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COFIBRANT OBJECTS AMONG HIGHER-DIMENSIONAL
CATEGORIES

FRANCOIS METAYER
(communicated by Jean-Louis Loday)

Abstract
We define a notion of cofibration among oco-categories and
show that the cofibrant objects are exactly the free ones, that
is, those generated by polygraphs.

1. Introduction

Polygraphs [3, 4], or computads [11, 12] are structured systems of generators
for oo-categories, extending the familiar notion of presentation by generators and
relations beyond monoids or groups, and have recently proved extremely well-adapted
to higher-dimensional rewriting [6, 7].

They also lead to a simple definition of a homology for co-categories [8, 10], based

on the following construction: a polygraphic resolution of an co-category C' is a pair
(S, p) where

e S is a polygraph, generating a free co-category S*;
e the morphism p: S* — C is a trivial fibration (see 6.1).

S gives rise to an chain complex ZS, whose homology only depends on C, so that we
may define a polygraphic homology by

HPN(O) =4ef Hi(ZS).

Here the main property of free co-categories is that they are cofibrant. In other words,
given a polygraph S and a trivial fibration p: D — C, any morphism f: S* — C lifts

to a morphism g: S* — C:
/|
P

S T>C.

The main purpose of the present work is to prove the converse, namely that all
cofibrant co-categories are freely generated by polygraphs, thus establishing a simple,
abstract characterization of the free objects, otherwise defined by a rather complex
inductive construction.
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We first review the basic categories in play (Sections 2 to 4): Glob, Cat., and
Pol stand respectively for the category of globular sets, co-categories and polygraphs.
Section 5 investigates the technical notion of context, which we need later on. Sec-
tion 6 defines trivial fibrations, cofibrations, and shows that the free co-categories
are cofibrant. We then turn to the main result, proving that cofibrant co-categories
are free (Section 7). Here the keypoint is that the full subcategory of Cats, whose
objects are freely generated by polygraphs is Cauchy-complete, which means that its
idempotent endomorphisms split. The Cauchy-completeness argument is the essential
part of this work and will be easier to follow if we keep in mind the simpler case of
monoids: thus, let Mon denote the category of monoids, and Fmon the full subcat-
egory of Mon whose objects are the free monoids. A submonoid of a free monoid is
not necessarily free itself: consider for example the submonoid of (N, 4) generated by
{2,3}. However, if M = S* is the free monoid on the alphabet S and h: M — M is an
idempotent endomorphism of M, then the submonoid Fix(h) = {m € M | h(m) = m}
of fixpoints of h is free, which easily leads to a splitting of A in Fmon, hence to the
fact that Fmon is Cauchy-complete. The idea is to find a set of generators of Fix(h)
without non-trivial relations in M. A simple way to build such a set is by considering
the subset S; C S of those s € S such that h(s) = usv where h(u) = h(v) = 1. Then
we define T' = {h(s) | s € S1}. It turns out that the obvious inclusion T* — M sends
T* isomorphically to Fix(h), as shown by the existence of a retraction M — T*. Now
the same ideas carry into higher dimensions, with oco-categories instead of monoids
and polygraphs instead of generating sets, but the general case involves additional
technicalities, due to the presence of higher-dimensional compositions.

Let us finally point out that our cofibrant co-categories are actually the cofibrant
objects in a Quillen model structure on Cat., recently discovered by Yves Lafont,
Krzysztof Worytkiewicz and the author [9].

2. Globular sets

Let O be the small category defined as follows:
e the objects of O are integers 0,1, .. ;
e the arrows are generated by composition of s,,t,: n — n+1, n € N subject to
the following equations
Sn+1 9 Sp = tpy1 OSy,
Sn+1 Oty = tpy1 0ty

As a consequence, O(m,n) has exactly two elements if m < n, namely s;, n, = Sp—1 ©
08y, and ty,, =tp_1 0 - 0ty,. O(m,n) =0 if m > n, and contains the unique
element id,, if m = n.

Definition 2.1. A globular set is a presheaf on O.

In other words, a globular set is a functor from O to Sets. Globular sets and
natural transformations form a category Glob. The Yoneda embedding

O — Glob
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takes each integer n to the standard globe O[n]. We still denote by s,,t,: O[n] —
O[n+1] the morphisms of globular sets representing the corresponding arrows from
n to n+1.

Let X be a globular set and p an integer, the set X (p) will be denoted by X, and
its elements called cells of dimension p or p-cells. Hence O[n] has exactly two p-cells
for p < n, exactly one n-cell, and no p-cells for p > n. Let dO[n] be the globular set
with the same cells as O[n] except for (90[n]),, = 0, and

ip: 00[n] — O[n]

the canonical injection: dO[n] has two p-cells for p < n and no other cells. We denote
by o, and 7, the maps X (s,) and X (t,) respectively. Hence a double sequence of
maps

On,Tn' Xn & Xpta

satisfying the boundary conditions:

OpO©0p41 = 0p © Tpil,

Tn ©0n4+1 = Tp © Tp41-

Ifm<n,weset oy =03 0---00p_180d Ty =Ty ©---0Tp_1. Let 0 <4 < n, we
say that the n-cells z,y € X, are i-composable if 7, ,x = 0; ,y, a relation we denote
by x >; y.

Now let X be a globular set, Yoneda’s lemma yields a natural equivalence

X, = Glob(O[n], X). (1)

Ifu e X,, and 0,1 (u) = 2, T,—1(u) = y, z and y are respectively the source and the
target of u, which we simply denote by u: x — y. Likewise, if 0; ,u = z and 7; ,u =y,
we shall write u: x —; y. In case u: © — y and v: x — y, we say that u, v are parallel,
which we denote by || v:

Any two O-cells are also considered to be parallel. Let X! denote the set of ordered
pairs of parallel n-cells in X. We get a natural equivalence

X! = Glob(90[n+1], X) (2)

similar to (1). The equivalences (1) and (2) assert that, for each n, the functors
X — X, and X — X, from Glob to Sets are representable, the representing objects
being respectively O[n] and 0O0[n+1].

