the simplex Σ spanned by v0, . . . , vn and its inter-
section with the half-space H = {v ∈ Rn;φ(v) < 0}. Denote by

qi = φ(vi), i = 0, . . . , n (23)

the values of the functional φ on the vertices of Σ. Assume that the numbers q0, . . . , qn
are all distinct and that the vertices are labelled so that qi < 0 for all i = 0, . . . ,m and
qi > 0 for i = m+ 1, . . . , n. Then the ratio of the volumes

r =
vol(Σ ∩H)

vol(Σ)
(24)

equals

r =
m∑

i=0

∏

0 6 j 6 n
j 6= i

qi
qi − qj

. (25)

Proposition 3.2 is well known. Different expressions for the volume cut off of a
simplex by a half-space were obtained in [2] (see Theorem 2 of [2]) and more recently
in [1], [5], [12]. Proposition 3.2 can be easily obtained from the results mentioned
above. For the convenience of the reader we briefly sketch the proof.

Proof. Consider for x ∈ R the half-space

Hx = {v ∈ Rn;φ(v) < x}
and the real-valued function

r(x) =
vol(Hx ∩B)

vol(B)
. (26)

Without loss of generality we will assume that q0 < q1 < · · · < qn; for convenience we
set q−1 = −∞ and qn+1 = +∞.

The function r(x) has the following properties:

(i) when restricted on each subinterval [qi−1, qi], the function r(x) is a polynomial
pi(x) of degree n with real coefficients, where i = 0, . . . , n+ 1.

(ii) p0(x) ≡ 0 and pn+1(x) ≡ 1.

(iii) r(x) has continuous derivatives up to order n− 1.
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Properties (i) and (iii) (proven in [2]) imply that for any 0 6 i 6 n there exists
βi ∈ R such that

pi+1(x)− pi(x) = βi(x− qi)n. (27)

Hence

pi+1(x) =
i∑

k=0

βk(x− qk)n, (28)

where the coefficients βi can be found from the polynomial identity

n∑

k=0

βk(x− qk)n ≡ 1. (29)

Equation (29) has a unique solution given by

βk = (−1)n ·
n∏

j = 0
j 6= k

(qk − qj)−1, k = 0, 1, . . . , n. (30)

Indeed, by comparison of coefficients in (29), we obtain the linear system

n∑

k=0

βkq
n−i
k =

{
(−1)n if i = 0,
0 if i = 1, . . . , n,

(31)

which can be written in the matrix form



1 1 . . . 1
q0 q1 . . . qn
. . . . . . . . . . . .
qn−1
0 qn−1

1 . . . qn−1
n

qn
0 qn

1 . . . qn
n







β0

β1

. . .
βn−1

βn




=




0
0
. . .
0

(−1)n



. (32)

To solve it one applies Cramer’s rule. The determinant of the system is the Vander-
monde determinant

∏
j>l(qj − ql), and the numerator of the fraction expressing βk

can be computed to be the Vandermonde determinant

(−1)k ·
∏

j > l
j, l 6= k

(qj − ql),

so that we obtain

βk = (−1)k
∏

k>l

(qk − ql)−1 ·
∏

j>k

(qj − qk)−1 = (−1)n
∏

j 6=k

(qk − qj)−1,

which coincides with (30). Substituting the obtained value into (28) we find that for
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x ∈ [qi−1, qi] one has

r(x) = pi(x) =
i−1∑

k=0

∏

0 6 j 6 n
j 6= k

qk − x

qk − qj
. (33)

Formula (25) is obtained from (33) by setting x = 0.

