Homology, Homotopy and Applications, vol. 10(1), 2008, pp.181-203

COFIBRANT OBJECTS AMONG HIGHER-DIMENSIONAL CATEGORIES

FRANÇOIS MÉTAYER

(communicated by Jean-Louis Loday)

Abstract

We define a notion of cofibration among ∞ -categories and show that the cofibrant objects are exactly the free ones, that is, those generated by polygraphs.

1. Introduction

Polygraphs [3, 4], or computads [11, 12] are structured systems of generators for ∞ -categories, extending the familiar notion of presentation by generators and relations beyond monoids or groups, and have recently proved extremely well-adapted to higher-dimensional rewriting [6, 7].

They also lead to a simple definition of a homology for ∞ -categories [8, 10], based on the following construction: a *polygraphic resolution* of an ∞ -category C is a pair (S, p) where

- S is a polygraph, generating a free ∞ -category S^* ;
- the morphism $p: S^* \to C$ is a trivial fibration (see 6.1).

S gives rise to an chain complex $\mathbb{Z}S$, whose homology only depends on C, so that we may define a polygraphic homology by

$$\mathrm{H}^{\mathrm{pol}}_{*}(C) =_{\mathrm{def}} \mathrm{H}_{*}(\mathbb{Z}S).$$

Here the main property of free ∞ -categories is that they are *cofibrant*. In other words, given a polygraph S and a trivial fibration $p: D \to C$, any morphism $f: S^* \to C$ lifts to a morphism $g: S^* \to C$:

The main purpose of the present work is to prove the converse, namely that all cofibrant ∞ -categories are freely generated by polygraphs, thus establishing a simple, abstract characterization of the free objects, otherwise defined by a rather complex inductive construction.

Received January 12, 2007, revised December 8, 2007; published on February 20, 2008. 2000 Mathematics Subject Classification: 18D05.

Key words and phrases: n-category, polygraph, fibration, cofibration.

This article is available at http://intlpress.com/HHA/v10/n1/a7

Copyright © 2008, International Press. Permission to copy for private use granted.

We first review the basic categories in play (Sections 2 to 4): Glob, Cat_{∞} and **Pol** stand respectively for the category of globular sets, ∞ -categories and polygraphs. Section 5 investigates the technical notion of context, which we need later on. Section 6 defines trivial fibrations, cofibrations, and shows that the free ∞ -categories are cofibrant. We then turn to the main result, proving that cofibrant ∞ -categories are free (Section 7). Here the keypoint is that the full subcategory of Cat_{∞} whose objects are freely generated by polygraphs is Cauchy-complete, which means that its idempotent endomorphisms split. The Cauchy-completeness argument is the essential part of this work and will be easier to follow if we keep in mind the simpler case of monoids: thus, let **Mon** denote the category of monoids, and **Fmon** the full subcategory of **Mon** whose objects are the free monoids. A submonoid of a free monoid is not necessarily free itself: consider for example the submonoid of $(\mathbb{N}, +)$ generated by $\{2,3\}$. However, if $M = S^*$ is the free monoid on the alphabet S and $h: M \to M$ is an *idempotent* endomorphism of M, then the submonoid $Fix(h) = \{m \in M \mid h(m) = m\}$ of fixpoints of h is free, which easily leads to a splitting of h in **Fmon**, hence to the fact that **Fmon** is Cauchy-complete. The idea is to find a set of generators of Fix(h)without non-trivial relations in M. A simple way to build such a set is by considering the subset $S_1 \subset S$ of those $s \in S$ such that h(s) = usv where h(u) = h(v) = 1. Then we define $T = \{h(s) \mid s \in S_1\}$. It turns out that the obvious inclusion $T^* \to M$ sends T^* isomorphically to Fix(h), as shown by the existence of a retraction $M \to T^*$. Now the same ideas carry into higher dimensions, with ∞ -categories instead of monoids and polygraphs instead of generating sets, but the general case involves additional technicalities, due to the presence of higher-dimensional compositions.

Let us finally point out that our cofibrant ∞ -categories are actually the cofibrant objects in a Quillen model structure on \mathbf{Cat}_{∞} recently discovered by Yves Lafont, Krzysztof Worytkiewicz and the author [9].

2. Globular sets

Let **O** be the small category defined as follows:

- the objects of **O** are integers 0, 1, ...;
- the arrows are generated by composition of $s_n, t_n \colon n \to n+1, n \in \mathbb{N}$ subject to the following equations

$$s_{n+1} \circ s_n = t_{n+1} \circ s_n,$$

$$s_{n+1} \circ t_n = t_{n+1} \circ t_n.$$

As a consequence, $\mathbf{O}(m, n)$ has exactly two elements if m < n, namely $\mathbf{s}_{m,n} = \mathbf{s}_{n-1} \circ \cdots \circ \mathbf{s}_m$ and $\mathbf{t}_{m,n} = \mathbf{t}_{n-1} \circ \cdots \circ \mathbf{t}_m$. $\mathbf{O}(m, n) = \emptyset$ if m > n, and contains the unique element id_m if m = n.

Definition 2.1. A *globular set* is a presheaf on **O**.

In other words, a globular set is a functor from \mathbf{O}^{op} to **Sets**. Globular sets and natural transformations form a category **Glob**. The Yoneda embedding

$$\mathbf{O} \to \mathbf{Glob}$$

takes each integer n to the standard globe O[n]. We still denote by $s_n, t_n: O[n] \rightarrow O[n+1]$ the morphisms of globular sets representing the corresponding arrows from n to n+1.

Let X be a globular set and p an integer, the set X(p) will be denoted by X_p , and its elements called *cells of dimension* p or p-cells. Hence O[n] has exactly two p-cells for p < n, exactly one n-cell, and no p-cells for p > n. Let $\partial O[n]$ be the globular set with the same cells as O[n] except for $(\partial O[n])_n = \emptyset$, and

$$\mathbf{i}_n : \partial O[n] \to O[n]$$

the canonical injection: $\partial O[n]$ has two *p*-cells for p < n and no other cells. We denote by σ_n and τ_n the maps $X(\mathbf{s}_n)$ and $X(\mathbf{t}_n)$ respectively. Hence a double sequence of maps

$$\sigma_n, \tau_n \colon X_n \coloneqq X_{n+1}$$

satisfying the boundary conditions:

$$\sigma_n \circ \sigma_{n+1} = \sigma_n \circ \tau_{n+1},$$

$$\tau_n \circ \sigma_{n+1} = \tau_n \circ \tau_{n+1}.$$

If m < n, we set $\sigma_{m,n} = \sigma_m \circ \cdots \circ \sigma_{n-1}$ and $\tau_{m,n} = \tau_m \circ \cdots \circ \tau_{n-1}$. Let $0 \leq i < n$, we say that the *n*-cells $x, y \in X_n$ are *i*-composable if $\tau_{i,n}x = \sigma_{i,n}y$, a relation we denote by $x \triangleright_i y$.

Now let X be a globular set, Yoneda's lemma yields a natural equivalence

$$X_n \cong \mathbf{Glob}(O[n], X). \tag{1}$$

If $u \in X_n$ and $\sigma_{n-1}(u) = x$, $\tau_{n-1}(u) = y$, x and y are respectively the *source* and the *target* of u, which we simply denote by $u: x \to y$. Likewise, if $\sigma_{i,n}u = x$ and $\tau_{i,n}u = y$, we shall write $u: x \to_i y$. In case $u: x \to y$ and $v: x \to y$, we say that u, v are *parallel*, which we denote by $u \parallel v$:

Any two 0-cells are also considered to be parallel. Let $X_n^{"}$ denote the set of ordered pairs of parallel *n*-cells in X. We get a natural equivalence

$$X_n^{\scriptscriptstyle \parallel} \cong \mathbf{Glob}(\partial O[n+1], X) \tag{2}$$

similar to (1). The equivalences (1) and (2) assert that, for each n, the functors $X \mapsto X_n$ and $X \mapsto X_n^{"}$ from **Glob** to **Sets** are representable, the representing objects being respectively O[n] and $\partial O[n+1]$.

For each integer n, let \mathbf{O}_n denote the full subcategory of \mathbf{O} whose objects are $0, \ldots, n$. The presheaves on \mathbf{O}_n are the *n*-globular sets, and form a category we denote by \mathbf{Glob}_n . For each n < m, the inclusion $\mathbf{O}_n \to \mathbf{O}_m$ induces a truncation functor from \mathbf{Glob}_m to \mathbf{Glob}_n . Likewise, we get a truncation functor from \mathbf{Glob}_n . Compared to \mathbf{Glob}_n .

3. ∞ -categories

Recall that an ∞ -category is a globular set C endowed with

- a product $u *_{n-1} v : x \to z$ defined for all $u : x \to y$ and $v : y \to z$ in C_n ;
- a product $u *_i v : x *_i y \to z *_i t$ defined for all $u : x \to z$ and $v : y \to t$ in C_n with i < n-1 and $u \triangleright_i v$;
- a unit $1_{n+1}(x): x \to x$ defined for all $x \in C_n$.

These operations satisfy the conditions of *associativity*, *left and right unit*, *composition* of units and exchange:

- $(x *_i y) *_i z = x *_i (y *_i z)$ for all $x \triangleright_i y \triangleright_i z$ in C_n with i < n;
- $1_{n,i}(x) *_i u = u = u *_i 1_{n,i}(y)$ for all $u: x \to_i y$ in C_n with i < n, where $1_{n,i} = 1_n \circ 1_{n-2} \circ \cdots \circ 1_{i+1}$;
- $1_{n+1}(x *_i y) = 1_{n+1}(x) *_i 1_{n+1}(y)$ for all $x, y \in C_n$ with i < n and $x \triangleright_i y$;
- $(x *_i y) *_j (z *_i t) = (x *_j z) *_i (y *_j t)$ for all $x, y, z, t \in C_n$ with i < j < n and $x \triangleright_i y, x \triangleright_j z, y \triangleright_j t$.