For each integer n, let O,, denote the full subcategory of O whose objects are
0,...,n. The presheaves on O, are the n-globular sets, and form a category we
denote by Glob,,. For each n < m, the inclusion O,, — O,, induces a truncation

functor from Glob,, to Glob,,. Likewise, we get a truncation functor from Glob to
Glob,,.
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3. oo-categories

Recall that an oo-category is a globular set C' endowed with

e a product u *,_1 v: x — z defined for all u: x — y and v: y — z in Cy;

e a product u *; v: x *; y — 2 *; t defined for all u: * — zand v: y — t in C), with
i <n—1and u>; v;

e a unit 1,41(x): z — x defined for all z € C,.

These operations satisfy the conditions of associativity, left and right unit, composition
of units and exchange:
o (zx;jy)*iz=2a%; (y=;2) forall z>; y>; zin C, with i < n;
o 1,:i(z) % u=u=ux1l,,(y) for all u: x —; y in C,, with ¢ < n, where 1, ; =
1n o 1n—2 o---0 1i+1;
o 1,1(x#y) =1nt1(x) % Lyy1(y) for all z,y € C), with i < n and x >; y;
o (T y)*j (z%t) = (x % 2) % (y=,t) for all z,y,2,t€ C, with i <j <n and
TPy, TPz, YDy t.
Let C, D be oo-categories. A morphism f: C — D is a morphism of the underlying
globular sets preserving units and products. oo-categories and morphisms build a
category Cat,,, and there is a forgetful functor

U: Cat,, — Glob.

Tts left adjoint Glob — Cat,, associates to each globular set X the free co-category
X* generated by it. From this adjunction and the natural equivalences (1) and (2)
we get
Cp = Cato.(O[n]*, C), (3)
C! = Cat, (00[n+1]",C). (4)
Note that Glob is a topos of presheaves and that the functor I/ is finitary monadic
over Glob. Hence Cat, is complete and cocomplete, and we shall take limits and
colimits in Cat,, without further explanations (see also [1, 2, 13]).
Likewise, an m-globular set endowed with products and units as above, up to
dimension n, determines an n-category; n-categories and morphisms build a category
Cat,,. As in the case of globular sets, we get a truncation functor

7.7 : Cat,, — Cat,
whenever n < m, and likewise
7.°: Cato, — Cat,,.

Remark that Caty = Sets whereas Cat; amounts to the category of small categories.
Now 7" admits a left adjoint F,* 47", for 0 < n < m < oo, which simply extends
the n-category C' by adding units in all dimensions k for n < k < m:
FrC:Co=---=C=C =+
In particular, if C' is an co-category and n an integer, we may define the n-skeleton
of C by
M = FrTC.
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It will be convenient to extend this notation by setting C(—1) =0, the initial co-
category with no cells. There is a canonical inclusion

. o o)

Here again j(—1 denotes the unique morphism 0 — C©). The following result is then
an easy consequence of the definitions:

Lemma 3.1. Any oco-category C' is the colimit of its n-skeleta:

B j(*l)
o= c®

i(0)

j (n—1)

j 3™

cm

4. Polygraphs

We recall the construction of polygraphs, following the presentation of [4].

4.1. Attaching cells
Let us first define a category Cat, of n-categories with attached additional n+1-
cells:

e objects of Cat; are pairs (C,G) where C is an n-category and G is a graph
OnyTn: Cp &= Sp41 such that oy, 7, satisfy the boundary conditions

Opn—1900p = 0p—-10Tn,
Tn—1°0pn = Tp—10 Tn;

e if Ot =(C,C,, = S,41) and Dt = (D, D,, &= T}, ;1) are objects of Cat.", then
a morphism f € Cat,}(C*, DT) is a pair (g,u) where g € Cat,,(C, D) and u is
a map S,y1 — Tpy1 such that (g,,u) is a morphism of graphs; that is
gn ©0p = 0n OU,

gn ©Tp = Tp O U.

Let CT = (C, G) be an object of Cat.'; the first projection (C, G) — C determines a
functor

A,: Cat! — Cat,,.
On the other hand there is a functor
Ry: Cat,y1 — Cat,‘f

taking the n+1-category C' to the pair (T,?HC, C, & C’n+1): R, forgets all informa-
tion about compositions and identities in dimension n+1, keeping only the set C), 11
of n+1-cells with their respective sources and targets in C),. Clearly

AR, =T
Now the key fact is that R,, admits a left-adjoint
Ly: Cat: — Cat,y1.

For example, Catg' is the category of graphs and Ly associates to each graph the
free category it generates. It is convenient to extend our notation by defining Cat™,
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as Cato(= Sets) and £_; as the identity functor. Let us describe £,, in some detail.
Given Ct = (C,C,, &= S,41) in Cat,", we first define a formal language E consisting
of:

e a constant c, for each a € 5,11, and a constant i, for each ¢ € Cp;

e a binary function symbol *; for each i € {1,...,n}.

Thus E is the smallest set of expressions containing all constants and having the
property that (e x; f) € E whenever e € E, f € E and 0 < i < n. A type is an ordered
pair (z,y) of parallel cells in C,,, denoted in this context by x — y. For any e € E;
and type © — y, the relation

e:x—y,

which reads “e has type z — y”, is defined inductively by the following conditions:

for each o € Sy,11, Co @ O — T

for each c € Cp, i, : c — ¢;
e ife:x—yand f:y— z then (ex, f) : 2 — z;
e ife:x—uy, fiz—tand z>; z, then (ex; f) 1 2%, 2 = y*; t, for 0 <i < n.

