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Abstract
Associated to each finite subgroup Γ of SL2(C) there is a fam-

ily of noncommutative algebras Oτ (Γ), which is a deformation of
the coordinate ring of the Kleinian singularity C2/Γ. We study
finitely generated projective modules over these algebras. Our
main result is a bijective correspondence between the set of iso-
morphism classes of rank one projective modules over Oτ and
a certain class of quiver varieties associated to Γ. We show that
this bijection is naturally equivariant under the action of a “large”
Dixmier-type automorphism group G. Our construction leads to
a completely explicit description of ideals of the algebras Oτ .

1. Introduction

This paper is inspired by the recent work of Berest and Chalykh [5] on the right
ideals of the first Weyl algebra A1(C) and Calogero-Moser spaces. The main result
of [5] is an explicit construction of the Calogero-Moser correspondence refining the
earlier work of Berest-Wilson [6, 7].

Our purpose is to extend the ideas and techniques of [5] to a broader class of
algebras of geometric origin. More specifically, we will study right ideals in quantized
coordinate rings of Kleinian singularities C2/Γ, where Γ is a finite cyclic subgroup of
SL2(C). Such rings form a family of noncommutative algebras Oτ (parametrized by
the elements τ of the group algebra CΓ), whose properties are similar to the prop-
erties of the Weyl algebra. For generic parameter values, Oτ , like A1(C), are simple,
hereditary, Noetherian domains, having no nontrivial finite-dimensional representa-
tions. However, unlike A1, they have a nontrivialK-group. A conjectural description
of stably free ideals of Oτ, generalizing the work of Berest and Wilson, was sug-
gested by Crawley-Boevey and Holland (see [9]). Recently, Baranovsky, Ginzburg
and Kuznetsov [2] have refined and proved this conjecture using the methods of
noncommutative projective geometry. The main idea of [2] (exploited earlier in [16]
and [7]) consists of replacing Oτ by a graded algebra Bτ, which, by analogy with the
geometric case, can be treated as the homogeneous coordinate ring of a noncommu-
tative projective variety (see [1]). Projective modules over Oτ can then be extended
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to “vector bundles” on such a “variety” and the latter can be classified using the
standard tools from algebraic geometry (the Beilinson spectral sequence and Barth’s
monads). Despite its naturality, this geometric approach has some disadvantages.
First, it is fairly complicated and far from being explicit. Second, it involves a lot
of choices (most notably the choice of filtration on the algebra Oτ ), which are not
intrinsic to the original problem. Third, it hides some interesting “affine” features
of the problem, present in the case of the Weyl algebra: namely, the action of the
Dixmier automorphism group on the ideal classes and the equivariance of the cor-
responding classifying map.

In the present paper we will give a new proof of the Crawley-Boevey-Holland
conjecture, which is free from the above disadvantages. As in [5], our construction is
elementary and independent of the choice of filtration on Oτ . It leads to a completely
explicit description of ideals of Oτ, and more importantly, it is G-equivariant with
respect to a certain “large” automorphism group G, which acts naturally on both
the space of ideal classes and the associated quiver varieties Mτ . This brings the
picture with Kleinian singularities closer to the original example of the Weyl algebra
and raises many interesting questions regarding the action of the group G on Mτ

(see e.g. [6]).
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2. Background and statement of results

2.1. The algebras Bτ and Oτ

Let (L, ω) be a two-dimensional complex symplectic vector space with symplectic
form ω, and let Γ be a finite subgroup of Sp(L, ω). We can extend the natural
(contragradient) action of Γ on L∗ diagonally to TL∗, the tensor algebra of L∗, and
define R to be the crossed product of TL∗ with Γ. The form ω is a skew symmetric
element of L∗ ⊗ L∗ ⊂ TL∗ ⊂ R; thus for each τ ∈ Z(CΓ) we can define

Bτ = R/R(ω − τ)R,
Oτ = eBτe,

where e is the symmetrizing idempotent
∑

g∈Γ g/|Γ| in CΓ ⊂ Bτ . The algebras Bτ

and Oτ were introduced and studied by W. Crawley-Boevey and M. Holland in [9].
It is convenient to choose a symplectic basis {ex, ey} in L and identify L with C2,

and Sp(L, ω) with SL2(C). If {x, y} is the dual basis in L∗ then we have an algebra
isomorphism:

Bτ ∼= R/R(xy − yx− τ)R, (1)

where R ∼= C〈x, y〉 ∗ Γ is a crossed product of the free algebra on two generators
with the group Γ.
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In this paper we will be concerned with the case when Γ is a cyclic group Zm.
One can give a more elementary description of Bτ in this case. We fix an embedding
Γ ↪→ SL2(C) so that L decomposes as ε⊕ ε−1, where ε is a primitive character of
Γ. Now we choose a basis {x, y} in L∗ so that Γ acts on x by ε and on y by ε−1.
Then as an algebra, Bτ is generated by the elements x, y and g ∈ Γ satisfying the
relation:

g · x = ε(g)x · g, g · y = ε−1(g) y · g, ∀g ∈ Γ, (2)
x · y − y · x = τ. (3)

The corresponding algebras Oτ are called, in this case, the type-A deformations of
Kleinian singularities. They were studied earlier by Hodges [12], Smith [21] and
Bavula [4].

Homological and ring-theoretical properties of Oτ depend drastically on the val-
ues of the parameter τ . Through the McKay correspondence we can associate to the
group Γ the affine Dynkin graph of type-A. The group algebra CΓ is then identified
with the dual of the space spanned by the simple roots of the corresponding affine
root system and, following [9], we say that an element τ ∈ CΓ is generic if it does
not belong to any root hyperplane in CΓ.

From now on we will assume τ to be generic. In this case, Bτ and Oτ are Morita
equivalent (see [9, Theorem 0.4]); the equivalence F : Mod(Bτ )→ Mod(Oτ ) between
the categories of right modules is given by

M 7→M ⊗Bτ Bτe. (4)

Hence these rings share the following properties: noetherianness, simplicity, having
global dimension one.

2.2. Nakajima varieties
Given a pair (U,W ) of finite-dimensional Γ-modules, consider the space of Γ-

equivariant linear maps

MΓ(U,W ) = HomΓ(U,U ⊗ L)⊕ HomΓ(W,U)⊕ HomΓ(U,W ). (5)

The group GΓ(U) of Γ-equivariant automorphisms of U acts on MΓ(U,W ) in the
natural way:

g(B, ī, j̄) = (gBg−1, gī, j̄g−1).

This action is free on the subvariety M̃τ
Γ(U,W ) ⊆MΓ(U,W ) defined by the condi-

tions:

(i) [B,B] + τ |U = īj̄.
(ii) There is no proper submodule U ′ ⊂ U such that B(U ′) ⊂ U ′ ⊗ L

and ī(W ) ⊂ U ′.
(6)

Here [B,B] stands for the composition of the following maps

U
B−→ BU ⊗ L B⊗idL−−−−→ U ⊗ L⊗ L idU⊗ω−−−−→ U ⊗ C ∼= U.

Definition 2.1. The Nakajima variety associated to the pair (U,W ) is defined by

Mτ
Γ(U,W ) := M̃τ

Γ(U,W )//GΓ(U).
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The relation of this variety to the original definition of Nakajima [19] can be
obtained via the McKay correspondence (see e.g. [2]).

As L ∼= ε⊕ ε−1, we can write down the map B : U → U ⊗ L in the following form

B(v) = X̄(v)⊗ ε+ Ȳ (v)⊗ ε−1, (7)

with X̄, Ȳ ∈ EndC(U). The points of the Nakajima variety Mτ
Γ(U,W ) can be repre-

sented then by quadruples (X̄, Ȳ , ī, j̄) ∈ End(U)⊕2 ⊕ HomΓ(W,U)⊕ HomΓ(U,W ) sat-
isfying

X̄ Ȳ − Ȳ X̄ + T̄ = ī j̄, (8)

X̄ Ḡ = ε(g) Ḡ X̄, Ȳ Ḡ = ε−1(g) Ḡ Ȳ , (9)

where T̄ and Ḡ are endomorphisms corresponding to the action of τ and g ∈ Γ in
U respectively.

In the case when W is a one-dimensional Γ-module with character χW we can
think of ī and j̄ just as linear maps ī ∈ Hom(W,U) and j̄ ∈ Hom(U,W ) satisfying the
conditions:

ī(w.g) = χW (g) ī(w) , j̄(v.g) = χW (g) j̄(v) for all g ∈ Γ and w ∈W, v ∈ U. (10)

2.3. Statement of results
We start this section by reminding the reader of the following result due to Berest

and Wilson [6, 7].