Let C, D be ∞ -categories. A morphism $f: C \to D$ is a morphism of the underlying globular sets preserving units and products. ∞ -categories and morphisms build a category \mathbf{Cat}_{∞} , and there is a forgetful functor

$$\mathcal{U}\colon \mathbf{Cat}_{\infty}\to \mathbf{Glob}.$$

Its left adjoint $\operatorname{Glob} \to \operatorname{Cat}_{\infty}$ associates to each globular set X the free ∞ -category X^* generated by it. From this adjunction and the natural equivalences (1) and (2) we get

$$C_n \cong \mathbf{Cat}_{\infty}(O[n]^*, C), \tag{3}$$

$$C_n^{\scriptscriptstyle (l)} \cong \operatorname{Cat}_{\infty}(\partial O[n+1]^*, C).$$

$$\tag{4}$$

Note that **Glob** is a topos of presheaves and that the functor \mathcal{U} is finitary monadic over **Glob**. Hence \mathbf{Cat}_{∞} is complete and cocomplete, and we shall take limits and colimits in \mathbf{Cat}_{∞} without further explanations (see also [1, 2, 13]).

Likewise, an *n*-globular set endowed with products and units as above, up to dimension n, determines an *n*-category; *n*-categories and morphisms build a category **Cat**_n. As in the case of globular sets, we get a truncation functor

$$\mathcal{T}_n^m \colon \mathbf{Cat}_m o \mathbf{Cat}_n$$

whenever n < m, and likewise

$$\mathcal{T}_n^\infty \colon \mathbf{Cat}_\infty \to \mathbf{Cat}_n$$

Remark that $\mathbf{Cat}_0 = \mathbf{Sets}$ whereas \mathbf{Cat}_1 amounts to the category of small categories. Now \mathcal{T}_n^m admits a left adjoint $\mathcal{F}_n^m \dashv \mathcal{T}_n^m$, for $0 \leq n < m \leq \infty$, which simply extends the *n*-category *C* by adding units in all dimensions *k* for $n < k \leq m$:

$$\mathcal{F}_n^m C \colon C_0 \rightleftharpoons \cdots \rightleftharpoons C_n \rightleftharpoons C_n \rightleftharpoons \cdots$$
.

In particular, if C is an ∞ -category and n an integer, we may define the *n*-skeleton of C by

$$C^{(n)} = \mathcal{F}_n^\infty \mathcal{T}_n^\infty C.$$

It will be convenient to extend this notation by setting $C^{(-1)} = 0$, the initial ∞ category with no cells. There is a canonical inclusion

$$j^{(n)}: C^{(n)} \to C^{(n+1)}.$$

Here again $j^{(-1)}$ denotes the unique morphism $0 \to C^{(0)}$. The following result is then an easy consequence of the definitions:

Lemma 3.1. Any ∞ -category C is the colimit of its n-skeleta:

$$C^{(-1)} \xrightarrow{j^{(-1)}} C^{(0)} \xrightarrow{j^{(0)}} \cdots \xrightarrow{j^{(n-1)}} C^{(n)} \xrightarrow{j^{(n)}} \cdots$$

4. Polygraphs

We recall the construction of polygraphs, following the presentation of [4].

4.1. Attaching cells

Let us first define a category \mathbf{Cat}_n^+ of *n*-categories with attached additional *n*+1-cells:

• objects of Cat_n^+ are pairs (C, G) where C is an n-category and G is a graph $\sigma_n, \tau_n: C_n \coloneqq S_{n+1}$ such that σ_n, τ_n satisfy the boundary conditions

$$\sigma_{n-1} \circ \sigma_n = \sigma_{n-1} \circ \tau_n,$$

$$\tau_{n-1} \circ \sigma_n = \tau_{n-1} \circ \tau_n;$$

• if $C^+ = (C, C_n \rightleftharpoons S_{n+1})$ and $D^+ = (D, D_n \rightleftharpoons T_{n+1})$ are objects of \mathbf{Cat}_n^+ , then a morphism $f \in \mathbf{Cat}_n^+(C^+, D^+)$ is a pair (g, u) where $g \in \mathbf{Cat}_n(C, D)$ and u is a map $S_{n+1} \to T_{n+1}$ such that (g_n, u) is a morphism of graphs; that is

$$g_n \circ \sigma_n = \sigma_n \circ u,$$

$$g_n \circ \tau_n = \tau_n \circ u.$$

Let $C^+ = (C, G)$ be an object of \mathbf{Cat}_n^+ ; the first projection $(C, G) \mapsto C$ determines a functor

$$\mathcal{A}_n \colon \mathbf{Cat}_n^+ \to \mathbf{Cat}_n.$$

On the other hand there is a functor

$$\mathcal{R}_n \colon \mathbf{Cat}_{n+1} o \mathbf{Cat}_n^+$$

taking the n+1-category C to the pair $(\mathcal{T}_n^{n+1}C, C_n \succeq C_{n+1})$: \mathcal{R}_n forgets all information about compositions and identities in dimension n+1, keeping only the set C_{n+1} of n+1-cells with their respective sources and targets in C_n . Clearly

$$\mathcal{A}_n \mathcal{R}_n = \mathcal{T}_n^{n+1}$$

Now the key fact is that \mathcal{R}_n admits a left-adjoint

$$\mathcal{L}_n \colon \mathbf{Cat}_n^+ \to \mathbf{Cat}_{n+1}.$$

For example, \mathbf{Cat}_0^+ is the category of graphs and \mathcal{L}_0 associates to each graph the free category it generates. It is convenient to extend our notation by defining \mathbf{Cat}_{-1}^+

as $\operatorname{Cat}_0(=\operatorname{Sets})$ and \mathcal{L}_{-1} as the identity functor. Let us describe \mathcal{L}_n in some detail. Given $C^+ = (C, C_n \rightleftharpoons S_{n+1})$ in Cat_n^+ , we first define a formal language \mathbf{E} consisting of:

- a constant \mathbf{c}_{α} for each $\alpha \in S_{n+1}$, and a constant \mathbf{i}_c for each $c \in C_n$;
- a binary function symbol \star_i for each $i \in \{1, \ldots, n\}$.

Thus **E** is the smallest set of expressions containing all constants and having the property that $(e \star_i f) \in \mathbf{E}$ whenever $e \in \mathbf{E}$, $f \in \mathbf{E}$ and $0 \leq i \leq n$. A type is an ordered pair (x, y) of parallel cells in C_n , denoted in this context by $x \to y$. For any $e \in \mathbf{E}$, and type $x \to y$, the relation

$$e: x \to y,$$

which reads "e has type $x \to y$ ", is defined inductively by the following conditions:

- for each $\alpha \in S_{n+1}$, $\mathbf{c}_{\alpha} : \sigma_n \alpha \to \tau_n \alpha$;
- for each $c \in C_n$, $\mathbf{i}_c : c \to c$;
- if $e: x \to y$ and $f: y \to z$, then $(e \star_n f): x \to z$;
- if $e: x \to y$, $f: z \to t$ and $x \triangleright_i z$, then $(e \star_i f): x \star_i z \to y \star_i t$, for $0 \leq i < n$.

An expression e is typable if there is at least one type $x \to y$ such that $e: x \to y$. Let \mathbf{E}_T be the subset of \mathbf{E} consisting of typable expressions. A key feature of this type system is that any typable expression has at most one type: in fact, structural induction shows that whenever $e: x \to y$ and $e: x' \to y'$ then x' = x and y' = y. As a consequence, there are unique maps $\sigma, \tau: \mathbf{E}_T \to C_n$ such that $\sigma(\mathbf{c}_\alpha) = \sigma_n(\alpha)$ and $\tau(\mathbf{c}_\alpha) = \tau_n(\alpha)$ for each $\alpha \in S_{n+1}$, and $e: \sigma(e) \to \tau(e)$ for each $e \in \mathbf{E}_T$. By composition with the maps σ_i and τ_i for i < n, we get maps $\sigma_{i,n+1}, \tau_{i,n+1}: \mathbf{E}_T \to C_i$, so that we may still define a relation \triangleright_i on \mathbf{E}_T by $e \triangleright_i f$ if and only if $\tau_{i,n+1}(e) = \sigma_{i,n+1}(f)$. We define a relation $e \sim f$ on typable expressions by the following conditions:

- $(e \star_i (f \star_i g)) \sim ((e \star_i f) \star_i g)$ if $e \triangleright_i f \triangleright_i g$ in \mathbf{E}_T ;
- $(\mathbf{i}_c \star_n e) \sim e$ if $e \in \mathbf{E}_T$, $c \in C_n$ and $\sigma(e) = c$. Likewise $(e \star_n \mathbf{i}_c) \sim e$ if $\tau(e) = c$;
- $\mathbf{i}_{c*,d} \sim (\mathbf{i}_c \star_i \mathbf{i}_d)$ if $c, d \in C_n, 0 \leq i < n$ and $c \triangleright_i d$;
- $((e \star_j f) \star_i (g \star_j h)) \sim ((e \star_i g) \star_j (f \star_i g))$ if $e \triangleright_j f$, $g \triangleright_j h$, $e \triangleright_i g$ and $0 \leq i < j \leq n$.

Let us denote by \cong the congruence generated by ~ on \mathbf{E}_T , and define

$$S_{n+1}^* = \mathbf{E}_T / \cong$$
.

