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COFIBRANT OBJECTS AMONG HIGHER-DIMENSIONAL
CATEGORIES

FRANÇOIS MÉTAYER

(communicated by Jean-Louis Loday)

Abstract
We define a notion of cofibration among ∞-categories and

show that the cofibrant objects are exactly the free ones, that
is, those generated by polygraphs.

1. Introduction

Polygraphs [3, 4], or computads [11, 12] are structured systems of generators
for ∞-categories, extending the familiar notion of presentation by generators and
relations beyond monoids or groups, and have recently proved extremely well-adapted
to higher-dimensional rewriting [6, 7].

They also lead to a simple definition of a homology for ∞-categories [8, 10], based
on the following construction: a polygraphic resolution of an ∞-category C is a pair
(S, p) where

• S is a polygraph, generating a free ∞-category S∗;

• the morphism p : S∗ → C is a trivial fibration (see 6.1).

S gives rise to an chain complex ZS, whose homology only depends on C, so that we
may define a polygraphic homology by

Hpol
∗ (C) =def H∗(ZS).

Here the main property of free ∞-categories is that they are cofibrant. In other words,
given a polygraph S and a trivial fibration p : D → C, any morphism f : S∗ → C lifts
to a morphism g : S∗ → C:

D

p

²²
S∗

f
//

g
==||||||||
C.

The main purpose of the present work is to prove the converse, namely that all
cofibrant ∞-categories are freely generated by polygraphs, thus establishing a simple,
abstract characterization of the free objects, otherwise defined by a rather complex
inductive construction.
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We first review the basic categories in play (Sections 2 to 4): Glob, Cat∞ and
Pol stand respectively for the category of globular sets, ∞-categories and polygraphs.
Section 5 investigates the technical notion of context, which we need later on. Sec-
tion 6 defines trivial fibrations, cofibrations, and shows that the free ∞-categories
are cofibrant. We then turn to the main result, proving that cofibrant ∞-categories
are free (Section 7). Here the keypoint is that the full subcategory of Cat∞ whose
objects are freely generated by polygraphs is Cauchy-complete, which means that its
idempotent endomorphisms split. The Cauchy-completeness argument is the essential
part of this work and will be easier to follow if we keep in mind the simpler case of
monoids: thus, let Mon denote the category of monoids, and Fmon the full subcat-
egory of Mon whose objects are the free monoids. A submonoid of a free monoid is
not necessarily free itself: consider for example the submonoid of (N,+) generated by
{2, 3}. However, if M = S∗ is the free monoid on the alphabet S and h : M →M is an
idempotent endomorphism of M , then the submonoid Fix(h) = {m ∈M | h(m) = m}
of fixpoints of h is free, which easily leads to a splitting of h in Fmon, hence to the
fact that Fmon is Cauchy-complete. The idea is to find a set of generators of Fix(h)
without non-trivial relations in M . A simple way to build such a set is by considering
the subset S1 ⊂ S of those s ∈ S such that h(s) = usv where h(u) = h(v) = 1. Then
we define T = {h(s) | s ∈ S1}. It turns out that the obvious inclusion T ∗ →M sends
T ∗ isomorphically to Fix(h), as shown by the existence of a retraction M → T ∗. Now
the same ideas carry into higher dimensions, with ∞-categories instead of monoids
and polygraphs instead of generating sets, but the general case involves additional
technicalities, due to the presence of higher-dimensional compositions.

Let us finally point out that our cofibrant ∞-categories are actually the cofibrant
objects in a Quillen model structure on Cat∞ recently discovered by Yves Lafont,
Krzysztof Worytkiewicz and the author [9].

2. Globular sets

Let O be the small category defined as follows:

• the objects of O are integers 0, 1, . . .;

• the arrows are generated by composition of sn, tn : n→ n+1, n ∈ N subject to
the following equations

sn+1 ◦ sn = tn+1 ◦ sn,
sn+1 ◦ tn = tn+1 ◦ tn.

As a consequence, O(m,n) has exactly two elements if m < n, namely sm,n = sn−1 ◦
· · · ◦ sm and tm,n = tn−1 ◦ · · · ◦ tm. O(m,n) = ∅ if m > n, and contains the unique
element idm if m = n.

Definition 2.1. A globular set is a presheaf on O.

In other words, a globular set is a functor from Oop to Sets. Globular sets and
natural transformations form a category Glob. The Yoneda embedding

O → Glob
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takes each integer n to the standard globe O[n]. We still denote by sn, tn : O[n] →
O[n+1] the morphisms of globular sets representing the corresponding arrows from
n to n+1.

Let X be a globular set and p an integer, the set X(p) will be denoted by Xp, and
its elements called cells of dimension p or p-cells. Hence O[n] has exactly two p-cells
for p < n, exactly one n-cell, and no p-cells for p > n. Let ∂O[n] be the globular set
with the same cells as O[n] except for (∂O[n])n = ∅, and

in : ∂O[n] → O[n]

the canonical injection: ∂O[n] has two p-cells for p < n and no other cells. We denote
by σn and τn the maps X(sn) and X(tn) respectively. Hence a double sequence of
maps

σn, τn : Xn ⇔ Xn+1

satisfying the boundary conditions:

σn ◦ σn+1 = σn ◦ τn+1,

τn ◦ σn+1 = τn ◦ τn+1.

If m < n, we set σm,n = σm ◦ · · · ◦ σn−1 and τm,n = τm ◦ · · · ◦ τn−1. Let 0 6 i < n, we
say that the n-cells x, y ∈ Xn are i-composable if τi,nx = σi,ny, a relation we denote
by x .i y.

Now let X be a globular set, Yoneda’s lemma yields a natural equivalence

Xn
∼= Glob(O[n], X). (1)

If u ∈ Xn and σn−1(u) = x, τn−1(u) = y, x and y are respectively the source and the
target of u, which we simply denote by u : x→ y. Likewise, if σi,nu = x and τi,nu = y,
we shall write u : x→i y. In case u : x→ y and v : x→ y, we say that u, v are parallel,
which we denote by u ‖ v:

•
u

&&

v

88 • .

Any two 0-cells are also considered to be parallel. Let Xqn denote the set of ordered
pairs of parallel n-cells in X. We get a natural equivalence

Xqn ∼= Glob(∂O[n+1], X) (2)

similar to (1). The equivalences (1) and (2) assert that, for each n, the functors
X 7→ Xn and X 7→ Xqn from Glob to Sets are representable, the representing objects
being respectively O[n] and ∂O[n+1].