An expression e is typable if there is at least one type x — y such that e:z — y.
Let Er be the subset of E consisting of typable expressions. A key feature of this
type system is that any typable expression has at most one type: in fact, structural
induction shows that whenever e: z — y and e: 2’ — 3’ then '’ =z and 3/ = y. As
a consequence, there are unique maps o,7: Er — C, such that o(c,) = 0,(a) and
7(co) = Tn(a) for each o € S,,41, and e : o(e) — 7(e) for each e € Ep. By composi-
tion with the maps o; and 7; for ¢ < n, we get maps 0; n41, Ti,n+1: Er — Cj, so that
we may still define a relation >; on Ep by e>; f if and only if 7; p41(e) = 04 ny1(f)-
We define a relation e ~ f on typable expressions by the following conditions:

(exi (f*ig)) ~ ((exi f)*i g) if e>; fri gin Er;

(ic*xpe) ~eife € Ep, c € Cp, and o(e) = c. Likewise (e, i.) ~ e if 7(e) = ¢;

icsza ~ (e % 1a) if e,d € Cpy, 0 < i < nand ¢, d;

((exj f)*i(gxjh)) ~ ((exig)*j (fxig)) if erj f, g>j h, er;g and 0< i<
Jj <n.

Let us denote by = the congruence generated by ~ on Er, and define
ni1 = Er/ =

The canonical surjection Ex — Sy, e (e) satisfies the expected compatibility
conditions:

e o(e), 7(e) only depend on (e); whence the relation e >; f only depends on (e)
and (f);
e ((e*; f)) only depends on (e) and (f).
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Therefore, we may define (e) x; (f) = ((e; f)) if er; f, on({e)) =0c(e), m({e)) =
7(e) and 1,41(c) = (ic) for e € Er and ¢ € C,,. We finally set
L0 =4t Co =C1 =+ =Cp, = Sk 1.

We leave it as an exercise to check that all axioms of n+1-categories are satisfied and
that the above construction acts on morphisms, making £,, a functor from Cat,, to
Cat,, 1. Clearly

,Tnn—HEn =A,.
Moreover, there is a natural transformation
ne+: CT — R, L,CT
such that no+ = (n&y,n2+) where n}, is the identity on C and 52, : Spq1 — Sy
is a+— (cq). Note that 77%+ is injective. By construction, £, satisfies the universal
property of Lemma 4.1 below; whence £,, 4 R,,.
Lemma 4.1. Let C*T = (C,C,, & S, 41) in Cat), D an n+1-category and
f=(gu):C" —=R,D
a morphism in Cat, . There is a unique map u*: i1 — Dy satisfying the follow-
ing properties:
o wond, =u;
e there is an f* € Cat,11(L,C™, D) such that T" ' f* =g and f}, , = u*.

4.2. The category of polygraphs
We now define the category Pol,, of n-polygraphs by induction on n. Precisely we
define Pol,, together with a functor

Jn: Pol, — Cat;}!_,.

e Polj is just Sets, and Jy is the identity functor;
e Suppose J,: Pol, — Cat! | has been defined. An n+1-polygraph is a pair
S = (8',C*) where S’ is an n-polygraph and CT an object of Cat, such that
Ay CT =Ly 17,5 We set T, 1S=CT. It S=(8,CT)and T = (T",DV), a
morphism f: S — T of n+1-polygraphs is a pair (f’, u) where f' € Pol,, (5", T"),
u € Cat}(Ct, D) and A,u = L, 1 Tnf'.
We denote by Z"*1: Pol,,,; — Pol, the first projection (S, C*) — S’. The following
commutative diagram summarizes the induction step:

n

Tn
P01n+1 AL Cat:{ Catn+1

IZH\L X \LT"H-H

POln Cat,:71 T> Catn

n n—1

Let O, = L,,_1J,; the above commutation yields
7;?+1Qn+1 = QnIZzLJrl- (5)
We define, by induction on n > 0, a functor P, : Cat,, — Pol,,, right-adjoint to Q,:
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e for n =0, Py and Qy are both the identity functor on Poly = Caty = Sets;

e suppose Q,, - P,,, and let D be an n+1-category. D’ = 7," "1 D is an n-category
and by induction hypothesis, we get an n-polygraph S’ = Q,, D’. Moreover, the
counit of the adjunction yields a morphism of n-categories

e: 9, P, D' — D',
whose n-th component is a map
€n: S)— Dy
Now P, 11D is by definition the polygraph S = (S’,C%), where
ct = (Q”S/’S?/’L* = Sn+1)

and S,,41 is the set of triples (z,2,y) € D41 X SiF x Si¥ such that x || y and
z: €n(x) — €,(y). The source and target of (z,x,y) are x and y, respectively.
Likewise, P, 11 acts on morphisms: we refer to [10] for details, and a complete
pI‘OOf that Qn+1 B Pn+1.

Remark that, by construction,

I Py =PI (6)
Definition 4.2. A polygraph S is a sequence (S™)en such that, for each n > 0, S™
is an n-polygraph and Z7+15n+1l = g7,

Likewise, if S and T are polygraphs, a morphism f: S — T amounts to a sequence
(f™)nen such that f*: S™ — T™ is a morphism of n-polygraphs and Z+! fr+l = fn.
Polygraphs and morphisms build a category Pol. For each polygraph S, let Z:°S =
S™, making Z°° a functor from Pol to Pol,. From (5), (6) and Q,, 4P, we get a
pair of adjoint functors

Q: Pol — Cat,,

P: Caty — Pol,

such that, for each n > 0,
7,°Q = Q,I°
and
IP =P,T°.
Thus, we may summarize the above construction by using the following less explicit,
but simpler notation:
e a 0O-polygraph is a set Sy, generating the O-category (i.e. set) S§ = So;
e given an n-polygraph Sp, S5 & Si,...,5;_; & 5, with the free n-category
Sg £ ... & S} it generates, an n+1-polygraph is determined by a graph
OnyTnt Sy & Spa
satisfying the boundary conditions, and the free n+1-category generated by it
isSgeESte---8, =85, 1;
e a polygraph S is an infinite sequence So, Sg &= S1,...,5,;_1 & Sy, ... such that
for each p, So,...,S5,_1 &= S, is a p-polygraph.
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Likewise, a morphism f: S — T between polygraphs S, T amounts to a sequence of
maps fn: Sp, — T, such that for all £: * — yin S, fn(§): fi_1(x) — fi_1(y), where
fr is the unique extension of f,, which is compatible with products and units. From
now on, for any polygraph S, we set S* = QS. We call generators of dimension n,
or n-generators, the elements of S,,. Each o € S,, generates an atomic n-cell a* € S}
(see 4.1).

