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INERTTA AND DELOCALIZED TWISTED COHOMOLOGY
ULRICH BUNKE, THOMAS SCHICK anD MARKUS SPITZWECK

(communicated by J. Daniel Christensen)

Abstract

Orbispaces are the analog of orbifolds, where the category
of manifolds is replaced by topological spaces. We construct
the loop orbispace LX of an orbispace X in the language of
stacks in topological spaces. Furthermore, to a twist given by a
U(1)-banded gerbe G — X we associate a U(1)?-principal bun-
dle G° — LX. We use sheaf theory on topological stacks in
order to define the delocalized twisted cohomology by

ngloc(X7 G) =H" (GL7 fzﬁ)v

where f: G — LX is the pull-back of the gerbe G — X via
the natural map LX — X, and £ € Shy,LX is the sheaf of sec-
tions of the C?-bundle associated to G — LX.

The same constructions can be applied in the case of orbi-
folds, and we show that the sheaf theoretic delocalized twisted
cohomology is isomorphic to the twisted de Rham cohomology,
where the isomorphism depends on the choice of a geometric
structure on the gerbe G — X.
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1. Introduction

1.1. Motivation

In the recent mathematical literature cohomological and topological properties of
orbifolds became an intensively studied subject. A considerable part of the moti-
vation comes from the mirror symmetry program where orbifolds arise naturally.
Cornerstones? of the recent developments were the introduction of twisted orbifold
K-theory [1] and the orbifold quantum cohomology [14] on the topological side, and
the investigation of gerbes [26] and loop groupoids [25] on the geometric side.

Classically, orbifolds are defined like manifolds as spaces which are locally homeo-
morphic to a quotient of a euclidean space by a finite group. Alternatively, orbifolds
are represented by proper étale smooth groupoids [32], [33]. Working with groupoid
representations of orbifolds is like working with manifolds with a fixed atlas. In the
modern coordinate invariant point of view an orbifold is a smooth stack in smooth
manifolds which admits an orbifold atlas. By considering orbifolds as objects in the
2-category of smooth stacks one makes the notion of morphisms? and other construc-
tions like fibre products transparent. The framework of stacks is most natural if one
wants to include gerbes into the picture.

If one replaces smooth manifolds by topological spaces, then the corresponding
analog of an orbifold is an orbispace. The goal of the present paper is to show that
many geometric constructions on orbifolds are in fact topological concepts and extend
to orbispaces.

The fixed point manifolds of the elements of the local automorphism groups of an
orbifold X can be assembled into a new orbifold LX called the inertia or loop orbifold
or the orbifold of twisted sectors. In the present paper we show that the loop orbifold
can be characterized as the 2-categorical (in the 2-category of stacks) equalizer of
the pair (idx,idx). The same definition applies to orbispaces in the topological
context. Since 2-categorical equalizers always exist in 2-categories of stacks it is clear
that LX exists as a stack. But it is not a priori clear that LX is again an orbifold
(or orbispace, respectively). In the present paper we show that taking loop stacks
preserves orbispaces.

A U(1)-banded gerbe G — X over an orbifold gives rise to a U(1)-principal bundle
G — LX over the loop orbifold of X. This bundle has a natural reduction of structure
groups to the discrete U(1)°. The traditional way to construct this reduction is to
choose a connection and curving on the gerbe G — X. This geometric data induces
a connection on G — LX which turns out to be flat. The flat connection gives the

'Here we mention those works which are relevant for the present paper. Note that there is a huge
literature on orbifolds in algebraic geometry and mathematical physics.

2The right notion of a morphism between orbifolds is a representable morphism of stacks. This
definition corresponds to the notion of a good morphism in the literature.
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reduction of structure groups, and we can form the sheaf £ of locally constant sections
of the associated flat line bundle L — LX.

In the present paper we give a topological construction of the reduction of the
structure group of G — LX to U(1)® and of the sheaf £. Furthermore, we calculate
its holonomy in terms of the Dixmier-Douady class of the gerbe G — X.

The third concept which we generalize to the topological case is that of twisted
delocalized orbifold cohomology. The usual definition in the smooth case is based on
the de Rham complex of forms on LX with coefficients in L — LX. The differential
of this complex involves the flat connection on L and a closed three-form on X which
represents the image of the Dixmier-Douady class of the gerbe f: G — X in real
cohomology. Let fr: G — LX denote the pull-back of the gerbe via LX — X. In
the present paper we use the sheaf theory for smooth (or topological, respectively)
stacks [13] in order to define the twisted delocalized orbifold cohomology as sheaf
cohomology H*(LX, Tug (L)), where Tug (L) := R(fr)«f;(£). Our main result is that
in the smooth case the twisted delocalized cohomology according to this sheaf theo-
retic definition is isomorphic to the former construction using the de Rham complex.
In addition to the fact that it works in the topological context our sheaf theoretic
definition of twisted delocalized orbifold cohomology has the advantage that it is
functorial in the gerbe G — X.

In the remaining parts of the introduction we give a detailed description of the
results of the present paper and explain how they are related to the existing literature.

1.2. A description of the results

In the present paper we consider stacks in smooth manifolds or stacks in topological
spaces. Our basic reference for stacks in these contexts is [19], but see also [34], [30],
and [9]. A stack X in smooth manifolds (topological spaces, respectively) is called
a smooth stack (topological stack, respectively) if it admits an atlas A — X. The
atlas is called an orbifold (orbispace, respectively) atlas if the smooth (topological,
respectively) groupoid A x x A = A is proper étale (very proper, étale and separated
(see 2.30)). An orbifold (orbispace, respectively) is a smooth (topological, respec-
tively) stack which admits an orbifold (orbispace, respectively) atlas.

We refer to [12] for an introduction to orbispaces, and e.g. to [14, Sec. 2] for some
basic information on orbifolds.

In subsection 2.1/ we review the notion of 2-categorical limits. The 2-categorical
equalizer of a pair of maps is a special kind of limit. We will see that equalizers exist
in the 2-category of stacks on a site and in the 2-category of groupoids in topological
spaces.

The goal of subsections 2.2 and 2.3 of the present paper is to place the construction
of the loop orbifold LX (or orbispace, respectively) into the framework of stacks in
manifolds (topological spaces, respectively).

We consider the orbifold (orbispace, respectively) X as a stack and define its inertia
stack IX — X as the 2-categorical equalizer of the pair (idx,idx). The loop stack
LX is defined in an ad-hoc manner; see Definition 2.16 and Remark 2.24. We will see
that it is canonically equivalent to I.X. Though Definition 2.10/ of the 2-categorical
equalizer by a pull-back diagram is quite constructive we prefer to work with the
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simpler construction LX from now on. If X is an orbifold (orbispace, respectively),
then a priori LX is a stack in smooth manifolds (topological spaces, respectively).

Proposition 1.1. The loop stack of a topological stack is again a topological stack.
Moreover, the loop stack of an orbispace is an orbispace, too.

The proof of this proposition will be given in Lemmas 2.26/ and 2.33.

In the smooth case, the fact that the loop stack of an orbifold is again an orbifold
is well known; see [14, Lemma 3.1.1] or [25] Cor. 2.6.2].

The loop orbifold is also known as the orbifold of twisted sectors (compare [14]
Sec. 3.1]) or inertia orbifold. It plays an important role in the construction of the
delocalized orbifold cohomology. The twisted sectors first appeared in connection with
the orbifold index theorem [22], [23]. In the framework of a topological groupoid G
the corresponding object is called the inertia groupoid AG which has been studied
in detail in [25]. In order to keep our notation uniform in the present paper we will
denote the inertia groupoid by LG and call it the loop groupoid.®

Let f: G — X be a topological gerbe with band U(1) over a topological stack X.
The induced map Lf: LG — LX can be factored canonically as LG %> G, iz LX,

where G, := LX xx G. Here fr.: G, — LX is a topological gerbe with band U(1),
and p: LG — Gy, is (the underlying map of) a U(1)-principal bundle.

Proposition 1.2. The bundle LG — G|, descends canonically to a U(1)-principal
bundle G — LX. If X is an orbispace, then G — LX has a canonical reduction of
the structure group G° — LX from U(1) to U(1)°, the group U(1) with the discrete
topology.

The assertions of this proposition are shown in subsection 2.5.

Let L — LX denote the line bundle associated to G° — LX. Since its structure
group is discrete, we can form the sheaf £ of its locally constant sections.

By (2.50) we have actually an extension

XXU(1)6~>C~7Y6~>LX

of group stacks over X. The induced algebraic structures on L — LX turn this line
bundle into an inner local system in the sense of [37, Def. 2.1], [26] Def. 2.2.2].

In the framework of groupoids the construction of G — LX has been previously
given in [25, Thm. 6.4.2] and [40], Prop. 2.9]. In the smooth case a reduction of the
structure group of a line bundle from U(1) to U(1)° is equivalent to a flat unitary
connection. It has been observed in [27, Lemma 5.0.1] and [40, Prop. 3.9] that a
connection on the gerbe G — X induces a flat connection on L — LX.

Our original contribution here is to give a construction of this reduction of the
structure group in purely topological terms. In addition to simplifications this extends
the previous results to the topological case.

3Note that the loop groupoid LG in [25] is a much bigger object, and it is related to AG by the
equation LG® 22 AG in the notation of [25] Prop. 3.6.6].
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A twisted torsion in the language of [37] is a class a € H?(n{™ld(X) U(1)), i.e.
an isomorphism class of central U(1)-extensions

1 — U(1) — gorbifeld(x) — WfrbifOId(X) — 1.

The orbifold fundamental group 7974 (X) is the automorphism group of the uni-

versal orbifold covering Y — X. The map
Ga = [Y/ﬂ'i)rbifdd(X)] N [Y/W?rbifOId(X)] - X

is a topological gerbe with band U (1) over X. In [37, Sec. 4] or |26, Example 2.2.2] an
inner local system L, is associated directly to a twisted torsion «. In the philosophy
of the present paper we would consider L, as the bundle associated to the gerbe
Go — X via the U(1)%-bundle G, — LX.

The sheaf of locally constant sections £ of the line bundle L (also called inner local
system) plays an important role in the definition of twisted delocalized cohomology
of an orbifold [1], [37, Def. 2.2],* [40, Def. 3.10].

To a topological group G we associate the classifying stack BG := [*/G] (see [19,
Example 1.5]). A G-principal bundle over a stack X is by definition a map p: X —
BG®' Applying the loop functor and using the canonical isomorphism LBG = [G/G]
(where G acts on itself by conjugations) we get a map Lp: LX — [G/G]. If G is
abelian, then this map lifts to a function h: LX — G. We are in particular interested
in the case G = U(1) and give various geometric and cohomological interpretations
of this function.

In the present paper, ordinary cohomology of an orbispace X is understood in
the sense of [12] Sec. 2.2]. Let A — X be an atlas and form the simplicial space A’
such that A" := A xXx --- Xx A (n+ 1-factors). Here the fibre product is taken in
stacks in topological spaces, but the stack A™ is in fact equivalent to a space since
the map A — X is representable. The cohomology of X with integral coefficients is
then defined as

H*(X;Z) == H*(|A'; Z),

where |A’| denotes the realization of the simplicial space. Independence of the choice
of the atlas has been shown in [12] Sec. 2.2] and [8].° An alternative definition of
the cohomology of X can be based on the sheaf theory for orbifolds which will be
discussed below. The group H?(X;Z) classifies isomorphism classes of U(1)-principal
bundles p: E — X (see [12] Sec. 4.2] for this fact).

4This is the cohomology of LX with coefficients in £ with shifted grading. It is different from the
gerbe-twisted delocalized cohomology.

5Sometimes we will use a more sloppy language and say that &£ — X is a G-principal bundle, where
FE — X is defined by the pull-back

E——x

]

x s Ba.

5The result in [8] is more general. The only condition on the atlas A — X is that the range and
source maps of the groupoid A X x A = A are topological submersions.
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If I' is a finite group, then we have
H?([+/T);2) = H*(T;Z) = H (T3 U(1)) = T,
where T' := Hom(T', U(1)). A class x € H?([*/T];Z) thus gives rise to a function
X Lix/T] = [I/T] = U(1).

This construction extends to general orbispaces X and associates to each class x €
H?(X;Z) a function y: LX — U(1). A class x € H?>(X;Z) also classifies a U(1)-
principal bundle and therefore gives rise to a function h, : LX — U(1).

Proposition 1.3. We have the equality X = h,.

This is shown in Lemma 2.43.

G-principal bundles can be defined in terms of cocycles. We will give an interpre-
tation of the function h, in terms of the cocyle. A third cohomological interpretation
uses the transgression Tr: H?(X;U(1)) — H'(LX;U(1)) introduced in [2], [27], [39].

It is an interesting problem to calculate the holonomy of the bundle G’ — LX
in terms of the Dixmier-Douady class d € H3(X;Z) of the gerbe G — X. We discuss
this question in a typical case in subsection 2.6l Let m: E — X be a U(1)-principal
bundle in orbispaces and G — E be a topological gerbe with band U(1) and Dixmier-
Douady class d € H3(E;Z). Let x € H?(X;Z) be the first Chern class of E — X. As
explained above we get a function y: LX — U(1). Let LX; := x~!(1). We will see
that the canonical map LE — LX factorizes over LX1, and that LE — LX; is again
a U(1)-principal bundle (see Lemma 2.39). The holonomy of the bundle G° — LE
along the fibres of LE — LX; can be considered as a function g: LX; — U(1).