For each integer n, let On denote the full subcategory of O whose objects are
0, . . . , n. The presheaves on On are the n-globular sets, and form a category we
denote by Globn. For each n < m, the inclusion On → Om induces a truncation
functor from Globm to Globn. Likewise, we get a truncation functor from Glob to
Globn.
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3. ∞-categories

Recall that an ∞-category is a globular set C endowed with
• a product u ∗n−1 v : x→ z defined for all u : x→ y and v : y → z in Cn;
• a product u ∗i v : x ∗i y → z ∗i t defined for all u : x→ z and v : y → t in Cn with
i < n−1 and u .i v;

• a unit 1n+1(x) : x→ x defined for all x ∈ Cn.
These operations satisfy the conditions of associativity, left and right unit, composition
of units and exchange:
• (x ∗i y) ∗i z = x ∗i (y ∗i z) for all x .i y .i z in Cn with i < n;
• 1n,i(x) ∗i u = u = u ∗i 1n,i(y) for all u : x→i y in Cn with i < n, where 1n,i =

1n ◦ 1n−2 ◦ · · · ◦ 1i+1;
• 1n+1(x ∗i y) = 1n+1(x) ∗i 1n+1(y) for all x, y ∈ Cn with i < n and x .i y;
• (x ∗i y) ∗j (z ∗i t) = (x ∗j z) ∗i (y ∗j t) for all x, y, z, t ∈ Cn with i < j < n and
x .i y, x .j z, y .j t.

Let C, D be ∞-categories. A morphism f : C → D is a morphism of the underlying
globular sets preserving units and products. ∞-categories and morphisms build a
category Cat∞, and there is a forgetful functor

U : Cat∞ → Glob.

Its left adjoint Glob → Cat∞ associates to each globular set X the free ∞-category
X∗ generated by it. From this adjunction and the natural equivalences (1) and (2)
we get

Cn ∼= Cat∞(O[n]∗, C), (3)
Cqn ∼= Cat∞(∂O[n+1]∗, C). (4)

Note that Glob is a topos of presheaves and that the functor U is finitary monadic
over Glob. Hence Cat∞ is complete and cocomplete, and we shall take limits and
colimits in Cat∞ without further explanations (see also [1, 2, 13]).

Likewise, an n-globular set endowed with products and units as above, up to
dimension n, determines an n-category ; n-categories and morphisms build a category
Catn. As in the case of globular sets, we get a truncation functor

T mn : Catm → Catn

whenever n < m, and likewise

T ∞n : Cat∞ → Catn.

Remark that Cat0 = Sets whereas Cat1 amounts to the category of small categories.
Now T mn admits a left adjoint Fmn a T mn , for 0 6 n < m 6 ∞, which simply extends
the n-category C by adding units in all dimensions k for n < k 6 m:

Fmn C : C0 ⇔ · · · ⇔ Cn ⇔ Cn ⇔ · · · .
In particular, if C is an ∞-category and n an integer, we may define the n-skeleton
of C by

C(n) = F∞n T ∞n C.
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It will be convenient to extend this notation by setting C(−1) = 0, the initial ∞-
category with no cells. There is a canonical inclusion

j(n) : C(n) → C(n+1).

Here again j(−1) denotes the unique morphism 0 → C(0). The following result is then
an easy consequence of the definitions:

Lemma 3.1. Any ∞-category C is the colimit of its n-skeleta:

C(−1)
j(−1)

// C(0)
j(0) // · · · j

(n−1)
// C(n)

j(n)
// · · · .

4. Polygraphs

We recall the construction of polygraphs, following the presentation of [4].

4.1. Attaching cells
Let us first define a category Cat+

n of n-categories with attached additional n+1-
cells:
• objects of Cat+

n are pairs (C,G) where C is an n-category and G is a graph
σn, τn : Cn ⇔ Sn+1 such that σn, τn satisfy the boundary conditions

σn−1 ◦ σn = σn−1 ◦ τn,
τn−1 ◦ σn = τn−1 ◦ τn;

• if C+ = (C,Cn ⇔ Sn+1) and D+ = (D,Dn ⇔ Tn+1) are objects of Cat+
n , then

a morphism f ∈ Cat+
n (C+, D+) is a pair (g, u) where g ∈ Catn(C,D) and u is

a map Sn+1 → Tn+1 such that (gn, u) is a morphism of graphs; that is

gn ◦ σn = σn ◦ u,
gn ◦ τn = τn ◦ u.

Let C+ = (C,G) be an object of Cat+
n ; the first projection (C,G) 7→ C determines a

functor
An : Cat+

n → Catn.

On the other hand there is a functor

Rn : Catn+1 → Cat+
n

taking the n+1-category C to the pair
(T n+1
n C,Cn ⇔ Cn+1

)
: Rn forgets all informa-

tion about compositions and identities in dimension n+1, keeping only the set Cn+1

of n+1-cells with their respective sources and targets in Cn. Clearly

AnRn = T n+1
n .

Now the key fact is that Rn admits a left-adjoint

Ln : Cat+
n → Catn+1.

For example, Cat+
0 is the category of graphs and L0 associates to each graph the

free category it generates. It is convenient to extend our notation by defining Cat+
−1
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as Cat0(= Sets) and L−1 as the identity functor. Let us describe Ln in some detail.
Given C+ = (C,Cn ⇔ Sn+1) in Cat+

n , we first define a formal language E consisting
of:

• a constant cα for each α ∈ Sn+1, and a constant ic for each c ∈ Cn;
• a binary function symbol ?i for each i ∈ {1, . . . , n}.

Thus E is the smallest set of expressions containing all constants and having the
property that (e ?i f) ∈ E whenever e ∈ E, f ∈ E and 0 6 i 6 n. A type is an ordered
pair (x, y) of parallel cells in Cn, denoted in this context by x→ y. For any e ∈ E,
and type x→ y, the relation

e : x→ y,

which reads “e has type x→ y”, is defined inductively by the following conditions:

• for each α ∈ Sn+1, cα : σnα→ τnα;

• for each c ∈ Cn, ic : c→ c;

• if e : x→ y and f : y → z, then (e ?n f) : x→ z;

• if e : x→ y, f : z → t and x .i z, then (e ?i f) : x ∗i z → y ∗i t, for 0 6 i < n.

An expression e is typable if there is at least one type x→ y such that e : x→ y.
Let ET be the subset of E consisting of typable expressions. A key feature of this
type system is that any typable expression has at most one type: in fact, structural
induction shows that whenever e : x→ y and e : x′ → y′ then x′ = x and y′ = y. As
a consequence, there are unique maps σ, τ : ET → Cn such that σ(cα) = σn(α) and
τ(cα) = τn(α) for each α ∈ Sn+1, and e : σ(e) → τ(e) for each e ∈ ET . By composi-
tion with the maps σi and τi for i < n, we get maps σi,n+1, τi,n+1 : ET → Ci, so that
we may still define a relation .i on ET by e .i f if and only if τi,n+1(e) = σi,n+1(f).
We define a relation e ∼ f on typable expressions by the following conditions:

• (e ?i (f ?i g)) ∼ ((e ?i f) ?i g) if e .i f .i g in ET ;

• (ic ?n e) ∼ e if e ∈ ET , c ∈ Cn and σ(e) = c. Likewise (e ?n ic) ∼ e if τ(e) = c;

• ic∗id ∼ (ic ?i id) if c, d ∈ Cn, 0 6 i < n and c .i d;

• ((e ?j f) ?i (g ?j h)) ∼ ((e ?i g) ?j (f ?i g)) if e .j f , g .j h, e .i g and 0 6 i <
j 6 n.