Remark that any globular set X can be viewed as a particular polygraph and
that this identification makes Glob a full subcategory of Pol. Moreover the free
oo-category generated by a globular set is the same as the free co-category gener-
ated by the corresponding polygraph. However most free co-categories generated by
polygraphs cannot be generated by globular sets alone.

For instance the globular sets O[n] and dO[n] can be viewed as polygraphs, and
generate oo-categories O[n]* and dO[n]". Remark that in this case, the free construc-
tion does not create new non-identity cells. Therefore, in the sequel, we drop the “*”
in the notation of these co-categories. Likewise, i,, will denote a morphism of globular
sets, polygraphs, or oo-categories according to the context.

Let Ot = (C,C,, &= S,41) in Cat,"; the n+1-category £,C% has the same n-cells
as C', hence an inclusion morphism j: F°C — F25 £,C*. Each generator o € Sy, 11
gives an n-+1-cell in £,,C™, whose source and target give parallel n-cells in C'. Hence
by (3) and (4), we get two morphisms

p: Y 00n+1] — FC
Sn+1

and
X: Y On+1] — F5,L.CH,
S.

n+1

making the following diagram commutative:
Y, 00+l L FoC
ESnJrl i"+1i lj
ZSM O[n+1) — F L, Ct.
Now Lemma 4.1 implies that the above square is a pushout. In the particular case
where S is a polygraph, C' = (5*)(™) and C* = (C, S} & S,11), we get the following
result:
Lemma 4.3. The diagram
>, 00+ L (g5)(m)
an inl lj(n)
Esnﬂ O[n+1] - (S*)(”“)

is a pushout in Cat.
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4.3. Linearization
Let n > 1 and C an n—1-category. Given an abelian monoid (4, +), we may extend
C to an n-category D = A x C, as follows:
e 7" D = ()} that is, D coincides with C up to dimension n—1;
o D,=AxC,_,, with (a,(z,y)) : * — y for each a € A and each pair (z,y) of
parallel cells in C,_1;
e let x|y zin Ch_1, and a, b in A, the composition (a, (x,y)) *,—1 (b, (y, 2)) is
by definition (a + b, (x, 2));
o let u=(a,(z,y)), v=(b,(2¢)) in D, and i € {0,...,n—2} such that u>; v.
This implies z >; z and y >; ¢t (in C), so that © *; z | y *; t and we may define
ux; v = (a+b,(x*z,y*t));
o for each z € C,_1, 1,,(z) = (0, (z, )).
We leave it as an exercise to check the axioms of n-categories on A x C.

Let S be a polygraph; we apply the above construction to the particular case where
C=172°,5" and A is the free abelian group ZS,, on S,,. To each generator a € S,
corresponds a generator & of Z.S,,. Elements of ZS,, are thus of the form

a= E naQ,
a€EeSy,

where n, € Z and all but a finite number of coefficients are zero. Let D = A x C.
There is a map S,, — D, given by a +— (&, (z,y)) for each n-generator a: x — y,
which in turn determines a morphism f: (C,S}_; & 5,) - Ry—1Din Cat;_ ;. Thus
Lemma 4.1 applies, and we get a morphism

[ T>S8* - D
in Cat,,, whence a unique linearization map
A SE — 7S,

satisfying the following properties:

o for each a € 5, AN(a*) = &;

e if0<i<n—1and z>; yin S}, then A\ *; y) = A(z) + A\(y);

o for each z € S}, A(1,(x)) =0.
Now, for each = € S}

n?

A(z) has a unique expression of the form

Az) = > wal2)a, (7)

aES,

where wo(x) € Z (in fact wy(z) € N). Note that for each fixed n, the correspon-
dence S* — 7., is functorial. Precisely, let Fcat, be the full subcategory of Cat.,
whose objects are of the form S$*, where S is a polygraph. To each morphism u: S*
— T corresponds a linear map a,: ZS, — ZT,,. As identities and compositions are
preserved, we get a functor from Fcat,, to the category Ab of abelian groups, and by
composing with the forgetful functor Ab — Sets, also a functor Z: Fcat., — Sets.
Now there is a functor V: Fcat., — Sets which associates to each S* the set S}
of its n-cells. Here a useful observation is that linearization gives rise to a natural
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transformation from ) to Z: let S, T be polygraphs, u € Fcat, (S*,7*), and Ag, Ar
the respective linearization maps, the following diagram commutes:

* Un *
Sn > Tn

| |-

7Sy, — 7T,.

In particular, for each n-cell z in S}, we get

A (un(z)) = Y Wal(@)Ar(un()). (8)

a€ES,

We call w,(z) the weight of v at a. As a consequence of (8), for each z € S and
each generator 3 € T,

wo(un(@)) = D Wa(@)wp(un(a?)). (9)
aeS,
As only finitely many of the coefficients w, (x) are non-zero, we may define the total
weight of x as the non-negative integer

w(z)= Y wal(z).
a€S,
Looking back at the construction of £,, via formal expressions, we note that wy(x)
is also the number of occurrences of the symbol c, in any expression representing
x. Likewise, if w(x) = 0, there is a unique 2’ € S};_; such that z = 1,,(2’), and more
generally, a unique choice of k£ < n and 2’ € S} such that z = 1,, x(2) and w(z") > 0.

5. Contexts

This purely technical section introduces contexts, a convenient way to formulate
the two results we shall need later, namely equation (11) and Lemma 5.6.