Theorem 2.2.

(a) There is a natural bijection between the space R of isomorphism classes of right
ideals of the Weyl algebra A1(C) and the union C =

⊔
Cn of Calogero-Moser

algebraic varieties:

Cn = {X̄, Ȳ ∈Mn(C) | rk(X̄Ȳ − Ȳ X̄ − Id) = 1}/GLn(C),

where GLn(C) acts on (X̄, Ȳ ) by simultaneous conjugation.
(b) The automorphism group G = AutC(A1) acts naturally on the varieties Cn,

and this action is transitive for each n = 0, 1, 2, . . . .
(c) The bijection R←→ C is equivariant under G, and thus the varieties Cn can

be identified with the orbits of the natural action of G on the set R of ideal
classes.

The algebras Oτ are obvious generalizations of A1 and one might expect that a
result similar to Theorem 2.2 holds for the ideals of Oτ . In fact, Crawley-Boevey
and Holland have conjectured that there is a bijection between the space of isomor-
phism classes of ideals of Oτ and certain Nakajima varieties related to Γ. Such a
classification of ideals in terms of “Nakajima data” suggests the existence of some
finite-dimensional modules associated to ideals. The natural candidates for such
modules would be finite-dimensional representations of the algebra Oτ, but, since
Oτ is simple, such representations do not exist. Nevertheless, stretching the notion
of a module may overcome this problem. To be precise, we would like to extend the
category of modules over Oτ to the category of DG-modules over a certain DG-
algebra closely related to Oτ . In this extended category we will construct objects
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whose isomorphism classes are in a natural bijection with isomorphism classes of
ideals in Oτ , and from which we can determine the Nakajima data corresponding to
a given ideal. The idea of this approach goes back to [5], where the ideals of A1(C)
are “modelled” by certain A∞-modules. Relative to the ideals of A1(C) and Oτ the
A∞- and DG-modules play a role similar to “small” minimal models in the theory
of differential graded algebras (see e.g. [13, 15]).

The basic property of Oτ (see Section 2.1) is that it is a hereditary Noetherian
ring, which means that its ideals are finitely generated projective modules. So it is
natural to classify first ideals up to stable isomorphism in the category of projective
modules.

Let R′ be the set of isomorphism classes of ideals of Oτ , and let R be the set
of isomorphism classes of Bτ -submodules of eBτ . Then the Morita equivalence (4)
induces the bijection

R ' R′, cl(M) 7→ cl(Me), (11)

where cl(M) stands for the isomorphism class ofM . Thus, the problem of classifying
the ideals of Oτ is equivalent to classifying projective Bτ -modules in R.

Now let K0(Γ), K0(Bτ ) and K0(Oτ ) be the Grothendieck groups of the algebras
CΓ, Bτ and Oτ respectively. By a well-known theorem of Quillen the induction func-
tor P 7→ P ⊗CΓ B

τ gives an isomorphism K0(Γ) ∼= K0(Bτ ). Further, since Bτ and
Oτ are Morita equivalent algebras, the corresponding equivalence functor induces
another isomorphism K0(Bτ ) ∼= K0(Oτ ). We will use these isomorphisms to identify
K0(Bτ ) and K0(Oτ ) with K0(Γ). By Theorem 3.4 below, there is a map:

γ : R→ K0(Γ)× Γ̂, cl(M) 7→ ([V ],W ),

where Γ̂ is the group of characters of Γ, such that M1 is stably isomorphic to M2

if and only if γ(cl(M1)) = γ(cl(M2)). Thus, we can write R as a disjoint union of
stable isomorphism classes

R =
⊔

V,W

R(V,W ), (12)

where R(V,W ) = γ−1([V ],W ). The advantage of working with Bτ (rather than Oτ )
is that Bτ is a “one-relator” algebra: it has a presentation as a quotient of the quasi-
free algebra R by a two-sided ideal generated by a single element (see (1)). Follow-
ing [5], we can think of this presentation as a differential graded resolution of Bτ .
To be precise, let B denote the graded associative algebra I ⊕R having two nonzero
components: the algebra R = C〈x, y〉 ∗ Γ in degree zero and its (two-sided) ideal I :=
RνR in degree −1. The differential on B is defined by the natural inclusion d : I ↪→
R (so that dν = xy − yx− τ ∈ R, and da ≡ 0 for all a ∈ R ). Now there exists a
canonical quasi-isomorphism of DG-algebras given by the projection η : B → Bτ .
This map yields the restriction functor η∗ : Mod(Bτ )→ DGMod(B), which is an exact
embedding. It is well-known [14] that at the level of derived categories this functor
induces an equivalence of triangulated categories D(Mod(Bτ ))→ D(DGMod(B)).

Now, letM be a projective Bτ -module representing a class inR. We will associate
to M an object L in DGMod(B) together with a quasi-isomorphism M → L, which
we will call a DG-model of M . The DG-models are characterized by simple axioms
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(see Definition 2 in Section 4.1), which determine L for each M uniquely up to
isomorphism (see Theorem 6.4 in Section 6.2). Thus our first result is

Theorem 2.3. LetM be the set of isomorphism classes of DG-models. Then taking
cohomology L→ H•(L) induces a bijection ω1 :M→̃R.

Next, in Section 4.2, we will show that each DG-model determines a point in the
union of Nakajima varieties:

Mτ =
⊔

V,W

Mτ (V,W ), (13)

where V runs over the set of isomorphism classes of all finite-dimensional Γ-modules
and W runs over the set of one-dimensional ones. Conversely, there is an explicit
construction assigning to each point in Mτ a DG-model in DGMod(B) (see Section
4.3). In this way we will establish

Theorem 2.4. There is a natural bijection ω2 : Mτ→̃M.

Combining Theorems 2.3 and 2.4 together we arrive at the following result (orig-
inally due to Baranovsky, Ginzburg and Kuznetsov [2]):

Theorem 2.5. The isomorphism classes of projective Bτ -modules of rank one are
in one-to-one correspondence with points of the Nakajima varieties Mτ .

If compared with [2], our proof of Theorem 2.4 has two main advantages. First,
we construct the bijection Ω: Mτ −→M as the composition of two maps ω1 and
ω2, each of which is easy to describe. As a result, we give a completely explicit
description of rank one, projective Bτ -modules (and thence, the right ideals of Oτ ).

To be precise, let {W0,W1, . . . ,Wm−1} be the complete set of irreducible rep-
resentations of Γ = Zm such that Wn

∼= εn, and let {e0, e1, . . . , em−1} be the cor-
responding idempotents in CΓ ⊂ Bτ . Writing Mτ =

⊔m−1
n=0 Mτ (Wn), we denote by

Ωn the restriction of Ω: Mτ → R to the n-th stratum Mτ (Wn). Then we have the
following theorem which extends the main result of [5].

Theorem 2.6. The map Ωn : Mτ (Wn)→ R sends a point of Mτ (Wn) represented
by a quadruple (X̄, Ȳ , ī, j̄) to the class of the fractional ideal of Bτ :

M = en det(Ȳ − yI)Bτ + enκ det(X̄ − xI)Bτ ,

where κ is the following element

κ = 1− j̄(Ȳ − yI)−1(X̄ − xI)−1ī(en)

in the classical ring of quotients of Bτ .

One of the interesting features of the Calogero-Moser correspondence in the case
of the Weyl algebra is its equivariance with respect to the action of the auto-
morphism group Aut(A1). Our approach allows us to extend this result to the
case of noncommutative Kleinian singularities as follows. Let G be the group of Γ-
equivariant automorphisms of the algebra R = C〈x, y〉 ∗ Γ, preserving the element
xy − yx ∈ R. For each τ ∈ CΓ, the canonical projection R→ Bτ yields a group
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homomorphism G→ AutΓ(Bτ ), and thus we have an action of G on the space R
(induced by twisting the right Bτ -module structure by automorphisms of Bτ ). On
the other hand, there is a natural action of G on the Nakajima varieties Mτ (V,W ).
Finally, we observe that each σ ∈ G extends naturally to an automorphism of the
DG-algebra B and thus defines an auto-equivalence σ∗ on the category DGMod(B).
It is easy to see that our axiomatic of DG-models is invariant under such auto-
equivalences; hence we have the induced action of G onM. Now, the two bijections
ω1 : M→R and ω2 : Mτ →M obviously commute with the actions of G defined
above. Thus, we have the following

Theorem 2.7. The map Ω: Mτ → R is G-equivariant.