Note that 7: E — X is an oriented fibre bundle. We have an integration map
m: H3(E;Z) — H?*(X;Z). In particular we can form m(d) € H?(X;Z) and the asso-
ciated function

m(d): LX — U(1).

Proposition 1.4 (2.54). We have the following equality of functions

9= Tr'(d)|LX1'

Section 13 of the present paper is devoted to twisted delocalized cohomology. We
are in particular interested in a version which is the target of the Chern character
from twisted K-theory. We refer to subsection [1.3| for a detailed introduction and a
motivation of the particular definition of twisted delocalized cohomology. Our main
original contribution in the present paper is a construction of this cohomology in the
framework of sheaf theory on topological stacks. All previous definitions used the de
Rham complex and are therefore tied to the orbifold case.

To a topological stack (smooth stack, respectively) X we associate a site X. The
smooth case was discussed at length in [13]. Details of the sheaf theory on topological
stacks” are discussed in [11]. So let us fix our conventions for the topological case
here.

"For the purpose of duality theory in [11] conditions of local compactness were added. The part of
the theory which we use in the present paper works without this assumption.
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An object of X is a map (¢: U — X) in stacks in topological spaces, where U

is a topological space (or more precisely a stack which is equivalent to a space),
and ¢ is a representable map which admits local sections.® The morphisms in X are

commutative diagrams
\ v /

X

U

|4

consisting of a morphism U — V and a 2-morphism. A family (U; — U);cs of mor-
phisms in X is a covering family if all maps U; — U admit local sections and the
induced map L;c;U; — U is surjective. To the site X we can associate the category
ShX of sheaves of sets and the abelian category Shy, X of sheaves of abelian groups.

A map between topological (respectively smooth) stacks f: X — Y induces an
adjoint pair of functors

f7:8hY & shX: f,

relating the categories of sheaves on these sites. In the smooth case the construction of
this adjoint pair was given by [13), Sec. 2.1]. The construction in the case of topological
stacks is very similar; see [11].

The restriction f,: Shyp X — Shp, Y of f, to abelian sheaves is left-exact and admits
a right-derived functor

Rf*l D+(ShAbX) — D+(ShAbY>

between the lower-bounded derived categories.

Let G — X be a topological (smooth, respectively) gerbe with band U(1) on an
orbispace (respectively orbifold) X. In order to define the G-twisted delocalized coho-
mology we need some notation.

The twist G — X gives rise to the U (1)%-principal bundle G — LX (see Prop.[1.2)
and an associated locally constant sheaf £ of C-vector spaces on the site LX. We
consider the diagram

* <— G —> @G
P =
lfL :;:f:::::: lf
LX —= X,

where the square is 2-cartesian and the map p: G — * is the canonical projection to
the point. Since Site(x) is the big site of the point, i.e. the category of all topological
spaces, we need the evaluation functor ev: Dt (Shy,Site(x)) — D1 (Ab) at the object
(* — *) € Site(x).

Definition 1.5. The G-twisted delocalized cohomology of X is defined as
Hieloo(X; G) := H"(ev o Rp, o f1(L)). (1.6)

8Note that X must be small. A precise definition would either involve universes or a cardinality
restriction.
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The G-twisted delocalized cohomology of X is functorial in the data G — X (see
Lemma [3.7)). For further details we refer to subsection [3.5.

Our main result is the comparison of this sheaf-theoretic definition of G-twisted
delocalized cohomology with the previous de Rham model [40, Def. 3.10] in the case
of orbifolds.

We now explain the de Rham model for the twisted delocalized cohomology. Let
X be an orbifold and G — X be a smooth gerbe with band U(1). In this case we
can define three versions of twisted delocalized de Rham cohomology. The 2-periodic
twisted delocalized cohomology is the correct target of the Chern character and will be
defined in (1.14) below. The sheaf theoretic cohomology (1.6) is not 2-periodic. In the
following we describe its appropriate de Rham model. We choose a closed three-form
A € Q3(LX) which represents the image of the Dixmier-Douady class of G, — LX in
real cohomology. Then we define a sheaf Q7 x [[2]]x € CT(Shy LX) of complexes which
associates to each object (¢: U — LX) € LX the complex (Q(U)[[#]],dr), where
(QU),dar) is the de Rham complex of the smooth manifold U, z is a formal vari-
able of degree 2, and dy = dar + L ¢*A. Let QLX; L)[[2]]x :=Trx(Qux|[[2]]x ® £)
denote the complex of global sections (see (3.15)) for the definition of global sections)
of the tensor product of sheaves Qpx[[z]]x ® L. Its cohomology is the twisted delo-
calized de Rham cohomology

HiR aeloc(X; (G5 A)) = H*(QLX; L)[[2]]x) (1.7)

(see 3.23).

The twisted delocalized de Rham cohomology defined in [40, Def. 3.10] is related
to the definition of the present paper by a duality. For simplicity we assume that
LX is oriented. Otherwise one must plug in orientation bundles. Let us first recall
the definition [40, Def. 3.10]. Let u be a formal variable of degree —2 and define
the complex of sheaves 1 x ((v)) which associates to (¢: U — LX) the space of for-
mal Laurent series of forms Q(U)((u))x with the differential d\ := dgr — wi¢*A. The
twisted cohomology in [40, Def. 3.10] is the cohomology of the complex of compactly
supported global sections Q(LX; £)comp((w))a? of Qx ((u))r ® L. Note that the mul-
tiplication by w induces an isomorphism of complexes which makes the cohomology
of [40], Def. 3.10] two-periodic.

We define the pairing (using the hermitean structure of £)

(o )t QLX L) eomp(w)x ® QLX; £)[[2]]x — C (1.8)
by

(u"w, z2Ma) = 5m7nm!/ wAa,
LX

where w € Q(LX; L) comp and a € Q(LX; L). One easily checks that
(dhw, o) = (=D)“IF 1w, dya).

The pairing (1.8) induces an embedding of Q(LX; £)[[2]]x into the dual complex of
Q(LX; L) comp ((u))-

9Here we use the freedom of rescaling A by non-zero factors as explained in [40, Rem. 3.11(1)].
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Let us now explain the relation between (1.7) and the 2-periodic version (1.14).
Note that the complex of sheaves 7, x[[z]]» admits an action of the operation 7" := -
of degree —2. We consider the system

S Quxllelly £ Quxlleal2 £ Quxllzaa £ ...

in the category C(ShypLX) of unbounded complexes. The discussion of [13] 1.3.23]
can be subsumed in the assertion that I'y x (lim S ® L) is exactly the periodic complex
(1.14).

Our basic result is an extension of [13, Thm. 1.1] from smooth manifolds to orb-
ifolds.

Theorem 1.9 (Theorem B3.24). If G — X is a U(1)-banded gerbe over an orbifold,
then there exists an isomorphism

R(fL)+(Ray) = Qrx|[2]]x (1.10)
in the derived category DT (ShyLX).

This isomorphism is not canonical and depends on the choice of a connection on
the gerbe G — X. As a consequence of (1.10) we get

Theorem 1.11 (Theorem [3.25). If G — X is a U(1)-banded gerbe over an orbifold,
then there exists an isomorphism

H;R,deloc(X; (Gv /\)) = Hc}keloc (X; G)

This isomorphism of C-vector spaces is again not canonical and depends on the
choice of a connection on the gerbe G — X.

The main goal of the forthcoming paper [11] will be a sheaf theoretic construction
of 2-periodic t\;visted delocalized cohomology. The idea is to define an analog T of

the operation 7~ on the left-hand side of the derived category isomorphism (1.10). In

analogy with the de Rham model we then will consider the system

T: R(f1):(Rey) & R(fr)«(Ray)[2] & R(fr)«(Ra, 4] <& ...

in D(Shy,LX). The sheaf-theoretic version of periodic delocalized twisted cohomology
will be defined as

H*(ev o Rp,(holim7 ® L)).

In order to make this rough idea precise we must solve various problems, in particular

(1) The homotopy limit holim7 of the diagram 7 in the derived category is only
well-defined up to non-canonical isomorphism. In order to define a functorial
periodic cohomology we must work hard to construct a much more concrete
version of the system 7.

(2) The push-forward Rp.(colimT ® L) is not a standard derived functor since it
acts between unbounded derived categories. We use a model category approach
in order to construct functors like Rp..

The main application and technical tool in [11] will be T-duality. The results of
subsections 2.4 and [2.6] of the present paper will be needed in [11] in a crucial way.
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1.3. Motivation of the definition of twisted delocalized cohomology

In the present subsection we motivate the definition of twisted delocalized coho-
mology as the correct target for the Chern character from twisted K-theory.

It is a well-known fact that the Chern character ch: K(X) — H(X;Q) from the
complex K-theory of a finite CW-complex X to the rational cohomology of X induces
an isomorphism K (X)®zQ = H(X;Q) (we consider both sides as Z/2Z-graded
groups).

Complex K-theory and rational cohomology both have equivariant generalizations.
Every generalized cohomology E theory has the Borel extension. If X is a G-space,
then the Borel extension of E to G-spaces associates to X the group Egorel(X )=
E(EG x¢ X). Here EG is a universal space for G, i.e. a contractible space on which G
acts freely and properly. The Chern character induces an equivariant Chern character
chg: KE(X) — HE°™(X;Q) which gives again a rational isomorphism.

The interesting equivariant extension of K-theory is not the Borel extension but
the extension due to Atiyah-Segal based on equivariant vector bundles [4]. It will be
denoted by Kg(X). In order to see the difference between KE°! and K¢ consider
the simple example of finite group G acting trivially on the point *. The equivariant
Atiyah-Segal K-theory is isomorphic to the representation ring R(G) of G. In [3] is
was shown that K2°!(x) is isomorphic to the completion R/(E) ; of the representation
ring at the dimension ideal I := ker(dim: R(G) — Z).

It is not true that the Atiyah-Segal equivariant K-theory is rationally isomorphic
to the Borel extension of rational cohomology. In the case of discrete groups and
proper actions the appropriate target of the Chern character was found in [7]. It will
be called the delocalized cohomology in this paper. Let G be a discrete group which
acts properly on a space X. Then we define a new proper G-space

AX = | | X7,
geG

where X9 C X is the subspace of fixed points of g. The action of h € G on AX
maps x € X9 to hx € X"9h™" The delocalized cohomology of the G-space X is the
cohomology of the quotient AX/G.

A G-space X gives rise to a topological quotient stack [X/G]. If G is a discrete
group which acts properly on X, then the quotient [X/G] is an example of an orbi-
space. But not every orbispace can be represented in this form. We refer to [12] for
the description of the category of orbispaces. The stack [AX/G] has a description
in the language of topological stacks. If Z is a topological stack, then we define its
loop stack LZ (see2.16/ and 2.24)*” such that L[X/G] = [AX/G] for a discrete group
acting properly on a space X.

If G is a discrete group which acts properly on a space X, then the quotient X/G
is a reasonable topological space. It is the coarse moduli space of the orbispace [X/G].
The definition of the coarse moduli space extends to arbitrary orbispaces. The coarse
moduli space of the orbispace Z will be denoted by |Z|. If Z! = ZY is a presentation
of the orbispace by a proper étale groupoid, then |Z| = ZY/Z!.

10T the present paper we use the name loop stack. In the literature it is also known under the name
inertia stack.
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The rational cohomology of an orbispace Z is the cohomology of its coarse moduli
space | Z|. Therefore we can define the delocalized cohomology of an orbispace as the
cohomology of |LZ|. This generalizes the definition of the delocalized cohomology
from global quotient orbispaces to general orbispaces.

Note that this is not quite the definition of delocalized cohomology which we are
going to use in the main part of the paper but sufficient for the present discussion.
Later we prefer a sheaf-theoretic definition of the delocalized cohomology.

Delocalized cohomology for orbifolds appeared in connection with the index the-
orem for orbifolds [23]. In a completely different context of quantum cohomology
for orbifolds it was constructed in [14], [36]. Note that the grading used in [14] is
different from the grading in the present paper.

A different generalization of K-theory is twisted K-theory (see [5]). The search
for the target of an appropriate Chern character lead to the definition of 2-periodic
twisted de Rham cohomology!!. Usually it is defined on smooth manifolds X. Given
a closed three-form \ € Q3(X), twisted de Rham cohomology is the cohomology of
the complex

B geven(x) B edd(x) B geven(x) B (1.12)
where dy := dygr + \.

A Chern character for twisted K-theory with values in A-twisted de Rham coho-
mology was constructed in [10], [29], and [6]. The twist of K-theory is classified by
a class Az € H3(X;Z). The closed form A € Q3(X) should represent the image of A
in real cohomology. It was shown that this Z/2Z-graded cohomology theory is again
isomorphic to twisted K-theory tensored with R.

Twisted K-theory on orbifolds has first been considered in [I]. In this paper the
twist was given by a so-called inner local system of twisted torsion. The natural object
to be used to twist complex K-theory is a gerbe G — X with band S (see [17] for
details and more general twists). Gerbe twisted K-theory for orbifolds was discussed
in [26]. For general local quotient stacks it was defined in [18], [17]. Using topological
groupoids in order to represent stacks a very general definition of twisted K-theory
in terms of the groupoid C*-algebra was given in [41].