Let us denote by ∼= the congruence generated by ∼ on ET , and define

S∗n+1 = ET / ∼= .

The canonical surjection ET → S∗n+1, e 7→ 〈e〉 satisfies the expected compatibility
conditions:

• σ(e), τ(e) only depend on 〈e〉; whence the relation e .i f only depends on 〈e〉
and 〈f〉;

• 〈(e ?i f)〉 only depends on 〈e〉 and 〈f〉.
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Therefore, we may define 〈e〉 ∗i 〈f〉 = 〈(e ?i f)〉 if e .i f , σn(〈e〉) = σ(e), τn(〈e〉) =
τ(e) and 1n+1(c) = 〈ic〉 for e ∈ ET and c ∈ Cn. We finally set

LnC+ =def C0 ⇔ C1 ⇔ · · · ⇔ Cn ⇔ S∗n+1.

We leave it as an exercise to check that all axioms of n+1-categories are satisfied and
that the above construction acts on morphisms, making Ln a functor from Catn to
Catn+1. Clearly

T n+1
n Ln = An.

Moreover, there is a natural transformation

ηC+ : C+ →RnLnC+

such that ηC+ =
(
η1
C+ , η2

C+

)
where η1

C+ is the identity on C and η2
C+ : Sn+1 → S∗n+1

is α 7→ 〈cα〉. Note that η2
C+ is injective. By construction, Ln satisfies the universal

property of Lemma 4.1 below; whence Ln a Rn.

Lemma 4.1. Let C+ = (C,Cn ⇔ Sn+1) in Cat+
n , D an n+1-category and

f = (g, u) : C+ →RnD

a morphism in Cat+
n . There is a unique map u∗ : S∗n+1 → Dn+1 satisfying the follow-

ing properties:
• u∗ ◦ η2

C+ = u;
• there is an f∗ ∈ Catn+1(LnC+, D) such that T n+1

n f∗ = g and f∗n+1 = u∗.

4.2. The category of polygraphs
We now define the category Poln of n-polygraphs by induction on n. Precisely we

define Poln together with a functor

Jn : Poln → Cat+
n−1.

• Pol0 is just Sets, and J0 is the identity functor;
• Suppose Jn : Poln → Cat+

n−1 has been defined. An n+1-polygraph is a pair
S = (S′, C+) where S′ is an n-polygraph and C+ an object of Cat+

n such that
AnC+ = Ln−1JnS′. We set Jn+1S = C+. If S = (S′, C+) and T = (T ′, D+), a
morphism f : S → T of n+1-polygraphs is a pair (f ′, u) where f ′ ∈ Poln(S′, T ′),
u ∈ Cat+

n (C+, D+) and Anu = Ln−1Jnf ′.
We denote by In+1

n : Poln+1 → Poln the first projection (S′, C+) 7→ S′. The following
commutative diagram summarizes the induction step:

Poln+1

In+1
n

²²

Jn+1 // Cat+
n

Ln //

An

%%JJJJJJJJJJ
Catn+1

T n+1
n

²²
Poln Jn

// Cat+
n−1 Ln−1

// Catn.

Let Qn = Ln−1Jn; the above commutation yields

T n+1
n Qn+1 = QnIn+1

n . (5)

We define, by induction on n > 0, a functor Pn : Catn → Poln, right-adjoint to Qn:
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• for n = 0, P0 and Q0 are both the identity functor on Pol0 = Cat0 = Sets;
• suppose Qn a Pn, and let D be an n+1-category. D′ = T n+1

n D is an n-category
and by induction hypothesis, we get an n-polygraph S′ = QnD′. Moreover, the
counit of the adjunction yields a morphism of n-categories

ε : QnPnD′ → D′,

whose n-th component is a map

εn : S′∗n → D′n.

Now Pn+1D is by definition the polygraph S = (S′, C+), where

C+ = (QnS′, S′∗n ⇔ Sn+1)

and Sn+1 is the set of triples (z, x, y) ∈ Dn+1 × S′∗n × S′∗n such that x ‖ y and
z : εn(x) → εn(y). The source and target of (z, x, y) are x and y, respectively.
Likewise, Pn+1 acts on morphisms: we refer to [10] for details, and a complete
proof that Qn+1 a Pn+1.

Remark that, by construction,

In+1
n Pn+1 = PnT n+1

n . (6)

Definition 4.2. A polygraph S is a sequence (Sn)n∈N such that, for each n > 0, Sn

is an n-polygraph and In+1
n Sn+1 = Sn.

Likewise, if S and T are polygraphs, a morphism f : S → T amounts to a sequence
(fn)n∈N such that fn : Sn → Tn is a morphism of n-polygraphs and In+1

n fn+1 = fn.
Polygraphs and morphisms build a category Pol. For each polygraph S, let I∞n S =
Sn, making I∞n a functor from Pol to Poln. From (5), (6) and Qn a Pn, we get a
pair of adjoint functors

Q : Pol → Cat∞,

P : Cat∞ → Pol,

such that, for each n > 0,
T ∞n Q = QnI∞n

and
I∞n P = PnT ∞n .

Thus, we may summarize the above construction by using the following less explicit,
but simpler notation:
• a 0-polygraph is a set S0, generating the 0-category (i.e. set) S∗0 = S0;
• given an n-polygraph S0, S∗0 ⇔ S1, . . . , S

∗
n−1 ⇔ Sn with the free n-category

S∗0 ⇔ . . . ⇔ S∗n it generates, an n+1-polygraph is determined by a graph

σn, τn : S∗n ⇔ Sn+1

satisfying the boundary conditions, and the free n+1-category generated by it
is S∗0 ⇔ S∗1 ⇔ · · ·S∗n ⇔ S∗n+1;

• a polygraph S is an infinite sequence S0, S
∗
0 ⇔ S1, . . . , S

∗
n−1 ⇔ Sn . . . such that

for each p, S0, . . . , S
∗
p−1 ⇔ Sp is a p-polygraph.
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Likewise, a morphism f : S → T between polygraphs S, T amounts to a sequence of
maps fn : Sn → Tn such that for all ξ : x→ y in Sn, fn(ξ) : f∗n−1(x) → f∗n−1(y), where
f∗n is the unique extension of fn which is compatible with products and units. From
now on, for any polygraph S, we set S∗ = QS. We call generators of dimension n,
or n-generators, the elements of Sn. Each α ∈ Sn generates an atomic n-cell α∗ ∈ S∗n
(see 4.1).