We remark that if Γ = {e}, then the group G is isomorphic to AutC(A1) (by a
result of Makar-Limanov [17]) and in this case our Theorem 2.7 becomes one of the
main results of Berest-Wilson. In general, comparing our results with [6] suggests
that the (nonempty) subvarieties Mτ (V,W ) in (13) are precisely the orbits of the
given action of G on Mτ . We will verify this conjecture in our subsequent paper.

3. K-theory

The purpose of this section is to give a K-theoretical classification of ideals of
Oτ , that is a classification of ideals up to stable isomorphism in the category of
finitely generated projective modules.

Let R′ be the set of isomorphism classes of ideals of Oτ , and let R be the set
of isomorphism classes of Bτ -submodules of eBτ . Then, by (11), these sets are in
natural bijection to each other. We will construct a map γ : R→ K0(Γ)× Γ̂ such
that for two isomorphism classes, cl(M1) and cl(M2) in R, the modules M1 and
M2 are stably isomorphic if and only if γ(cl(M1)) = γ(cl(M2)).

First, we would like to make some remarks about the Grothendieck groupsK0(Γ),
K0(Bτ ) and K0(Oτ ). We write [ · ] for a stable isomorphism class in the respective
K-group. By a well-known theorem of Quillen, the functor P 7→ P ⊗CΓ B

τ gives
an isomorphism of groups K0(Γ) ∼= K0(Bτ ), and since the set {[Wn]}m−1

n=0 gener-
ates K0(Γ), the class [enB

τ ]} gives a set of generators of K0(Bτ ). Furthermore,
since Bτ and Oτ are Morita equivalent algebras, the corresponding equivalence
functor (4) induces an isomorphism K0(Bτ ) ∼= K0(Oτ ). We will use these isomor-
phisms to identify K0(Bτ ) and K0(Oτ ) with K0(Γ). Now, the map assigning to a
finite-dimensional module of Γ its dimension extends to a group homomorphism
dim: K0(Γ)→ Z and we have the following result:

Proposition 3.1. Under the above identification of K0(Γ) and K0(Oτ ), the dimen-
sion function coincides with the rank function on projective modules rk : K0(Oτ )
→ Z.

Proof. Let d̂im: K0(Oτ )→ Z be the composition of the isomorphism K0(Oτ ) ∼=
K0(Γ) with dim: K0(Γ)→ Z. We need to show that d̂im = rk. It suffices to check
this on generators of K0(Oτ ), say {[enB

τe]}. By definition of the dimension function
we have d̂im([enB

τe]) = 1. On the other hand, each of the modules enB
τe can be

embedded into Oτ as an ideal and therefore rk(enB
τe) = 1.
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Let us mention the following important result due to Baranovsky, Ginzburg and
Kuznetsov (see [2, Proposition 1.3.11]).

Lemma 3.2. Let P ∈ K0(Γ) be such that dim(P ) = 1. Then there exist unique Γ-
modules W and V , such that P = [W ] + [V ] · ([L]− 2[W0]) in K0(Γ). Moreover,
dim(W ) = 1 and V does not contain the regular representation as a submodule.

Remark 3.3. If U = CΓ⊕k is a multiple of the regular representation of Γ then we
have an isomorphism of Γ-modules U ⊗ L ∼= U ⊕ U ; hence

[U ] · ([L]− 2[W0]) = [U ⊗ L]− 2[U ] = 0.

Thus, with the above identification of K0(Bτ ) and K0(Γ), we can define a map

γ : R→ K0(Γ)× Γ̂, cl(M) 7→ ([V ],W ),

where (V,W ) is the pair of Γ-modules from Lemma 3.2. Now, restating this lemma
in terms of Bτ -modules gives a classification of modules in R (or equivalently, in
R′) up to stable isomorphism.

Theorem 3.4. For two isomorphism classes cl(M1), cl(M2) ∈ R, we have [M1] =
[M2] in K0(Bτ ) if and only if γ(cl(M1)) = γ(cl(M2)).

We will now give a construction of the map γ by showing how to explicitly
determine the Γ-modules V and W for a given class cl(M) ∈ R.

Filter Bτ by assigning degree 1 to the generators x and y and degree 0 to all
elements of Γ. Let us denote by B̄τ ∼= C[x, y] ∗ Γ the associated graded algebra and
let M̄ be the associated graded module of a module M ∈ Mod(Bτ ) equipped with
a good filtration. Each ideal M of Bτ can be equipped with the induced filtration
(which is good as B̄τ is Noetherian).

Proposition 3.5. For any isomorphism class cl(M) ∈ R, there exists a unique n ∈
{0, 1, . . . ,m− 1} such that M̄ ↪→ enB̄

τ and dimC(enB̄
τ/M̄) <∞.

Proof. This follows from Lemma 6.1 (see Section 6 below).

The quotient enB̄
τ/M̄ can be viewed as a (finite-dimensional) Γ-module via the

canonical inclusion CΓ→ B̄τ .

Lemma 3.6. Let cl(M1), cl(M2) ∈ R be such that M̄1 ↪→ enB̄
τ and M̄2 ↪→ ekB̄

τ

with finite-dimensional quotients, for some n, k ∈ {0, 1, . . . ,m− 1}. Then [M1] =
[M2] in K0(Bτ ) if and only if n = k and enB̄

τ/M̄1
∼= ekB̄

τ/M̄2 ⊕ CΓ⊕N as Γ-
modules for some N ∈ Z>0.

This lemma allows us to give an explicit construction of the map γ. Specifically, let
cl(M) ∈ R be such that M̄ ↪→ enB̄

τ and dim(enB̄
τ/M̄) <∞; then we can assign to

cl(M) the pair ([enB̄
τ/M̄ ],Wn) ∈ K0(Γ)× Γ̂. We will show that this map coincides

with γ.
Let G0(B̄τ ) be the Grothendieck group of finitely generated modules over B̄τ .

Then it is well-known (see e.g. [11, Corollary 1.3]) that the class of M̄ in G0(B̄τ )
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does not depend on a choice of good filtration on M , thus defining a map

ψ : K0(Bτ )→ G0(B̄τ ), [M ] 7→ [M̄ ].

Now, since both CΓ and B̄τ ∼= C[x, y] ∗ Γ are Noetherian rings of finite global dimen-
sion, ψ is an isomorphism of groups. Moreover, we have the following commutative
diagram:

K0(Γ)

K0(Bτ )
ψ -

φ1

�
G0(B̄τ ) ,

φ2

-
(14)

where φ1 and φ2 are group isomorphisms induced via canonical embeddings of CΓ
in the algebras Bτ and B̄τ respectively.

Lemma 3.7. Let L be the natural two-dimensional representation of Γ and let V
be a finite-dimensional module over B̄τ . Then in K0(Γ), we have

φ−1
2 ([V ]) = [V ](2[W0]− [L]). (15)

Proof. We consider the following sequence of B̄τ -modules

(V ⊗ ε)⊗CΓ B̄
τ

0→ V ⊗CΓ B̄
τ d2−→ ⊕ d1−→ V ⊗CΓ B̄

τ d0−→ V → 0

(V ⊗ ε−1)⊗CΓ B̄
τ ,

(16)

where the maps are given by

d0(v1 ⊗ b1) = v1.b1 ,

d1(v1 ⊗ ε⊗ b1, v2 ⊗ ε−1 ⊗ b2) = (v1.y ⊗ b1 − v1 ⊗ y · b1)− (v2.x⊗ b2 − v2 ⊗ x · b2),

d2(v1 ⊗ b1) = (v1.x⊗ ε⊗ b1 − v1 ⊗ ε⊗ x · b1 , v1.y ⊗ ε−1 ⊗ b1 − v1 ⊗ ε−1 ⊗ y · b1),

for vi ∈ V and bi ∈ B̄τ ( i = 1, 2). We claim that this sequence is exact. First, it
is easy to see that d2 ◦ d1 = d1 ◦ d0 = 0. Second, it is clear that d0 is surjective
and that Ker(d0) = Im(d1). So we only need to prove that d2 is injective and that
Ker(d1) = Im(d2).