The result of [7] in the case of global quotient orbispaces obtained from proper
actions of discrete groups shows that the correct target of the Chern character has to
take the topology of the fixed point sets into account. Thus the target of the Chern
character from twisted K-theory of an orbifold should be a delocalized version of
twisted de Rham cohomology. If X is an orbifold, then LX is again an orbifold. In
particular we can consider differential forms on LX. Given a three-form \ € Q3(LX)
we can define the twisted delocalized de Rham cohomology as the cohomology of the
complex

o Bgeven(px) B edd(px) B even(Lx) B (1.13)

HThis could also be reversed. The equations for fields associated to D-branes in string theory with
B-field backgroup can be expressed in terms of the twisted de Rham differential. In this history
twisted K -theory was found as a cohomology theory with a (Chern character) map to twisted de
Rham cohomology giving the integrality lattice of D-brane charges [31], [42].



140 ULRICH BUNKE, THOMAS SCHICK aNxpD MARKUS SPITZWECK

It turned out that this cohomology is not the correct target of the Chern character.
This has already been observed in [1].

Let (L,V%) be the flat complex line bundle associated to GO — LX. We let
Q(LX; L) denote the differential forms with values in L, and d* be the differen-
tial induced by dgr and the flat connection VZ. We let A\ € Q3(LX) be a closed
three-form which represents the image of the Dixmier-Douady class Az € H?(LX;Z)
of the gerbe Gy — LX in real cohomology. We set dﬁ :=d" + \. The correct target
of the Chern character on G-twisted K-theory of the orbifold X is the 2-periodic
cohomology of the complex

dy d¥
ce = Q(LX;L) 2 QYLX L) D QV(LX; L) — ... . (1.14)
This Chern character was constructed in [40].

In the context of equivariant cohomology theories a canonical target for the Chern
character can be constructed as Bredon cohomology; see [24]. Bredon cohomology
has been constructed for orbifolds (see [35]), and it should be possible to extend its
definition to sufficiently nice orbispaces.

It would be very interesting to incorporate twists into the definition of orbispace
Bredon cohomology, and furthermore to construct a Chern character in this context.
In a very special situation (torsion twist and I'-CW complex for a discrete group I')
this has been carried out in [16] by a reduction to the non-twisted equivariant situa-
tion of [24]. The discussion in [1l, Sec. 8] suggests to do this more generally.

The present paper follows a different route placing the relevant cohomology theories
in the general framework of sheaf theory on stacks. We leave it to future work to
develop the relevant Bredon cohomology and to compare it to the construction of the
present paper.

2. Inertia

2.1. 2-limits in 2-categories

In the present paper we consider stacks on some site or groupoids in some ambient
category like topological spaces or manifolds. A common feature of these constructs is
that they are objects in a 2-category. Of particular importance for the present paper
is the notion of a 2-limit. The goal of this subsection is to explain this notion.

By a 2-category we always mean a strict 2-category. In our main examples of
2-categories have the property that all 2-morphisms are isomorphisms, but in the
present subsection we do not assume this. For objects a and b of a 2-category we
denote by Hom¢(a,b) the Hom-category from a to b (we will often omit the subscript
and write Hom(a,b)). We will write the objects as straight arrows a — b, and the
morphisms between two arrows f,g: a — b as f ~ g.

By a 2-functor we always mean a pseudo-2-functor, as explained for example in [21),
Def. 1.4.2]. By a strict 2-functor we mean such a functor where all unit and compo-
sition 2-isomorphisms are identities.

Let C be a 2-category. For any X € 0bC we denote by C/X the over-2-category

e with objects the 1-arrows A — X
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e whose 1-morphisms are triangles filled in with a 2-morphism

A——— B,

Ny

e and where 2-morphisms are the ones of C making the natural diagram commu-
tative.

There is a version of this construction for a 2-functor D — C and an object X of C,
denoted D/X. Note that if D is a 1-category then so is D/X.

Let C be a 2-category and D a small category. Let F,G: D — C be two 2-functors. A
natural 2-transformation ¢ from F to G is an assignment of a 1-morphism ¢(a): F'(a)
— (G(a) for any object a of D and a 2-isomorphism ¢(f) for any f: a — bin D filling
in the square

Fla) 2% G(a)

,:f—7
F(f) ¢({){, G(f)

F(b) 22> G),
satisfying the obvious compatibility for compositions of maps in D.

Let ¢,9: F — G be two natural 2-transformations. A modification t from ¢ to ¥
consists of a 2-morphism t(a): ¢(a) ~ ¥ (a) for any object a of D satisfying an again
obvious compatibility with ¢(f) and ¥(f) for any map f in D.

With these definitions the 2-functors, the natural 2-transformations and the mod-
ifications form a 2-category.

For F, G as above we denote by Homeo (F, G) the corresponding category of natural
transformations from F to G.

For an object ¢ of C we denote by D, the constant diagram on ¢, i.e. the (strict)
2-functor from D to C sending all objects to ¢ and all morphisms to id,.

Definition 2.1. Let F': D — C be a 2-functor. A 2-limit of F' is an object ¢ of C
together with a natural 2-transformation ¢: D, — F' such that for any object T" of C'
the functor Home (T, ¢) — Homen (D, F') given by composition with ¢ is an equivalence
of categories.

The constant diagram functor ¢ +— D, is a 2-functor C — CP. Note that F € CP.
Using D we form the over-2-category C/F. By definition a 2-limit (¢, ¢) of F is an
object of C/F.

For example, a 2-final object of C is an object ¢ such that for all objects T" of C
the projection from Hom(T', ¢) to the point category is an equivalence.

Lemma 2.2. Let u: C — D be a 2-functor between 2-categories, X an object of D.
Let ¢, f: u(c) = X be an object of C/X. Then if the functor

Home (T, ¢) — Homp (u(T), X)

is an equivalence for all objects T of C the object (c, f) is 2-final in C/X. If the
2-morphisms in D and C are all 2-isomorphisms the converse holds.
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Proof. Let (¢, f') € C/X be another object. Then there is a canonical 2-cartesian
square

HomC/X((C/a f,)a (C7 f)) —> HomC(Clv c

L,

)
pt Homp (u(c’), X)

in Cat. Hence the first statement follows. The second statement follows from the
fact that a map ¢: A — B between groupoids is an equivalence if and only if all
(2-categorical) fibres over objects of B are contractible. O

An equivalence between two objects ¢ and d of C are 1-arrows f: ¢ — d and g: d
— ¢ together with 2-isomorphisms ¢: id. ~» go f and : idg ~ f o g satisfying the
triangular identities as for units and counits of adjunctions.

As a particular case consider two 2-final objects ¢, ¢’ in a 2-category D. Then there
is an equivalence between ¢ and ¢’ which is unique up to a unique 2-isomorphism.

Lemma 2.3. If an object (c,p) € C/F is a 2-limit of F' then it is 2-final in C/F. If all
2-morphisms in C are 2-isomorphisms or if C has all small 2-limits, then the converse
is true. Any two choices of 2-limits are equivalent in C/F, unique up to unique 2-
isomorphism, in particular the underlying objects in C are (canonically) equivalent.

Proof. The first statement follows from Lemma 2.2l The second statement under
the assumption on the 2-morphisms also follows from that lemma, and under the
completeness assumption it follows from the first statement and the uniqueness (up
to unique isomorphism) of 2-final objects. The third statement also follows from the
properties of 2-final objects stated above. O

Lemma 2.4. In Cat, the 2-category of small categories, small 2-limits exist.

Proof. The usual construction gives a preferred model: For a 2-functor F': D — Cat
define ¢ to be the category whose objects are collections of objects z, € F'(a) for any
object a of D together with isomorphisms y: (Ff)(z,) — xp for any map f:a — b
in D satisfying a compatibility condition for compositions of maps in D, and whose
morphisms from (z,) to (y,) are compatible systems of morphisms x, — y,. The
transformation D, — F' induced by projections exhibits ¢ as a 2-limit of F. O

Let us consider for example the category

(2.5)

A functor F': D — C is a diagram
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A 2-categorical fibre product of F' is a diagram
AxgB—— (2.7)

P

AAC

fulfilling some natural properties. Such a diagram gives in two natural ways an object
in C/F (by requiring the map A x¢c B — C be one of the two possible compositions),
and it is easily checked that the usual properties are equivalent to this object being
a 2-limit. If these properties are fulfilled we call a diagram as above 2-cartesian.

Assume that C = Cat. A model of A Xx¢ B is then the category whose objects
are triples (a,b,7), where a € 0b(A4), b € 0b(b) and ~: u(a) — v(b). A morphism
(a,b,v) — (d/,V,') is a pair (f: a—d/,g: b — V') such that v ou(f) =v(f) on.
The 2-morphism in (2.7) is given by ¥(a, b,7y) := .

We see in particular that 2-categorical fibre products in Cat are 2-limits.

We call a 2-cartesian diagram (2.7) a standard model of the fibre product in a
2-category C if for any object T' the functor Hom(T',_) produces a diagram which is
isomorphic (with respect to an obvious map) to the model in Cat from above. Note
that this is not the preferred model introduced above.

Like ordinary limits 2-categorical limits are characterized by a universal property
for Hom-categories.

Lemma 2.8. Let F: D — C be a 2-functor, (c,p) € C/F a 2-limit of F and T an
object of C. Consider the 2-functor H: D — Cat given by a — Home (T, F'(a)). Then
the natural map Dy, (7, — H is a 2-limit of the functor H.

Proof. In fact Homeo (D,, F') is naturally isomorphic to the preferred model of the
2-limit of the diagram a — Home (T, F'(a)). O

Lemma (2.8 implies an equivalence of categories

Home (T, 2- (116% F(a)) =2 2- (1161% Home (T, F(a)),

where the left 2-limit is taken in C, and the right 2-limit is taken in Cat.
Let C' be another small category and suppose given a 2-functor F': C' x D — C.
For simplicity suppose that C has all small 2-limits.

Proposition 2.9. Let the notation be as above. The assignment

a +— 2-lim F(a,b)
beD
can be made into a 2-functor K: C' — C, and two such choices are canonically equiv-
alent. Moreover the 2-limit of K is canonically equivalent to the 2-limit of F'.

Proof. The first assertion is a consequence of Lemma 2.3 We sketch the proof of the
second statement. By Lemma 2.8 we are reduced to prove the statement in Cat. But
taking everywhere preferred models produces isomorphic models of the two 2-limits
in question. O
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We will assume that C has a final object and admits standard models of all 2-
categorical fibre products. The absolute product X is understood as a standard model
of the fibre product over the final object. Consider a pair of maps

X\Y/X

Definition 2.10. The equalizer E(f,g) of the pair of maps f,g: X — Y is defined
as a standard model of the 2-categorical fibre product

E(f.9) —=Y

i ldiag
)

X—Y xY

Note that on Hom-categories this definition yields in fact the preferred model of
the equalizer diagram.

Definition 2.11. We define the inertia object of X as the equalizer
I1X = E(idx, idx).

We say that a 2-category is 2-complete if it admits all small 2-limits. There is
an analogous notion of a 2-colimit, and the category is called 2-cocomplete if all
small 2-colimits exist. The category is called 2-bicomplete if it is 2-complete and
2-cocomplete.

The 2-category of small groupoids gpd is 2-bicomplete as well as bicomplete as a
category. The same holds for the 2-category PStI of prestacks on a small category I,
which is by definition the 2-category of 2-functors gpd’™ . The 2-category of stacks
StS on a small site S is 2-bicomplete.

We consider the 2-category gpd(U) of groupoids in a category U which has finite
limits. Our basic example for U is the category Top of topological spaces.

Lemma 2.12. The category gpd(U) admits standard models of all 2-categorical fibre
products.

Proof. The objects and morphisms of the standard model of a fibre product in gpd(lf)
can be expressed in terms of fibre products in Y. O

Lemma 2.13. In gpd(U) equalizers exist for any pair of maps.

Proof. We observe that gpd(U/) has a final object and admits 2-categorical fibre prod-
ucts (Lemma 2.12). In fact, the limit of the empty diagram in I is the final object *
of U. The groupoid * = * is the final object in gpd(Uf). O

We assume that C has a final object and admits standard models of all 2-categorical
fibre products, and we consider a diagram (2.6]).

Lemma 2.14. We have a natural isomorphism I[(A x¢c B) =2 I A x1c IB, where we
use standard models for the fibre products.
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Proof. We only have to check this for C = Cat since everything can be stated in terms
of Hom-categories. We let D be the category freely generated by two objects 0, 1,
and two isomorphisms from 0 to 1. Then we have an isomorphism IA = Hom(D, A);
see also Lemma [2.15/in the case of groupoids. Since standard fibre products commute
with the cotensor structure the claim follows. O

2.2. Loops

In a 2-category of groupoids gpd(U) or stacks St(S) the preferred model of the
inertia I X (see Def.2.11)) of X is quite complicated. The goal of the present subsection
is the construction of a simpler model of I X which we call the loop object LX.

We start with the case of gpd(Uf). Let us assume that I/ is tensored and cotensored
over Sets. The cotensor functor will be denoted by

Hom: Sets® xU — U.
Using the existence of finite limits in & we extend this functor to a bifunctor
Homg,, : (Sets™ — Cat) x (U — Cat) — (U — Cat),

where for a category A with finite limits we write (A — Cat) for the 2-category of
category objects in A, and Setsfi™ is the category of finite sets.
Let X € gpd(U) C (U — Cat) be a groupoid in U. We consider the category

e

PR a
D:= o ®; € (Sets'" — Cat).
\_0,/’
B

Since X is a groupoid, Hom.,, (D, X) € (U — Cat) is again a groupoid in Y.
Lemma 2.15. We have a natural isomorphism
IX = Homg,, (D, X).
Proof. We insert the standard model of the 2-categorical fibre product of gpd(U)

into the definition of the equalizer in the special case that f =g = idx. Then the
assertion becomes obvious. O

Later we will have the freedom to replace groupoids by equivalent groupoids. We
let D be the category obtained from D by adjoining inverses. Since X is a groupoid
we have

HoJCat (D7 X) = @Cat (ﬁ’ X)

We now consider the category £ with one object * and infinite cyclic automorphism
group generated by o

§ %
7
Then we have a natural functor i: £ — D which maps * to g and ¢ to 37! o a. This

is an equivalence of categories. It induces an equivalence of groupoids

Homg, (D, X) = Homg,, (D, X) > Home, (£, X) .