Remark that any globular set X can be viewed as a particular polygraph and
that this identification makes Glob a full subcategory of Pol. Moreover the free
∞-category generated by a globular set is the same as the free ∞-category gener-
ated by the corresponding polygraph. However most free ∞-categories generated by
polygraphs cannot be generated by globular sets alone.

For instance the globular sets O[n] and ∂O[n] can be viewed as polygraphs, and
generate ∞-categories O[n]∗ and ∂O[n]∗. Remark that in this case, the free construc-
tion does not create new non-identity cells. Therefore, in the sequel, we drop the “∗”
in the notation of these ∞-categories. Likewise, in will denote a morphism of globular
sets, polygraphs, or ∞-categories according to the context.

Let C+ = (C,Cn ⇔ Sn+1) in Cat+
n ; the n+1-category LnC+ has the same n-cells

as C, hence an inclusion morphism j : F∞n C → F∞n+1LnC+. Each generator α ∈ Sn+1

gives an n+1-cell in LnC+, whose source and target give parallel n-cells in C. Hence
by (3) and (4), we get two morphisms

ρ :
∑

Sn+1

∂O[n+1] → F∞n C

and

χ :
∑

Sn+1

O[n+1] → F∞n+1LnC+,

making the following diagram commutative:
∑
Sn+1

∂O[n+1] ρ //

P
Sn+1

in+1

²²

F∞n C

j

²²∑
Sn+1

O[n+1]
χ

// F∞n+1LnC+.

Now Lemma 4.1 implies that the above square is a pushout. In the particular case
where S is a polygraph, C = (S∗)(n) and C+ = (C,S∗n ⇔ Sn+1), we get the following
result:

Lemma 4.3. The diagram
∑
Sn+1

∂O[n+1] ρ //

P
Sn

in

²²

(S∗)(n)

j(n)

²²∑
Sn+1

O[n+1]
χ

// (S∗)(n+1)

is a pushout in Cat∞.
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4.3. Linearization
Let n > 1 and C an n−1-category. Given an abelian monoid (A,+), we may extend

C to an n-category D = An C, as follows:
• T nn−1D = C; that is, D coincides with C up to dimension n−1;
• Dn = A× Cqn−1, with (a, (x, y)) : x→ y for each a ∈ A and each pair (x, y) of

parallel cells in Cn−1;
• let x ‖ y ‖ z in Cn−1, and a, b in A, the composition (a, (x, y)) ∗n−1 (b, (y, z)) is

by definition (a+ b, (x, z));
• let u = (a, (x, y)), v = (b, (z, t)) in Dn and i ∈ {0, . . . , n−2} such that u .i v.

This implies x .i z and y .i t (in C), so that x ∗i z ‖ y ∗i t and we may define
u ∗i v = (a+ b, (x ∗i z, y ∗i t));

• for each x ∈ Cn−1, 1n(x) = (0, (x, x)).
We leave it as an exercise to check the axioms of n-categories on An C.

Let S be a polygraph; we apply the above construction to the particular case where
C = T ∞n−1S

∗ and A is the free abelian group ZSn on Sn. To each generator α ∈ Sn
corresponds a generator α̃ of ZSn. Elements of ZSn are thus of the form

a =
∑

α∈Sn

nαα̃,

where nα ∈ Z and all but a finite number of coefficients are zero. Let D = An C.
There is a map Sn → Dn, given by α 7→ (α̃, (x, y)) for each n-generator α : x→ y,
which in turn determines a morphism f :

(
C,S∗n−1 ⇔ Sn

) → Rn−1D in Cat+
n−1. Thus

Lemma 4.1 applies, and we get a morphism

f∗ : T ∞n S∗ → D

in Catn, whence a unique linearization map

λ : S∗n → ZSn
satisfying the following properties:
• for each α ∈ Sn, λ(α∗) = α̃;
• if 0 6 i 6 n−1 and x .i y in S∗n, then λ(x ∗i y) = λ(x) + λ(y);
• for each x ∈ S∗n−1, λ(1n(x)) = 0.

Now, for each x ∈ S∗n, λ(x) has a unique expression of the form

λ(x) =
∑

α∈Sn

wα(x)α̃, (7)

where wα(x) ∈ Z (in fact wα(x) ∈ N). Note that for each fixed n, the correspon-
dence S∗ 7→ ZSn is functorial. Precisely, let Fcat∞ be the full subcategory of Cat∞
whose objects are of the form S∗, where S is a polygraph. To each morphism u : S∗

→ T ∗ corresponds a linear map ũn : ZSn → ZTn. As identities and compositions are
preserved, we get a functor from Fcat∞ to the category Ab of abelian groups, and by
composing with the forgetful functor Ab → Sets, also a functor Z : Fcat∞ → Sets.
Now there is a functor Y : Fcat∞ → Sets which associates to each S∗ the set S∗n
of its n-cells. Here a useful observation is that linearization gives rise to a natural
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transformation from Y to Z: let S, T be polygraphs, u ∈ Fcat∞(S∗, T ∗), and λS , λT
the respective linearization maps, the following diagram commutes:

S∗n
un //

λS

²²

T ∗n

λT

²²
ZSn

ũn

// ZTn.

In particular, for each n-cell x in S∗n, we get

λT (un(x)) =
∑

α∈Sn

wα(x)λT (un(α∗)). (8)

We call wα(x) the weight of x at α. As a consequence of (8), for each x ∈ S∗n and
each generator β ∈ Tn,

wβ(un(x)) =
∑

α∈Sn

wα(x)wβ(un(α∗)). (9)

As only finitely many of the coefficients wα(x) are non-zero, we may define the total
weight of x as the non-negative integer

w(x) =
∑

α∈Sn

wα(x).

Looking back at the construction of Ln via formal expressions, we note that wα(x)
is also the number of occurrences of the symbol cα in any expression representing
x. Likewise, if w(x) = 0, there is a unique x′ ∈ S∗n−1 such that x = 1n(x′), and more
generally, a unique choice of k < n and x′′ ∈ S∗k such that x = 1n,k(x′′) and w(x′′) > 0.

5. Contexts

This purely technical section introduces contexts, a convenient way to formulate
the two results we shall need later, namely equation (11) and Lemma 5.6.

5.1. Indeterminates
Let C be an ∞-category, and n > 1. Recall from Section 4.1 that an n-type on C is

an ordered pair (x, y) of parallel cells in Cn−1, that is an element of Cqn−1. The type of
an n-cell x ∈ Cn is the pair (σn−1x, τn−1x). Hence the type of an n-cell is a particular
n-type. Let S be a polygraph, n > 1, and ξ = (x, y) an n-type on S∗. We build a new
polygraph T = S[ξ] by adjoining ξ as a new n-generator. Precisely, T coincides with
S up to dimension n−1, Tn = Sn + {ξ} and T ∗n−1 ⇔ Tn extends S∗n−1 ⇔ Sn by

σn−1(ξ) = x,

τn−1(ξ) = y.