The canonical surjection $\mathbf{E}_T \to S_{n+1}^*$, $e \mapsto \langle e \rangle$ satisfies the expected compatibility conditions:

- $\sigma(e)$, $\tau(e)$ only depend on $\langle e \rangle$; whence the relation $e \triangleright_i f$ only depends on $\langle e \rangle$ and $\langle f \rangle$;
- $\langle (e \star_i f) \rangle$ only depends on $\langle e \rangle$ and $\langle f \rangle$.

Therefore, we may define $\langle e \rangle *_i \langle f \rangle = \langle (e \star_i f) \rangle$ if $e \triangleright_i f$, $\sigma_n(\langle e \rangle) = \sigma(e)$, $\tau_n(\langle e \rangle) = \tau(e)$ and $1_{n+1}(c) = \langle \mathbf{i}_c \rangle$ for $e \in \mathbf{E}_T$ and $c \in C_n$. We finally set

$$\mathcal{L}_n C^+ =_{\operatorname{def}} C_0 \coloneqq C_1 \coloneqq \cdots \coloneqq C_n \coloneqq S_{n+1}^*.$$

We leave it as an exercise to check that all axioms of n+1-categories are satisfied and that the above construction acts on morphisms, making \mathcal{L}_n a functor from \mathbf{Cat}_n to \mathbf{Cat}_{n+1} . Clearly

$$\mathcal{T}_n^{n+1}\mathcal{L}_n = \mathcal{A}_n.$$

Moreover, there is a natural transformation

$$g_{C^+} \colon C^+ \to \mathcal{R}_n \mathcal{L}_n C^+$$

such that $\eta_{C^+} = (\eta_{C^+}^1, \eta_{C^+}^2)$ where $\eta_{C^+}^1$ is the identity on C and $\eta_{C^+}^2 : S_{n+1} \to S_{n+1}^*$ is $\alpha \mapsto \langle \mathbf{c}_{\alpha} \rangle$. Note that $\eta_{C^+}^2$ is injective. By construction, \mathcal{L}_n satisfies the universal property of Lemma 4.1 below; whence $\mathcal{L}_n \dashv \mathcal{R}_n$.

Lemma 4.1. Let $C^+ = (C, C_n \rightleftharpoons S_{n+1})$ in Cat_n^+ , D an n+1-category and

$$f = (g, u) : C^+ \to \mathcal{R}_n D$$

a morphism in \mathbf{Cat}_n^+ . There is a unique map $u^* : S_{n+1}^* \to D_{n+1}$ satisfying the following properties:

- $u^* \circ \eta_{C^+}^2 = u;$
- there is an $f^* \in \operatorname{Cat}_{n+1}(\mathcal{L}_n C^+, D)$ such that $\mathcal{T}_n^{n+1} f^* = g$ and $f_{n+1}^* = u^*$.

4.2. The category of polygraphs

We now define the category \mathbf{Pol}_n of *n*-polygraphs by induction on *n*. Precisely we define \mathbf{Pol}_n together with a functor

$$\mathcal{J}_n \colon \mathbf{Pol}_n o \mathbf{Cat}_{n-1}^+$$

- \mathbf{Pol}_0 is just **Sets**, and \mathcal{J}_0 is the identity functor;
- Suppose $\mathcal{J}_n: \operatorname{\mathbf{Pol}}_n \to \operatorname{\mathbf{Cat}}_{n-1}^+$ has been defined. An n+1-polygraph is a pair $S = (S', C^+)$ where S' is an n-polygraph and C^+ an object of $\operatorname{\mathbf{Cat}}_n^+$ such that $\mathcal{A}_n C^+ = \mathcal{L}_{n-1} \mathcal{J}_n S'$. We set $\mathcal{J}_{n+1} S = C^+$. If $S = (S', C^+)$ and $T = (T', D^+)$, a morphism $f: S \to T$ of n+1-polygraphs is a pair (f', u) where $f' \in \operatorname{\mathbf{Pol}}_n(S', T')$, $u \in \operatorname{\mathbf{Cat}}_n^+(C^+, D^+)$ and $\mathcal{A}_n u = \mathcal{L}_{n-1} \mathcal{J}_n f'$.

We denote by \mathcal{I}_n^{n+1} : $\operatorname{Pol}_{n+1} \to \operatorname{Pol}_n$ the first projection $(S', C^+) \mapsto S'$. The following commutative diagram summarizes the induction step:

$$\begin{array}{c|c} \mathbf{Pol}_{n+1} \xrightarrow{\mathcal{J}_{n+1}} \mathbf{Cat}_{n}^{+} \xrightarrow{\mathcal{L}_{n}} \mathbf{Cat}_{n+1} \\ \hline \mathcal{I}_{n}^{n+1} & & & & \\ \mathbf{Pol}_{n} \xrightarrow{\mathcal{J}_{n}} \mathbf{Cat}_{n-1}^{+} \xrightarrow{\mathcal{L}_{n-1}} \mathbf{Cat}_{n}. \end{array}$$

Let $Q_n = \mathcal{L}_{n-1} \mathcal{J}_n$; the above commutation yields

$$\mathcal{T}_n^{n+1}\mathcal{Q}_{n+1} = \mathcal{Q}_n \mathcal{I}_n^{n+1}.$$
(5)

We define, by induction on $n \ge 0$, a functor $\mathcal{P}_n \colon \mathbf{Cat}_n \to \mathbf{Pol}_n$, right-adjoint to \mathcal{Q}_n :

- for n = 0, \mathcal{P}_0 and \mathcal{Q}_0 are both the identity functor on $\mathbf{Pol}_0 = \mathbf{Cat}_0 = \mathbf{Sets}$;
- suppose $Q_n \dashv P_n$, and let D be an n+1-category. $D' = \mathcal{T}_n^{n+1}D$ is an n-category and by induction hypothesis, we get an n-polygraph $S' = Q_n D'$. Moreover, the counit of the adjunction yields a morphism of n-categories

$$\epsilon \colon \mathcal{Q}_n \mathcal{P}_n D' \to D',$$

whose n-th component is a map

$$\epsilon_n \colon S'^*_n \to D'_n$$

Now $\mathcal{P}_{n+1}D$ is by definition the polygraph $S = (S', C^+)$, where

$$C^+ = (\mathcal{Q}_n S', S_n'^* \coloneqq S_{n+1})$$

and S_{n+1} is the set of triples $(z, x, y) \in D_{n+1} \times S'^*_n \times S'^*_n$ such that $x \parallel y$ and $z \colon \epsilon_n(x) \to \epsilon_n(y)$. The source and target of (z, x, y) are x and y, respectively. Likewise, \mathcal{P}_{n+1} acts on morphisms: we refer to [10] for details, and a complete proof that $\mathcal{Q}_{n+1} \dashv \mathcal{P}_{n+1}$.

Remark that, by construction,

$$\mathcal{I}_n^{n+1}\mathcal{P}_{n+1} = \mathcal{P}_n \mathcal{T}_n^{n+1}.$$
(6)

Definition 4.2. A polygraph S is a sequence $(S^n)_{n \in \mathbb{N}}$ such that, for each $n \ge 0$, S^n is an *n*-polygraph and $\mathcal{I}_n^{n+1}S^{n+1} = S^n$.

Likewise, if S and T are polygraphs, a morphism $f: S \to T$ amounts to a sequence $(f^n)_{n \in \mathbb{N}}$ such that $f^n: S^n \to T^n$ is a morphism of *n*-polygraphs and $\mathcal{I}_n^{n+1}f^{n+1} = f^n$. Polygraphs and morphisms build a category **Pol**. For each polygraph S, let $\mathcal{I}_n^{\infty}S = S^n$, making \mathcal{I}_n^{∞} a functor from **Pol** to **Pol**_n. From (5), (6) and $\mathcal{Q}_n \dashv \mathcal{P}_n$, we get a pair of adjoint functors

$$\mathcal{Q} \colon \mathbf{Pol} \to \mathbf{Cat}_{\infty}, \mathcal{P} \colon \mathbf{Cat}_{\infty} \to \mathbf{Pol},$$

such that, for each $n \ge 0$,

$$\mathcal{T}_n^\infty \mathcal{Q} = \mathcal{Q}_n \mathcal{I}_n^\infty$$

and

$$\mathcal{I}_n^{\infty}\mathcal{P}=\mathcal{P}_n\mathcal{T}_n^{\infty}.$$

Thus, we may summarize the above construction by using the following less explicit, but simpler notation:

- a 0-polygraph is a set S_0 , generating the 0-category (i.e. set) $S_0^* = S_0$;
- given an *n*-polygraph S_0 , $S_0^* \coloneqq S_1, \ldots, S_{n-1}^* \vDash S_n$ with the free *n*-category $S_0^* \coloneqq \ldots \coloneqq S_n^*$ it generates, an *n*+1-polygraph is determined by a graph

$$\sigma_n, \tau_n \colon S_n^* \coloneqq S_{n+1}$$

satisfying the boundary conditions, and the free n+1-category generated by it is $S_0^* \models S_1^* \models \cdots S_n^* \models S_{n+1}^*$;

• a polygraph S is an infinite sequence $S_0, S_0^* \rightleftharpoons S_1, \ldots, S_{n-1}^* \rightleftharpoons S_n \ldots$ such that for each $p, S_0, \ldots, S_{p-1}^* \rightleftharpoons S_p$ is a p-polygraph.

Likewise, a morphism $f: S \to T$ between polygraphs S, T amounts to a sequence of maps $f_n: S_n \to T_n$ such that for all $\xi: x \to y$ in $S_n, f_n(\xi): f_{n-1}^*(x) \to f_{n-1}^*(y)$, where f_n^* is the unique extension of f_n which is compatible with products and units. From now on, for any polygraph S, we set $S^* = QS$. We call generators of dimension n, or *n*-generators, the elements of S_n . Each $\alpha \in S_n$ generates an *atomic n*-cell $\alpha^* \in S_n^*$ (see 4.1).