For our applications we need to have a more general formula for the ratio (24)
which covers the case when some values qi = φ(ci) coincide. Formula (25) is not well
defined in this case since some of the denominators might vanish. Our setting is as
follows. Let v0, . . . , vn ∈ Rn be points in general position spanning a simplex B. Let
φ : Rn → R be a linear functional. We consider the ratio of the volumes (25) where
H is the half-space H = {v ∈ Rn;φ(v) < 0}. Let qi = φ(vi) ∈ R, where i = 0, . . . , n.
Suppose that there is a decomposition of the set of indices into disjoint subsets

{0, 1, . . . , n} =
s⊔

l=0

Il

such that qi = Ql for all i ∈ Il and the numbers Q0, . . . , Qs ∈ R are pairwise distinct.
We denote by kl the number |Il| − 1. Thus, the multiplicity of Ql is kl + 1, where
l = 0, 1, . . . , s, and one has

k0 + k1 + · · ·+ ks = n− s. (34)

Given two nonnegative integers s and a, we denote by P (s, a) the set of all functions

δ : {0, 1, . . . , s} → Z>0, i 7→ δi

satisfying
∑s

j=0 δj = a. The set P (s, a) labels partitions of a in s+ 1 summands.

Proposition 3.3. Assume that Qi < 0 for all i = 0, . . . ,m and Qi > 0 for all i =
m+ 1, . . . , s. Then the ratio of volumes (24) equals

r =
m∑

i=0



Fi ·

∏

0 6 j 6 s
j 6= i

(
Qi

Qi −Qj

)kj+1



, (35)

where Fi equals
∑

δ∈P (s,ki)

(
n
δi

)
· (−Qi)ki−δi ·

∏

0 6 j 6 s
j 6= i

(
kj + δj
δj

)
· (Qi −Qj)−δj . (36)

Note that if ki = 0, then P (s, ki) = {δ ≡ 0}, and hence Fi = 1. In particular, if
s = n and therefore ki = 0 for any 0 6 i 6 n, then formula (36) coincides with formula
(25). Moreover, we point out that the coefficients Fi are homogenous of degree 0 in
the variables Q0, . . . , Qs.
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Proof of Proposition 3.3. Let ψ : Rn → R be a linear functional, a small perturba-
tion of φ : Rn → R, such that the values pi = ψ(vi) are all distinct. Without loss
of generality we may assume that pi < 0 for 0 6 i 6 m′ and pi > 0 for m′ < i 6 n,
where m′ = m+ 1 +

∑m
i=0 ki. Let H ′ = {v ∈ Rn;ψ(v) < 0}. The perturbed ratio

r′ =
vol(H ′ ∩ Σ)

vol(Σ)
(37)

tends to r when ψ tends to φ. By Proposition 3.2 it can be written in the form

r′ =
m′∑

i=0



pn

i ·
∏

j 6= i
0 6 j 6 n

(pi − pj)
−1



. (38)

To find its limit we will use the following general formula (see [10]),

k∑

i=0

f(xi) ·
∏

0 6 j 6 k
j 6= i

(xi − xj)−1 =
1
k!
f (k)(ξ), (39)

where f(x) is a real-valued smooth function, x0, . . . , xk are distinct real numbers and
ξ is a number lying in the smallest interval containing these points. Applying (39)
(m+ 1) times to (38) and passing to the limit as {p0, . . . , pn} → {Q0, . . . , Qs} we
obtain

r =
m∑

i=0

1
ki!



xn ·

∏

0 6 l 6 s
l 6= i

(x−Ql)−kl−1




(ki)

x=Qi

. (40)

Recall the following formula for higher derivatives of products

(f0f1 · · · fs)(k) =
∑

δ∈P (s,k)

k!
δ0! · · · δs!f

(δ0)
0 · · · f (δs)

s .

Applying it to (40) and using n = ki +
∑

j 6=i(kj + 1), one obtains (35) after certain
elementary transformations.

4. Sequences of densities

By Proposition 2.1 combined with Proposition 3.1, to compute the average Betti
numbers bp(n, µ) one has to know the volumes cut off of a simplex by certain half-
spaces. The result of Propositions 3.2 and 3.3 show that to find these volumes it
is enough to know the values of the functionals determining the half-spaces on the
vertices of the simplices A and B. We investigate these values in this section.
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Let J ⊂ {1, . . . , n} be an arbitrary subset and φJ : Rn → R be the linear functional
(7). The values of the functional φJ on the vertices ci of the simplex A (see (18))
equal φJ (c0) = 0, and for i > 1,

φJ(ci) =
1
i
|J ∩ {1, . . . , i}| − 1

i

∣∣J̄ ∩ {1, . . . , i}
∣∣ , (41)

where J̄ denotes the complement of J in {1, . . . , n}. Let

αi(J) =
1
i
|J ∩ {1, . . . , i}| , i = 1, . . . , n (42)

denote the density of the set J in the interval {1, . . . , i}. Clearly 0 6 αi(J) 6 1.