Let {v1, . . . , vn} be a basis of the finite-dimensional space V and let X̄ = (Xij)
and Ȳ = (Yij) be matrices corresponding to the actions of x and y in this basis. Now
if u =

∑n
i=1 vi ⊗ bi ∈ Ker(d2), then xbi =

∑n
j=1Xijbj . Assuming that u 6= 0 we let

bi0 be the element of largest degree among {b1, . . . , bn} ⊂ B̄τ with respect to the
above filtration. Then, deg(xbi0) > deg(

∑n
j=1Xi0jbj) which contradicts the above

equality and therefore u = 0, so d2 is injective.
Now if (u, u′) = (

∑n
i=1 vi ⊗ ε⊗ bi,

∑n
i=1 vi ⊗ ε−1 ⊗ ci) ∈ Ker(d1), then

n∑
i=1

vi ⊗ (
n∑

j=1

Yijbj − ybi) =
n∑

i=1

vi ⊗ (
n∑

j=1

Xijcj − x, ci) (17)
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and
n∑

j=1

Yijbj − ybi =
n∑

j=1

Xijcj − xci, i = 1, . . . , n, (18)

which we can simply write as follows: (Ȳ − yI)b = (X̄ − xI)c, where b and c are
column vectors consisting of bi and ci, i = 1, . . . , n, respectively.

To prove that Ker(d1) = Im(d2) we must show that there exists u′′ =
∑n

i=1 vi ⊗ di

such that u = (X̄ − xI)u′′ and u′ = (Ȳ − yI)u′′. This is equivalent to finding a
column vector d consisting of di, i = 1, . . . , n such that b = (X̄ − xI)d and c =
(Ȳ − yI)d. From the matrix equation (18) we can derive that each bi is divisible by
det(X̄ − xI) and each ci by det(Ȳ − yI). Now, if we choose d := (X̄ − xI)−1b =
(Ȳ − yI)−1c, then it satisfies the required property. This proves the exactness of
the sequence (16).

Thus, from (16) we obtain the following class equation in G0(B̄τ ):

[V ] = [V ⊗CΓ B̄
τ ]− [(V ⊗ ε)⊗CΓ B̄

τ ] (19)

− [(V ⊗ ε−1)⊗CΓ B̄
τ ] + [V ⊗CΓ B̄

τ ].

Now applying φ−1
2 to (19) we get the desired identity.

Proof of Lemma 3.6. We recall that ψ : K0(Bτ )→ G0(B̄τ ) is a group isomorphism
and therefore [M1] = [M2] in K0(Bτ ) if and only if [M̄1] = [M̄2] in G0(B̄τ ). The
inclusions M̄1 ↪→ enB̄

τ and M̄2 ↪→ ekB̄
τ yield the following identities in G0(B̄τ ):

[M̄1] = [enB̄
τ ]− [enB̄

τ/M̄1] and [M̄2] = [ekB̄
τ ]− [ekB̄

τ/M̄k].

Applying to these identities the group isomorphism φ−1
2 : G0(B̄τ )→ K0(Γ) and

using (15) we obtain

φ−1
2 ([M̄1]) = [Wn] + [enB̄

τ/M̄1]([L]− 2[W0]),

φ−1
2 ([M̄2]) = [Wk] + [ekB̄

τ/M̄2]([L]− 2[W0]),

in K0(Γ). By Lemma 3.2 we have Wn = Wk and then by the remark following
Lemma 3.2 we obtain enB̄

τ/M̄1
∼= ekB̄

τ/M̄2 ⊕ CΓ⊕N as Γ-modules for some N ∈
Z>0.

4. DG-models

4.1. Axioms
Let us recall that we denote by B the graded associative algebra I⊕R having

two nonzero components: the quasi-free algebra R = C〈x, y〉 ∗ Γ in degree zero and
its (two-sided) ideal := RνR in degree −1. The differential on B is defined by the
natural inclusion d : I ↪→ R (so that dν = xy − yx− τ ∈ R and da ≡ 0 for all a ∈
R). The canonical map f : R→ B yields the restriction functor f∗ : DGMod(B)→
Com(R). Thus any DG-module may be viewed as a complex of R-modules and, in
particular, as a complex of CΓ-modules (via the inclusion of CΓ into R).

We also recall thatR(V,W ) is the set of isomorphism classes of finitely generated,
projective (right) modules M over Bτ such that [M ] = [W ] + [V ]([L]− 2[W0]) in
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K0(Bτ ) = K0(Γ). So if cl(M) ∈ R(V,W ) for some finite-dimensional Γ-module V
and W = Wn ∈ Γ̂, then we introduce the following definition (see [5]).

Definition 4.1. A DG-model of M is a quasi-isomorphism q : M → L in the cate-
gory DGMod(B), where L = L0 ⊕ L1 is a DG-module with two nonzero components
(in degrees 0 and 1) satisfying the conditions:
• Finiteness:

dim L1 < ∞. (20)

• Existence of a cyclic vector:

There exists a Γ linear map i : W → L0 such that i(W ).R = L0. (21)

• ‘Rank one’ condition:
L.ν ⊆ Im(i), (22)

where L.ν denotes the action of ν on L and Im(i) denotes the image of i in
L0.

The following properties are almost immediate from the above definition.
1. Since W is a one-dimensional Γ-module there is a canonical inclusion W ↪→ CΓ

under which W = Cen; hence condition (21) implies that L0 is a cyclic R-module
with cyclic vector i(en) which we denote by in.

2. The differential on L is given by a surjective R-linear map: L : L0 → L1. This
follows from (20) and the fact that Bτ does not have finite-dimensional modules ([9,
Theorem 0.4]). Composing dL with i, one obtains the map ī : W → L1 and arguing
as in 1, we can conclude that L1 is a cyclic R module with cyclic vector īn := ī(en).

3. Since ν is a degree −1 element in B we have L0.ν = 0. Thus condition (22) is
equivalent to L1.ν ⊆ Im(i). By Schur’s lemma the map i is injective; therefore we
can define a map

j̄ : L1 →W, v.ν = i(j̄(v)).

Since Γ ⊂ SL2(C) and d is an inclusion we have gν = νg for all g ∈ Γ which implies
that j̄ is a Γ-linear map. Composing j̄ with dL we obtain another Γ-linear map
j : L0 →W .

The following results give a useful characterization of DG-models in the case of
τ = 0.

Proposition 4.2. Suppose that B0 = I0 ⊕R, where I0 = Rν0R, is a DG-algebra
such that dν0 = xy − yx. If L = L0 ⊕ L1 ∈ DGMod(B0) satisfies (20)–(22) then
L1.ν0 = 0 on L.

Proof. If L1 = 0, then there is nothing to prove; thus we may assume that L1 6= 0.
Then dL(in) 6= 0 for the map f : R→ L1, a 7→ dL(in).a, is surjective by (21). By
using the notation (23)–(26) and arguing as in Lemma 4.4 below, we can compute
[X̄, Ȳ ] = ī j̄. On the other hand, since īn.g = εn(g) īn the set of vectors {Ȳ mX̄k (̄in)}
spans L1 and dim L1 <∞. An elementary lemma from linear algebra (see, e.g., [19,
Lemma 2.9]) forces then j̄ = 0.

Corollary 4.3. Let B0 and L be as in Proposition 4.2; then L can be identified
with a complex of B̄τ -modules.
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4.2. The Nakajima data
Let L be a DG-module satisfying the axioms (20)–(22). Denote by X, Y , G

(resp., X̄, Ȳ , Ḡ) the action of the canonical generators of R on L0 (resp., L1); i.e.,

X(u) := u. x ∈ EndC(L0), X̄(v) := v. x ∈ EndC(L1), (23)

Y (u) := u. y ∈ EndC(L0), Ȳ (v) := v. y ∈ EndC(L1), (24)

G(u) := u. g ∈ EndC(L0), Ḡ(v) := v. g ∈ EndC(L1). (25)

One can easily check that these maps satisfy the following conditions

X̄ dL = dLX, Ȳ , dL = dL Y, Ḡ dL = dLG. (26)

The next lemma shows that the linear data (X̄, Ȳ , ī, j̄) determined by a DG-model
satisfy conditions (8) and (9) and hence correspond to a point of the Nakajima
variety Mτ .

Lemma 4.4. The data introduced above satisfy the equations:

X Y − Y X + T = i j , X̄ Ȳ − Ȳ X̄ + T̄ = ī j̄ , (27)

X G = ε(g)GX, Y G = ε(g)GY, X̄ Ḡ = ε(g)Ḡ X̄, Ȳ Ḡ = ε(g)Ḡ Ȳ . (28)

Proof. In view of (26) and surjectivity of dL, the second parts of equations (27)
and (28) can be derived from the first ones, and the first of (27) follows easily from
the Leibnitz rule:

T (u) = u. τ = u.(xy − yx− dν) = u.xy − u.yx− u.dν

= (u.x).y − (u.y).x+ dL(u).ν = Y X(u)−X Y (u) + i(j̄ dL(u))

= Y X(u)−X Y (u) + i(j(u)) = (Y X −X Y + i j)u,

for all u ∈ L0.
To prove (28) we notice that

u.gx = (u.g).x = X G(u).