Remark that any globular set X can be viewed as a particular polygraph and that this identification makes **Glob** a full subcategory of **Pol**. Moreover the free ∞ -category generated by a globular set is the same as the free ∞ -category generated by the corresponding polygraph. However most free ∞ -categories generated by polygraphs cannot be generated by globular sets alone.

For instance the globular sets O[n] and $\partial O[n]$ can be viewed as polygraphs, and generate ∞ -categories $O[n]^*$ and $\partial O[n]^*$. Remark that in this case, the free construction does not create new non-identity cells. Therefore, in the sequel, we drop the "*" in the notation of these ∞ -categories. Likewise, i_n will denote a morphism of globular sets, polygraphs, or ∞ -categories according to the context.

Let $C^+ = (C, C_n \rightleftharpoons S_{n+1})$ in Cat_n^+ ; the *n*+1-category $\mathcal{L}_n C^+$ has the same *n*-cells as *C*, hence an inclusion morphism $j: \mathcal{F}_n^{\infty} C \to \mathcal{F}_{n+1}^{\infty} \mathcal{L}_n C^+$. Each generator $\alpha \in S_{n+1}$ gives an *n*+1-cell in $\mathcal{L}_n C^+$, whose source and target give parallel *n*-cells in *C*. Hence by (3) and (4), we get two morphisms

$$\rho\colon \sum_{S_{n+1}} \partial O[n+1] \to \mathcal{F}_n^{\infty} C$$

and

$$\chi: \sum_{S_{n+1}} O[n+1] \to \mathcal{F}_{n+1}^{\infty} \mathcal{L}_n C^+,$$

making the following diagram commutative:

$$\begin{array}{c|c}
\sum_{S_{n+1}} \partial O[n+1] \xrightarrow{\rho} \mathcal{F}_{n}^{\infty} C \\
\sum_{S_{n+1}} i_{n+1} & & & \downarrow j \\
\sum_{S_{n+1}} O[n+1] \xrightarrow{\chi} \mathcal{F}_{n+1}^{\infty} \mathcal{L}_{n} C^{+}
\end{array}$$

Now Lemma 4.1 implies that the above square is a pushout. In the particular case where S is a polygraph, $C = (S^*)^{(n)}$ and $C^+ = (C, S_n^* \rightleftharpoons S_{n+1})$, we get the following result:

Lemma 4.3. The diagram

is a pushout in Cat_{∞} .

4.3. Linearization

Let $n \ge 1$ and C an n-1-category. Given an abelian monoid (A, +), we may extend C to an n-category $D = A \ltimes C$, as follows:

- $\mathcal{T}_{n-1}^n D = C$; that is, D coincides with C up to dimension n-1;
- $D_n = A \times C_{n-1}^{"}$, with $(a, (x, y)) : x \to y$ for each $a \in A$ and each pair (x, y) of parallel cells in C_{n-1} ;
- let $x \parallel y \parallel z$ in C_{n-1} , and a, b in A, the composition $(a, (x, y)) *_{n-1} (b, (y, z))$ is by definition (a + b, (x, z));
- let u = (a, (x, y)), v = (b, (z, t)) in D_n and $i \in \{0, \ldots, n-2\}$ such that $u \triangleright_i v$. This implies $x \triangleright_i z$ and $y \triangleright_i t$ (in C), so that $x *_i z \parallel y *_i t$ and we may define $u *_i v = (a + b, (x *_i z, y *_i t));$
- for each $x \in C_{n-1}$, $1_n(x) = (0, (x, x))$.

We leave it as an exercise to check the axioms of *n*-categories on $A \ltimes C$.

Let S be a polygraph; we apply the above construction to the particular case where $C = \mathcal{T}_{n-1}^{\infty}S^*$ and A is the free abelian group $\mathbb{Z}S_n$ on S_n . To each generator $\alpha \in S_n$ corresponds a generator $\tilde{\alpha}$ of $\mathbb{Z}S_n$. Elements of $\mathbb{Z}S_n$ are thus of the form

$$a = \sum_{\alpha \in S_n} n_\alpha \tilde{\alpha}$$

where $n_{\alpha} \in \mathbb{Z}$ and all but a finite number of coefficients are zero. Let $D = A \ltimes C$. There is a map $S_n \to D_n$, given by $\alpha \mapsto (\tilde{\alpha}, (x, y))$ for each *n*-generator $\alpha \colon x \to y$, which in turn determines a morphism $f \colon (C, S_{n-1}^* \rightleftharpoons S_n) \to \mathcal{R}_{n-1}D$ in \mathbf{Cat}_{n-1}^+ . Thus Lemma 4.1 applies, and we get a morphism

$$f^*: \mathcal{T}_n^\infty S^* \to D$$

in \mathbf{Cat}_n , whence a unique linearization map

$$\lambda \colon S_n^* \to \mathbb{Z}S_n$$

satisfying the following properties:

- for each $\alpha \in S_n$, $\lambda(\alpha^*) = \tilde{\alpha}$;
- if $0 \leq i \leq n-1$ and $x \triangleright_i y$ in S_n^* , then $\lambda(x *_i y) = \lambda(x) + \lambda(y)$;
- for each $x \in S_{n-1}^*$, $\lambda(1_n(x)) = 0$.

Now, for each $x \in S_n^*$, $\lambda(x)$ has a unique expression of the form

$$\lambda(x) = \sum_{\alpha \in S_n} \mathbf{w}_{\alpha}(x)\tilde{\alpha},\tag{7}$$

where $w_{\alpha}(x) \in \mathbb{Z}$ (in fact $w_{\alpha}(x) \in \mathbb{N}$). Note that for each fixed n, the correspondence $S^* \mapsto \mathbb{Z}S_n$ is functorial. Precisely, let \mathbf{Fcat}_{∞} be the full subcategory of \mathbf{Cat}_{∞} whose objects are of the form S^* , where S is a polygraph. To each morphism $u: S^* \to T^*$ corresponds a linear map $\tilde{u}_n: \mathbb{Z}S_n \to \mathbb{Z}T_n$. As identities and compositions are preserved, we get a functor from \mathbf{Fcat}_{∞} to the category \mathbf{Ab} of abelian groups, and by composing with the forgetful functor $\mathbf{Ab} \to \mathbf{Sets}$, also a functor $\mathcal{Z}: \mathbf{Fcat}_{\infty} \to \mathbf{Sets}$. Now there is a functor $\mathcal{Y}: \mathbf{Fcat}_{\infty} \to \mathbf{Sets}$ which associates to each S^* the set S_n^* of its *n*-cells. Here a useful observation is that linearization gives rise to a natural

transformation from \mathcal{Y} to \mathcal{Z} : let S, T be polygraphs, $u \in \mathbf{Fcat}_{\infty}(S^*, T^*)$, and λ_S, λ_T the respective linearization maps, the following diagram commutes:

In particular, for each *n*-cell x in S_n^* , we get

$$\lambda_T(u_n(x)) = \sum_{\alpha \in S_n} w_\alpha(x) \lambda_T(u_n(\alpha^*)).$$
(8)

We call $w_{\alpha}(x)$ the weight of x at α . As a consequence of (8), for each $x \in S_n^*$ and each generator $\beta \in T_n$,

$$\mathbf{w}_{\beta}(u_n(x)) = \sum_{\alpha \in S_n} \mathbf{w}_{\alpha}(x) \mathbf{w}_{\beta}(u_n(\alpha^*)).$$
(9)

As only finitely many of the coefficients $w_{\alpha}(x)$ are non-zero, we may define the *total* weight of x as the non-negative integer

$$\mathbf{w}(x) = \sum_{\alpha \in S_n} \mathbf{w}_{\alpha}(x).$$

Looking back at the construction of \mathcal{L}_n via formal expressions, we note that $w_{\alpha}(x)$ is also the number of occurrences of the symbol \mathbf{c}_{α} in any expression representing x. Likewise, if w(x) = 0, there is a unique $x' \in S_{n-1}^*$ such that $x = 1_n(x')$, and more generally, a unique choice of k < n and $x'' \in S_k^*$ such that $x = 1_{n,k}(x'')$ and w(x'') > 0.

5. Contexts

This purely technical section introduces contexts, a convenient way to formulate the two results we shall need later, namely equation (11) and Lemma 5.6.

5.1. Indeterminates

Let C be an ∞ -category, and $n \ge 1$. Recall from Section 4.1 that an *n*-type on C is an ordered pair (x, y) of parallel cells in C_{n-1} , that is an element of $C_{n-1}^{"}$. The type of an *n*-cell $x \in C_n$ is the pair $(\sigma_{n-1}x, \tau_{n-1}x)$. Hence the type of an *n*-cell is a particular *n*-type. Let S be a polygraph, $n \ge 1$, and $\xi = (x, y)$ an *n*-type on S^{*}. We build a new polygraph $T = S[\xi]$ by adjoining ξ as a new *n*-generator. Precisely, T coincides with S up to dimension n-1, $T_n = S_n + \{\xi\}$ and $T_{n-1}^* \rightleftharpoons T_n$ extends $S_{n-1}^* \rightleftharpoons S_n$ by

$$\sigma_{n-1}(\xi) = x,$$

$$\tau_{n-1}(\xi) = y.$$

Thus we get an inclusion map $S_n^* \to T_n^*$. Suppose $j \ge n$ and T has been defined up to dimension j together with an inclusion map $S_j^* \to T_j^*$. We set $T_{j+1} = S_{j+1}$. This yields $T_j^* \rightleftharpoons T_{j+1}$ and by Lemma 4.1, a new inclusion $S_{j+1}^* \to T_{j+1}^*$. Now ξ generates an *n*-cell $\xi^* = \mathbf{x}$ of T^* , which we call an *n*-indeterminate of type ξ on S. We let boldface variables $\mathbf{x}, \mathbf{y}, \ldots$ range over indeterminates.