Lemma 4.1. Let J ⊂ {1, . . . , n} be a subset of cardinality |J | = p > 1. Then the fol-
lowing estimates hold:

(a) For 2p 6 i 6 n one has

αi(J) 6 1
2

(43)

and equality in (43) may only hold for i = 2p.
(b) If 1 6 i, j 6 2p, then either αi(J) = αj(J) or

|αi(J)− αj(J)| > 1
(2p)2

.

(c) If αi(J) < 1
2 for some 1 6 i 6 n, then

αi(J) 6 1
2
− 1

2(2p+ 1)
.

(d) For any 8p3 6 i 6 n one has

0 6 αi(J) 6 1
8p2

. (44)

Proof.

(a) Let ki denote |J ∩ {1, 2, . . . , i}|. Then for i > 2p one has

αi(J) =
ki

i
6 p

i
6 p

2p
= 1/2.

If αi(J) = 1/2, then the above inequalities imply that i = 2p.
(b) Suppose now that 1 6 i, j 6 2p. Then

|αi(J)− αj(J)| =
∣∣∣∣
ki

i
− kj

j

∣∣∣∣ =
|jki − ikj |

ij
. (45)

We obtain that either (45) vanishes or |jki − ikj | > 1; hence (45) is greater than
or equal to

1
ij

> 1
(2p)2

,

proving (b).
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(c) Note that for i > 2p+ 2 one has

αi(J) =
ki

i
6 p

2p+ 2
=

1
2
− 1

2(p+ 1)
.

Now consider the case i 6 2p+ 1. By assumption αi(J) < 1/2, i.e. 2ki < i or
2ki 6 i− 1. It implies that

αi(J) =
ki

i
6 i− 1

2i
=

1
2
− 1

2i
6 1

2
− 1

2(2p+ 1)
.

(d) Note that if i > 8p3 and p > 1, then

αi(J) =
ki

i
6 p

i
6 1

8p2
.

Lemma 4.2. Let J ⊂ {1, . . . , n} with |J | = p > 1. A nonzero number may appear in
the sequence of densities α1(J), . . . , αn(J) at most p times.

Proof. The densities αi(J) satisfy the following recurrence relation:

αi+1(J) =

{
i

i+1αi(J), if i+ 1 /∈ J,
i

i+1αi(J) + 1
i+1 , if i+ 1 ∈ J. (46)

It follows that αi+1(J) < αi(J) if αi(J) > 0 and i+ 1 /∈ J . On the other hand, one
has αi+1(J) > αi(J) if i+ 1 ∈ J . Hence, for i < j, the equality αi(J) = αj(J) > 0
implies that at least one of the intermediate indices i+ 1, . . . , j belongs to J .

Assume now that for i1 < i2 < · · · < ik one has αi1(J) = · · · = αik
(J) > 0. The

set J divides {1, . . . , n} into p+ 1 subintervals, i.e. subsets of consecutive integers in
{1, . . . , n} all of which are not in J except the first one. The leftmost interval contains
no elements of J and might be empty. As explained above, each of the subintervals
may contain at most one of the integers i1, . . . , ik. The density αi(J) vanishes if and
only if i lies in the leftmost subinterval. This shows that k 6 p as claimed.

The following examples show that Lemma 4.2 cannot be improved.

Example 4.3.
(i) Consider J = {1, 2, . . . , p}. Then αi(J) = 1 if and only if 1 6 i 6 p; i.e. the mul-

tiplicity of the value 1 is p.
(ii) Let J = {1, 3, 5, . . . , 2p− 1}. Then αi(J) equals 1/2 exactly p times.
(iii) Suppose that J = {n− p+ 1, n− p+ 2, . . . , n}. Then one has αi(J) = 0 for i =

1, 2, . . . , n− p; i.e. the multiplicity of the value zero is n− p. This shows that
the bound of the multiplicity of Lemma 4.2 does not hold for the value zero.