On the other hand, we see that

u.ε(g)xg = ε(g)(u.x).g = ε(g)GX(u).

4.3. From the Nakajima data to DG-models
Let (X̄, Ȳ , ī, j̄) ∈ End(U,U)⊕2 ⊕ HomΓ(W,U)⊕ HomΓ(U,W ), where W ∼= Wn, is a

quadruple representing a point in the Nakajima variety. As a Γ-module, U can be
uniquely written as U ∼= V ⊕ CΓ⊕k for some nonnegative integer k and a module
V which does not contain the regular representation.

If we let L1 := U , then via the endomorphisms X̄ and Ȳ we can make L1 an
R-module. Due to the stability condition (ii) in (6), it is clear that L1 is a cyclic
module over R with a cyclic vector ī(en) = īn.
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To define an L0-component of a DG-model we introduce a functional λ : R→ C
so that j̄(̄in. a) = λ(a) īn. In view of (27), one can immediately see that

λ(g) = εn(g) tr(T̄ ), ∀g ∈ Γ, (29)

where tr stands for the trace of a matrix.

Proposition 4.5. The functional λ is defined by its values on the elements of the
form g xkyl, where k, l ∈ N and g ∈ Γ. Moreover, λ(g xkyl) = 0 for all k and l such
that k 6≡ l(mod m).

Proof. The first part of the proposition easily follows from (8).
For the second part, since λ(g xkyl) = λ(g)λ(xkyl), it suffices to show that λ

vanishes on the elements xkyl. By the definition of λ we have

λ(xkyl)̄in = j̄(Ȳ lX̄k (̄in)). (30)

Applying g ∈ Γ to (30) and then using (10) and (9) sufficiently many times, we get

εn(g)λ(xkyl)̄in = j̄(Ḡ Ȳ lX̄k (̄in))

= εn+l−k(g) j̄(Ȳ lX̄k (̄in)) (31)

= εn+l−k(g)λ(xkyl)̄ina.

Finally, comparing the first and the last expressions of (31) we obtain the desired
identity.

Now we form the following right ideal in R:

J :=
∑
a∈R

(a (xy − yx− τ) + λ(a))R, (32)

and define L0 := W ⊗CΓ R/J . Since W ∼= Cen we have that L0 is a cyclic module
over R with the generator en ⊗ [ 1 ]J and we can define a map i : W → L0 by w 7→
w ⊗ [ 1 ]J .

If we consider the mapW ⊗C R→ L1, w ⊗ a 7→ ī(w). a, then elements of the form
w.g ⊗ a− w ⊗ ga are annihilated by this map for any w ∈W and a ∈ R. Therefore
this map factors through the canonical projection W ⊗C R→W ⊗CΓ R inducing a
map f : W ⊗CΓ R→ L1.

Further, it is easy to see that

īn. [a(xy − yx− τ) + λ(a)] = 0, ∀a ∈ R, (33)

which allows us to factor f through yet another canonical projection W ⊗CΓ R→
W ⊗CΓ R/J by producing a map from L0 to L1. We denote this map by dL. Being
a composition of Γ-linear maps, dL is also Γ-linear.

Thus, we have constructed a complex of cyclic R-modules

L := [ 0→ L0 dL−→ L1 → 0 ],

with differential dL. We want to endow this complex with a DG-module structure
over B. For this it is sufficient to define the action of ν on L1 and we define it as
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follows: (̄in. a). ν = −en ⊗ [λ(a) ]J . Due to (33) this action is well-defined and it is
also clear that L1.ν ⊆ Im(i).

Summing up, starting with Nakajima data (X̄, Ȳ , ī, j̄) we have constructed a
DG-module L that satisfies all the axioms of Definition 1.

Finally we have to show that L represents a rank one projective module over Bτ

of an appropriate class in K0.

Lemma 4.6. Let L be a DG-module over B constructed above. Then its cohomol-
ogy H0(L) is a rank one finitely generated, projective module over Bτ such that
[H0(L)] = [Wn] + [V ]([L]− 2[W0]) in K0(Bτ ) ∼= K(Γ), and consequently H0(L) is
a representative of some class in R(V,Wn).

Proof. Let us fix some standard filtration on R: say Rk = span{xpyqg : p+ q 6 k,
g ∈ Γ}, and put the induced filtration on I, so that gr(R) ∼= R and gr(I) ∼= I0. We
can then filter the complex L as follows: L0

k := in.Rk and L1
k := īn.Rk. Using (27) it

is easy to see that the given DG structure on L descends to the associated graded
complex gr(L) := ⊕n>0Lk/Lk−1 making it into a DG-module over I0 ⊕R. This
module satisfies the same axioms (20)–(22) as L; hence by Corollary 4.3, we have
the following short exact sequence of B̄τ -modules:

0→ H0(L)→ L̄0 → L̄1 → 0, (34)

where L̄0 := gr(L0) and L̄1 := gr(L1). In particular, we have an isomorphism of B̄τ -
modules L̄0 ∼= Wn ⊗CΓ B̄

τ . Passing from Mod(B̄τ ) to Mod(eB̄τe) we see that H0(L)e
is a submodule of Wn ⊗CΓ B̄

τe. The module Wn ⊗CΓ B̄
τe ∼= enB̄

τe can be identified
with an ideal of eB̄τe and so can H0(L)e. Thus H0(L)e is a finitely generated,
rank one, torsion-free module over eB̄τe. By standard filtration arguments all of
the above properties lift to H0(L)e, which is viewed as a module over the algebra
Oτ = eBτe. Now by [9, Theorem 0.4], the global dimension gldim(Oτ ) = 1 and
therefore H0(L)e is projective. Hence, using Morita equivalence between Oτ and
Bτ , we conclude that H0(L) is a projective Bτ -module.

Now we need to show that φ−1
1 ([H0(L)]) = [Wn] + [V ]([L]− 2[W0]) which is

equivalent, by (14), to showing that φ−1
2 ([H0(L)]) = [Wn] + [V ]([L]− 2[W0]) . From

(34) we have [H0(L)] = [L̄0]− [L̄1] in K0(B̄τ ) . Since L̄0 ∼= Wn ⊗CΓ B̄
τ , we get that

φ−1
2 ([L̄0]) = [Wn]. Next we know that L̄1 is a finite-dimensional module over B̄τ iso-

morphic to V ⊕ CΓ⊕k, and therefore by Lemma 3.7 and the remark after Lemma 3.2
we obtain φ−1

2 ([L̄1]) = [V ](2[W0]− [L]).

5. DG-models and injective resolutions

In this section we show how to construct some explicit representatives of (the
isomorphism class of) a module M , such that cl(M) ∈ R(V,Wn), from its DG-
model M r−→ L. The key idea is to relate L to a minimal injective resolution of M
(see [5]).

Let ε : M → E be a minimal injective resolution of M in Mod(Bτ ). Since the
global dimension of Bτ is one, the resolution E has length one; i.e. E = [0→ E0 µ1−→
E1 → 0], and is determined (by M) uniquely up to isomorphism in Com(Bτ ). Recall



Homology, Homotopy and Applications, vol. 9(2), 2007 191

that DGMod∞(B) denotes the category of DG-modules over B with morphisms given
by A∞-homomorphisms. Then, when regarded as an object in DGMod∞(B), E is in
the same quasi-isomorphism class as L. It is natural to find a quasi-isomorphism
that ‘embeds’ L into E. By Lemma A.2 (see Appendix A below) any A∞-quasi-
isomorphism between such modules is determined by two components f = (f1, f2):

f1 : L→ E, (u, v) 7→ (f1(u), f̄1(v)),
f2 : L→ E, (u, v)⊗ a 7→ (f2(v, a), 0),

which are subject to relations (75)–(79).

Theorem 5.1. Let r : M → L be a DG-model of M , and let ε : M → E be a mini-
mal injective resolution. Then there is a unique A∞-quasi-isomorphism fx : L→ E
such that (fx)1 ◦ r = ε, and

(fx)2 (v, x) = 0 and (fx)2 (v, g) = 0 ∀ v ∈ L1, ∀ g ∈ Γ. (35)

Remark 5.2. First, a similar result can be stated if we replace x by y. We will
denote the corresponding quasi-isomorphism by fy : L→ E. Second, the last equa-
tion of (35) implies that f2 induces (and is determined by) the map L1 ⊗CΓ R→ E0,
which we also denote by f2.

The following lemma is essential for the proof of Theorem 5.1.

Lemma 5.3. E0 is a torsion-free module over C[x].