Thus we get an inclusion map S∗n → T ∗n . Suppose j > n and T has been defined up
to dimension j together with an inclusion map S∗j → T ∗j . We set Tj+1 = Sj+1. This
yields T ∗j ⇔ Tj+1 and by Lemma 4.1, a new inclusion S∗j+1 → T ∗j+1. Now ξ generates
an n-cell ξ∗ = x of T ∗, which we call an n-indeterminate of type ξ on S. We let
boldface variables x,y, . . . range over indeterminates.
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Definition 5.1. Let x be an n-indeterminate of type ξ on the polygraph S; an n-
context over x is an n-cell u of (S[ξ])∗ such that wξ(u) = 1.

We denote n-contexts over x by c[x], d[x], . . . . A context c[x] is trivial if
c[x] = x. An n-cell z of S∗ is adapted to the context c[x] if it has the same type
as x. Any adapted n-cell may be substituted to the indeterminate in a given con-
text: let x = ξ∗ be an n-indeterminate of type ξ and z an adapted n-cell. There is a
map uz : Sn + {ξ} → S∗n defined by uz(α) = α∗ if α ∈ Sn and uz(ξ) = z. Lemma 4.1
applies and gives a morphism

subz : (S[ξ])∗ → S∗

such that subz(x) = z. Likewise, for each context c[x] over x, we define c[z] as
subz(c[x]). By applying (8) to subz, we get

λS(c[z]) = λS(z) +
∑

α∈Sn

wα(c[x])α̃. (10)

Let S, T be polygraphs, and u ∈ Fcat∞(S∗, T ∗). To each n-type ξ = (x, y) in S∗ cor-
responds an n-type ψ = (u(x), u(y)). Let ξ∗ = x and ψ∗ = y. Yet another application
of Lemma 4.1 yields a unique morphism

û : (S[ξ])∗ → (T [ψ])∗

such that û(α∗) = u(α∗) if α ∈ Sn and û(x) = y. In this situation, we get the following
result:

Lemma 5.2. For each n-context c[x], û(c[x]) is an n-context over y.

Proof. We have to show that wψ(û(c[x])) = 1. By (9),

wψ(û(c[x])) =
∑

α∈Sn+{ξ}
wα(c[x])wψ(ûn(α∗))

but, for each α 6= ξ, ûn(α∗) = un(α∗) already belongs to T ∗n so that wψ(ûn(α∗)) = 0;
whence

wψ(û(c[x])) = wξ(c[x])wψ(ûn(ξ∗)).

By definition wξ(c[x])) = 1, and ûn(ξ∗) = ψ∗, so that wψ(ûn(ξ∗)) = 1 and we get the
result.

We denote by cu[y] the context û(c[x]) just defined. Now for each adapted n-cell
z in S∗,

u(c[z]) = cu[u(z)]. (11)

This amounts to the naturality of the substitution viewed in appropriate categories.
In fact, consider the comma category C = O[n] ↓ Fcat∞. Objects of C may be rep-
resented as pairs (S, z) where S is a polygraph and z ∈ S∗n, whereas a morphism
u : (S, z) → (T, z′) is an u ∈ Fcat∞(S∗, T ∗) such that u(z) = z′. Now there are two
functors B, C : C → Fcat∞ given by B (S, z) = S∗ and C (S, z) = (S[ξ])∗, where ξ is
the type of z. For each Z = (S, z) in C, we get subz : CZ → BZ. This determines a
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natural transformation from C to B. Thus for each u : (S, z) → (T, u(z)), the following
diagram commutes:

(S[ξ])∗ û //

subz

²²

(T [ψ])∗

subu(z)

²²
S∗ u

// T ∗,

which implies (11).

5.2. Thin contexts
We pay special attention to contexts built on no other atomic n-cell but the inde-

terminate itself.

Definition 5.3. Let x be an indeterminate of type ξ on a polygraph S, and c[x] an
n-context over x. We call c[x] a thin context if wα(c[x]) = 0 for each α ∈ Sn.

Given a polygraph S and x an n-indeterminate on S, we define a family (Cx
i )06i6n

of sets of n-contexts over x by induction on i:

• Cx
0 ={x};

• Cx
i ={a ∗i−1 c[x] ∗i−1b | c[x] ∈ Cx

i−1, a ∈ S∗n, b ∈ S∗n, a .i−1 c[x] .i−1 b} for each
i > 0.

Observe that

• each n-context over x belongs to ∪06i6nCx
i ;

• each thin n-context over x belongs to ∪06i<nCx
i .

In fact the exchange rule allows to perform higher-dimensional compositions outside
lower-dimensional ones. Also remark that, if c[x] ∈ Cx

i and j > i, then, by induction
on i,

w(σj,n(c[x])) > w(σj,n(x)). (12)

Lemma 5.4. If n > 1 and c[x] is a thin n-context, then there is an n−1-context
∂c[y] over the indeterminate y of type (σn−2,n(x), τn−2,n(x)), satisfying the following
properties:

• for each adapted n-cell z, σn−1(c[z]) = ∂c[σn−1(z)];

• if ∂c[y] is trivial, then so is c[x].

Proof. Let c[x] be a thin n-context, with n > 1. The above remarks show that there is
an i < n such that c[x] ∈ Cx

i . We show, by induction on the least such i, the existence
of an n−1-context ∂c[y] over y of type (σn−2,n(x), τn−2,n(x)) satisfying the following
properties:

1. ∂c[y] ∈ Cy
i ;

2. for each adapted n-cell z in S∗, σn−1(c[z]) = ∂c[σn−1(z)];

3. σi−1,n(c[x]) = σi−1,n−1(∂c[y]) and τi−1,n(c[x]) = τi−1,n−1(∂c[y]) if i > 1;

4. if ∂c[y] is trivial, so is c[x].
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If i = 0, then c[x] = x and we set ∂c[y] = y of the appropriate type, so that con-
ditions 1 to 4 hold. Suppose that i > 0 and the result holds up to i−1. Choose an
n-context d[x] ∈ Cx

i−1 and n-cells a, b in S∗ such that a .i−1 d[x] .i−1 b and

c[x] = a ∗i−1 d[x] ∗i−1 b.