The values

qi = φJ(ci) (47)

of the functional φJ on the vertices of the simplex A (see (18)) will play an important
role in the sequel. Clearly, q0 = 0 and

qi = 2αi(J)− 1 ∈ [−1, 1], i = 1, . . . , n; (48)

see (41). Let us restate Lemmas 4.1 and 4.2 in terms of the qi’s:
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Lemma 4.4. Let J ⊂ {1, . . . , n} be a subset of cardinality |J | = p > 1. Then:

(a) For 2p 6 i 6 n one has qi 6 0 with equality possible only for i = 2p.

(b) If 1 6 i, j 6 2p, then either qi = qj or

|qi − qj | > 1
2p2

.

(c) If qi < 0 for some 1 6 i 6 n, then

qi 6 − 1
2p+ 1

.

(d) For 8p3 6 i 6 n one has

−1 6 qi 6 −1 +
1

4p2
. (49)

(e) A number distinct from −1 may appear in the sequence q0, . . . , qn at most p
times.

Next we consider the values q′i = φJ(c′i) of the functional φJ on the vertices of the
simplex B (see (19)).

Lemma 4.5. Let J ⊂ {1, . . . , n} be a subset of cardinality |J | = p > 1. Then:

(a) The numbers q′i satisfy −i 6 q′i 6 i.

(b) For 2p 6 i 6 n one has q′i 6 0 with equality possible only for i = 2p.

(c) If q′i 6= q′j, then
∣∣q′i − q′j

∣∣ > 1.

(d) If q′i < 0 for some 1 6 i 6 n, then q′i 6 −1.

(e) A number may appear in the sequence q′0, . . . , q
′
n at most p+ 1 times.

Proof. Since q′i = iqi, statements (a)–(d) follow from Lemma 4.4 and from the obser-
vation that q′i is an integer. To prove (e) we note that the numbers q′i satisfy the
following recurrence relation:

q′i+1 =

{
q′i − 1 if i+ 1 /∈ J,
q′i + 1 if i+ 1 ∈ J.

Hence the sequence q′0, q
′
1, . . . , q

′
n has exactly p jumps up and decays between the

jumps. This proves (e).

Example 4.6. Consider the sequence J = {1, 3, . . . , 2p− 1}. Then

(i) q′i = 0 for i = 0, 2, 4, . . . , 2p,

(ii) q′i = 1 for i = 1, 3, . . . 2p− 1, and

(iii) q′i < 0 for i > 2p.

We see that in this case the value zero appears in the sequence q′0, . . . , q
′
n exactly

p+ 1 times.
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5. Proof of Theorem 1.1 for µ = µa

In this section we prove Theorem 1.1 for the measure µ = µa described before the
statement of Theorem 1.1.

Fix a subset J ⊂ {1, 2, . . . , n} of cardinality p > 1 where we think of p as being
fixed and of n as being large. Let A be the simplex with vertices (18). Our first goal
is to estimate the ratios of the form

rJ =
vol(HJ ∩A)

vol(A)
, (50)

where HJ ⊂ Rn is the half-space HJ = {v ∈ Rn;φJ(v) < 0}. The average Betti num-
bers are sums of ratios of this kind; see Propositions 2.1 and 3.1. Recall that φJ

denotes the linear functional φJ : Rn → R given by (7).
The values of the functional φJ on the vertices ci of A are described in Lemma 4.4.

In particular, by statement (a) of Lemma 4.4, for large n the majority of the values qi
are negative. More precisely, at most 2p of them are positive. Hence, one may expect
that the volume of the section HJ ∩A approximates vol(A) for large n. This is indeed
the case.

To estimate the difference 1− rJ from above we will apply Propositions 3.2 and 3.3;
our aim is to show that it is exponentially small.