146 ULRICH BUNKE, THOMAS SCHICK aNxpD MARKUS SPITZWECK

Definition 2.16. The groupoid LX := Hom,,, (£, X) will be called the loop groupoid
of X.

Note that we have an equivalence of groupoids
IX — LX. (2.17)

If f: X — Y is a morphism in gpd(lf), then composition with f functorially induces
a morphism Lf: LX — LY.
It is easy to describe the objects and morphisms of the loop groupoid LX explicitly.

Lemma 2.18. The objects LX? and morphisms LX' of LX are given by the follow-
ing fibre products in U:

LXO X1 (2.19)

b e

diag
0 0
X0 —= X0 x x0,

LX! —— x1 (2.20)
Lx0 2> x0,
The range map is given (in the language of elements) by the map
r((2,7), 1) == (r(p),poyou™t).

We will give another description of LX' which turns out to be useful later. We
define P by the cartesian diagram

P X1 (2.21)

l(pﬂ) isxr

8,0
LX%x LX°—— X0 x X0,

The composition of X induces a map m: P — X' defined in the language of objects
by

((20,70), (T1,71)s 1) — ¥1 "o ppoyg o™t

Lemma 2.22. We have a cartesian diagram
Lx! — s x0
lj ll
p—"s X1
where j := (s,r) and i:=Jdos.

Proof. Consider an object T € Y. A map f: T — LX' is uniquely determined by a
pair (u,v), u: T — LX? and v: T — X! such that §ou = sov: T — X% The map
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u is given by a pair (a,b) of maps with a: T — X° and b: T — X! such that sob =
r o b = a. We see that u is completely determined by b. Note that  ou = sob = sow.
We have j o f = ((sob,b), (rowv,vobov~1),v) and observe that mojo f =1oio f.
This construction is natural in 7 — LX° and therefore determines a map LX!' —
P X x1 X0.

Consider now a map g: T — LX! — P x x1 X? given by a pair (x,y) of maps
2: T — P and y: T — X such that moz = 1o0y. The pair (pox,kox) satisfies
dopox = sokoxand therefore defines a map f: T — LX!. Again, the construction
is functorial in g and defines a map P x x1 X — LX!.

We leave it to the reader to check that these maps are inverse to each other. [

Let X € gpd(U) and LX be its loop groupoid. Evaluation at the unique object *
of £ induces a functor LX — X. Therefore LX can naturally be considered as an
object of gpd(i4)/X. Note that a morphism in this category is a diagram

Y — 7,

Ny

and a 2-morphism between two such maps is a 2-morphism f ~» g between the given
l-morphisms f,g: Y — Z commuting with the 2-morphisms.

We will now consider group objects in gpd(U)/X. They together with their prod-
ucts (i.e. fibre products over X) will lie in a subcategory which is equivalent as a
2-category to a l-category, so it will not be a problem to formulate what we mean by
a group object in this case.

Lemma 2.23. The loop groupoid LX has a natural structure of a group object in
gpd(U)/X.
Proof. We consider the category £ € (Sets-Cat) pictured by

Coten )

where a, ¢ generate infinite semigroups. By £ we denote the category obtained from
& by adjoining inverses. Then we observe that in the 2-category gpd (i)

LX XX LX gHﬂc;n:(g’)() gHﬂCatz(g’)()'

We define a functor j: £ — £ which maps * to eg and o to b=! o coboa. The pull-
back

LX xx LX gHﬂCaﬁ(gV)() gHﬂCat(‘C?X) = LX

induces the composition law. We leave it to the reader to write out the inverse, the
unit and the remaining necessary verifications. O

Definitions, Facts, and Notation 2.24. Let S be a Grothendieck site. Then we can
consider the category of presheaves of sets PShS. It is closed under taking arbitrary
small limits. The 2-category of strict prestacks PSt**"*S on S is by definition the
category gpd(PShS). By Lemma 2.13 in PStS'"i’S equalizers exist for all pairs of
maps.
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The category PShS is tensored and cotensored over Sets. Hence we can apply the
construction of the loop groupoid in PSt****S. We now consider the full 2-subcategory
of strict stacks Sts*i°tS  PStstietS of stacks on S. Recall that a stack is a prestack
which satisfies descend conditions for objects and morphisms. This subcategory is
closed with respect to 2-limits and preserved by the cotensor structure. For all pairs
of maps in the category St*'itS the equalizer exists by Lemma [2.13. Moreover, the
loop object of a stack is again a stack.

While a strict prestack is a strict 2-functor S°P — gpd(Sets), a prestack is a (in
general non-strict) 2-functor S°P — gpd(Sets), i.e. it preserves compositions of mor-
phisms in S up to 2-morphisms which satisfy coherence conditions for triple compo-
sitions. The category of stacks is again a full subcategory of the category of prestacks
on S which satisfy certain descend conditions. Note that PStS is cotensored over
(Sets-Cat); i.e. we have a bifunctor

Hom,, : (Sets-Cat) x PStS — PStS.

This structure is induced by the corresponding cotensor structure of (Sets-Cat), i.e.
for a category D € Sets-Cat and a prestack X the value of Homy,, (D, X) on U € S is
given by

Hom,, (D, X)(U) := Home,, (D, X (U)),

where X (U) € Sets-Cat. If X is a stack, then Hom.,, (D, X) is also a stack.

The 2-categorical fibre product of (pre)stacks is given objectwise in S by the 2-
categorical fibre-product in gpd(Sets). Therefore, Lemma [2.15 remains true in the
categories PStS and StS. We can furthermore define the loop (pre)stack LX of a
(pre)stack as in Definition 2.16/ and (2.17) still induces an equivalence of (pre)stacks

IX — LX.

Finally, Lemma [2.23 holds in the sense, that for a (pre)stack X the loops LX form a
group object in the category of (pre)stacks over X.

Like Lemma [2.14] in the case of inertia stacks we have

Lemma 2.25. The inertia functor preserves standard 2-cartesian diagrams.

2.3. Loops of topological stacks

We consider the site Top of topological spaces and open coverings. Let StTop be the
2-category of stacks in topological spaces. By the observations in 2.24/ we can form the
loop stack LX of a stack X € StTop. In the present subsection we show that taking
loops preserves topological stacks. Furthermore we show that taking loops commutes
with the classifying stack functor from topological groupoids to stacks in topological
spaces. We use the latter result in order to verify that LX for an orbispace is what
is called the orbispace of twisted sectors in the literature.

We refer to [19], [34] and also to [12] for details about stacks (in topological
spaces). Topological spaces are considered as stacks via the Yoneda embedding. A map
a: A — X from a topological space to a stack X is called an atlas if it is representable,
surjective and admits local sections. A topological stack is a stack which admits an
atlas. We shall show that taking loops preserves topological stacks.
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Lemma 2.26. If X € StTop is a topological stack, then LX is a topological stack.

Proof. Let a: A — X be an atlas of X. Then we define a space W by the pull-back
diagram

WHAXXA

lw \L (prq,pry)
diag

A——=Ax A

We will construct a canonical map ¢: W — LX and show that it is an atlas of W.

The map ¢: W — LX is defined as follows. Let T be a topological space and
(f: T —W)eW(T). By the definition of W this map is given by a pair (g, h) of
mapsg: T — Aand h: T — A xx Asuch that diago g = (pr; o h,pry o h). The map
h: T — A xx A is given by a pair hy,he: T — A and a 2-isomorphism o: a o hy ~
a o hy. Combining these two facts we see that f is given by a pair (g,0) of a map
g: T — A and a 2-automorphism o: ao g~ aog. Recall that an object of LX(T)
is a pair (u,¢) of an object u € X(T') and an automorphism ¢ € Aut(u). We define
c(f) € LX(T) to be the object (aog,0) € LX(T).

We now construct a 2-commutative diagram

W—>LX (2.27)

A2 s x

by defining ¢ is follows. As above let (f: T'— W) € W(T) be given by a pair (g,0). In
X (T') we have the equalities i o ¢(f) = i(ao g,0) = ao g and aow(f) = aog. There-
fore we can define ¢(f) :=o.

We claim that diagram (2.27) is 2-cartesian. In order to see this let T' be a space
and counsider a triple (u,v,6) consisting of maps u: T — A, v: T — LX and a 2-
isomorphism 6: a o u~» i owv. To this data we must associate a unique pair of maps
(f, ) consisting of a map f: T — W and a 2-isomorphism : co f ~» v such that

A—* o X

commutes. The map v is given by a pair (iowv,k) consisting of an object iowv €
X(T) and an automorphism k € Aut(i o v). Using the description of maps T'— W
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obtained above we define f: T — W as the map which corresponds to the pair
(u, 071 0 K 0 0) consisting of an object u: T — A and the automorphism =1 o k0 6:
aou~+aou. We furthermore define a 2-isomorphism v: co f = (aou,0 Lok o8)

0 (iow,k) =wv. Observe that 1 is uniquely determined by the condition that
() od(f) =6: aowo f =aou— iow. Thisequality indeed holds for our construc-
tion since ¢(f) =60 1ok of and i(¢)) = k! o @. This finishes the proof of the claim.

Since A — X is an atlas the map a is representable, surjective and admits local
sections. These properties are preserved under pull-back. It follows that ¢: W — LX
is representable, surjective and admits local sections, too. Therefore it is an atlas of
LX. O

K

A topological groupoid G is a groupoid object in Top. It represents the stack
of G-principal bundles BG. If A — X is an atlas of a topological stack, then we
form the topological groupoid A: A xx A = A. The stack of A-principal bundles is
equivalent to X. We can define an equivalence X — BA which maps (T — X) € X(T)
to (T xx A—T) € BA (we omit to write the action of A4 on that space over T).

Observe that finite limits in Top exist, and that Top is tensored and cotensored
over Sets. Therefore by 2.13 for any pair of maps in gpd(Top) an equalizer exists.
Furthermore, we can form the loop groupoid LA of a topological groupoid .A.

Let A — X be the atlas of a topological stack, and let A € gpd(Top) denote the
associated topological groupoid.

Lemma 2.28. We have a natural equivalence of stacks LX = BLA.

Proof. Let W — LX be as in the proof of Lemma|2.26. Then we can form W: W X x
W = W. If we show that W = LA, then the assertion follows.
From (2.19) we get W = (LA)°. Next we calculate using (2.20)
W xpx xW =2 (Axx LX) xpx (Axx LX)

~LX xx (Axx A)

= (LX xx A) x4 (Axx A)

>~ (LA®) x4 At
(LA)'.

1%

These isomorphisms are compatible with the groupoid structures. O

The following result was also shown in [34] Cor. 7.6].
Lemma 2.29. If X is a topological stack, then LX — X is representable.

Proof. We must show that for all spaces T and maps T — X the fibre product T' X x
LX is equivalent to a space. It suffices to verify this in the case that T is an atlas.

We choose an atlas A — X. The assertion then follows from the following two
facts:

(1) Diagram (2.27) is cartesian.
(2) W is a space. O
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Let us recall some notions related to orbispaces. Orbispaces as particular kinds of
topological stacks have previously been introduced in [12] Sec. 2.1] and [34, Sec. 19.3].
In the present paper we use the set-up of [12] but add the additional condition that
an orbispace atlas should be separated. This condition is needed in order to show
that the loop stack of an orbispace is again an orbispace.

Definitions, Facts, and Notation 2.30.
(1) A topological groupoid A: Al = AY is called separated if the identity 14: A° —
A! of the groupoid is a closed map.
(2) A topological groupoid A! = A" is called proper if (s,7): A — A% x A% is a
proper map.

(3) A topological groupoid is called étale if the source and range maps s,r: A — A°
are étale.

(4) A proper étale topological groupoid A! = AY is called very proper if there exists
a continuous function y: A° — [0,1] such that

(a) r: supp(s*y) — A° is proper;
(b) >, cae x(s(y)) =1 for all z € A°.

(5) A topological stack is called (very) proper (étale, separated, respectively), if
it admits an atlas A — X such that the topological groupoid A xx A = A is
(very) proper (étale, separated, respectively).

(6) An orbispace atlas of a topological stack X is an atlas A — X such that A x x
A = A is a very proper étale and separated groupoid.

(7) An orbispace X is a topological stack which admits an orbispace atlas.

(8) If X,Y are orbispaces, then a morphism of orbispaces X — Y is a representable
morphism of stacks.

The following lemmas illustrate the meaning of the separatedness and very proper-
ness conditions.

Lemma 2.31. Let A: A' = A° be a proper étale groupoid. If A', A° are locally com-
pact, then A is very proper.

Proof. The existence of the cut-off function was shown in [38], Prop. 6.11].

Lemma 2.32. Let A: A' = A be a topological groupoid. If A° and A' are Hausdorff
spaces, then A is separated.

Proof. We define the Hausdorff space @) as the pull-back

Q—L -

I

diag
A0 ——=A0 x A°.