5.1. Indeterminates

Let C be an co-category, and n > 1. Recall from Section 4.1 that an n-type on C' is
an ordered pair (z,y) of parallel cells in C),_1, that is an element of C, _,. The type of
an n-cell z € O, is the pair (o,,—1%, T,—1). Hence the type of an n-cell is a particular
n-type. Let S be a polygraph, n > 1, and £ = (x,y) an n-type on S*. We build a new
polygraph T' = S[¢] by adjoining £ as a new n-generator. Precisely, T' coincides with
S up to dimension n—1, T, = S, + {¢} and T)*_; &= T, extends S}_; & S, by

On—1 (f) =T,

Ta-1(§) = ¥.
Thus we get an inclusion map S — 1. Suppose j > n and T has been defined up
to dimension j together with an inclusion map Sj’f‘ — T7. We set Tj1q1 = Sjy1. This
yields T} &= T)j 41 and by Lemma 4.1, a new inclusion S7,; — 77 ;. Now & generates
an n-cell £ =x of T, which we call an n-indeterminate of type £ on S. We let
boldface variables x,y, ... range over indeterminates.
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Definition 5.1. Let x be an n-indeterminate of type £ on the polygraph S; an n-
context over x is an n-cell u of (S[€])* such that we(u) = 1.

We denote n-contexts over x by c[x], d[x], .... A context c[x] is trivial if
c[x] =x. An n-cell z of S* is adapted to the context c[x] if it has the same type
as X. Any adapted n-cell may be substituted to the indeterminate in a given con-
text: let x = £* be an n-indeterminate of type £ and z an adapted n-cell. There is a
map uy: S, + {&} — S} defined by u,(a) = a* if « € S, and u,(§) = z. Lemma 4.1
applies and gives a morphism

sub,: (S[¢])* — S*

such that sub,(x) = z. Likewise, for each context c[x] over x, we define c[z] as
sub,(c[x]). By applying (8) to sub,, we get

As(clz]) = As(2) + D walelx])a (10)
aeS,
Let S, T be polygraphs, and u € Fecaty(S*,T*). To each n-type £ = (z,y) in S* cor-
responds an n-type ¥ = (u(z),u(y)). Let & = x and ¢* = y. Yet another application
of Lemma 4.1 yields a unique morphism

a: (S[E])" — (T

such that 4(a*) = u(a*) if @ € S,, and 4(x) = y. In this situation, we get the following
result:

Lemma 5.2. For each n-context c[x], G(c[x]) is an n-context overy.
Proof. We have to show that wy(#(c[x])) = 1. By (9),
wy(a(elx])) = D walelx))wy(in(a”))

a€S,+{&}

but, for each a # &, Uy (a*) = u,(a*) already belongs to T, so that wy (i, (a*)) = 0;
whence

wy (@(e[x])) = we (c[x])wy (@ (£7))-

By definition we(c[x])) = 1, and 4, (&*) = ¢*, so that wy (4, (£*)) = 1 and we get the
result. O

We denote by c*[y] the context @(c[x]) just defined. Now for each adapted n-cell
z in S*,
u(clz]) = "[u(2)]- (11)

This amounts to the naturality of the substitution viewed in appropriate categories.
In fact, consider the comma category C = O[n] | Fcat,. Objects of C may be rep-
resented as pairs (S, z) where S is a polygraph and z € S}, whereas a morphism
u: (S,z) = (T,72') is an u € Fcaty (S*,T*) such that u(z) = z’. Now there are two
functors B,C: C — Fcaty, given by B(S,z) = S* and C (S, z) = (S[§])*, where £ is
the type of z. For each Z = (S, 2) in C, we get sub,: CZ — BZ. This determines a
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natural transformation from C to B. Thus for each u: (S, z) — (T, u(z)), the following
diagram commutes:

(S[E))* —2= (TTw])"

subzl iSUbu(z)

§* T,

which implies (11).

5.2. Thin contexts
We pay special attention to contexts built on no other atomic n-cell but the inde-
terminate itself.

Definition 5.3. Let x be an indeterminate of type £ on a polygraph S, and ¢[x] an
n-context over x. We call ¢[x] a thin context if w,(c[x]) = 0 for each a € S,,.

Given a polygraph S and x an n-indeterminate on S, we define a family (C¥)o<i<n
of sets of n-contexts over x by induction on i:

. CF = {x):
o C¥r={ax*_1c[x]*_-1b|c[x] € C¥ ,a€ S}, be Sk a1 c[x]>;_1 b} for each
1> 0.

Observe that
e cach n-context over x belongs to Upgi<nCS;
e each thin n-context over x belongs to Upgi<n CF.

In fact the exchange rule allows to perform higher-dimensional compositions outside
lower-dimensional ones. Also remark that, if ¢[x] € C¥ and j > 4, then, by induction
on 1,

W (Tj,n(c[x])) = W(0jn(X))- (12)
Lemma 5.4. If n > 1 and c[x]| is a thin n-context, then there is an n—1-context

Ocly] over the indeterminate y of type (0n—2.1(X), Tn—2,n(X)), satisfying the following
properties:

o for each adapted n-cell z, op_1(c[z]) = Oc[opn—1(2)];

o if Ocly] is trivial, then so is c[x].
Proof. Let c[x] be a thin n-context, with n > 1. The above remarks show that there is
an ¢ < n such that ¢[x] € C¥. We show, by induction on the least such 7, the existence

of an n—1-context dcy] over y of type (0p—2,n(X), Tn—2.(x)) satisfying the following
properties:

1. dcy] € C¥;

2. for each adapted n-cell z in S*, 0,_1(c[z]) = Oc[on—1(2)];