Proposition 5.1. Given an integer p > 1, there exist constants C > 0 and 0 < a < 1
such that for any n > p and any subset J ⊂ {1, 2, . . . , n} of cardinality p one has

1− rJ < C · an. (51)

It will be apparent from the proof that one can take for a an arbitrary number
satisfying (2p+ 1)/(2p+ 2) < a < 1.

Proof. Consider the values qi = φJ(ci), where i = 0, 1, . . . , n. They may have multi-
plicities, i.e. the same value may appear several times. We will denote by Q0 > Q1 >
, . . . , > Qs ∈ [−1, 1] the different values of the sequence q0, . . . , qn. Then there is a sur-
jective mapping τ : {0, 1, . . . , n} → {0, 1, . . . , s} such that qi = Qτ(i). For 0 6 i 6 s we
denote by ki + 1 the cardinality of the preimage τ−1(i). Clearly,

s∑

i=0

ki = n− s.

If Qi 6 0 for all 0 6 i 6 s then HJ ∩A = A; hence rJ = 1 and therefore (51) holds
trivially. Thus without loss of generality we may assume that for some 0 6 m 6 s
one has Qi > 0 for i = 0, . . . ,m and Qi 6 0 for i = m+ 1, . . . , s. By statement (a) of
Lemma 4.4 we have

m∑

i=0

(ki + 1) 6 2p. (52)

We also have

ki 6 p, i = 0, 1, . . . , s− 1; (53)

see (e) of Lemma 4.4. Inequality (53) also applies to the multiplicity ks if Qs is
distinct from −1.
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Let b = 1 + (2p)−2. From statements (a), (b), and (d) of Lemma 4.4 we obtain
that for any 0 6 i 6 m and j 6= i one has

|Qi −Qj | >
{

(2p2 + 1)−1, for 0 6 j 6 8p3,

(2p2)−1 − (−1 + 1
4p2 ) = b, for 8p3 < j 6 n.

(54)

Let us explain the first line of this inequality. If j satisfies 0 6 j 6 2p, then the
statement follows from (a) of Lemma 4.4. If j > 2p, then Qj < 0 and hence Qi −Qj >
(2p+ 1)−1 > (2p2 + 1)−1 by (c) of Lemma 4.4.

By applying Proposition 3.3 to −φJ we have

1− rJ =
m∑

i=0



Fi ·

∏

0 6 j 6 s
j 6= i

(
Qi

Qi −Qj

)kj+1



, (55)

where Fi is given by
∑

δ∈P (s,ki)

(
n
δi

)
· (−Qi)ki−δi ·

∏

0 6 j 6 s
j 6= i

(
kj + δj
δj

)
· (Qi −Qj)−δj . (56)

We claim that for any 0 6 i 6 m,

|Fi| 6 (2p2 + 1)pn2p. (57)

Indeed, observe that by (54),

|Qi −Qj |−δj 6 (2p2 + 1)δj .

To estimate the binomial coefficient
(
kj + δj
δj

)
note that δj 6 ki and thus kj + δj 6

kj + ki 6 n; therefore
(
kj + δj
δj

)
6 nδj and

(
n
δi

)
6 nδi . (58)

As |Qi| 6 1, each term in the sum (56) can be estimated as follows:
(

n
δi

)
· (Qi)ki−δi ·

∏

0 6 j 6 s
j 6= i

(
kj + δj
δj

)
· (Qi −Qj)−δj

6 (n · (2p2 + 1))
Ps

0 δj 6 (2p2 + 1)p · np,

where we have used that
∑s

j=0 δj = ki 6 p. The total number of terms in the sum
(56) is

|P (s, ki)| =
(
s+ ki

ki

)
6 np (59)

since s+ ki 6 n and ki 6 p. This proves (57).
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Now consider the fractions Qi

Qi−Qj
which appear in (55). For 0 6 j 6 m, j 6= i we

have by (54)
∣∣∣∣

Qi

Qi −Qj

∣∣∣∣ 6 1
|Qi −Qj | 6 2p2 + 1. (60)

Note that Qj < Qm+1 6 0 for any m+ 2 6 j 6 s. Using Lemma 4.4 (c), we have
for m+ 2 6 j 6 s and 1 6 i 6 m,