Definition 5.1. Let **x** be an *n*-indeterminate of type ξ on the polygraph *S*; an *n*-context over **x** is an *n*-cell *u* of $(S[\xi])^*$ such that $w_{\xi}(u) = 1$.

We denote *n*-contexts over **x** by $c[\mathbf{x}]$, $d[\mathbf{x}]$, A context $c[\mathbf{x}]$ is trivial if $c[\mathbf{x}] = \mathbf{x}$. An *n*-cell *z* of S^* is adapted to the context $c[\mathbf{x}]$ if it has the same type as **x**. Any adapted *n*-cell may be substituted to the indeterminate in a given context: let $\mathbf{x} = \xi^*$ be an *n*-indeterminate of type ξ and *z* an adapted *n*-cell. There is a map $u_z: S_n + \{\xi\} \to S_n^*$ defined by $u_z(\alpha) = \alpha^*$ if $\alpha \in S_n$ and $u_z(\xi) = z$. Lemma 4.1 applies and gives a morphism

$$\operatorname{sub}_z \colon (S[\xi])^* \to S^*$$

such that $\operatorname{sub}_z(\mathbf{x}) = z$. Likewise, for each context $c[\mathbf{x}]$ over \mathbf{x} , we define c[z] as $\operatorname{sub}_z(c[\mathbf{x}])$. By applying (8) to sub_z , we get

$$\lambda_S(c[z]) = \lambda_S(z) + \sum_{\alpha \in S_n} \mathbf{w}_\alpha(c[\mathbf{x}])\tilde{\alpha}.$$
 (10)

Let S, T be polygraphs, and $u \in \mathbf{Fcat}_{\infty}(S^*, T^*)$. To each *n*-type $\xi = (x, y)$ in S^* corresponds an *n*-type $\psi = (u(x), u(y))$. Let $\xi^* = \mathbf{x}$ and $\psi^* = \mathbf{y}$. Yet another application of Lemma 4.1 yields a unique morphism

$$\hat{u}\colon (S[\xi])^* \to (T[\psi])^*$$

such that $\hat{u}(\alpha^*) = u(\alpha^*)$ if $\alpha \in S_n$ and $\hat{u}(\mathbf{x}) = \mathbf{y}$. In this situation, we get the following result:

Lemma 5.2. For each n-context $c[\mathbf{x}]$, $\hat{u}(c[\mathbf{x}])$ is an n-context over \mathbf{y} .

Proof. We have to show that $w_{\psi}(\hat{u}(c[\mathbf{x}])) = 1$. By (9),

$$\mathbf{w}_{\psi}(\hat{u}(c[\mathbf{x}])) = \sum_{\alpha \in S_n + \{\xi\}} \mathbf{w}_{\alpha}(c[\mathbf{x}]) \mathbf{w}_{\psi}(\hat{u}_n(\alpha^*))$$

but, for each $\alpha \neq \xi$, $\hat{u}_n(\alpha^*) = u_n(\alpha^*)$ already belongs to T_n^* so that $w_{\psi}(\hat{u}_n(\alpha^*)) = 0$; whence

$$\mathbf{w}_{\psi}(\hat{u}(c[\mathbf{x}])) = \mathbf{w}_{\xi}(c[\mathbf{x}])\mathbf{w}_{\psi}(\hat{u}_{n}(\xi^{*})).$$

By definition $w_{\xi}(c[\mathbf{x}]) = 1$, and $\hat{u}_n(\xi^*) = \psi^*$, so that $w_{\psi}(\hat{u}_n(\xi^*)) = 1$ and we get the result.

We denote by $c^{u}[\mathbf{y}]$ the context $\hat{u}(c[\mathbf{x}])$ just defined. Now for each adapted *n*-cell z in S^* ,

$$u(c[z]) = c^{u}[u(z)].$$
(11)

This amounts to the naturality of the substitution viewed in appropriate categories. In fact, consider the comma category $\mathbf{C} = O[n] \downarrow \mathbf{Fcat}_{\infty}$. Objects of \mathbf{C} may be represented as pairs (S, z) where S is a polygraph and $z \in S_n^*$, whereas a morphism $u: (S, z) \to (T, z')$ is an $u \in \mathbf{Fcat}_{\infty}(S^*, T^*)$ such that u(z) = z'. Now there are two functors $\mathcal{B}, \mathcal{C}: \mathbf{C} \to \mathbf{Fcat}_{\infty}$ given by $\mathcal{B}(S, z) = S^*$ and $\mathcal{C}(S, z) = (S[\xi])^*$, where ξ is the type of z. For each Z = (S, z) in \mathbf{C} , we get $\mathrm{sub}_z: \mathcal{C}Z \to \mathcal{B}Z$. This determines a

natural transformation from \mathcal{C} to \mathcal{B} . Thus for each $u: (S, z) \to (T, u(z))$, the following diagram commutes:

which implies (11).

5.2. Thin contexts

We pay special attention to contexts built on no other atomic *n*-cell but the indeterminate itself.

Definition 5.3. Let **x** be an indeterminate of type ξ on a polygraph S, and $c[\mathbf{x}]$ an *n*-context over **x**. We call $c[\mathbf{x}]$ a *thin context* if $w_{\alpha}(c[\mathbf{x}]) = 0$ for each $\alpha \in S_n$.

Given a polygraph S and x an n-indeterminate on S, we define a family $(\mathbf{C}_{\mathbf{x}}^{\mathbf{x}})_{0 \le i \le n}$ of sets of n-contexts over \mathbf{x} by induction on i:

- $C_0^x = \{x\};$
- $\mathbf{C}_{i}^{\mathbf{x}} = \{a *_{i-1} c[\mathbf{x}] *_{i-1} b \mid c[\mathbf{x}] \in \mathbf{C}_{i-1}^{\mathbf{x}}, a \in S_{n}^{*}, b \in S_{n}^{*}, a \triangleright_{i-1} c[\mathbf{x}] \triangleright_{i-1} b\}$ for each i > 0.

Observe that

- each *n*-context over **x** belongs to $\bigcup_{0 \le i \le n} \mathbf{C}_i^{\mathbf{x}}$;
- each thin *n*-context over **x** belongs to $\bigcup_{0 \le i \le n} \mathbf{C}_i^{\mathbf{x}}$.

In fact the exchange rule allows to perform higher-dimensional compositions outside lower-dimensional ones. Also remark that, if $c[\mathbf{x}] \in \mathbf{C}_i^{\mathbf{x}}$ and $j \ge i$, then, by induction on i,

$$w(\sigma_{j,n}(c[\mathbf{x}])) \geqslant w(\sigma_{j,n}(\mathbf{x})).$$
(12)

Lemma 5.4. If n > 1 and $c[\mathbf{x}]$ is a thin n-context, then there is an n-1-context $\partial c[\mathbf{y}]$ over the indeterminate \mathbf{y} of type $(\sigma_{n-2,n}(\mathbf{x}), \tau_{n-2,n}(\mathbf{x}))$, satisfying the following properties:

- for each adapted n-cell z, $\sigma_{n-1}(c[z]) = \partial c[\sigma_{n-1}(z)];$
- if $\partial c[\mathbf{y}]$ is trivial, then so is $c[\mathbf{x}]$.

Proof. Let $c[\mathbf{x}]$ be a thin *n*-context, with n > 1. The above remarks show that there is an i < n such that $c[\mathbf{x}] \in \mathbf{C}_i^{\mathbf{x}}$. We show, by induction on the least such *i*, the existence of an *n*-1-context $\partial c[\mathbf{y}]$ over \mathbf{y} of type $(\sigma_{n-2,n}(\mathbf{x}), \tau_{n-2,n}(\mathbf{x}))$ satisfying the following properties:

- 1. $\partial c[\mathbf{y}] \in \mathbf{C}_i^{\mathbf{y}};$
- 2. for each adapted *n*-cell z in S^* , $\sigma_{n-1}(c[z]) = \partial c[\sigma_{n-1}(z)]$;
- 3. $\sigma_{i-1,n}(c[\mathbf{x}]) = \sigma_{i-1,n-1}(\partial c[\mathbf{y}])$ and $\tau_{i-1,n}(c[\mathbf{x}]) = \tau_{i-1,n-1}(\partial c[\mathbf{y}])$ if i > 1;
- 4. if $\partial c[\mathbf{y}]$ is trivial, so is $c[\mathbf{x}]$.