Proof. We notice that since M is an ideal of Bτ it is a torsion-free module over
C[x]Γ. Let n ∈ E0 be a torsion element; then there is q ∈ C[x]Γ such that q 6= 0 and
nq = 0. Since E0 is the injective envelope of M we can find nonzero b ∈ Bτ and
m ∈M such that m = nb. Now the elements of S = C[x]Γ \ {0} act ad-nilpotently
on Bτ which implies that S is an Ore set. Hence there are elements t ∈ S and c ∈ Bτ

such that bt = qc. By multiplying the expression m = nb by t, we get

mt = nbt = nqc = 0,

which contradicts that M is C[x]Γ torsion-free. This proves that E0 is a torsion-free
module over C[x]Γ. Now C[x] is a finite integral extension of C[x]Γ. Hence, for any
nonzero u ∈ C[x], there exists a minimal monic polynomial

f(v) = vl + al−1(x)vl−1 + . . .+ a1(x)v + a0(x)

with coefficients in C[x]Γ such that f(u) = 0; therefore we have

u(ul−1 + al−1(x)ul−2 + . . .+ a1(x)) = −a0(x).

If we had nonzero n ∈ E0 such that nu = 0 this would imply that na0(x) = 0 which
contradicts that E0 is torsion-free over C[x]Γ.

Proof of Theorem 5.1. We observe that, since there is a canonical inclusion of
C[x] ∗ Γ into R, the complex L can be viewed as a complex over C[x] ∗ Γ. Now since
Bτ is projective over C[x] ∗ Γ (in fact, it is a free module Bτ = ⊕∞k=0y

kC[x] ∗ Γ),
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the complex E consists of C[x] ∗ Γ injective modules. Hence, ε : M → E extends to
a C[x] ∗ Γ-linear morphism f1 : L→ E such that the diagram

0 - M
r - L0 dL - L1 - 0

0 - M

wwwwwww
ε - E0

f1
?

µ1 - E1

f̄1
?

- 0

(36)

commutes in Com(C[x] ∗ Γ). We claim that such an extension is unique. Indeed,
if f ′1 : L0 → E0 is another map in Mod(C[x] ∗ Γ) which satisfies f1 ◦ r = f ′1 ◦ r = ε,
then f ′1 − f1 ≡ 0 on Ker(dL) by exactness of the first row of (36). Thus the differ-
ence ∆ := f ′1 − f1 induces a C[x] ∗ Γ-linear and hence C[x]-linear map ∆̄: L1 → E0.
Since dimC L

1 <∞, L1 is torsion over C[x], while E0 is torsion-free by the lemma
above. Hence, ∆̄ = 0 and therefore f ′1 = f1. This implies, of course, that f ′1 = f1 as
morphisms in Com(C[x] ∗ Γ).

We now show how to define the second morphism f2. Since dL is surjective by part
(b) of Lemma A.2 morphisms f1, f2 need only satisfy (75) and (76). To construct
f2 for which these relations hold it suffices to show

f1(u.a) = f1(u).a, ∀u ∈ Ker(dL), ∀a ∈ R. (37)

This can be easily shown from diagram (36). Now, we can define f2 as follows:

f2(v, a) := f1(d−1
L (v).a)− f1(d−1

L (a)).a, (38)

which, in view of (37), is a well-defined map.
Finally, the morphism f1 being C[x] ∗ Γ-linear is equivalent to

f2(v, x) = 0 and f2(v, g) = 0 , ∀ v ∈ L1, ∀g ∈ Γ,

and these are the exact relations as in (35).

To find the image of M in E0 we need to give an explicit construction of f1. For-
mula (78) in Appendix A which relates f1 and f2 is useful for this purpose. Indeed,
by substituting ν, the generator of two-sided ideal I, for c in this formula we get

f1(v.ν)− f1(v).ν = −f2(v, dν).

Then as E is a complex over Bτ the second term on the left-hand side vanishes. Now
since v.ν = j̄(v)in and dν = xy − yx− τ , we obtain the following equation on f2:

ixj̄(v) = −f2(v, xy) + f2(v, yx)− f2(v, τ), (39)

where ix := f1(in) ∈ E0. Using (79) and the fact that f1 is Γ-linear (35), we can
rewrite this equation in the following form:

f2(v, y) · x− f2(X̄(v), y) = j̄(v) ix. (40)

Once this functional equation is solved one can recover f1 from (76). The solution
of (40) is given in Theorem 5.5 below. To state this theorem we need the following
important result.

Lemma 5.4. The ring Bτ has the classical (right) ring of quotients Q(Bτ ).
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Proof. By [9, Theorem 0.4] the ring Oτ is simple. Being a simple ring is a Morita
invariant property so the ring Bτ is also simple. Now, as Bτ is a Noetherian, the
existence ofQ(Bτ ) is a consequence of Goldie’s theorem (see e.g. [23] pp. 54–56).

Theorem 5.5. Let fx be a A∞-quasi-isomorphism defined in Theorem 5.1, and
fy be its counterpart obtained by interchanging x and y (see the remark following
Theorem 5.1). Then fx and fy are given explicitly by

(fx)1 (in. xkym) = ix ·
(
xkym + ∆km

x (̄in)
)
, (41)

(fx)2 (v, xkym) = ix ·∆km
x (v),

(fy)1 (in. xkym) = iy ·
(
xkym + ∆km

y (̄in)
)
, (42)

(fy)2 (v, xkym) = iy ·∆km
y (v),

where ix := (fx)1( in) and iy := (fy)1(in) in E0, and

∆km
x (v) := −j̄(X̄ − xI)−1(Ȳ − yI)−1(Ȳ m − ymI) X̄kv, (43)

∆km
y (v) := j̄(Ȳ − yI)−1(X̄ − xI)−1(X̄k − xkI) ymv, (44)

where I := IdL1 . Moreover,

ix.g = εn(g)ix, iy.g = εn(g)iy, ∀ g ∈ Γ, (45)

ix = iy · κ, (46)

where κ ∈ Q is given by the formula κ = 1− j̄(Ȳ − yI)−1(X̄ − xI)−1īn and satisfies
the equation

enκ(1− en) = 0 in Q. (47)

Let us give some comments on the theorem.
1. Since in is a cyclic vector of a one-dimensional Γ-module W , the elements

{in. xkym} form a basis of L0. Thus it suffices to define the maps fx and fy only
on these elements.

2. Formulas (43) and (44) define the maps ∆km
x,y : L1 → Q(Bτ ) for m, k > 0, which

could be written more accurately as follows:

∆km
x (v) := −J [(X̄ − xI)∗

m∑
l=1

Ȳ m−lX̄k(v)⊗ yl−1] · det(X̄ − xI)−1,

where (X̄ − x I)∗ ∈ EndC(L1)⊗C R denotes the classical adjoint of the matrix
X̄ − xI and the map J stands for the composition of the following maps:

L1 ⊗C R
j̄⊗π−→Wn ⊗C B

τ −→Wn ⊗CΓ B
τ ∼= enB

τ ↪→ Q(Bτ ).

3. The dot in the right-hand sides of (41) and (42) denotes the (right) action of
Bτ on E. Even though ∆km

x,y(v) ∈ Q(Bτ ), these formulas make sense because both
E0 and E1 are injective, and hence divisible modules over Bτ .

Proof. We will give proofs of statements only for the map fx and leave the calcula-
tions for fy to the reader. Let us start with the formula for (fx)2. By the uniqueness
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result from Theorem 5.1 it suffices to check that (fx)2 satisfies the defining rela-
tion (40). This can be done in two steps. First, we verify this relation for k = 0 and
m = 1 by simply substituting the corresponding expression for f2 into (40). Second,
using (79) and the fact that fx is linear with respect to x, we can check (40) for all k,
m ∈ N. Now the expression for (fx)1 in (41) can be easily derived from formula (76)
which relates f1 and f2.

The formulas in (45) can be derived from the fact that both fx and fy are Γ-linear
maps.

Let p(x) := det(X̄ − xI). Then, by the Hamilton-Cayley theorem, īn. p(x) = 0
which implies that in. p(x) is in the image of r. Since fx ◦ r = ε = fy ◦ r, we have

(fx)1(in. p(x)) = (fy)1(in. p(x)).

Using (42) and (44) we obtain

ix · p(x) = iy · (1− j̄ (Ȳ − yI)−1(X̄ − xI)−1īn) p(x)

and, since E0 is a divisible module over C[x], we derive formula (46) by simply
dividing the last identity by p(x).