The property of a map between topological spaces being closed is preserved under
pull-back. Since A" is Hausdorff the diagonal diag: A — A® x A% is a closed map.
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It follows that j: Q — A' is a closed map. The composition o in A gives the squaring
map

diay o
5¢: Q=2 Qx40 Q> Q.
Then we have a pull-back

I——=Q

J/ l(id@,sq)
diag

Q—=QxQ.

Since @ is Hausdorff, it follows that diag and hence k are closed maps. The com-
position jok: I — A of closed maps is again closed. In a group the identity is the
unique solution of the equation 2 = z. It follows that j o k(I) = 14(A). Therefore
14(A%) C Al is closed.

This implies that 14: A° — A is a closed map. If fact, if K C A° is a closed
subset, then we define the Hausdorff space AL C Al as the pull-back

AL Al

l l(m

K x K —2= A0 x A9,

Since u (the obvious embedding) is a closed map, so is v. We apply the discussion
above to the restricted groupoid A} = K with identity 14, : K — A} in order to
show that 14, (K) C Ak is closed. Hence 14(K) = v(14,(K))) C Al is closed. O

Lemma 2.33. If X is an orbispace, then LX is an orbispace and LX — X is a
morphism of orbispaces.

Proof. Choose an orbispace atlas A — X. The associated groupoid A: A xx A — A
is étale, proper and separated. In order to show that LX is an orbispace it suffices to
show by Lemma [2.28 that L.A is étale, proper and separated.

The property of a map between topological spaces being étale is preserved under
pull-back. By (2.20) the fact that s: A* — A is étale therefore implies that s: (L.A)*
— (LA)Y is étale. Using the inversion homeomorphism I: (LA)! — (LA)} we can
express the range map in terms of the source map: r = so I. This implies that
r: (LA — (LA)° is étale, too. We thus have shown that LA is étale.

We consider the pull-back

P Al

J{j l(m‘)

(LA)? x (LA)® — A% x A°

(compare (2.21))). The property of a map between topological spaces being proper is
also preserved by pull-backs. Therefore j: P — (LA)°? x (LA)" is a proper map. The
image of 14: A% — A! is closed. By Lemma 2.22| we can write (LA)! as a closed
subspace (LA)! := m~1(14(A%)) C P. In general, the restriction of a proper map to
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a closed subspace is still proper. Since the restriction of j to the closed subspace
(LA)! C P is exactly (r,s): (LA)! — (LA)° x (LA)° we see that the groupoid A is
proper .12

We now show that L.A is very proper. Since A is very proper there exists a con-

tinuous function x: A% — [0, 1] such that r: supp(s*x) — A° is proper and

> x(sy) =1

yEAT

for all z € A°. Let i: LA — A be the canonical map. Then i*x: LA° — [0, 1] has
corresponding properties for the groupoid L.A.

Finally we show that 174: (LA)° — (LA)" is a closed map. By definition we have
the cartesian square

(LA —— A

-

(LAY —— A0,

Therefore we have an embedding as a subspace (LA') C (LA)° x A'. Let K C (LA)°
be a closed subset. Then we can write 174(K) = (LAY) N (K x i(A%)). Since A is
separated the subspace (K x 14(AY)) C (LA)° x A! is closed. Therefore 1, 4(K) C
(LA)! is closed, too.

In order to be a map of orbispaces LX — X must be representable. This is
Lemma 2.29. O

We can replace the site of topological spaces Top by the site of smooth manifolds
Mf>°. We will call the corresponding stacks stacks in smooth manifolds. A map A — X
from a manifold to a stack in smooth manifolds is called an atlas if it is representable,
surjective and smooth (i.e. a submersion). A stack in smooth manifolds which admits
an atlas is called a smooth (or differentiable) stack. An orbifold atlas of a smooth
stack is an atlas such that the associated groupoid is étale and proper. An orbifold is
a smooth stack which admits an orbifold atlas. Since smooth manifolds are Hausdorff
and locally compact a smooth stack is separated. If it is proper, then it is automati-
cally very proper, and the corresponding cut-off function (see 2.30} (4)) can actually
be chosen to be smooth.

The obvious problem to extend the proof of Lemma [2.26! from topological spaces
to smooth manifolds is that in smooth manifolds fibre products only exist under
appropriate transversality conditions. In fact, the map (pry,pry): Axx A —Ax A
is in general not transverse to the diagonal diag: A — A x A.

But it is still true that the loop stack of an orbifold is an orbifold. Proofs of this
fact can be found e.g. in [22], [1], [14]. Note that for smooth stacks LX — X is in
general neither smooth nor representable.

1214 is because of this argument that in addition to the conditions used in [12] we require an orbispace
atlas to be separated.
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2.4. Loops and principal bundles

Let G be a topological group. The classifying stack BG of G-principal bundles
is given as a quotient stack BG := [*/G] of the action of G on the one point space
* [19, Example 2.5]. The map * — BG is an atlas and we have a canonical cartesian
diagram

—>

7

— BG.

Hence this atlas gives rise to the groupoid G: G = x. We see that LG is the groupoid
G x G = G of the action of G on itself by conjugations. Therefore by Lemma 2.28
we have LBG = [G/G].

A G-principal bundle over a space Y is by definition an object p € BG(Y), or
equivalently, by Yoneda’s lemma, a map p: Y — BG. The underlying map of spaces
P — Y fits into the cartesian diagram

P—— %

Y —2> BG.
We adopt the same definition for a G-principal bundle over a stack Y. In this case
the underlying map P — Y is a representable map.

Let a: A — Y be an atlas such that the pull-back of the principal bundle p: ¥ —
BG admits a trivialization. A trivialization is a lift ¢ in the diagram

o * (2.34)

t .  ;:' & \L
A=y =G
The cocycle associated to the atlas a and the trivialization ¢ is the induced map
(I)a’t:AXyAH*ng*%JG.
Let A: A xy A= A be the groupoid determined by the atlas and A°® denote the
associated simplicial space. Let
C*(A;G) :=C(A%,G), 6:C°(A;G) — C*THAG)

be the associated cochain complex (the part in degree > 2 is only defined if G is
abelian). Then @, € C'(A,G) is closed, i.e. it satisfies 6@, = 0. We refer to [19]
Sec. 2] for a description of G-principal bundles in terms of cocycles.

Let p: Y — BG be a G-principal bundle over a stack Y. We apply the loop functor
and get the map Lp: LY — LBG = [G/G]. It is a homomorphism over the map
Y — BG. If G is abelian, then it induces a homomorphism

h: LY — G. (2.35)

In the following we give a heuristic description of this homomorphism. Let f: P
— Y be the underlying map of stacks of the principal bundle. Furthermore, let i: LY
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— Y denote the canonical map. For a point y € Y we get an action of the group
i~1(y) on the fibre f~1(y). If vy €i~(y) and = € f~(y), then vz = zh(y). On the
left-hand side, (7, ) — v denotes the action of i~1(y) on f~(y). On the right-hand
side (x, g) — xg is the G-action on P given by the principal bundle structure. We see
again, that the restriction hj;-1(,): i~1(y) — G is a homomorphism for all y € Y.

Assume that we have chosen an atlas a: A — Y and a trivialization ¢ as in (2.34).
Let A: A xy A = A be the associated groupoid. Then we get an induced map h, : LA
— G. It is equal to the restriction of the cocycle @, to (LA)° C A!; i.e. we have the
equality

ha = (Payt)|(Lay- (2.36)

The cocycle h, is closed, i.e. dh, = 0, and it represents the function h € C(LY;G)
under the identification H°(LA; G) = C(LY,G). Another interpretation of (2.36) is
as the equality h, = tr[®, ], where [®, ] € H'(A;G) is the cohomology class rep-
resented by ®,+, and tr: C*T1(A4;G) — C*(LA;G) is the transgression chain map
defined in [2], [27], [39].

Let G be an abelian topological group. In the following lemma we will assume that
for all n € N the subspace of n-torsion points

Tors,(G) :={g€Gl¢g" =1} C G

is discrete. This is a non-trivial assumption which, for example, is not true for the
topological group [[yZ/nZ. Let G° denote the group G with the discrete topology.
Let p: Y — BG be a G-principal bundle.

Lemma 2.37. If Y is an orbispace and the subsets Tors,(G) C G are discrete for
all n € N, then the map h: LY — G (defined in (2.35)) factors over G°.

Proof. We must show that for all spaces T' and maps w: T'— LY the composition
how: T — G is locally constant. We choose an orbifold atlas A — Y which gives rise
to a very proper separated étale groupoid A: A xy A = A.

We consider a point t € T'. There exists a neighbourhood ¢t € U C T which admits
a lift

U “7> AO
|7
Ty,

By Lemma 2.28 we have the 2-cartesian square in the following diagram:

w\ VVV(LA)O —>7LY

A° Y.
We get an induced map v: U — LA C A' such that @ = sowv. Let a := w(t) € A°
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so that v(t) € A%. Since the groupoid A is proper the group A% is finite. Hence there
exists an n € N such that v(¢)™ = id,. The map v™ fits into the diagram

{t}n—>A1
e
U—=> A°.

Note that the map U 3 u +— idg,) € Al would fit into the same diagram in the
place of v™. Since s: Al — A® is étale we can shrink U further such that v™(u) =
idg () for allu € U. This implies that h o w: U — G factors over the discrete subset
Tors,(G) C G and is therefore locally constant. O

Let G be a topological abelian group such that Tors,(G) C G is discrete for all
n € N. Furthermore, let p : Y — BG be a G-principal bundle over an orbispace Y and
h: LY — G° as in Lemma [2.37. Then we have a decomposition

LY = | | LY,
geG

where LY, := h~1(g) is formally defined by the 2-cartesian square
LYy — [{g}/G]
|
7},;,':' Lp 5 o
LY — [6¢°/G] — Liec {1}/ G-

Let f: X — Y be the map of stacks underlying the principal bundle p. It fits into
the cartesian diagram

X —> % (2.38)

Yy —2s BG.

Lemma 2.39. The map Lf: LX — LY factors over the G-principal bundle
LX — LY.

Proof. We apply the loop functor to the 2-cartesian diagram (2.38) and get the 2-
cartesian diagram (see Lemma [2.25))

LX — > L{1} ——— {1} (2.40)
7
i Lf':': i :V l \L
LY —2 [BG —— [G/G).

It follows from the construction of h: LY — G that ho Lf is the constant map with
value 1 € G. It remains to show that LX — LY7 is a G-principal bundle. To this end
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we refine the diagram (2.40) to
LX — {1}

]

IV —= {1}/
7

s

Ly — 2~ [G/al.

By definition of LY; the lower square is 2-cartesian. Since the outer square is the
2-cartesian square (2.40]) we conclude that the upper square is 2-cartesian. O

Let T" be a finite group. The exact segment

v HU(DRY) —— H (D U(1)°) 5= HA(132) ——= H(I R — -

S :

0 I 0
of the Bockstein sequence in group cohomology associated to the sequence of coeffi-
cients

0-Z—-R—U1)P° -0
gives rise to a natural identification
H*(I;Z) ~T,
where I' denote the group of U (1)-valued characters of T

Let us consider the orbispace [+/I']. Then we have L[x/I'] = [I'/T], where I' acts
on itself by conjugation. A character y € I' gives rise to a function

X: L[+/T] = U1, v x(): (2.41)
There are various ways to define the integral cohomology of an orbispace B. In

order to be able to use results about the classification of U(1)-principal bundles over
B we use the definition [12], where we define

H*(B;Z) :== H*(|Al; Z)

using the classifying space |A| of the groupoid A associated to an orbifold atlas
a: A — B. Note that by this definition H*(BI';Z) = H*(I'; Z). In fact, if we choose
the atlas a: * — BI" and let A be the associated groupoid, then |A| is the standard
model of the classifying space BI of T.

Let x € H?(B;Z). In this paragraph we generalize the construction (2.41) of the
map X — X to general orbispaces B. We start with describing the values of ¥: LB —
U(1) at the points of LB. For the moment we do not claim any continuity property,
but by Lemma [2.43| we see that it is continuous even if we equip U (1) with the discrete
topology.

Consider a point u: * — LB. It determines and is determined by a point p,: % —
LB — B in B and an element v, € Aut(p,) = * X *. The element ~, generates a
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finite cyclic group T',,. We obtain an induced map : [*/T',] — B. We have L[x/T,] &
[[',/T,] and consider v, € [I',,/T,] (or more formally, as a map 7, : * — [[',,/T]). We
have an induced map Lu: L[+/T",] — LB such that Li(vy,) = u. We can now define

X(u) = X (Yu)- (2.42)

Let B be an orbispace. By [12} Prop. 4.3], the class x € H?(B;Z) classifies a U(1)-
principal bundle P,, — B. In Lemma 2.43 we will express the corresponding function
hy: LB — U(1)° (defined in (2.35) directly in terms of x.

Lemma 2.43. We have the equality h, = X.

Proof. The constructions of h, and X are natural under pull-back. It therefore suffices
to show this equality in the case that B = [x/T] for a finite group T'. In this case we
have P, = [U(1)/,I'], where I acts on U(1) via the character x. By construction of
hy we have h, = x: [['/T] — U(1)°. On the other hand, again by construction, we
have y = x: [['/T] — U(1)°. O

Here is another interpretation. Let a: A — B be a good orbifold atlas; i.e. the
spaces

Axp---xgpA
S —
n+1-factors

have contractible components for all n > 0. We can choose a trivialization ¢ of the pull-
back of the U(1)-bundle to A and get a cocycle ®,, € C*(A;U(1)). The definition of
an orbifold atlas is in particular made such that H*(A; Reont) = 0 for i > 1.9 Hence
the boundary operator in cohomology associated to the sequence 0 — Z — Reont —
U(1)cont — 0 induces an isomorphism

0: HY(A;U(D)eons) — H*(A;Z) =2 H*(B; 7).