If i = 0, then $c[\mathbf{x}] = \mathbf{x}$ and we set $\partial c[\mathbf{y}] = \mathbf{y}$ of the appropriate type, so that conditions 1 to 4 hold. Suppose that i > 0 and the result holds up to i-1. Choose an *n*-context $d[\mathbf{x}] \in \mathbf{C}_{i-1}^{\mathbf{x}}$ and *n*-cells *a*, *b* in S^* such that $a \triangleright_{i-1} d[\mathbf{x}] \triangleright_{i-1} b$ and

$$c[\mathbf{x}] = a *_{i-1} d[\mathbf{x}] *_{i-1} b.$$

As $c[\mathbf{x}]$ is thin, w(a) = w(b) = 0 and there are n-1-cells a', b' such that $a = 1_n(a')$ and $b = 1_n(b')$. By the induction hypothesis we may choose an n-1-context $\partial d[\mathbf{y}] \in \mathbf{C}_{i-1}^{\mathbf{y}}$ satisfying the above conditions. In particular, condition 3 shows that

$$a' \triangleright_{i-1} \partial d[\mathbf{y}] \triangleright_{i-1} b'$$

so that we may define

$$\partial c[\mathbf{y}] = a' *_{i-1} \partial d[\mathbf{y}] *_{i-1} b'.$$
(13)

Conditions 1, 2 and 3 are straightforward. As for condition 4, suppose that $\partial c[\mathbf{y}]$ is trivial: this can only happen if i = 0. Otherwise, $\partial c[\mathbf{y}]$ is given by (13), so that

$$a' *_{i-1} \partial d[\mathbf{y}] *_{i-1} b' = \mathbf{y}. \tag{14}$$

There are unique integers j, k in $\{0, \ldots, n-1\}$, and non-identity cells $a'' \in S_j^*, b'' \in S_k^*$ such that $a' = 1_{n-1,j}(a'')$ and $b' = 1_{n-1,k}(b'')$. Two cases are possible:

- j and k are both $\leq i-1$, in which case a and b are respectively identities on the source and target of $d[\mathbf{x}]$, so that $c[\mathbf{x}] = d[\mathbf{x}]$ and $c[\mathbf{x}] \in \mathbf{C}_{i-1}^{\mathbf{x}}$, a contradiction, because of the minimality of i;
- at least one of j, k is > i-1, say j > i-1. By applying $\sigma_{j,n-1}$ to both members of (14), we get

$$a'' *_{i-1} \sigma_{j,n-1}(\partial d[\mathbf{y}]) *_{i-1} \sigma_{j,n-1}b' = \sigma_{j,n-1}(\mathbf{y}),$$

and by taking the weight (in S_i^*) on both sides,

$$\mathbf{w}(a'') + \mathbf{w}(\sigma_{j,n-1}(\partial d[\mathbf{y}])) + \mathbf{w}(\sigma_{j,n-1}b') = \mathbf{w}(\sigma_{j,n-1}(\mathbf{y})),$$

which, combined with (12), implies w(a'') = 0. This contradicts the hypothesis that a'' is not an identity.

Hence *i* cannot be $\neq 0$, and $c[\mathbf{x}] = \mathbf{x}$.

Lemma 5.5. Let $c[\mathbf{x}]$ be an n-context and z an adapted n-cell. If c[z] = z, then $c[\mathbf{x}]$ is trivial.

Proof. We proceed by induction on the dimension n. If n = 1, all contexts are trivial and we are done. Suppose now n > 1 and the result holds in dimension n-1. Let $c[\mathbf{x}]$ be an n-context and z an adapted n-cell such that

$$c[z] = z. \tag{15}$$

Thus $\lambda_S(c[z]) = \lambda_S(z)$ and because of (10),

$$\sum_{\alpha \in S_n} \mathbf{w}_{\alpha}(c[\mathbf{x}])\tilde{\alpha} = 0.$$

Therefore $c[\mathbf{x}]$ is thin, and by Lemma 5.4 we get an n-1-context $\partial c[\mathbf{y}]$ such that

 $\sigma_{n-1}(c[z]) = \partial c[\sigma_{n-1}(z)]$. Hence, by taking the source on both sides of (15), we get

$$\partial c[\sigma_{n-1}(z)] = \sigma_{n-1}(z).$$

Thus, by the induction hypothesis, $\partial c[\mathbf{y}]$ is trivial and so is $c[\mathbf{x}]$ by Lemma 5.4. \Box

Lemma 5.6. Let $c[\mathbf{x}]$ be a thin n-context, and z an adapted n-cell. If c[z] is parallel to z, then c[z] = z.

Proof. Suppose $c[\mathbf{x}]$ is a thin *n*-context, and *z* is an adapted *n*-cell such that $c[z] \parallel z$. If n = 1, then thin contexts are trivial and the result is immediate. Otherwise, n > 1 and by Lemma 5.4, there is an *n*-1-context $\partial c[\mathbf{y}]$ such that $\sigma_{n-1}(c[z]) = \partial c[\sigma_{n-1}(z)]$. As c[z] is parallel to *z*, this implies $\partial c[\sigma_{n-1}(z)] = \sigma_{n-1}(z)$. By Lemma 5.5, $\partial c[\mathbf{y}]$ is trivial, and by Lemma 5.4 again, so is $c[\mathbf{x}]$. Hence c[z] = z.

6. Two classes of morphisms

Let **C** be a category, and $f: A \to B$, $g: C \to D$ morphisms. f has the *left-lifting* property with respect to g (or, equivalently, g has the *right-lifting* property with respect to f) if, for each pair of morphisms $u: A \to C$, $v: B \to D$ such that $g \circ u = v \circ f$, there exists an $h: B \to C$ making the following diagram commutative:

For any class \mathbb{M} of morphisms in \mathbf{C} , ${}^{\pitchfork}\mathbb{M}$ (resp. \mathbb{M}^{\pitchfork}) denotes the class of morphisms in \mathbf{C} which have the left- (resp. right-) lifting property with respect to all morphisms in \mathbb{M} .

6.1. Trivial fibrations

Let \mathbb{I} be the set $\{i_n | n \in \mathbb{N}\}$ as morphisms in \mathbf{Cat}_{∞} .

Definition 6.1. A morphism of ∞ -categories is a *trivial fibration* if and only it belongs to \mathbb{I}^{\uparrow} .

In other words, $p: C \to D$ is a trivial fibration if for all $n, f: \partial O[n] \to C$, and $g: O[n] \to D$ such that $p \circ f = g \circ i_n$, there is an $h: O[n] \to C$ making the following diagram commutative:

Definition 6.2. Let C be an ∞ -category. A *polygraphic resolution* of C is a pair (S, p) where S is a polygraph and $p: S^* \to C$ is a trivial fibration.

It was shown in [10] that, for each ∞ -category C, the counit of the adjunction $\mathcal{Q} \dashv \mathcal{P}$,

$$\epsilon_C \colon \mathcal{QPC} \to C,$$

is a trivial fibration. Hence $(\mathcal{P}C, \epsilon_C)$ is a polygraphic resolution of C, so that:

Proposition 6.3. Each ∞ -category C has a polygraphic resolution.

6.2. Cofibrations

Definition 6.4. A morphism of ∞ -categories is a *cofibration* if and only if it has the left-lifting property with respect to all trivial fibrations.

Hence the class of cofibrations is exactly $^{\uparrow}(\mathbb{I}^{\uparrow})$. Immediate examples of cofibrations are the maps i_n themselves. The following lemma summarizes standard properties of maps defined by left-lifting conditions (see [5]).

Lemma 6.5. Let **C** be a category, and \mathbb{M} an arbitrary class of morphisms of **C**. Let $\mathbb{L} = {}^{\uparrow}\mathbb{M}$. Then

- \mathbb{L} is stable by direct sums: if $f_i: X_i \to Y_i$, $i \in I$ is a family of maps of \mathbb{L} with direct sum $f = \sum_{i \in I} f_i: \sum_{i \in I} X_i \to \sum_{i \in I} Y_i$, then $f \in \mathbb{L}$;
- \mathbb{L} is stable by pushout: whenever $f \in \mathbb{L}$ and

is a pushout square in \mathbf{C} , then $g \in \mathbb{L}$;

• suppose

$$X_0 \xrightarrow{l_0} \cdots \xrightarrow{l_{n-1}} X_n \xrightarrow{l_n} \cdots$$

is a sequence of maps $l_n \in \mathbb{L}$, with colimit $(X, m_n \colon X_n \to X)$. Then $m_0 \colon X_0 \to X$ belongs to \mathbb{L} .

Definition 6.6. An ∞ -category *C* is *cofibrant* if $0 \to C$ is a cofibration.

Proposition 6.7. Free ∞ -categories are cofibrant.

Proof. Let S be a polygraph and $C = S^*$. By Lemma 4.3, for each $n \ge -1$, the canonical inclusion $j^{(n)}: C^{(n)} \to C^{(n+1)}$ is a pushout of $\sum_{S_n} i_n$. Now Lemma 6.5 applies in the particular case where \mathbb{L} is the class of cofibrations: by the first point, $\sum_{S_n} i_n$ is a cofibration, and by the second point, so is $j^{(n)}$. By Lemma 3.1, C is a colimit of the sequence

$$C^{(-1)} \xrightarrow{j^{(-1)}} C^{(0)} \xrightarrow{j^{(0)}} \cdots \xrightarrow{j^{(n-1)}} C^{(n)} \xrightarrow{j^{(n)}} \cdots ;$$

hence the third point of Lemma 6.5 applies, with $X_n = C^{(n-1)}$ and $l_n = j^{(n-1)}$, so that $0 \to C$ is a cofibration. In other words, C is cofibrant.

7. Cauchy-completeness

We are now ready to establish the converse of Proposition 6.7. Recall from Section 4.3 that \mathbf{Fcat}_{∞} is the full subcategory of \mathbf{Cat}_{∞} whose objects are all ∞ -categories freely generated by polygraphs. The core of our argument is the following theorem:

Theorem 7.1. \mathbf{Fcat}_{∞} is Cauchy-complete.

In other words, idempotent morphisms in \mathbf{Fcat}_{∞} split; that is, for each object C in \mathbf{Fcat}_{∞} , and each endomorphism $h: C \to C$ such that $h \circ h = h$, there is an object D in \mathbf{Fcat}_{∞} , together with morphisms $r: C \to D$, $u: D \to C$, satisfying $r \circ u = \mathrm{id}$ and $u \circ r = h$.