In order to prove (47) it suffices to show that enκ · g = εn(g) enκ for all g ∈ Γ.
For this we expand enκ into the formal series:

enκ = en − en

∑
l,k>0

j̄
(
Ȳ lX̄k īn

)
y−l−1x−k−1 (48)

= en − en

∑
l≡k(mod m)

λkl y
−l−1x−k−1,

where λkl = λ(xkyl) and the last equality follows from Proposition 4.5. Now multi-
plying this series by g we obtain

enκ · g = εn(g) en

(
1−

∑
l≡k(mod m)

εk−l(g)λkl y
−l−1x−k−1

)
= εn(g)enκ, (49)

where the last equality follows from (48) and the fact that εk−l(g) = 1 for l ≡
k(modm).

Corollary 5.6. Let L be an DG-envelope of M , a representative of some class in
R(V,Wn), and let the quadruple (X̄, Ȳ , ī, j̄) be the Nakajima data associated with
L. Then, M is isomorphic to each of the following (fractional) ideals

Mx := en det(X̄ − xI)Bτ + enµ det(Ȳ − yI)Bτ , (50)

My := en det(Ȳ − yI)Bτ + enκ det(X̄ − xI)Bτ , (51)

where µ := 1 + j̄ (X̄ − xI)−1(Ȳ − yI)−1īn is such that

enκ · enµ = enµ · enκ = en;

hence My = enκMx .

Proof. Since M is an ideal of Bτ and E0(M) is a divisible module there is an
inclusion Q(Bτ ) ↪→ E0(M). The key idea of the proof is to realize M in its injective
envelope E0(M) by investigating the image of r(M) under the maps fx and fy.
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Let p(x) := det(X̄ − xI) and q(y) := det(Ȳ − yI). Then by arguing as above, we
can conclude from the Hamilton-Cayley theorem that D = in. p(x)R+ in. q(y)R is
an R-submodule of Ker(dL) = Im(r). It is easy to see that D is a submodule of finite
codimension in L0 and hence D is of finite codimension in Im(r). Now, since f is
an injective map, fx(D) is a subspace of finite codimension in fx(Im(r)). Further,
it is clear that fx(Im(r)) = ε(M) is a Bτ -module.

If we show that fx(D) is also a Bτ -module, then since the algebra Bτ does not
have finite-dimensional modules, we will obtain fx(D) = fx(Im(r)).

By (41) and (43) we have fx(in. p(x)R) = ix · p(x)Bτ . Further, since fx ◦ r = ε =
fy ◦ r we obtain fx(in. q(y)R) = fy(in. q(y)R); therefore by (42) and (44) we have
fy(in. q(y)R) = iy · q(y)Bτ .

Now, since

[X̄ − xI, Ȳ − yI] = [X̄, Ȳ ] + [x, y]I = ī ◦ j̄ − T̄ + τI,

it is easy to check that enµ · enκ = enκ · enµ = en and hence iy = ix · µ. Thus, we
get

fx(D) = fx(in. p(x)R) + fy(in. q(y)R) = ix det(X̄ − xI)Bτ + ixµ det(Ȳ − yI)Bτ .

By the above arguments we obtain M ∼= ε(M) = fx(Im(r)) = fx(D). To finish the
proof we notice that there is a Bτ -linear automorphism of E0(M), sending ix to
en.

6. Existence and uniqueness

6.1. Distinguished representatives
In the previous section, in Corollary 5.6, for every DG-model L ∈M we have

constructed two different realizations of H0(L) as fractional ideals of Bτ . Our main
goal in this section is to present an analogous result for any cl(M) ∈ R. This result
will be essential for proving the existence and uniqueness of DG-models.

First, we notice that S1 = C[x] \ {0} is an Ore set in Bτ . Indeed we have already
shown in Lemma 5.3 that the set S = C[x]Γ \ {0} is an Ore set. Since S is an integral
extension of S1 then for any u ∈ S1,

u(uk−1 + ak−1(x)uk−2 + . . .+ a1(x)) = −a0(x),

where a1(x), . . . , ak−1(x) ∈ C[x]Γ and a0(x) ∈ S. Thus, for any b ∈ Bτ there exist
c ∈ Bτ and a ∈ C[x]Γ such that

ab = ca0(x) = [−c(uk−1 + ak−1(x)uk−2 + . . .+ a1(x))]u,

which proves that S1 is an Ore set. Now let Bτ [S−1
1 ] be the ring of fractions of Bτ

with respect to S1. Then Mx of Corollary 5.6 has the following properties:

(1) Mx ⊂ enB
τ [S−1

1 ] and Mx ∩ enC[x] 6= {0} ,
(2) if en(ak(x)yk + ak−1(x)yk−1 + . . .) ∈ Mx then ak(x) ∈ C[x], (52)
(3) Mx contains elements of the form en(yk + ak−1(x)yk−1 + . . .).

We can also introduce the set S2 = C[y] \ {0} and show that My satisfies similar
properties.
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Lemma 6.1. Let cl(M) ∈ R. Then there exists a fractional ideal Mx of Bτ iso-
morphic to M and satisfying conditions (1)–(3) for some n ∈ {0, 1, . . . ,m− 1}.

Proof. First of all, without loss of generality, we may assume that M is a submodule
of eBτ such that M ∩ eC[x] 6= {0} (see [3, Lemma 6.4]). Let w = (w1, w2) be a pair
of nonnegative real numbers such that w = w1 + w2 > 0i. Then we introduce a
natural increasing filtration on

Bτ : F 0
wB

τ = CΓ, F i
wB

τ = {xkymg|degw(xkymg) := kw1 +mw2 6 i, g ∈ Γ}.

We can extend this filtration on Q by the following formula:

degw(ab−1) := degw(a)− degw(b)

and F i
wQ = {q ∈ Q| degw(q) 6 i}. With respect to this filtration we define the

associated graded algebra grwB
τ = ⊕∞k=0F

k
wB

τ/F k−1
w Bτ ∼= C[x̄, ȳ] ∗ Γ, where x̄ :=

gr(x) and ȳ := gr(y). If we now choose w = (0, 1) and denote the associated graded
module of M with respect to this filtration by gry(M), then

gry(M) =
⊕
k>0

e Ik(x̄) ȳk,

where I0 ⊆ I1 ⊆ I2 ⊆ . . . is an ascending chain in C[x̄] with I0(x̄) 6= 0. Since C[x̄] is
a principal ideal domain, each Ik is cyclic and the sequence of ideals {Ik} stabilizes:

In0 = In0+1 = In0+2 = . . .

starting from some n = n0 > 0. We write p = p(x̄) for the principal generator of In0

in C[x̄]. Now we claim that p(x̄) = x̄j p̃(x̄) for some j ∈ {0, 1, . . . ,m− 1} and p̃(x̄) ∈
C[x̄]Γ. It is clear that we can write p(x) as follows: p(x̄) =

∑m−1
k=0 x̄kpk(x̄), where

each pj(x̄) is a Γ-invariant polynomial. Then gcd[p0(x̄), x̄p1(x̄), . . . , x̄m−1pm−1(x̄)],
the greatest common divisor of these polynomials, can be expressed as x̄j p̃(x̄) where
p̃ is Γ-invariant. Hence, there exists an element in M of the following form

b = e x̄j p̃(x̄)ȳn0 +
n0−1∑
k=0

p̃k(x̄)ȳk.

Therefore gry(b) = e x̄j p̃(x̄)ȳn0 which implies our claim. Finally, letMx = p−1(x)M .
Then since exj = xjem−j , we obtain a fractional ideal Mx satisfying conditions
(1)–(3).

Corollary 6.2. Let Mx and M ′
x be two fractional ideals isomorphic to M and sat-

isfying (1)–(3) above. Let q be an element of Q such that M ′
x = qMx. Then q ∈ Cen

(and hence M ′
x = Mx).

Proof. It is clear from (2) of (52) that gry(Mx) ⊂ gryB
τ ∼= enC[x̄, ȳ]. Moreover,

due to conditions (1) and (3) this embedding is of finite codimension. This in turn
implies that gry(q) ∈ Cen. Now since Mx ∩ enC[x] 6= {0} we have q ∈ enC(x)[y].
Combining these last two facts, we conclude that q ∈ Cen.

Reversing the roles of x and y, we obtain another distinguished representative
My. The statement similar to Lemma 6.2 will also be true for My. In Corollary 5.6
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we have seen that there is an element κ ∈ Q such that My = enκMx. The following
corollary claims such an element is unique.

Corollary 6.3. Let Mx and My be fractional ideals isomorphic to M and defined as
above, and q be an element of Q such that My = qMx. Then q is uniquely determined
up to a constant factor of en.