Under this identification we have x = 9[®,, ;]. Our construction of x — X is made such

that 9(¢) = trep € HO(LA;U(1)) 2 C(LB,U(1)) for every class ¢ € H'(A;U(1)).
This assertion is equivalent to Lemma 2.43.

2.5. Gerbes and local systems

We consider stacks in topological spaces StTop. Let H be an abelian topological
group and f: G — X be a topological gerbe with band H over some topological
stack X. We take loops and obtain Lf: LG — LX. We further have a canonical map
i: LG — G, and LG/G is a group in StTop/G (see Lemma [2.23). Since i o Lf = foi

13For a proof see [15], Prop. 1] or the corrected version [12]. In the original version an orbifold atlas
was characterized by the property that it gives rise to a proper étale groupoid. In order to prove this
vanishing of real continuous cohomology we added the assumption of being very proper.
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we get the dotted arrow
(2.44)

-

LX —= X,

where the gerbe G, — LX is defined by the 2-cartesian square. One way to say that
the gerbe G — X is a topological gerbe with band H is as follows:1%

(1) The map : LG — G, is the underlying map of an H-principal bundle classified
by GL — BH.

(2) The sequence of (representable; see 2.29) maps LG > G — G is a central
extension of groups

G x H/G — LG/G — G1/G (2.45)

in StTop/G (the group stack structures of G, /G is induced from that of LX/X).

Proposition 2.46. There exists a canonical central extension
XxH/X -G/X - LX/X

of groups in StTop/X whose pull-back along G — X is isomorphic to (2.45). It
depends functorially on the datum G — X.

Proof. We first go over to topological groupoids by choosing atlases. Then we con-
struct the required extension in topological groupoids. Finally we pass back to stacks.

We choose an atlas a: A — X which admits a lift

G (2.47)

to an atlas of G. We get topological groupoids

XXl =Axx A=x":=4
G:¢gt ::AXGA:>QO::A,

and a central H-extension

MThe definition given in [19) Def. 5.3] expresses these properties using objects.



160 ULRICH BUNKE, THOMAS SCHICK aNxpD MARKUS SPITZWECK

XOx H

|

g1:>g0

|

XYl —— x0.

Using the description (2.19) of the objects of LX and LG we get the pull-back of
H-principal bundles

(LG)? ——=g!

L

(LX) —— x1,

Furthermore, by (2.20) we have the following description of the morphisms (LG)! as
a pull-back

(Lg)! — g (2.48)

L

(Lg)O L> gO.

We see that (LG)! has two commuting H-actions, the first comes from the action
on (LG)° (the principal bundle structure of the left lower-corner in (2.20))), and the
second comes from the action on G!, the right upper-corner in (2.20).

We now define the groupoid Gj corresponding to the stack Gp. The obvious

definition would be as LX Xy G, but we consider the simpler equivalent groupoid
Gr: (Gr)' = (LX)Y where the morphisms are given by the cartesian diagram

(G ——¢! (2.49)

o

107,708

(LX) —= &0 x &0,

We have a natural homomorphism of groupoids LG — G which is an H-principal
bundle as expected.

Observe that we can define a groupoid G:G! - GY = LG% by taking the quotient
of Gl .= (LQ)1 by the second H-action. In other words, we define G' by the cartesian
diagram

Gt —(L9)° (2.50)

L

Xt —— X0,
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With the natural induced map G — LXisan H -principal bundle over LX. We com-
pose this map with LX — X" and observe that the groupoid structure on G induces on
G — X the structure of a group in groupoids over X. It fits into the central extension

XxH—G—LX
of groups in gpd(Top)/X.
The bundle G — LX fits into a cartesian diagram

LG——¢G

G — LX.
We now pass back to stacks. We interpret the H-principal bundle G — (LX)°

as an object (LX)° — BH. The action (LX)' x(zxy0 G° — G° gives the descend?
datum for completing the following diagram by the dotted arrows:

GO G

| V

(LX) —= [(LX)° /(LX) —= LX

.,

BH.

The H-principal bundle in groupoids G — LX thus gives rise to an H-principal
bundle in topological stacks LX — BH with underlying map of stacks G — LX. In
fact, it fits into the cartesian diagram

LG—— @G
|7
G ——LX

and the central extension
XxH—G-—LX

in StTop/X.

Let B: B! = B° be a topological groupoid with quotient stack [81/30]. Let U be some stack. A
descent datum is a diagram

Bl % BO
b
BO H U'7

which is compatible with the composition in BB in the obvious way. We use the equivalence of the
category Hom([lr:o’l/l’)’o]7 U) with the category of descent data.
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In order to answer the question whether G — LX is well-defined up to canonical
equivalence we must study how it depends on the choice of the atlas a: A — X and
its lift (b, ¢) (see 2.47). We must show that an automorphism of this datum induces
the identity on G — LX. Now observe that the automorphism group of (a, b, ¢) is the
group of automorphisms of b which induce the identity on a (in order not to change
¢). By the definition of an H-banded gerbe it is given by C(A, H). It acts trivially
on G — LX, indeed.

Finally observe that the construction of G — LX depends functorially on G — X.
We leave the details to the reader. O

We now assume that the stack X is an orbispace. We further assume that Tors,, (H)
C H is discrete. Let H° be the group H equipped with the discrete topology.

Lemma 2.51. The H-bundle ¢: G — LX admits a natural reduction of structure
groups ¢°: G° — LX from H to H°.

Proof. Let T be a space and * € T be a point. We consider the lifting problem

*$—é

l K
T——LX.
We must show that this problem has a unique solution after replacing 7' by some
neighbourhood of *, if necessary.

Using an orbispace atlas A — X we translate the problem to an equivalent lifting
problem for topological groupoids

*4>g~

B

T—>LA—> A
Here we counsider T as a groupoid T = T in the canonical way. Let v :=t(x) €
(LA)® = A2, where a :=i(y) € A° = A. Since A? is a finite group there exists n € N
such that " = id4.. We consider the embedding A% C A! given by the identities.
Using the group structure (Lemma 2.23)) of LA — A and the fact that the groupoid
A is étale it follows that 1 =t™: T'— LA after replacing T' by some neighbourhood
of #, if necessary (see the proof of Lemma 2.37 for a similar argument). It follows that
t": T — LA has a natural lift " given by an H-translate of the identity map such
that o™ = "(¥).
It remains to find the n-th root  of £*. We now consider the diagram

ker(...)" H ) H

L

ker(...)nHQNXLAT%QNXLATt
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The map c: G xraT — G xpaT is étale. Therefore, after replacing T' by some neigh-
bourhood of * again, the datum of o and " give the unique lift ¢. O

For smooth gerbes with band U(1) on orbifolds the analog of Lemma [2.51] was
shown e.g. in [40] or [28]. The argument in these papers uses the existence of a
geometric structure (connection and curving) on the gerbe G. This geometry naturally
induces a connection on the U(1)-principal bundle G — LX. By a calculation the
curvature of this connection vanishes. This gives the reduction of structure groups.

Let g: Y — X be a map of topological stacks and f: G — X be a topological gerbe
with band H over X. We consider a 2-cartesian diagram

K—C

[

Y —=X.
Lemma 2.52. We have a 2-cartesian diagram

F—=a (2.53)

||

LY —>LX.
Under the assumptions of Lemma!2.51 this diagrams refines to a 2-cartesian diagram

}'}'5%@5

" Lg

LY —LX.
Proof. We get the square (2.53) from the functoriality part of Proposition [2.46. Since
the vertical maps are H-principal bundles it is automatically 2-cartesian. The second
statement easily follows from Lemma 2.51. O

2.6. The holonomy of G°

Let G — X be a topological gerbe with band U(1) over an orbispace X. In [2.5
we constructed a U(1)°-principal bundle G® — LX. It is an instructive exercise to
calculate the holonomy of this bundle in terms of the Dixmier-Douady invariant
d € H3(X;Z) of the gerbe G — X. In the following we consider a special but typical
case of this problem.

We consider a U(1)-principal bundle 7: E — B in orbispaces and a topological
gerbe f: G — FE with band U(1). Let h: LB — U(1)° be the function associated to
the principal bundle E — B as in Lemma [2.37 and define LB; := h=1(1). Then by
Lemma 2.39 we have an induced U(1)-principal bundle Lw: LE — LB;. The holon-
omy of the bundle G® — LE along the fibres of L7 gives rise to a function

g: LB, — U(1)°

(see [2.55/ for a precise construction).
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The gerbe f: G — B is classified by a Dixmier-Douady class d € H*(E;Z). Let
m: H3(E;Z) — H*(B;Z) be the integration map. According to (2.42) the class
m(d) € H?(B;Z) gives rise to a function

m(d): LB — U(1)°.
The main result of the present subsection is the following proposition.

Proposition 2.54. We have the equality

9:7T!(d)|LBl~

Construction 2.55. Here is the precise construction of the function g: LBy — U(1)°.
Let T be a space and T'— LB; be a map. The pull-back

W—>Go

|

S——LE
| 7
T LB

defines a U(1)-principal bundle S — T and a U(1)°-principal bundle W — S. We
choose an open covering (T, — T)aer such that for all « € I there exists a section

7 i
Sa -

To —>T.

The section s, gives rise to a map T, x R — S by (¢,2) — s,(t)x, where R acts on
S via the covering R — U(1). We can now (after refining the covering (T, — T) if
necessary) choose a lift

w
Wea 7 l
T, X R——>3.

Then we define a map gz, : T, — U(1)® such that wq (t,0) = wa(t, 1)gr, (t). Observe
that g7, does not depend on the choices of s, and w,. One easily checks that the
family of maps (g7, )aes determines a map g7: T — U(1)® which depends functorially
on T — LBy. It therefore defines a map g: LBy — U(1)°.

We now turn to the actual proof of Proposition 2.54. We first consider a special
case. Let I" be a finite cyclic group which we write additively. We let T" act trivially on
U(1) and consider the orbispace E := [U(1)/T]. The projection U(1) — # induces a
U (1)-principal bundle 7: E — B := [*/T']. We calculate H3(E;Z) using the Kiinneth
formula and the product decomposition F = U(1) x B. Note that H*(B;Z) %
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H*(T; Z). In particular we have H*(B;Z) = 0 and a canonical isomorphism H?(B;Z)
= I'. It follows that

H*(E;Z)~ HY(U(1); Z) ® H*(B;Z) =T, (2.56)

using the canonical orientation H*(U(1);Z) 2 Z of U(1).

The group H3(E;Z) classifies topological U(1)-gerbes over E. In the following
we present a construction which associates to every character ¢ € I' a U (1)-gerbe
G4 — E. We construct these gerbes in terms of representing groupoids.

The canonical covering R — U(1) induces an atlas R — E. The corresponding
topological groupoid is the action groupoid for the action of Z x T" on R by (n,¥)t :=
t + n. It is given by

RxZxD =R (2.57)

with range (¢, n,v) := t + n, source s(t,n,v) := t, and the composition (t + m,n,vy) e
(t,m,y") == (t,n+m,y+7").
The character ¢ € I' determines a U(1)-central extension

05 U(1) > ZxTy—ZxT —0. (2.58)

If we identify ZxT 6 =ZxT xU(1l) as sets, then the multiplication is given by
(n,7,2)(n',~,2) = (n+n',y+~, ()" 22'). This central extension acts on R via

its projection Z x I'y — Z x I', (n,7,z) — (n,7). The gerbe G, — E is then given
by

[R/Z x T'y] — [R/Z x TJ.

In terms of groupoids, G is given as the U(1)-central extension of the groupoid (2.57)
which on the level of morphisms is the trivial U(1)-bundle

RXZxTxU(l) -RxZxT,
whose source and range maps are
s(t,n,y,z) :=t, r(t,n,v,z):=t+mn,
and whose composition is given by
(t+m,n,v,2)(t,m, 7, 2) == (t,n+m,y+~,6(y)"2 2).
We now calculate the bundle G’g — LFE. First of all note that
LE[I'xU(1)/T],

where I" acts trivially on I" x U(1). The map I' x R — I" x U(1) gives an atlas of LE.
The associated groupoid is the action groupoid of the action of Z x I" on I' x R by
(n,y)(o,t) = (o,t +n). It is given by

I'xRXxZxI'=TxR
with range and source given by
r(o,t,n,y) := (o, t +n), s(o,t,n,7):= (0,t),
and with the composition

(o,t+m,n,y)o (o, t,m,y) := (o,t,n+m,y+7).
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We can now read off a groupoid presentation of the U(1)°-principal bundle Gg — LFE.
It is presented by the U(l)‘s—principal bundle in groupoids

IxRxU(1)° xZxT—=T xR xU(1)°

l l

I'XRXxZxI'—————=T xR.
The range and source maps in the upper horizontal line are given by
r(o,t,z,n,7) = (o,t +n,d(0)"2), s(o,t,z,n,7) = (0,t,2),
and with the composition
(o, t+m,p(a)"z,n,7v) o (0,t,z,n,7) = (0, t,z,n +m,y+7).

In particular, the holonomy of G‘; along the fibre of LE over [{c}/T] is given by ¢ (o).