As c[x] is thin, w(a) = w(b) = 0 and there are n−1-cells a′, b′ such that a = 1n(a′) and
b = 1n(b′). By the induction hypothesis we may choose an n−1-context ∂d[y] ∈ Cy

i−1

satisfying the above conditions. In particular, condition 3 shows that

a′ .i−1 ∂d[y] .i−1 b
′,

so that we may define

∂c[y] = a′ ∗i−1 ∂d[y] ∗i−1 b
′. (13)

Conditions 1, 2 and 3 are straightforward. As for condition 4, suppose that ∂c[y] is
trivial: this can only happen if i = 0. Otherwise, ∂c[y] is given by (13), so that

a′ ∗i−1 ∂d[y] ∗i−1 b
′ = y. (14)

There are unique integers j, k in {0, . . . , n−1}, and non-identity cells a′′ ∈ S∗j , b′′ ∈ S∗k
such that a′ = 1n−1,j(a′′) and b′ = 1n−1,k(b′′). Two cases are possible:

• j and k are both 6 i−1, in which case a and b are respectively identities on the
source and target of d[x], so that c[x] = d[x] and c[x] ∈ Cx

i−1, a contradiction,
because of the minimality of i;

• at least one of j, k is > i−1, say j > i−1. By applying σj,n−1 to both members
of (14), we get

a′′ ∗i−1 σj,n−1(∂d[y]) ∗i−1 σj,n−1b
′ = σj,n−1(y),

and by taking the weight (in S∗j ) on both sides,

w(a′′) + w(σj,n−1(∂d[y])) + w(σj,n−1b
′) = w(σj,n−1(y)),

which, combined with (12), implies w(a′′) = 0. This contradicts the hypothesis
that a′′ is not an identity.

Hence i cannot be 6= 0, and c[x] = x.

Lemma 5.5. Let c[x] be an n-context and z an adapted n-cell. If c[z] = z, then c[x]
is trivial.

Proof. We proceed by induction on the dimension n. If n = 1, all contexts are trivial
and we are done. Suppose now n > 1 and the result holds in dimension n−1. Let c[x]
be an n-context and z an adapted n-cell such that

c[z] = z. (15)

Thus λS(c[z]) = λS(z) and because of (10),
∑

α∈Sn

wα(c[x])α̃ = 0.

Therefore c[x] is thin, and by Lemma 5.4 we get an n−1-context ∂c[y] such that
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σn−1(c[z]) = ∂c[σn−1(z)]. Hence, by taking the source on both sides of (15), we get

∂c[σn−1(z)] = σn−1(z).

Thus, by the induction hypothesis, ∂c[y] is trivial and so is c[x] by Lemma 5.4.

Lemma 5.6. Let c[x] be a thin n-context, and z an adapted n-cell. If c[z] is parallel
to z, then c[z] = z.

Proof. Suppose c[x] is a thin n-context, and z is an adapted n-cell such that c[z] ‖ z.
If n = 1, then thin contexts are trivial and the result is immediate. Otherwise, n > 1
and by Lemma 5.4, there is an n−1-context ∂c[y] such that σn−1(c[z]) = ∂c[σn−1(z)].
As c[z] is parallel to z, this implies ∂c[σn−1(z)] = σn−1(z). By Lemma 5.5, ∂c[y] is
trivial, and by Lemma 5.4 again, so is c[x]. Hence c[z] = z.

6. Two classes of morphisms

Let C be a category, and f : A→ B, g : C → D morphisms. f has the left-lifting
property with respect to g (or, equivalently, g has the right-lifting property with
respect to f) if, for each pair of morphisms u : A→ C, v : B → D such that g ◦ u =
v ◦ f , there exists an h : B → C making the following diagram commutative:

A
u //

f

²²

C

g

²²
B v

//

h}}}

>>}}}

D.

For any class M of morphisms in C, tM (resp. Mt) denotes the class of morphisms
in C which have the left- (resp. right-) lifting property with respect to all morphisms
in M.

6.1. Trivial fibrations
Let I be the set {in|n ∈ N} as morphisms in Cat∞.

Definition 6.1. A morphism of ∞-categories is a trivial fibration if and only it
belongs to It.

In other words, p : C → D is a trivial fibration if for all n, f : ∂O[n] → C, and
g : O[n] → D such that p ◦ f = g ◦ in, there is an h : O[n] → C making the following
diagram commutative:

∂O[n]
f //

in

²²

C

p

²²
O[n]

g
//

hyyyy

<<yyyy

D.

Definition 6.2. Let C be an ∞-category. A polygraphic resolution of C is a pair
(S, p) where S is a polygraph and p : S∗ → C is a trivial fibration.
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It was shown in [10] that, for each ∞-category C, the counit of the adjunction
Q a P,

εC : QPC → C,

is a trivial fibration. Hence (PC, εC) is a polygraphic resolution of C, so that:

Proposition 6.3. Each ∞-category C has a polygraphic resolution.

6.2. Cofibrations
Definition 6.4. A morphism of ∞-categories is a cofibration if and only if it has the
left-lifting property with respect to all trivial fibrations.

Hence the class of cofibrations is exactly t(It). Immediate examples of cofibrations
are the maps in themselves. The following lemma summarizes standard properties of
maps defined by left-lifting conditions (see [5]).

Lemma 6.5. Let C be a category, and M an arbitrary class of morphisms of C. Let
L = tM. Then

• L is stable by direct sums: if fi : Xi → Yi, i ∈ I is a family of maps of L with
direct sum f =

∑
i∈I fi :

∑
i∈I Xi →

∑
i∈I Yi, then f ∈ L;

• L is stable by pushout: whenever f ∈ L and

X //

f

²²

Z

g

²²
Y // T

is a pushout square in C, then g ∈ L;
• suppose

X0
l0 // · · · ln−1 // Xn

ln // · · ·
is a sequence of maps ln ∈ L, with colimit (X, mn : Xn → X). Then m0 :
X0 → X belongs to L.

Definition 6.6. An ∞-category C is cofibrant if 0 → C is a cofibration.

Proposition 6.7. Free ∞-categories are cofibrant.

Proof. Let S be a polygraph and C = S∗. By Lemma 4.3, for each n > −1, the
canonical inclusion j(n) : C(n) → C(n+1) is a pushout of

∑
Sn

in. Now Lemma 6.5
applies in the particular case where L is the class of cofibrations: by the first point,∑
Sn

in is a cofibration, and by the second point, so is j(n). By Lemma 3.1, C is a
colimit of the sequence

C(−1)
j(−1)

// C(0)
j(0) // · · · j

(n−1)
// C(n)

j(n)
// · · · ;

hence the third point of Lemma 6.5 applies, with Xn = C(n−1) and ln = j(n−1), so
that 0 → C is a cofibration. In other words, C is cofibrant.
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7. Cauchy-completeness

We are now ready to establish the converse of Proposition 6.7. Recall from Sec-
tion 4.3 that Fcat∞ is the full subcategory of Cat∞ whose objects are all ∞-
categories freely generated by polygraphs. The core of our argument is the following
theorem:

Theorem 7.1. Fcat∞ is Cauchy-complete.

In other words, idempotent morphisms in Fcat∞ split; that is, for each object C
in Fcat∞, and each endomorphism h : C → C such that h ◦ h = h, there is an object
D in Fcat∞, together with morphisms r : C → D, u : D → C, satisfying r ◦ u = id
and u ◦ r = h.