Proof. The proof will occupy most of this section. Let S be a polygraph, and let $h: S^* \to S^*$ be an idempotent morphism in \mathbf{Cat}_{∞} . We need to build a polygraph T, together with morphisms $u: T^* \to S^*$ and $r: S^* \to T^*$, such that

$$r \circ u = \mathrm{id},\tag{16}$$

$$u \circ r = h. \tag{17}$$

We shall define T, u and r inductively on the dimension. In dimension 0,

$$T_0 = \{ h(x) \mid x \in S_0^* = S_0 \},\$$

u is the inclusion $T_0^* = T_0 \to S_0^* = S_0$, and for each $x \in S_0$, r(x) = h(x). The equations (16) and (17) are clearly satisfied.

Suppose now that n > 0 and T, u, r have been defined up to dimension n-1, and satisfy the required conditions. We shall extend the n-1 polygraph T to an n-polygraph, and the morphisms u, r of n-1-categories to morphisms of n-categories still satisfying the above equations.

 \triangleright Step 1. Let us split S_n in three subsets S_n^0 , S_n^1 and S_n^2 , according to the value of $h(\alpha^*)$, for $\alpha \in S_n$:

- $S_n^0 = \{ \alpha \in S_n \mid w(h(\alpha^*)) = 0 \}$, hence S_n^0 is the set of generators whose image by h is an identity;
- S_n^1 is the set of generators $\alpha \in S_n$ such that $w_\alpha(h(\alpha^*)) = 1$ and $w_\beta(h(\alpha^*)) = 0$ if $\beta \notin S_n^0 \cup \{\alpha\}$;
- $S_n^2 = S_n \setminus S_n^0 \cup S_n^1$.

We may now define a set T_n by:

$$T_n = \{h(\alpha^*) \mid \alpha \in S_n^1\}.$$

By definition, there is an inclusion map

$$v: T_n \to S_n^*$$

such that

$$h \circ v = v. \tag{18}$$

Indeed, elements of T_n belong to the image of the idempotent h; hence they are fixed

by h. We now define a graph $\sigma^T, \tau^T \colon T_{n-1}^* \coloneqq T_n$ by

$$\sigma^T = r \circ \sigma_{n-1} \circ \upsilon \tag{19}$$

$$\tau^T = r \circ \tau_{n-1} \circ v, \tag{20}$$

where σ_{n-1} , τ_{n-1} are the source and target maps in S^* and r is given by the induction hypothesis:

By using the fact that r is a morphism up to dimension n-1, we see that for each $\theta \in T_n$, $\sigma^T(\theta) \parallel \tau^T(\theta)$ and the boundary conditions are satisfied. Thus, by Lemma 4.1, T extends to an n-polygraph and the free n-1-category T^* extends to a free n-category. We still denote these extensions by T, T^* , and the source and target maps $T_{n-1}^* \succeq T_n^*$ by σ^T, τ^T . On the other hand,

$$u \circ \sigma^{T} = u \circ r \circ \sigma_{n-1} \circ v,$$

= $h \circ \sigma_{n-1} \circ v,$
= $\sigma_{n-1} \circ h \circ v,$
= $\sigma_{n-1} \circ v,$

and the following diagram commutes

$$\begin{array}{c|c} T_{n-1}^* < & T_n \\ u & & \downarrow v \\ S_{n-1}^* & & \downarrow v \\ S_{n-1}^* & S_n^*. \end{array}$$

Likewise

$$u \circ \tau^T = u \circ r \circ \tau_{n-1} \circ v.$$

Hence $v: T_n \to S_n^*$ gives rise to $u_n: T_n^* \to S_n^*$, extending u to a morphism of *n*-categories $T^* \to S^*$. Note that $h \circ u = u$. To sum up, we have extended T and u up to dimension n. Remark that the only property of T_n we needed so far is that its elements are fixed by h.

 \triangleright Step 2. We introduce the auxiliary *n*-polygraph U such that

- U is identical to S up to dimension n-1;
- $U_n = S_n^0 + S_n^1$ and the source and target maps $U_{n-1}^* \coloneqq U_n$ simply restrict those on S_n .

Thus we get an inclusion monomorphism of *n*-polygraphs $\iota: U \to S$, generating a monomorphism of *n*-categories $\iota^*: U^* \to S^*$. The restrictions of σ_{n-1} and τ_{n-1} to U_n^* will be denoted by σ^U and τ^U , as well as the corresponding maps on generators: $U_{n-1}^* \coloneqq U_n$.

199

Lemma 7.2. There are morphisms of n-categories

$$h': U^* \to U^*, \quad k: S^* \to U^*,$$

such that the following diagram commutes:

Proof. The existence of h' making the outer square commutative follows from the remark that U^* is stable by h, so that h' is simply the restriction of h to U^* .

The existence of a factorization $h = \iota^* \circ k$ reduces to the fact that U_n contains all *n*-generators α such that $w_{\alpha}(y) \neq 0$ for some *n*-cell *y* in the image of *h*. Thus, let y = h(x) in S_n^* . Because *h* is idempotent, h(y) = y. Consider

$$Y = \{ \alpha \in S_n \mid \alpha \notin S_n^0 \text{ and } w_\alpha(y) > 0 \}.$$

We just need to prove that $Y \subset S_n^1$. First note that, for each $\beta \in S_n$, $w_\beta(y) = w_\beta(h(y))$ so that, by using (9) from Section 4.3:

$$\mathbf{w}_{\beta}(y) = \sum_{\alpha \in S_n} \mathbf{w}_{\alpha}(y) \mathbf{w}_{\beta}(h(\alpha^*)).$$
(21)

If $\alpha \notin Y$, either $w_{\alpha}(y) = 0$ or $\alpha \in S_n^0$, so that $w(h(\alpha^*)) = 0$. In both cases, the product $w_{\alpha}(y)w_{\beta}(h(\alpha^*))$ vanishes. Hence (21) becomes

$$\mathbf{w}_{\beta}(y) = \sum_{\alpha \in Y} \mathbf{w}_{\alpha}(y) \mathbf{w}_{\beta}(h(\alpha^*)).$$
(22)

Now, if $\beta \in Y$, then $w_{\beta}(y) > 0$ and the right member of (22) does not vanish either. Therefore, there is at least one $\alpha \in Y$ such that $w_{\beta}(h(\alpha^*)) > 0$.

On the other hand, let us show that, for each $\alpha \in Y$, there is at least one $\gamma \in Y$ such that $w_{\gamma}(h(\alpha^*)) > 0$. Suppose the contrary and let $\alpha \in Y$ such that for all $\gamma \in Y$, $w_{\gamma}(h(\alpha^*)) = 0$. As by definition $w(h(\alpha^*)) > 0$, there is at least one $\beta \in S_n \setminus Y$ such that $w_{\beta}(h(\alpha^*)) > 0$. But $w_{\beta}(h(\alpha^*)) = w_{\beta}(h(h(\alpha^*)))$ and (9) gives

$$\mathbf{w}_{\beta}(h(\alpha^*)) = \sum_{\gamma \in S_n} \mathbf{w}_{\gamma}(h(\alpha^*)) \mathbf{w}_{\beta}(h(\gamma^*)).$$

In the above sum, $w_{\gamma}(h(\alpha^*)) = 0$ whenever $\gamma \in Y$ or $w_{\gamma}(y) = 0$, whence

$$\mathbf{w}_{\beta}(h(\alpha^*)) = \sum_{\gamma \in S_n^0} \mathbf{w}_{\gamma}(h(\alpha^*)) \mathbf{w}_{\beta}(h(\gamma^*));$$

but, $\gamma \in S_n^0$ implies $w_\beta(h(\gamma^*)) = 0$. Hence $w_\beta(h(\alpha^*)) = 0$, which is a contradiction. For each $\alpha \in y$, let

$$m_{\alpha} = \sum_{\beta \in Y} \mathbf{w}_{\beta}(h(\alpha^*)).$$

We have just shown that for each $\alpha \in Y$, $m_{\alpha} > 0$. By taking the sum over all generators β in Y in (22), we get

$$\sum_{\beta \in Y} \mathbf{w}_{\beta}(y) = \sum_{\alpha \in Y} \mathbf{w}_{\alpha}(y) m_{\alpha},$$

which implies that $m_{\alpha} = 1$ for each $\alpha \in Y$. This determines a map $\omega \colon Y \to Y$ which to each $\alpha \in Y$ associates the unique $\beta = \omega(\alpha)$ in Y such that $w_{\beta}(h(\alpha^*)) > 0$; in fact $w_{\beta}(h(\alpha^*)) = 1$. We have shown earlier that ω is surjective. Finally, let $\alpha \in Y$ and $\beta = \omega(\alpha)$; we have as above

$$\mathbf{w}_{\beta}(h(\alpha^*)) = \sum_{\gamma \in S_n} \mathbf{w}_{\gamma}(h(\alpha^*)) \mathbf{w}_{\beta}(h(\gamma^*)),$$

where all terms in the sum vanish, but for $\gamma = \beta$; whence

$$\mathbf{w}_{\beta}(h(\alpha^*)) = \mathbf{w}_{\beta}(h(\alpha^*))\mathbf{w}_{\beta}(h(\beta^*)).$$

This implies $w_{\beta}(h(\beta^*)) = 1$. Therefore $\omega(\beta) = \beta$ and $\omega \circ \omega = \omega$. Being surjective, ω is necessarily the identity.

To sum up, for each $\alpha \in Y$, $w_{\alpha}(h(\alpha^*)) = 1$, and $w_{\beta}(h(\alpha^*)) = 0$ if $\beta \notin S_n^0 \cup \{\alpha\}$, that is $\alpha \in S_n^1$ and we are done. As for the upper-left triangle, $\iota^* \circ k \circ \iota^* = h \circ \iota^* = \iota^* \circ h'$, and because ι^* is a monomorphism, $k \circ \iota^* = h'$.