In our example we have LBy = [I'/T] = LB, where I" acts trivially on itself. The
function g4: LBy — U(1)°, which measures the holonomy of G¢ — LE along the
fibres of LE — LBy, is given by the calculation above by

go=¢: T —U(1)°. (2.59)
By (2.56)) the character ¢ gives rise to a class d, € H*(E;Z) such that
m(dg) = ¢

(using the isomorphism I' 2 H2(B;Z)). Furthermore we have the function
m(dg) = ¢: T — U(1)°

defined in (2.42).

In order to finish the proof of Proposition 2.54] in the special case we must show
that dy is the Dixmier-Douady class d(Gg) of G,. We will use the following two
general facts:

(1) Let
1-U1)—-G—-G—1
be a U(1)-central extension of a discrete group G classified by
e € Ext(G;U(1)) := H*(G;U(1)).

Furthermore, let §: H?(G;U(1)) — H3(G;Z) be the boundary operator in the
Bockstein sequence in group cohomology associated to the exact sequence of
coefficients 0 - Z — R — U(1) — 0. Then the Dixmier-Douady class of the
gerbe [x/G] — [¥/G] is given by the image of d(e) € H*(G;Z) under the iso-
morphism H?(G;Z) = H3([x/G); Z).

(2) Let ¢: G — U(1) be a character of a finite group G. It gives rise to a class
¢ € HY(G;U(1)) and an extension 1 — U(1) — ZxG—7xG—1. We can
identify ZxG27x G x U(1) as sets. Its multiplication is then given by

(n,g,2)(n',g',2) = (n+ 1,99, $(9)" 22').
The class e € Ext(Z x G;U(1)) of the extension is then given by image of idy X
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¢ € HY(Z;Z) x H(G;U(1)) under the product
x: HYZ;7Z) x HY(G;U(1)) — H*(Z x G;U(1)),
where idz € H'(Z;Z) is the identity homomorphism.

We now specialize these facts to the present situation. The Kiinneth formula gives
an isomorphism

Ext(Z x T;U(1)) := HX(Z xT;U(1)) 2 HY(Z;Z) © HY(T; U(1)) 2 Z o =T,
(2.60)
where we use the generator idz € H(Z;Z) in order to identify H'(Z;Z) = Z. The
class ey € Ext(Z x I';U(1)) of the extension (2.58) corresponds under this isomor-

phism to ¢ € T' (by (2)).
By (1) the Dixmier-Douady class d(¢) € H3([*/(Z x T)];Z) of the gerbe

[#/ZxTy] = [#/(Z x )]
corresponds to
§(eg) € H¥}(Z x T;Z)
under the identification
H3([*/(Z x T));Z) = H*(Z x T'; Z).

Let p: B=[R/(Z xT")] — [*/(Z x T')] be the canonical projection. Then we have
d(Gg) = p*d(¢). We now observe that the following diagram commutes,

| B(e/(@xT)):2) ~— HYZ X T:2)
d<G¢\> HY(R/(Z x T)); 2)
, H2([#/T) Z) <——— H*(T 2)

m(dy) definition of d
and that the elements are mapped as indicated.

We show how the general case of Proposition 2.54] can be reduced to the special
case discussed above. The constructions of g and 7rg(d)| B, are natural with respect
to pull-back. Therefore in order to verify Proposition [2.54! it suffices to show the
desired equality over each point in LB separately. A point © € LB is given by a point
p € B and an element v € Aut(p) (in the present subsection we omit the subscript u
in order to simplify the notation). Let I' C Aut(p) be the cyclic group generated by




168 ULRICH BUNKE, THOMAS SCHICK aNxpD MARKUS SPITZWECK

v and x € I’ be the character by which I' acts on the fibre 7=!(p). Note that
X(7) = h(u). (2.61)

We get a cartesian diagram

€] (2.62)
f

|
U}

[()/x

|

[*/T]
such that Li(y) = u, where we consider v € [['/T'] 2 L[+/I']. In particular, v*d is the
Dixmier-Douady class of the gerbe v*G — [U(1)/,I'] and we have

m(d)(u) = go*(d)(7)-
Observe that L[x/T']; = [ker(x)/T]. Let gy-g: L[*/T]; — U(1)° denote the function

— 5
(2.55) which measures the holonomy of v*G — L[U(1)/,I] along the fibres of ¢. If
u € LBy, then by 2.61] we have x(v) = 1 and

9(u) = go=c (7).

The equation

now follows from the equation

gvrc(7) = qv*(d)(7),
which was already shown above. O

In the smooth case (i.e. for orbifolds) holonomy questions can be addressed using
Deligne cohomology. In fact, Deligne cohomology H{ (X) for orbifolds has been
introduced in [27]. The choice of a connection on the gerbe G leads to a lift of the
Dixmier-Douady class d € H3(X;Z) of G — X to a Deligne cohomology class dpe €
H3 . (X) under the natural forgetful map HJ(X) — H3(X;Z). The transgression
of dpe according to [27, Thm. 6.0.2] is a class Tr(dpe) € H3. (LX). Its integral
(Lm)(Tr(dpel)) € Hp g (LX1) should!® give the function g: LX; — U(1).

3. Delocalized cohomology of orbispaces and orbifolds

3.1. Definition of delocalized twisted cohomology

A topological stack X gives rise to a site Site(X) = X. The underlying category
of X is the subcategory of Top/X of maps (U — X) which are representable and
have local sections. The covering families (U; — U) are families of maps U; — U in

16We have not checked the details here. In this picture it is also not obvious that (L7)1(Tx(dpel))
only depends on d € H3(X;Z), and not on the choice of its lift dpel € HE 4 (X).
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X which have local sections'” and are such that L;U; — U is surjective. One can
actually restrict to covering families by open subsets without changing the induced
topology (the argument is similar as for [13, Lemma 2.47]). If X is a space, then the
small site (X) of X is the category of open subsets of X with the usual notion of
covering families.

To the site X we associate categories of presheaves and sheaves PShX and ShX
in the usual way. A map p: X — Y of topological stacks induces a pair of adjoint
functors

p*: ShY & ShX: p,.

We use this framework of sheaf theory on topological stacks in order to define the
delocalized cohomology of an orbispace twisted by a gerbe.

For details of the sheaf theory we refer to [13] and [11].

For a site X let i: ShX — PShX denote the canonical embedding of the category
of presheaves into the category of sheaves, and let i: PShX — ShX denote its left-
adjoint, the sheafification functor. We use the same symbols in order to denote the
restriction of these functors to the categories PShy, X and Shyp, X of presheaves and
sheaves of abelian groups.

Construction 3.1. Let H be a topological abelian group. We assume that Tors,, (H)
C H is discrete for all n € N. Let H° denote the group H with the discrete topology.
Furthermore, let Z be a discrete abelian group and A\: H® — Aut(Z) be a homomor-
phism.

Let P — X be the underlying map of stacks of an H°-principal bundle over a
topological stack X. If (U — X) € X, then U xx P — U is an ordinary H°-principal
bundle. We define the abelian group Zpx(U) to be the group of continuous sec-
tions of the associated bundle (U xx P) xps x Z — U under pointwise multipli-
cation. If (U' - X) — (U — X) is a morphism in X, then we have an induced
morphism U’ xx P — U xx P of H%-principal bundles over U’ — U. It induces a
homomorphism Zp\(U) — Zp(U’). In this way we obtain a presheaf of abelian
groups Zp € PShpX, U +— Zp (V). Note that Zp y is actually a sheaf; i.e. we have
Zp,) € ShypX.

Let f: G — X be a gerbe with band H over an orbispace X. Then by Lemma 2.51
we have the H®-principal bundle G° — LX. By the construction 3.1 it gives rise to
the presheaf Z@;’A € PShy, LX.

We define a gerbe f1,: G — LX with band H as the pull-back of the gerbe f: G —
X along the canonical map i: LX — X (see[2.44). We have a diagram

¥ <— G —> @G
P T
lfL lf
LX ——> X.
We consider szGg;?A € Shy, Gr,.

17A map of topological spaces f: V — W has local sections if for every w € f(V') there exists an
open neighbourhood W,, C W and a map o: Wy, — V such that idw,, = foo.
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Let ev:=ev,_,.: ShySite(x) — Ab be the functor, which evaluates a sheaf of
abelian groups on Site(x) at the object (¥ — %) € Site(x).

Lemma 3.2. The functor ev: Shy,Site(x) — Ab is exact.

Proof. A basic observation lying at the heart of sheaf theory is that evaluation func-
tors are not exact in general. Therefore, a proof of exactness of the evaluation ev is
required. First note that Site(x) is the big site of * which can be identified with the
category of all topological spaces. Every non-empty collection of non-empty spaces is
a covering family of *.

The small site (%) of * has one object * — . In [11] (see also [13, Prop. 2.46],
the arguments works equally well in the smooth and topological contexts) we have
seen that the restriction functor v, : ShSite(*) — Sh(x) is exact. Let ev: Shyy(*) —
Ab denote the corresponding evaluation functor. It is actually an isomorphism of
categories, and in particular exact. We have ev o v, = ev. We see that ev is exact,
since it is a composition of exact functors. O

The functor p.: Shy,(Gr) — Shp,Site(x) is left-exact and thus admits right-
derived functors

Rp.: D" (Shy,G1,) — DT (ShypSite())

between the lower-bounded derived categories. The functor ev: Shy,Site(x) — Ab is
exact and thus descends to the lower-bounded derived categories.

Definition 3.3. We define the delocalized G-twisted cohomology of X with coeffi-
cients in (Z,\) by

Hgikeloc(X; G’ (Z’ )‘)) = H*(GV o Rp*(fzzé‘;,)\))

The most important example for us is the case where Z = C° and H = U(1) with
A\: HY — Z — End(Z) being the obvious embedding U(1)° — End(C?). Recall the
construction 3.1/ of Zgz;s 5.

Definition 3.4. We define the sheaf £ := Zé(;y)\.
We will also write Lg for L, if a reference to G is necessary.

Definition 3.5. The G-twisted complex delocalized cohomology of X is defined by
H;ikeloc(X; G) = Hé{eloc(X; G7 ‘C)

Another example related to Spin-structures is the case where Z =%, H =Z* =
{1,—1}, and A\: Z* — End(Z) is again the canonical embedding.

We now discuss the functorial behaviour of the delocalized twisted cohomology.
We defined the sheaf Z5s \ on LX in order to connect with usual conventions in
the literature on inner local systems and twisted torsion, and in order to have the
formula (3.12) below. This construction depends on descending the H°-bundle LG —
Gy, to the bundle G — LX. The quite complicated construction was carried out in
Proposition 2.46. In the definition of twisted cohomology we then use the pull-back

fZZ@«s,A-



INERTIA AND DELOCALIZED TWISTED COHOMOLOGY 171

It would be more natural to construct the sheaf
Zraon = f1 25 (3.6)

directly starting from the H’-principal bundle LG® — G We can proceed as in the

definition of Z4; . For an object (U — Gr) € G we define Z;5s.,(U) € Ab as the

group of continuous sections of (U xg, LG%) x #s.x Z under pointwise multiplica-

tion. For a morphism U’ — U we then have a natural homomorphism Z~LG5; \(U) —

Z; 6o (U") induced by a corresponding morphism of principal bundles over U’ — U.
We have a canonical isomorphism

Haeloo(X; G, (Z,\)) = H*(ev o Rp. (265 ).

In the case H = U(1) and Z = C° we set Z~LG5,>\ =L
We consider a 2-cartesian diagram

G’ # G
T
= g
X —X,
where g is a map of orbispaces, i.e. a representable map.

Lemma 3.7. We have a canonical functorial map
(g’ h’)* : H(Teloc(X; G) - Hjeloc(X/; G/)

Proof. Since the loop functor preserves two-cartesian diagrams we get an induced
2-cartesian diagram

Lo s Lo (3.8)

-

G/L4>GL

,—:—7
\Lfi = - | lfl/
Fp

LY —2- X

Let £ = Z:,N’LGaﬁ)\ € Shypy Gy, and L= ELG/aJ\ShAbGL/ denote the sheaves of abelian
groups associated to G and G’ and (Z,\) as in (3.6). Diagram (3.8) induces an
isomorphism

LS L (3.9)

of sheaves on G. We now consider the diagram
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The unit id — R(hr )« o b} of the adjoint pair
hi: DT (ShypGr) & DT (ShawGL'): R(hL)«
induces a natural transformation
Rp. — Rp. o R(hy).oh}: DV (ShypyGr) — DT (Shy,Site(*)). (3.10)

Since po hy, = p’ and Rp. o R(hr). = R(po hr). (see [11] and also [13, Lemma 2.26]
for an argument in the smooth case) we have an isomorphism

Rp. o R(hr)« = R(pohr). = Rp..

We insert this into (3.10)) and get the natural transformation

Rp. — Rpl, o h}: DT (Shy,GL) — DT (Shy,Site(x)). (3.11)
We define
* * Ay (3.11) * / x (P 6.9 * /Al
(9.h)": H* o evo Rp.(£) "= H* o evo Ry, o hi (L) = H*oevo Rp,(L).