3. gi—1n(cx]) = 0i—1,n—1(0cly]) and 7,_1 n(c[x]) = Ti—1.n—1(0cy]) if i > 1;
4. if dcly] is trivial, so is c[x].
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If i =0, then ¢[x] = x and we set dc[y] =y of the appropriate type, so that con-
ditions 1 to 4 hold. Suppose that ¢ > 0 and the result holds up to i—1. Choose an
n-context d[x] € C¥_; and n-cells a, b in S* such that a >;_1 d[x] >;—1 b and

c[x] = a *;—1 d[x] *%;—1 b.
As ¢[x] is thin, w(a) = w(b) = 0 and there are n—1-cells a’, ¥’ such that a = 1,,(a’) and
b =1,(b'). By the induction hypothesis we may choose an n—1-context dd[y] € C}_,
satisfying the above conditions. In particular, condition 3 shows that

a’ D>i1 8d[y] D>i1 b/7
so that we may define
8c[y] = CL/ *i—1 8d[y] X1 b/. (13)

Conditions 1, 2 and 3 are straightforward. As for condition 4, suppose that dcly] is
trivial: this can only happen if ¢ = 0. Otherwise, dc[y] is given by (13), so that

CL/ *5-1 8d[y] X1 b/ =Y. (14)
There are unique integers j, k in {0,...,n—1}, and non-identity cells a” € S5, 0" € Sj
such that @’ = 1,1 j(a”) and b’ = 1,,_; (b"”). Two cases are possible:

e j and k are both < i—1, in which case a and b are respectively identities on the
source and target of d[x], so that ¢[x] = d[x] and ¢[x] € C¥_;, a contradiction,
because of the minimality of i;

e at least one of j, k is > i—1, say j > i—1. By applying 0, ,—1 to both members
of (14), we get
a" i1 0 -1(0d[y]) %im1 01V = 0jn-1(y),
and by taking the weight (in S}) on both sides,
w(a") +w(0jn-1(0dly])) + w(ojn-1b") = w(ojn-1(y)),

which, combined with (12), implies w(a”) = 0. This contradicts the hypothesis
that a” is not an identity.

Hence i cannot be # 0, and ¢[x] = x. O

Lemma 5.5. Let ¢[x] be an n-context and z an adapted n-cell. If c[z] = z, then c[x]
is trivial.

Proof. We proceed by induction on the dimension n. If n = 1, all contexts are trivial
and we are done. Suppose now n > 1 and the result holds in dimension n—1. Let ¢[x]
be an n-context and z an adapted n-cell such that

clz] = 2. (15)
Thus As(c[z]) = As(z) and because of (10),

> walclx])a = 0.

a€ESy,

Therefore c[x] is thin, and by Lemma 5.4 we get an n—1-context Jc[y] such that
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on—1(c[z]) = Oclo,—1(2)]. Hence, by taking the source on both sides of (15), we get
0clon-1(2)] = on-1(2).

Thus, by the induction hypothesis, dc[y] is trivial and so is ¢[x] by Lemma 5.4. O

Lemma 5.6. Let c[x]| be a thin n-context, and z an adapted n-cell. If c|z] is parallel
to z, then c[z] = z.

Proof. Suppose c[x] is a thin n-context, and z is an adapted n-cell such that c[z] || 2.
If n = 1, then thin contexts are trivial and the result is immediate. Otherwise, n > 1
and by Lemma 5.4, there is an n—1-context dc[y] such that o, _1(c[z]) = dclon—_1(2)].
As c[z] is parallel to z, this implies dc[oy,—1(2)] = op—1(2). By Lemma 5.5, dc[y] is
trivial, and by Lemma 5.4 again, so is ¢[x]. Hence c[z] = z. O

6. Two classes of morphisms

Let C be a category, and f: A — B, g: C — D morphisms. f has the left-lifting
property with respect to g (or, equivalently, g has the right-lifting property with
respect to f) if, for each pair of morphisms u: A — C, v: B — D such that gou =
vo f, there exists an h: B — C making the following diagram commutative:

A—=C
/lg

fl/

BT>D.

For any class M of morphisms in C, ™M (resp. M™) denotes the class of morphisms
in C which have the left- (resp. right-) lifting property with respect to all morphisms
in M.

6.1. Trivial fibrations
Let I be the set {i,|n € N} as morphisms in Cat.

Definition 6.1. A morphism of oco-categories is a trivial fibration if and only it
belongs to I™.

In other words, p: C' — D is a trivial fibration if for all n, f: dO[n] — C, and
g: O[n] — D such that po f = g oi,, there is an h: O[n] — C making the following
diagram commutative:

a0[n] L ¢

i /’/ l

O[n] ——D

Definition 6.2. Let C be an oco-category. A polygraphic resolution of C is a pair
(S, p) where S is a polygraph and p: S* — C is a trivial fibration.
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It was shown in [10] that, for each oo-category C, the counit of the adjunction

Q-HP,
ec: QPC — C,

is a trivial fibration. Hence (PC,€¢) is a polygraphic resolution of C, so that:

Proposition 6.3. Each co-category C has a polygraphic resolution.

6.2. Cofibrations
Definition 6.4. A morphism of co-categories is a cofibration if and only if it has the
left-lifting property with respect to all trivial fibrations.

Hence the class of cofibrations is exactly ™(IM). Immediate examples of cofibrations
are the maps i,, themselves. The following lemma summarizes standard properties of
maps defined by left-lifting conditions (see [5]).

Lemma 6.5. Let C be a category, and M an arbitrary class of morphisms of C. Let
L ="M. Then

o L is stable by direct sums: if fi: X; — Y;, 1 € I is a family of maps of L with
direct sum f =", ; fit D icr Xi = D ;er Vi, then f € L;
o L is stable by pushout: whenever f € L and

X—7
; |
Y——T
is a pushout square in C, then g € L;
® suppose
Xp —m e X,

is a sequence of maps l, € L, with colimit (X, m,: X,, — X). Then mg:
Xy — X belongs to L.

Definition 6.6. An oo-category C' is cofibrant if 0 — C' is a cofibration.
Proposition 6.7. Free co-categories are cofibrant.