Proof. The proof will occupy most of this section. Let S be a polygraph, and let
h : S∗ → S∗ be an idempotent morphism in Cat∞. We need to build a polygraph T ,
together with morphisms u : T ∗ → S∗ and r : S∗ → T ∗, such that

r ◦ u = id, (16)
u ◦ r = h. (17)

We shall define T , u and r inductively on the dimension. In dimension 0,

T0 = {h(x) | x ∈ S∗0 = S0},
u is the inclusion T ∗0 = T0 → S∗0 = S0, and for each x ∈ S0, r(x) = h(x). The equa-
tions (16) and (17) are clearly satisfied.

Suppose now that n > 0 and T , u, r have been defined up to dimension n−1,
and satisfy the required conditions. We shall extend the n−1 polygraph T to an n-
polygraph, and the morphisms u, r of n−1-categories to morphisms of n-categories
still satisfying the above equations.

. Step 1. Let us split Sn in three subsets S0
n, S

1
n and S2

n, according to the value of
h(α∗), for α ∈ Sn:
• S0

n = {α ∈ Sn | w(h(α∗)) = 0}, hence S0
n is the set of generators whose image

by h is an identity;
• S1

n is the set of generators α ∈ Sn such that wα(h(α∗)) = 1 and wβ(h(α∗)) = 0
if β /∈ S0

n ∪ {α};
• S2

n = Sn \ S0
n ∪ S1

n.

We may now define a set Tn by:

Tn = {h(α∗) | α ∈ S1
n}.

By definition, there is an inclusion map

υ : Tn → S∗n

such that
h ◦ υ = υ. (18)

Indeed, elements of Tn belong to the image of the idempotent h; hence they are fixed
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by h. We now define a graph σT , τT : T ∗n−1 ⇔ Tn by

σT = r ◦ σn−1 ◦ υ (19)
τT = r ◦ τn−1 ◦ υ, (20)

where σn−1, τn−1 are the source and target maps in S∗ and r is given by the induction
hypothesis:

T ∗n−1 Tn
σT ,τT

oo

υ

²²
S∗n−1

r

OO

S∗n.σn−1,τn−1
oo

By using the fact that r is a morphism up to dimension n−1, we see that for each
θ ∈ Tn, σT (θ) ‖ τT (θ) and the boundary conditions are satisfied. Thus, by Lemma 4.1,
T extends to an n-polygraph and the free n−1-category T ∗ extends to a free n-
category. We still denote these extensions by T , T ∗, and the source and target maps
T ∗n−1 ⇔ T ∗n by σT , τT . On the other hand,

u ◦ σT = u ◦ r ◦ σn−1 ◦ υ,
= h ◦ σn−1 ◦ υ,
= σn−1 ◦ h ◦ υ,
= σn−1 ◦ υ,

and the following diagram commutes

T ∗n−1

u

²²

Tn
σT

oo

υ

²²
S∗n−1 S∗n.σn−1

oo

Likewise

u ◦ τT = u ◦ r ◦ τn−1 ◦ υ.
Hence υ : Tn → S∗n gives rise to un : T ∗n → S∗n, extending u to a morphism of n-
categories T ∗ → S∗. Note that h ◦ u = u. To sum up, we have extended T and u
up to dimension n. Remark that the only property of Tn we needed so far is that its
elements are fixed by h.

. Step 2. We introduce the auxiliary n-polygraph U such that
• U is identical to S up to dimension n−1;
• Un = S0

n + S1
n and the source and target maps U∗n−1 ⇔ Un simply restrict those

on Sn.
Thus we get an inclusion monomorphism of n-polygraphs ι : U → S, generating a
monomorphism of n-categories ι∗ : U∗ → S∗. The restrictions of σn−1 and τn−1 to
U∗n will be denoted by σU and τU , as well as the corresponding maps on generators:
U∗n−1 ⇔ Un.
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Lemma 7.2. There are morphisms of n-categories

h′ : U∗ → U∗, k : S∗ → U∗,

such that the following diagram commutes:

U∗
ι∗ //

h′

²²

S∗

k
zzz

z

}}zzz
z h

²²
U∗

ι∗
// S∗.

Proof. The existence of h′ making the outer square commutative follows from the
remark that U∗ is stable by h, so that h′ is simply the restriction of h to U∗.

The existence of a factorization h = ι∗ ◦ k reduces to the fact that Un contains all
n-generators α such that wα(y) 6= 0 for some n-cell y in the image of h. Thus, let
y = h(x) in S∗n. Because h is idempotent, h(y) = y. Consider

Y = {α ∈ Sn | α /∈ S0
n and wα(y) > 0}.

We just need to prove that Y ⊂ S1
n. First note that, for each β ∈ Sn, wβ(y) =

wβ(h(y)) so that, by using (9) from Section 4.3:

wβ(y) =
∑

α∈Sn

wα(y)wβ(h(α∗)). (21)

If α /∈ Y , either wα(y) = 0 or α ∈ S0
n, so that w(h(α∗)) = 0. In both cases, the product

wα(y)wβ(h(α∗)) vanishes. Hence (21) becomes

wβ(y) =
∑

α∈Y
wα(y)wβ(h(α∗)). (22)

Now, if β ∈ Y , then wβ(y) > 0 and the right member of (22) does not vanish either.
Therefore, there is at least one α ∈ Y such that wβ(h(α∗)) > 0.

On the other hand, let us show that, for each α ∈ Y , there is at least one γ ∈ Y
such that wγ(h(α∗)) > 0. Suppose the contrary and let α ∈ Y such that for all γ ∈ Y ,
wγ(h(α∗)) = 0. As by definition w(h(α∗)) > 0, there is at least one β ∈ Sn \ Y such
that wβ(h(α∗)) > 0. But wβ(h(α∗)) = wβ(h(h(α∗))) and (9) gives

wβ(h(α∗)) =
∑

γ∈Sn

wγ(h(α∗))wβ(h(γ∗)).

In the above sum, wγ(h(α∗)) = 0 whenever γ ∈ Y or wγ(y) = 0, whence

wβ(h(α∗)) =
∑

γ∈S0
n

wγ(h(α∗))wβ(h(γ∗));

but, γ ∈ S0
n implies wβ(h(γ∗)) = 0. Hence wβ(h(α∗)) = 0, which is a contradiction.