Thus, let $u' \colon T^* \to U^*$ defined by $u' = k \circ u$, we get $\iota^* \circ u' = \iota^* \circ k \circ u = h \circ u = u$.

 \triangleright Step 3. We now define a morphism $r': U^* \to T^*$ which coincides with r in dimensions i < n. All we need is a map

$$\rho \colon U_n \to T_n^*$$

satisfying the boundary conditions. Thus, let $\alpha \in U_n$, we distinguish two cases, according as $\alpha \in S_n^0$ or $\alpha \in S_n^1$.

♦ Case 1. Let $\alpha \in S_n^0$. There is a unique $y \in S_{n-1}^*$ such that $h(\alpha^*) = 1_n(y)$. Now $r(y) \in T_{n-1}^*$, so that we may define $\rho(\alpha) = 1_n(r(y))$. The boundary conditions are straightforward in this case.

 \diamond Case 2. Let α ∈ S¹_n. There is a unique generator θ ∈ T_n such that $h(\alpha^*) = v(\theta)$. We define $\rho(\alpha) = \theta^*$. By using the induction hypothesis on r and u, we get

$$\sigma^{T}(\rho(\alpha)) = \sigma^{T}(\theta^{*})$$

$$= r(\sigma_{n-1}(\upsilon(\theta)))$$

$$= r(\sigma_{n-1}(h(\alpha^{*})))$$

$$= r(h(\sigma_{n-1}(\alpha^{*})))$$

$$= r(u(r(\sigma_{n-1}(\alpha^{*}))))$$

$$= r(\sigma_{n-1}(\alpha^{*}))$$

$$= r'(\sigma^{U}(\alpha)).$$

Hence $\sigma^T(\rho(\alpha)) = r'(\sigma^U(\alpha))$ and likewise $\tau^T(\rho(\alpha)) = r'(\tau^U(\alpha))$; the boundary conditions are satisfied.

Thus ρ gives rise to a morphism of ∞ -categories $r' \colon U^* \to T^*$ extending r up to dimension n.

 \triangleright Step 4. Having defined $u': T^* \to U^*$ and $r': U^* \to T^*$, we first note that $u' \circ r' = h'$, which directly follows from our definition of r'. We now prove the following lemma:

Lemma 7.3. $r' \circ u' = id$.

Proof. $r' \circ u'$ is an endomorphism of the ∞ -category T^* . We know by the induction hypothesis that $r' \circ u' = r \circ u = \text{id}$ in all dimensions i < n. Thus, it suffices to show that, for each generator $\theta \in T_n$,

$$r'(u'(\theta^*)) = \theta^*. \tag{23}$$

This follows from two facts:

• the two members of (23) are parallel cells,

$$\sigma^T(r'(u'(\theta^*))) = r'(u'(\sigma^T(\theta^*))),$$

because r', u' are morphisms. But $\sigma^T(\theta^*)$ has dimension n-1, where, by the induction hypothesis, $r' \circ u' = id$, so that the above equation becomes

$$\sigma^T(r'(u'(\theta^*))) = \sigma^T(\theta^*)$$

and likewise

$$\tau^T(r'(u'(\theta^*))) = \tau^T(\theta^*).$$

• there is a *thin n*-context $c[\mathbf{x}]$ in T^* such that

$$r'(u'(\theta^*)) = c[\theta^*].$$

In fact, by the definition of T_n , there is a generator $\alpha \in S_n^1$ such that $u'(\theta^*) = h(\alpha^*)$. Hence there is an *n*-context $d[\mathbf{y}]$ in U^* such that $u'(\theta^*) = d[\alpha^*]$ and $w_\beta(d[\mathbf{y}]) = 0$ whenever $\beta \notin S_n^0$. Now by applying (11) of Section 5.1,

$$\begin{aligned} r'(d[\alpha^*]) &= d^{r'}[r'(\alpha^*)] \\ &= d^{r'}[\rho(\alpha)] \\ &= d^{r'}[\theta^*]. \end{aligned}$$

Define $c[\mathbf{x}] = d^{r'}[\mathbf{x}]$. For each generator $\psi \in T_n$, by (9),

$$\mathbf{w}_{\psi}(c[\theta^*]) = \mathbf{w}_{\psi}(r'(d[\alpha^*])) = \sum_{\beta \in U_n} \mathbf{w}_{\beta}(d[\alpha^*]) \mathbf{w}_{\psi}(r'(\beta^*)).$$

In the last sum, all terms vanish except for $\beta = \alpha$; hence

$$\mathbf{w}_{\psi}(c[\theta^*]) = \mathbf{w}_{\psi}(\theta^*).$$

By (10), this implies $w_{\psi}(c[\mathbf{x}]) = 0$. Therefore $c[\mathbf{x}]$ is thin, and we are done.

 $c[\mathbf{x}]$ is a thin context such that $c[\theta^*] \parallel \theta^*$. By Lemma 5.6, $c[\theta^*] = \theta^*$ and (23) is proved.

 \triangleright Step 5. We complete the argument by defining $r=r'\circ k.$ Hence r is a morphism $S^*\to T^*$ and

$$u \circ r = \iota^* \circ u' \circ r' \circ k,$$

= $\iota^* \circ h' \circ k,$
= $\iota^* \circ k \circ \iota^* \circ k,$
= $h \circ h,$
= $h.$

Also

$$r \circ u = r' \circ k \circ \iota^* \circ u',$$

= $r' \circ h' \circ u',$
= $r' \circ u' \circ r' \circ u',$
= $\mathrm{id} \circ \mathrm{id},$
= $\mathrm{id}.$

Thus (16) and (17) hold in dimension n completing the proof of Theorem 7.1.

This easily leads to our main result:

Theorem 7.4. Any cofibrant ∞ -category is isomorphic to a free one.

Proof. Let C be a cofibrant ∞ -category. By Proposition 6.3, C has a free resolution $p: S^* \to C$, with S^* an object of \mathbf{Fcat}_{∞} . Because C is cofibrant, and p is a trivial fibration, the identity morphism $\mathrm{id}_C: C \to C$ lifts through p, whence a morphism $q: C \to S^*$ such that $p \circ q = \mathrm{id}_C$. Let $h = q \circ p$, $h \circ h = q \circ p \circ q \circ p = q \circ \mathrm{id}_C \circ p = q \circ p = h$; hence h is an idempotent endomorphism of S^* . By Theorem 7.1 on Cauchy-completeness, we get a polygraph T, and morphisms $r: S^* \to T^*$, $u: T^* \to S^*$ such that $r \circ u = \mathrm{id}_{T^*}$ and $u \circ r = h$. Now, let $f = p \circ u: T^* \to C$ and $g = r \circ q: C \to T^*$. We get

$$g \circ f = r \circ q \circ p \circ u$$
$$= r \circ h \circ u$$
$$= r \circ u \circ r \circ u$$
$$= id_{T^*} \circ id_{T^*}$$
$$= id_{T^*}.$$

Likewise

$$f \circ g = p \circ u \circ r \circ q$$
$$= p \circ h \circ q$$
$$= p \circ q \circ p \circ q$$
$$= id_C \circ id_C$$
$$= id_C.$$

Hence $f: T^* \to C$ is an isomorphism with inverse $g = f^{-1}$ so that C is isomorphic to a free object, as required.

Acknowledgements

I am greatly indebted to the referee for suggesting many significant improvements. I also wish to thank Albert Burroni, Yves Lafont and Krzysztof Worytkiewicz for their constant help and support.

References

- M. Batanin, Monoidal globular categories as a natural environment for the theory of weak n-categories, Adv. Math. 136 (1998), 39–103.
- [2] M. Batanin, Computads for finitary monads on globular sets, in *Higher category theory* (Evanston, IL, 1997), *Contemp. Math.* 230 (1998), 37–57.
- [3] A. Burroni, Higher-dimensional word problem, in Category theory and computer science (Paris, 1991), Lecture Notes in Computer Science 530, 94–105, Springer-Verlag, New York, 1991.
- [4] A. Burroni, Higher-dimensional word problems with applications to equational logic, in *Category theory and computer science* (Paris, 1991), *Theoret. Comput. Sci.* 115 (1993), 43–62.
- [5] P. Gabriel and M. Zisman, Calculus of fractions and homotopy theory, Ergeb. Math. Grenzgeb. 35, Springer-Verlag, New York, 1967.
- [6] Y. Guiraud, The three dimensions of proofs, Ann. Pure Appl. Logic 141 (2006), 266–295.
- [7] Y. Guiraud, Two polygraphic presentations of Petri nets, *Theoret. Comput. Sci.* 360 (2006), 124–146.
- [8] Y. Lafont and F. Métayer, Polygraphic resolutions and homology of monoids, http://iml.univ-mrs.fr/~lafont/pub/polrhm.pdf, submitted, 2006.
- [9] Y. Lafont, F. Métayer, and K. Worytkiewicz, A folk model structure on omegacat, http://arxiv.org/abs/0712.0617, 2007.
- [10] F. Métayer, Resolutions by polygraphs, Theory Appl. Categ. 11 (2003), 148– 184, http://www.tac.mta.ca/tac/.
- [11] A.J. Power, An n-categorical pasting theorem, in Category theory (Proc. Internat. Conf., Como/Italy 1990), Lecture Notes in Math. 1488 (1991), 326– 358.
- [12] R. Street, Limits indexed by category-valued 2-functors, J. Pure Appl. Algebra 8 (1976), 149–181.
- [13] R. Street, The petit topos of globular sets, J. Pure Appl. Algebra 154 (2000), 299–315.

François Métayer metayer@pps.jussieu.fr

Équipe PPS, Université Denis Diderot, Case 7014, 2, place Jussieu, 75251 PARIS Cedex 05, France