0 <
Qi

Qi −Qj
6 Qi

Qi + (2p+ 1)−1
6 1

1 + (2p+ 1)−1
=

2p+ 1
2p+ 2

. (61)

If Qm+1 < 0, then estimate (61) continues to hold, whereas if Qm+1 = 0 then the
corresponding factor equals 1. By Lemma 4.4 (e), using km+1 + 1 6 p, we get for
1 6 i 6 m

∏

m < j 6 s

∣∣∣∣
Qi

Qi −Qj

∣∣∣∣
kj+1

6 a
(
Ps

j=m+1(kj+1)−p)

0 6 C ′ · an
0 , (62)

where the constant C ′ depends on p only. The number of summands in formula (55)
equals m+ 1; by (52) it is bounded above by 2p.

Combining inequalities (57), (60) and (62) we obtain an estimate of the form
1− rJ < Cnγan

0 where the constants C and γ depend on p but are independent of n.
This clearly gives (51).

The following statement is equivalent to Proposition 5.1; we will need it in the
proof of Theorem 1.1.

Proposition 5.2. Given an integer p > 1, there exist constants C > 0 and 0 < a < 1
such that for any n > p and any subset J ⊂ {1, 2, . . . , n} of cardinality n− p one has

rJ < C · an. (63)

Proof. The claimed statement follows from Proposition 5.1 by observing that rJ =
1− rJ̄ where J̄ denotes the complement of J in {1, . . . , n}.
Proof of Theorem 1.1 for µ = µa. By Propositions 2.1 and 3.1 we have

bp(n, µ) =
∑

J

rJ ,

where J ⊂ {1, . . . , n} runs over all subsets containing 1 and being of cardinality either
p+ 1 or n− 2− p. By Proposition 5.1 each rJ with |J | = p+ 1 contributes to bp(n, µ)
a quantity exponentially close to 1, and by Proposition 5.2 each term rJ with |J | =
n− 2− p is exponentially small. Adding up all these contributions we arrive at the
desired inequality (6).

6. Proof of Theorem 1.1 for µ = µb

The proof of Theorem 1.1 in the case µ = µb is quite similar. Propositions 5.1
and 5.2 remain true but their proofs are slightly different. The difference between the
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two cases stems only from the different simplices involved: for µ = µa we consider
the simplex A with vertices c0, . . . , cn and for µ = µb we have to consider instead the
simplex B with vertices c′0, . . . , c

′
n; see (19).

Let us examine the arguments of the proof of Proposition 5.1 when ci is replaced
by c′i. Inequality (52) follows from (b) of Lemma 4.5 and inequality (53) follows from
statement (e) of Lemma 4.5. One introduces the points Q′0 > Q′1 > · · · > Q′s as the
distinct values appearing in the sequence q′0, q

′
1, . . . , q

′
n. Instead of (54) we have a

simpler inequality |Q′i −Q′j | > 1, where i 6= j which is a consequence of Lemma 4.5
(c).

Let us assume that Q′i > 0 for i = 0, . . . ,m and Q′i 6 0 for i = m+ 1, . . . , s. We
claim that for any 0 6 i 6 m the quantity Fi given by (56) satisfies inequality (57).
Indeed, |Q′i| 6 2p for 0 6 i 6 m (see (a) and (b) of Lemma 4.5), and hence

|Fi| 6
∑

δ∈P (s,ki)

(2p)ki−δi · n
P

δj 6 (2p)p · n2p 6 (2p2 + 1)pn2p.

Here we have used inequalities (58) and (59). To estimate (55) from above we note
that for 0 6 i 6 m and j 6= i one has

∣∣∣∣∣
Q′i

Q′i −Q′j

∣∣∣∣∣ 6





|Q′i| 6 2p for j 6 m,

1 for j = m+ 1,
Q′i

Q′i+1 6 2p
2p+1 for j > m+ 2.

Here we have used statement (d) of Lemma 4.5. Combining the obtained inequalities
we obtain that the statement analogous to Proposition 5.1 holds for µ = µb. The
remaining arguments of the proof of Theorem 1.1 for µ = µb are very similar to those
described in the case µ = µa.
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