For each α ∈ y, let

mα =
∑

β∈Y
wβ(h(α∗)).
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We have just shown that for each α ∈ Y , mα > 0. By taking the sum over all gener-
ators β in Y in (22), we get

∑

β∈Y
wβ(y) =

∑

α∈Y
wα(y)mα,

which implies that mα = 1 for each α ∈ Y . This determines a map ω : Y → Y which
to each α ∈ Y associates the unique β = ω(α) in Y such that wβ(h(α∗)) > 0; in fact
wβ(h(α∗)) = 1. We have shown earlier that ω is surjective. Finally, let α ∈ Y and
β = ω(α); we have as above

wβ(h(α∗)) =
∑

γ∈Sn

wγ(h(α∗))wβ(h(γ∗)),

where all terms in the sum vanish, but for γ = β; whence

wβ(h(α∗)) = wβ(h(α∗))wβ(h(β∗)).

This implies wβ(h(β∗)) = 1. Therefore ω(β) = β and ω ◦ ω = ω. Being surjective, ω
is necessarily the identity.

To sum up, for each α ∈ Y , wα(h(α∗)) = 1, and wβ(h(α∗)) = 0 if β /∈ S0
n ∪ {α},

that is α ∈ S1
n and we are done. As for the upper-left triangle, ι∗ ◦ k ◦ ι∗ = h ◦ ι∗ =

ι∗ ◦ h′, and because ι∗ is a monomorphism, k ◦ ι∗ = h′.

Thus, let u′ : T ∗ → U∗ defined by u′ = k ◦ u, we get ι∗ ◦ u′ = ι∗ ◦ k ◦ u = h ◦ u = u.

. Step 3. We now define a morphism r′ : U∗ → T ∗ which coincides with r in dimensions
i < n. All we need is a map

ρ : Un → T ∗n

satisfying the boundary conditions. Thus, let α ∈ Un, we distinguish two cases, accord-
ing as α ∈ S0

n or α ∈ S1
n.

¦ Case 1. Let α ∈ S0
n. There is a unique y ∈ S∗n−1 such that h(α∗) = 1n(y). Now

r(y) ∈ T ∗n−1, so that we may define ρ(α) = 1n(r(y)). The boundary conditions are
straightforward in this case.

¦ Case 2. Let α ∈ S1
n. There is a unique generator θ ∈ Tn such that h(α∗) = υ(θ). We

define ρ(α) = θ∗. By using the induction hypothesis on r and u, we get

σT (ρ(α)) = σT (θ∗)
= r(σn−1(υ(θ)))
= r(σn−1(h(α∗)))
= r(h(σn−1(α∗)))
= r(u(r(σn−1(α∗))))
= r(σn−1(α∗))
= r′(σU (α)).

Hence σT (ρ(α)) = r′(σU (α)) and likewise τT (ρ(α)) = r′(τU (α)); the boundary con-
ditions are satisfied.
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Thus ρ gives rise to a morphism of ∞-categories r′ : U∗ → T ∗ extending r up to
dimension n.

. Step 4. Having defined u′ : T ∗ → U∗ and r′ : U∗ → T ∗, we first note that u′ ◦ r′ = h′,
which directly follows from our definition of r′. We now prove the following lemma:

Lemma 7.3. r′ ◦ u′ = id.

Proof. r′ ◦ u′ is an endomorphism of the ∞-category T ∗. We know by the induction
hypothesis that r′ ◦ u′ = r ◦ u = id in all dimensions i < n. Thus, it suffices to show
that, for each generator θ ∈ Tn,

r′(u′(θ∗)) = θ∗. (23)

This follows from two facts:

• the two members of (23) are parallel cells,

σT (r′(u′(θ∗))) = r′(u′(σT (θ∗))),

because r′, u′ are morphisms. But σT (θ∗) has dimension n−1, where, by the
induction hypothesis, r′ ◦ u′ = id, so that the above equation becomes

σT (r′(u′(θ∗))) = σT (θ∗)

and likewise

τT (r′(u′(θ∗))) = τT (θ∗).

• there is a thin n-context c[x] in T ∗ such that

r′(u′(θ∗)) = c[θ∗].

In fact, by the definition of Tn, there is a generator α ∈ S1
n such that u′(θ∗) =

h(α∗). Hence there is an n-context d[y] in U∗ such that u′(θ∗) = d[α∗] and
wβ(d[y]) = 0 whenever β /∈ S0

n. Now by applying (11) of Section 5.1,

r′(d[α∗]) = dr
′
[r′(α∗)]

= dr
′
[ρ(α)]

= dr
′
[θ∗].

Define c[x] = dr
′
[x]. For each generator ψ ∈ Tn, by (9),

wψ(c[θ∗]) = wψ(r′(d[α∗])) =
∑

β∈Un

wβ(d[α∗])wψ(r′(β∗)).

In the last sum, all terms vanish except for β = α; hence

wψ(c[θ∗]) = wψ(θ∗).

By (10), this implies wψ(c[x]) = 0. Therefore c[x] is thin, and we are done.

c[x] is a thin context such that c[θ∗] ‖ θ∗. By Lemma 5.6, c[θ∗] = θ∗ and (23) is
proved.
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. Step 5. We complete the argument by defining r = r′ ◦ k. Hence r is a morphism
S∗ → T ∗ and

u ◦ r = ι∗ ◦ u′ ◦ r′ ◦ k,
= ι∗ ◦ h′ ◦ k,
= ι∗ ◦ k ◦ ι∗ ◦ k,
= h ◦ h,
= h.

Also

r ◦ u = r′ ◦ k ◦ ι∗ ◦ u′,
= r′ ◦ h′ ◦ u′,
= r′ ◦ u′ ◦ r′ ◦ u′,
= id ◦ id,
= id.

Thus (16) and (17) hold in dimension n completing the proof of Theorem 7.1.

This easily leads to our main result:

Theorem 7.4. Any cofibrant ∞-category is isomorphic to a free one.

Proof. Let C be a cofibrant ∞-category. By Proposition 6.3, C has a free resolution
p : S∗ → C, with S∗ an object of Fcat∞. Because C is cofibrant, and p is a trivial
fibration, the identity morphism idC : C → C lifts through p, whence a morphism
q : C → S∗ such that p ◦ q = idC . Let h = q ◦ p, h ◦ h = q ◦ p ◦ q ◦ p = q ◦ idC ◦ p =
q ◦ p = h; hence h is an idempotent endomorphism of S∗. By Theorem 7.1 on Cauchy-
completeness, we get a polygraph T , and morphisms r : S∗ → T ∗, u : T ∗ → S∗ such
that r ◦ u = idT∗ and u ◦ r = h. Now, let f = p ◦ u : T ∗ → C and g = r ◦ q : C → T ∗.
We get

g ◦ f = r ◦ q ◦ p ◦ u
= r ◦ h ◦ u
= r ◦ u ◦ r ◦ u
= idT∗ ◦ idT∗

= idT∗ .

Likewise

f ◦ g = p ◦ u ◦ r ◦ q
= p ◦ h ◦ q
= p ◦ q ◦ p ◦ q
= idC ◦ idC
= idC .

Hence f : T ∗ → C is an isomorphism with inverse g = f−1 so that C is isomorphic to
a free object, as required.
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