We leave it to the reader to write out the argument for functoriality. The basic input
is the functoriality of the units for a composition f o g which can be expressed as the
commutativity of

/—“\\

1d="=Rf. o f* —=Rf.oRg.og o [* —>R(fog). o (f o g)’
(see [11] for a proof). O

From now on we consider the case H := U(1) and Z := C?. We can decompose
p =gqo fr, where q: LX — *. Since fr, has local sections we have an isomorphism

Rp. = Rq. o R(fL)«
by [13| 2.26]. We have
Rp. o fi(L£) = Rg. o R(fL)« 0 fL(L)

and the projection formula (see [11])

R(fL)+(£) = R(fL)« 0 f7(£) = R(f)+(Ca,) ®c L. (3.12)
Therefore we can write
Higoo(X;G) = H*(ev o Ry o (R(f1)«(Ca,) ®c £)). (3.13)

3.2. Twisted de Rham cohomology

The theory developed in the Sections 2.2, 2.3, 2.5 and 3.1/ has a counterpart in the
world of stacks in smooth manifolds though there is one essential difference. The map
LX — X is not representable as a map of stacks in smooth manifolds. Therefore the
proof of the fact that LX is a smooth stack is quite different from the topological
casel®. But note that we have not used representability of LX — X otherwise.

¥ 0One could save our argument by introducing the notion of a smoothly representable map between
stacks in smooth manifolds and showing that LX — X is smoothly representable. A map X — Y
between stacks in smooth manifolds is called smoothly representable, if the fibre product A Xy X
is a manifold for every submersion A — Y.
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In the following we explain the replacements which lead to a precisely analogous
theory.

(1) The category of topological spaces Top is replaced by the category of Mf> of
smooth manifolds.

(2) Stacks in topological spaces are replaced by stacks in manifolds.

(3) The condition on a map of having local sections is replaced by the condition of
being a submersion (following the conventions from algebraic geometry we will
use the term “smooth” synonymously with “submersion”).

(4) Topological stacks are replaced by smooth stacks. A stack in smooth manifolds
X is called smooth if it admits an atlas a: A — X, i.e. a representable, surjec-
tive, and submersive (which replaces the local section condition by the preceding
point) map from a manifold A.

(5) The notion of a topological groupoid is replaced by the notion of a Lie groupoid.
In particular, we require that range and source maps are submersions.

(6) Orbispaces are replaced by orbifolds. A smooth stack is an orbifold if it admits
an orbifold atlas. An orbifold atlas is an atlas which gives rise to a proper and
étale groupoid in smooth manifolds. Since manifolds are locally compact and
Hausdorff the conditions “separated” and “very proper” hold automatically
(see Lemma [2.32).

(7) The group H in 3.1 must be a Lie group.

(8) For a smooth stack X the site X is the subcategory of Mf*°/X of maps (U —
X)), which are representable submersions. The covering families are families (U;
— U) of submersions such that L;U; — U is surjective.

One problem with the category Mf*° is that fibre products only exist under additional
conditions (e.g. if one map is a submersion). We leave it to the interested reader to
check that all fibre products used in Sections 2.3, 2.5 and 3.1/ exists in manifolds.20

Let X be an orbifold and G — X be a smooth gerbe with band U(1). Then by 3.5
we have a well-defined twisted delocalized cohomology

H(Teloc (X; G) :

The main goal of the present section is to calculate this cohomology in terms of
a twisted de Rham complex. This generalizes the main result of [13] from smooth
manifold X to orbifolds X.

The first goal of the present subsection is to define the de Rham complex associated
to a locally constant sheaf of complex vector spaces on an orbifold in two equivalent
(according to Lemma [3.17)) ways. In the first picture we define a sheaf of de Rham
complexes on the site of the orbifold and then take its global sections. The second
picture uses the calculus of differential forms on the orbifold itself. While the first
picture belongs to the philosophy of the present paper this second definition is mainly
used to compare with other constructions in the literature.

¥The condition “very proper” is as in 2.30/ with the difference that the cut-off function must be
smooth.

20with the exception that the construction of the simpler model of LX X x G in 2.5 needs different
arguments since (2.49) may not be a transversal pull-back.
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In the second part we apply this construction to the local system £ € Shy,LX
associated to a U(1)-gerbe G — X on an orbifold.

Consider a smooth stack X in smooth manifolds. Let £ be a locally constant
sheaf on X of finite-dimensional complex vector spaces. If (U — X) € X, then &y
is the sheaf of parallel sections of a canonically determined complex vector bundle
with flat connection (Ey, VFV). Let QF(U, Eyy) denote the space of global sections
of A(’éT *U ® Ey. The de Rham differential dyr and the connection VU together
induce a differential d®v : QF(U, Eyy) — QF1(U, Ey). Observe that (Q (U, Ey), dFv)
is a ((U), dar)-DG-module.

If f: (U - X)— (U— X) is a morphism in X, then we have a morphism of
sheaves f*&jy — &pr. This induces a morphism of flat vector bundles f*Ey — Ey-
and finally a morphism of complexes (Q (U, Ey),d*v) — (Q (U’, Ey), dFv’).

We define the sheaf Q' (€) of (U, dar)-DG-modules which associates to (U — X)
in X the complex (Q (U, Ey), dEv).

Lemma 3.14. £ — Q (&) is a flabby resolution.

Proof. This is shown by adapting the arguments of [13], Sec. 3.1] to differential forms
twisted by a flat vector bundle. O

Let p: X — * be the projection. If F' € ShX, then we define its global sections by

IxF :=evop.(F). (3.15)

Construction 8.16. Assume now that X is an orbifold. The sheaf £ gives rise to a flat
vector bundle F — X in the orbifold sense. We can consider the de Rham complex
Q(X, E) of E-valued forms on X which are smooth in the orbifold sense.

Lemma 3.17. We have a natural isomorphism I'xQy (€) = Q(X, E).

Proof. We choose an orbifold atlas A — X, i.e. A is a smooth manifold, A — X is
an atlas, and the smooth groupoid A xx A = A is very proper, separated and étale.
By the definition of smooth forms in the orbifold sense we have the exact sequence

0——=Q(X, E) — Q(A4, Ea) A QA xx A Eaxxa) -

The composition A — X — x is clearly representable. By [13, Lemma 2.36] we have
an exact sequence

0——>TxQy(E) —= QA Ex) —> QA xx A, Eaxya) - O
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In order to indicate that the local system & is the initial datum and the vector
bundle £ — X is secondary we use the following notation.

Definition 3.18. We define
Q(X,€) :=Tx0%(E).
It is an Q' (X)-DG-module. Tts differential will be denoted by d¢.

The twisted de Rham cohomology of X with coefficients in £ depends on the choice
of a closed form A € Q3(X). Let z be a formal variable of degree 2. Then we form the
complex Q' (X, E)[[2]]x given by

Q(X,E)[2]], dy:=df + T,

where T := di.
A

Definition 3.19. The A-twisted cohomology H*(X; &, \) of X with coefficients in £
is defined as the cohomology of the complex Q' (X, &)[[#]]a.

Construction 3.20. We can also define a sheaf Q' (€)[[2]]x of (£, A)-twisted de Rham
complexes on X such that for (U 2, X) € X we have Qy (€)[[2]]A(U) := Q (U, Ey)[[#]]
with the differential dg-~». By Definition 3.18 have an isomorphism of complexes

(X E[2]n = TxQx (E)[[2]]a

We now take twists into account. Let X be an orbifold and f: G — X be a smooth
gerbe with band U(1). Then we can form the orbifold of loops LX — X and the pull-
back fr: G, — LX of the gerbe f: G — X. We choose an atlas (A — G) € GL. It

gives rise to a simplicial object A € G12" such that

n —
Gr .—AXGL'“XGLA.

n+1-factors

Let Q denote the de Rham complex (see [13 3.1.2]) of the smooth stack Gr.
The associated chain complex of Q0 (Aj, ) is a double complex with the de Rham
differential dgr and the Cech differential §.

Note that A — G — LX is an atlas. We form the simplicial object A} € LXxA™
such that

AzX Z:AXLX'”XL)(A.

n+1-factors
We consider the double complex Q7 (A} ) Note that by [13, Lemma 2.36] we have

Lemma 3.17

QLX) = TrxQpx Zker(d: Qpx(A7x) — Qx(ALx))-

The property that G, — LX is a smooth gerbe with band U(1) can be expressed as
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the fact that the diagram
Axg, A——=> A

|

AXLxAﬁA

is a central U(1)-extension of smooth groupoids. In particular, we see that the canon-
ical map

ker(d: Qpx (A7 x) — Qpx(ALx)) — ker(d: Qg, (A%,) — g, (Ag,))
is an isomorphism; i.e. we see that
P, (Qg,) =Tx(Qpx) = Q(LX). (3.21)

Definitions, Facts, and Notation 3.22. A connection on the gerbe fp: Gp — LX
consists of a pair (a, 3), where a € Q'(A x¢, A) is a connection one-form on the
U(1)-bundle A xg, A — A xpx A, and § € Q*(A). We consider o € Qf, (Ag;, ) and
B € QF, (A%,). The pair is a connection (a, 3) if it satisfies:

(1) 63 = dgra,

(2) da=0.

(3.21)
Note that ddgr/3 = 0 so that there is a unique A € T, Q,, = Q3(LX) which re-
stricts to dgr3. We have dgrA = 0.

Let us choose a connection («, 3), and let A € Q3(LX) be the associated closed
three-form. In 3.4 we have introduced the locally constant sheaf £ on LX. The con-
struction |3.20) gives the complex of sheaves

(Qrx (L)[[2]x, dx)-
Furthermore we set
O (LX, L)[[2]]x := TxQpx (L)[[2]]a-
Definition 3.23. The delocalized (G, A)-twisted de Rham cohomology of X is de-
fined by
Hig deloc(X; (G, A)) := H* (U (LX, L)[[2]]x, dx).-

In view of Lemma [3.17 this is the definition given in [40, 3.10]. Note that the

delocalized twisted de Rham cohomology Hjp je10. (X, (G, A)) depends on the choice

of the connection, though these groups are isomorphic for different choices (see [40,
3.11]).

3.3. Comparison
In this subsection we prove

Theorem 3.24. There is an isomorphism

ngloc(X; G) = H;R,deloc (X7 (G’ )‘))
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Actually, this theorem follows from the following stronger statement. Recall that
fr: G — LX is the pull-back of f: G — X via the canonical map LX — X. Let
Rg, € Sha,Gr, denote the constant sheaf with value R.

Theorem 3.25. There is an isomorphism in DT (Shy, LX)
R(fr)«(Ra,) ®r L= Qp x (L)[[2]]a-

Note that this isomorphism depends on a choice of a connection on the gerbe G, —
LX. The remainder of the present subsection is devoted to the proofs of Theorems3.24
and [3.25.

Proof of Theorem [3.25. First observe that Q7 «(L)[[z]]x = Q. x[[2]]x @& £. There-
fore it suffices to show that

R(fr)«(Ray) = Qp x[[2]]x.

This is exactly the assertion of [13, Theorem 1.1], with the difference, that now LX
is an orbifold instead of a smooth manifold. We repeat the proof of [13, Theorem 1.1]
given by [13] subsection 3.2] with the following modifications (the numbers refer to
the paragraphs in [13} subsection 3.2]:

(1) 3.2.1: The manifold X is replaced by the orbifold LX. The gerbe G — X is
replaced by the gerbe G, — LX. Furthermore, A — G, is some atlas. It induces
an atlas A — Gy — LX. The U(1)-central extension of groupoids (A x¢g, A =
A) — (A xpx A — A) represents a gerbe in the language of groupoids, but we
can no longer refer to the paper [20]. For existence of a connection we now refer
to [40], Prop. 3.6].

(2) 3.2.2: We use the notation Q¢, instead of Q(Gy) for the de Rham complex of
the smooth stack G. Q (LX) must be interpreted as in[3.16. For the existence
of connections we refer to [40]. The construction of the three-form associated
to a connection («, 3) was explained in [3.22.

(3) 3.2.6: We must show that the map ¢: Q[[2]]x — i*C4(Q(G1)) is a quasi-iso-
moriphism. This can be shown locally. Since we can cover LX by smooth man-
ifolds the local isomorphism immediately follows from the result proved in [13].
This argument avoids repeating the proof of [13], Prop. 3.4]. O

We now show Theorem [3.24. We need the following fact. Let X be an orbispace
or orbifold and p: X — % be the projection. Recall that evop, = 'y : Shy, X — Ab.
This functor is left exact and can thus be derived. Let Ox be the sheaf of continuous
or smooth real functions on X, i.e. Ox = Qg( in the smooth case.

Lemma 3.26. If F' € Shy, X is a flabby sheaf and a sheaf of Ox -modules, then
RTx(F)=0
for alli > 1.

Proof. Let A — X be an orbispace (orbifold) atlas. Then A xx A= A is a very
proper, separated, and étale groupoid. Let A" be the associated simplicial space (man-
ifold). The complex F'(A') represents RI' x (F') by [13, Lemma 2.41]. We now employ
the method of [12} Sec. 4.1] in order to show that H(F(A")) =0 for i > 1. We use
the Ox-module structure in order to multiply by cut-off function. O
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Proof of Theorem [5.24. We first observe that Qj (L£)[[z]]x is a complex of flabby
sheaves and of Opx = QY y-modules. Therefore by Lemmas [3.26/ and [3.17 we have
(see [8, Cor. 25] for a related result)

RUpx (Qpx (O)[[2l]x) = @ (LX, L)[[]]x-

By Definition 13.23 the cohomology of the right-hand side is Hj),. 4r(X, (G, A)). On
the other hand by Theorem 13.24

RULx (Qpx (L£)[[2]]x) = evo Rp. (R(f1)+(Ray,) ®r L)

Its cohomology is by (3.13)) isomorphic to Hj, .(X; G). O
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