Proof. Let S be a polygraph and C' = S§*. By Lemma 4.3, for each n > —1, the
canonical inclusion j™: C(™ — C(*1 is a pushout of an in. Now Lemma 6.5
applies in the particular case where L is the class of cofibrations: by the first point,
Zs" i, is a cofibration, and by the second point, so is 7). By Lemma 3.1, C is a
colimit of the sequence

S(—1) i(n)
o) 1 — o0 !

)

j(o) j("*l)

hence the third point of Lemma 6.5 applies, with X,, = C*~Y and 1,, = ;Y so
that 0 — C is a cofibration. In other words, C' is cofibrant. O



COFIBRANT OBJECTS AMONG HIGHER-DIMENSIONAL CATEGORIES 197

7. Cauchy-completeness

We are now ready to establish the converse of Proposition 6.7. Recall from Sec-
tion 4.3 that Fcat., is the full subcategory of Cat,, whose objects are all co-
categories freely generated by polygraphs. The core of our argument is the following
theorem:

Theorem 7.1. Fcat, is Cauchy-complete.

In other words, idempotent morphisms in Fcat., split; that is, for each object C
in Fcat.,, and each endomorphism h: C' — C such that h o h = h, there is an object
D in Fcat.,, together with morphisms r: C' — D, u: D — C, satisfying r ou = id
and uor = h.

Proof. The proof will occupy most of this section. Let S be a polygraph, and let
h: S* — S§* be an idempotent morphism in Cat.,. We need to build a polygraph 7',
together with morphisms uw: T* — S* and r: S* — T™, such that
rou =id, (16)
uor=h. (17)

We shall define T', v and r inductively on the dimension. In dimension 0,
To = {h(z) | x € S§ = So},

w is the inclusion Tg = Ty — S§ = So, and for each x € Sy, r(x) = h(z). The equa-
tions (16) and (17) are clearly satisfied.

Suppose now that n >0 and T, u, r have been defined up to dimension n—1,
and satisfy the required conditions. We shall extend the n—1 polygraph T to an n-
polygraph, and the morphisms u, r of n—1-categories to morphisms of n-categories
still satisfying the above equations.

> Step 1. Let us split S, in three subsets SO, S} and S2, according to the value of
h(a*), for a € S,

o S9={aesS,|w(h(a*)) =0}, hence SO is the set of generators whose image
by h is an identity;

e S} is the set of generators a € S,, such that w(h(a*)) =1 and wg(h(a*)) =0
if 5 ¢ Sy U{ak;

o 52=95,\S%usS!L.

We may now define a set T;, by:
T, = {h(a*) | a € S'}.
By definition, there is an inclusion map
v: T, — Sy,
such that
hov =w. (18)

Indeed, elements of T}, belong to the image of the idempotent h; hence they are fixed
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by h. We now define a graph o, 77: T |, & T, by

ol =roo, 10v (19)
=T0Tp_10U, (20)
where 0,1, T,—1 are the source and target maps in $* and r is given by the induction

hypothesis:

ol 7T

*
Tn —1= Tn

* *
<~ 5.
n—1 On—1;Tn—1 n

By using the fact that r is a morphism up to dimension n—1, we see that for each
0 € T, oT(0) || 77 (#) and the boundary conditions are satisfied. Thus, by Lemma 4.1,
T extends to an n-polygraph and the free n—1-category T* extends to a free n-
category. We still denote these extensions by T', T%, and the source and target maps
* L =Tr by of, 77, On the other hand,
wool =uoroo,_jowv,

=hoo, 10w,

=op_10houw,

=0p_1 00,

and the following diagram commutes

* g
Tnfl < Tn

U\L lv
Sn1 5 S
Likewise

wotl =wuoror,_jou.
Hence v: T,, — S} gives rise to u,: T,; — S}, extending v to a morphism of n-
categories T* — S*. Note that howu = u. To sum up, we have extended T and u
up to dimension n. Remark that the only property of T;, we needed so far is that its
elements are fixed by h.

> Step 2. We introduce the auxiliary n-polygraph U such that
e U is identical to S up to dimension n—1;

o U, = S%+ S! and the source and target maps U _; & U, simply restrict those
on S,.

Thus we get an inclusion monomorphism of n-polygraphs ¢: U — S, generating a

monomorphism of n-categories *: U* — S*. The restrictions of 0,1 and 7,1 to

U will be denoted by oV and 7Y, as well as the corresponding maps on generators:
mo1 &= Uny.
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Lemma 7.2. There are morphisms of n-categories
W:U*—=U* k:S*"—U",
such that the following diagram commutes:

5

U*;J;e_s*

’“l//l

K
U T>S*.

h

Proof. The existence of A’ making the outer square commutative follows from the
remark that U* is stable by h, so that h’ is simply the restriction of h to U*.

The existence of a factorization h = ¢* o k reduces to the fact that U,, contains all
n-generators « such that w,(y) # 0 for some n-cell y in the image of h. Thus, let
y = h(x) in S¥. Because h is idempotent, h(y) = y. Consider

Y={a€S,|a¢s) and w,(y) > 0}.

We just need to prove that Y C S}. First note that, for each B € S,, wg(y) =
wg(h(y)) so that, by using (9) from Section 4.3:

wi(y) = Y wa(y)ws(h(a®)). (21)

a€ES,

Ifa ¢ Y, either w,(y) = 0or a € S, so that w(h(a*)) = 0. In both cases, the product
wao(y)wg(h(a*)) vanishes. Hence (21) becomes

wi(y) = Y waly)wa(h(a®)). (22)

acY

Now, if 8 € Y, then wg(y) > 0 and the right member of (22) does not vanish either.
Therefore, there is at least one a € Y such that wg(h(a*)) > 0.

On the other hand, let us show that, for each o € Y, there is at least one v € Y
such that w, (h(a*)) > 0. Suppose the contrary and let o € Y such that for all y € Y,
wy(h(a*)) = 0. As by definition w(h(a*)) > 0, there is at least one 5 € S, \ Y such
that wg(h(a*)) > 0. But wg(h(a*)) = wg(h(h(a*))) and (9) gives

wa(h(a®) = wy(h(a*))wa(h(y").
YESR
In the above sum, w,(h(a*)) = 0 whenever v € Y or w,(y) = 0, whence
wa(h(a®) = Y wy (ha™))ws(h(7"));
~ESY

but, v € S% implies wg(h(7*)) = 0. Hence wg(h(a*)) = 0, which is a contradiction.
For each « € y, let

ma =Y ws(h(a”)).

BeEY
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We have just shown that for each a € Y, m, > 0. By taking the sum over all gener-

ators § in Y in (22), we get
Z Wﬁ(y) = Z Wa(y)mou
BEY a€Y

which implies that m, = 1 for each « € Y. This determines a map w: Y — Y which
to each o € Y associates the unique § = w(a) in Y such that wg(h(a*)) > 0; in fact
wg(h(a*)) = 1. We have shown earlier that w is surjective. Finally, let a € Y and
8 = w(a); we have as above

wg(h(a) = D wa(h(a™))ws(h(y")),
YESH

where all terms in the sum vanish, but for v = 3; whence

wa(h(a")) = ws(h(a™))ws(h(57)).

This implies wg(h(6*)) = 1. Therefore w(f) = § and w o w = w. Being surjective, w
is necessarily the identity.

To sum up, for each a € Y, wo(h(a*)) =1, and wg(h(a*)) =0 if 8¢ S° U {a},
that is « € S! and we are done. As for the upper-left triangle, t* o ko* = ho(* =
t* o b/, and because * is a monomorphism, ko * = h/'. O

Thus, let v': T* — U* defined by v’ = kou, weget 1* ou' =1* okou=hou=u.
> Step 3. We now define a morphism r': U* — T™* which coincides with r in dimensions
i < n. All we need is a map

p: U, —Tx
satisfying the boundary conditions. Thus, let o € U,,, we distinguish two cases, accord-
ing as « € S or a € SL.

o Case 1. Let a € S2. There is a unique y € Sj_; such that h(a*) = 1,(y). Now
r(y) € T, so that we may define p(a) = 1,(r(y)). The boundary conditions are

straightforward in this case.

o Case 2. Let a € S1. There is a unique generator § € T,, such that h(a*) = v(8). We
define p(a) = 0*. By using the induction hypothesis on r and u, we get

o’ (p(a)) = o™ (67)

Hence o7 (p(a)) = r'(¢Y(a)) and likewise 77 (p(a)) = (7Y (a)); the boundary con-
ditions are satisfied.
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Thus p gives rise to a morphism of oo-categories r’': U* — T™* extending r up to
dimension n.

> Step 4. Having defined v': T* — U* and r’: U* — T™*, we first note that v’ o1’ = I/,
which directly follows from our definition of 7/. We now prove the following lemma:

Lemma 7.3. v ou/ =id.

Proof. 1’ o’ is an endomorphism of the co-category T*. We know by the induction
hypothesis that 7’ o v’ =r ou =id in all dimensions ¢ < n. Thus, it suffices to show
that, for each generator 0 € T,,,

r'(u'(0%)) = 0*. (23)
This follows from two facts:
e the two members of (23) are parallel cells,
o (r'(u'(67))) = ' (u/ (07 (%)),

because 7/, v’ are morphisms. But o7 (6*) has dimension n—1, where, by the
induction hypothesis, ' o v’ = id, so that the above equation becomes

ol (r'(u'(07))) = T (67)
and likewise
T (W (07))) = 77 (0).
e there is a thin n-context c[x] in T such that
v (u'(67)) = c[f7].

In fact, by the definition of T,, there is a generator a € S} such that u/(6*) =
h(a*). Hence there is an n-context d[y] in U* such that u'(6*) = d[a*] and
wg(d[y]) = 0 whenever 3 ¢ S9. Now by applying (11) of Section 5.1,

= d"[p(e)]
=d" "]
Define ¢[x] = d”'[x]. For each generator ¢ € T}, by (9),
wy (clf*]) = wy (' (d[a”])) = > wa(dla])wy (' (8%)).
BeU,

In the last sum, all terms vanish except for S = «; hence

wy (c[07]) = wy (67).
By (10), this implies wy(c[x]) = 0. Therefore c¢[x] is thin, and we are done.

¢[x] is a thin context such that c[6*] || #*. By Lemma 5.6, c[0*] = 6* and (23) is
proved. O
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> Step 5. We complete the argument by defining r = 7’ o k. Hence r is a morphism

S* — T™ and
uor=1"ou or' ok,
= 1ol ok,
=1 okoi ok,
=hoh,
= h.
Also

rou=1"okoit*ou,
=7r"oh o,
=7 ou or’ o,
=id oid,
=id.

Thus (16) and (17) hold in dimension n completing the proof of Theorem 7.1.

This easily leads to our main result:

Theorem 7.4. Any cofibrant co-category is isomorphic to a free one.

O

Proof. Let C be a cofibrant co-category. By Proposition 6.3, C' has a free resolution
p: S* — C, with §* an object of Fcat.,. Because C is cofibrant, and p is a trivial
fibration, the identity morphism id¢: C' — C' lifts through p, whence a morphism
g: C' — 5% such that pog=idc. Let h=qgop, hoh=gopogop=goidcop=
q o p = h; hence h is an idempotent endomorphism of S*. By Theorem 7.1 on Cauchy-
completeness, we get a polygraph T, and morphisms r: S* — T*, u: T* — S§* such
that rou =idp« and wor = h. Now, let f =pou: T* - Candg=roq: C — T*.

We get
gof=roqopou
=rohou
=rowuorou
= idp+ o idp=«
= idyp«.
Likewise

fog=pouorogq
=pohog
=pogopog
=id¢g oidg
=ide.

Hence f: T* — C is an isomorphism with inverse ¢ = f~! so that C is isomorphic to

a free object, as required.

O
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