Proof. Suppose we have q1, q2 ∈ Q such that My = qiMx (i = 1, 2). Since both Mx

and My are submodules of enQ(Bτ ) we obtain q1, q2 ∈ enQ(Bτ )en. Hence Mx =
qMx where q = q−1

2 q1 ∈ Q. Now by the above lemma q ∈ Cen.

6.2. Uniqueness
In this section we will establish uniqueness of DG-models up to isomorphism of

DG-modules. First we remind the reader of the definition of a linear functional,
which was introduced earlier:

λ : R→ C, a 7→ λ(a), where λ(a) īn = j̄(̄in. a).

From Section 4.3 we recall that λ is completely determined by its special values:

λkl := λ(xkyl) , k, l ∈ N and k ≡ l(modm). (53)

We will prove

Theorem 6.4. Let L and L̃ be two DG-models of cl(M) ∈ R(V,Wn). Then the
following are equivalent:

(a) L and L̃ are isomorphic as DG-modules over B,
(b) L and L̃ are A∞-isomorphic,
(c) L and L̃ are A∞ quasi-isomorphic,
(d) L and L̃ determine the same functional λ : R→ C (i.e. λ = λ̃).

Proof. The implications (a)⇒ (b)⇒ (c) are obvious. It suffices only to show that
(c)⇒ (d) and (d)⇒ (a).

If L satisfies (20)–(22) then, by Lemma 4.6, the cohomology H0(L) represents
a class in R(V,Wn). By Corollary 5.6, H0(L) is then isomorphic to the fractional
ideals Mx and My related by My = enκMx (see (50), (51)). Expanding enκ into the
formal series as in (48), we have

enκ = en − en

∑
l≡k(mod m)

λkl y
−l−1x−k−1]. (54)

Now, enκ is determined uniquely, up to a constant factor of en, by the isomorphism
class of H0(L) (see Corollary 6.3). Hence, if L are L̃ are quasi-isomorphic A∞-
modules, we have H0(L̃) ∼= H0(L) and therefore enκ̃ = c · eiκ for some c ∈ C en.
Comparing the coefficients of (54) yields at once c = en and λ̃lk = λlk for all l, k > 0 .
Thus, we conclude (c)⇒ (d).

Now if we let λ = λ̃, then for the ideals J and J̃ defined in (32) we have
J = J̃ . Hence the map f0

1 : L0 → L̃0 defined as in. a 7→ ĩn. a is an isomorphism of
R-modules. Since H0(L̃) ∼= H0(L), the induced map f1

1 : L1 → L̃1 is also an iso-
morphism. Finally since dL̃ ◦ f0

1 = f1
1 ◦ dL the pair (f0

1 , f
1
1 ) produces the necessary

DG-isomorphism which proves implication (d)⇒ (a).
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6.3. Existence
Let us start by stating the main result of the section.

Theorem 6.5. For each class of projective module cl(M) ∈ R(V,Wn) there is a
DG-model satisfying axioms of Definition 1.

We need to produce for each class cl(M) ∈ R a right DG-module which is a
two-complex of vector spaces, quasi-isomorphic toM and satisfying conditions (20)–
(22). Constructing such a DG-module L is equivalent to constructing a DG-algebra
homomorphism Ψ from B to C := HomC(L,L)opp, the opposite of the DG-algebra
HomC(L,L). The algebra C is concentrated in degrees −1, 0 and 1:

C = C−1 ⊕ C0 ⊕ C1,

C−1 = HomC(L1, L0), C0 = EndC(L0)⊕ EndC(L1), C1 = HomC(L0, L1).

The multiplication is defined by f ∗ g := g ◦ f where ◦ is just the usual composition
of homomorphisms, and the differential is defined as:

dC(f) := dL ◦ f − (−1)jf ◦ dL, for f ∈ Cj .

Now the algebra B has the generators x, y, g(∈ Γ) in degree zero and one gen-
erator ν in degree minus one such that dB(ν) = xy − yx− τ . Thus the map Ψ is
given in the following form

x 7→ (X, X̄), y 7→ (Y, Ȳ ), g 7→ (G, Ḡ), ν 7→ f,

where X,Y,G ∈ EndC(L0), X̄, Ȳ , Ḡ ∈ EndC(L1) and f ∈ HomC(L1, L0). Moreover,
Ψ must satisfy the conditions dC(Ψ(x)) = dC(Ψ(y)) = 0 and Ψ(dBν) = dC(Ψ(ν)),
which are equivalent to:

dL ◦X = X̄ ◦ dL, dL ◦ Y = Ȳ ◦ dL, (55)

X Y − Y X + T = f0, X̄ Ȳ − Ȳ X̄ + T̄ = f1, (56)

where (f0, f1) = dC(f). The rest of this section focuses on the construction of such
a complex L.

In Section 6.1 we have shown that the ideals Mx and My defined in Corollary 5.6
are uniquely characterized by properties (1)–(3) of (52). Moreover, by Corollary 6.3,
there is enκ ∈ Q such thatMy = enκMx and enκ is uniquely defined up to a constant
factor of en. We choose enκ such that gry(enκ) = en. Now even though Mx and My

are fractional ideals we can embed them into enB
τ by means of the following maps

ρx : enB
τ [S−1

1 ]→ enB
τ , enb(x)ym 7→ enb(x)+ym, (57)

ρy : enB
τ [S−1

2 ]→ enB
τ , enb(y)xm 7→ enb(y)+xm, (58)

where “ + ” stands for taking the polynomial part of the corresponding rational
function. Let rx : Mx → enB

τ and ry : My → enB
τ be restrictions of the above maps

to Mx and My correspondingly and let Vx = enB
τ/rx(Mx) and Vy = enB

τ/ry(My).
It is not difficult to see first that rx is C[y] ∗ Γ-linear and ry is C[x] ∗ Γ-linear
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maps and second that both Vx and Vy are finite-dimensional Γ-modules. Now let us
consider the following complexes of Γ-modules:

Lx := [0→ enB
τ → Vx → 0] and Ly := [0→ enB

τ → Vy → 0]. (59)

We can extend the isomorphism Mx
enκ·- My to an isomorphism of the above

complexes:

Mx
rx - Lx

My

enκ·
? ry - Ly.

Φ
?

First let us introduce some notation. Let Bτ [S−1
1 ][S−1

2 ] be a Γ-module where Bτ first
localized by the set S1 and next by S2. Then it is easy to see that enB

τ [S−1
1 ][S−1

2 ] ∼=
enC(x)(y) and enB

τ [S−1
2 ][S−1

1 ] ∼= enC(y)(x). We now introduce four linear maps:

enB
τ [S−1

1 ][S−1
2 ]

enC[x](y)

ρ̀x

�
enC(x)[y],

ρ́y

-

enB
τ [S−1

2 ][S−1
1 ]

enC(y)[x]

ρ́x

�
enC[y](x),

ρ̀y

-
(60)

which are defined as follows: ρ̀x : enf(x)g(y) 7→ enf(x)+g(y), ρ́y : enf(x)g(y) 7→
enf(x)g(y)+, ρ́x : eng(y)f(x) 7→ eng(y)f(x)+, and ρ̀y : eng(y)f(x) 7→ eng(y)+f(x).
It is clear that all of these maps are Γ-equivariant. We then define a Γ-equivariant
map φ : enB

τ → enB
τ by

φ(enb) := ρ̀y ρ́x(enκ · enb) = ρ̀y ρ́x(enκb), b ∈ Bτ . (61)

Now one can argue as in Lemma 7 of [5] to prove the following result.

Proposition 6.6. Let φ : enB
τ → enB

τ be a map as in (61). Then:
(1) φ extends κ through rx, i.e. φ ◦ rx = ry ◦ enκ.
(2) φ is invertible with φ−1 : enB

τ → enB
τ given by φ−1(a) = ρ̀x ρ́y(enµb).

(3) We have φ(enb) = enb whenever b ∈ C[x] or b ∈ C[y].

Proof. Denote by C(x)− the subspace of C(x) consisting of functions vanishing at
infinity. Then we can extend our earlier notation writing, for example, C(x)−(y) for
the subspace of C(x)(y) spanned by all elements f(x)g(y) with f(x) ∈ k(x)− and
g(y) ∈ k(y).

(1) Since Mx ⊂ enC(x)[y] we have rx(m)−m ∈ enC(x)−[y] = C[y](x)− for any
m ∈Mx. Hence, enκ · (rx(m)−m) ∈ enC(y)(x)− and therefore ρ́x(enκ · rx(m)) =
ρ́x(enκ ·m). On the other hand, if m ∈Mx, then enκ ·m ∈My ⊂ C(y)[x] and there-
fore ρ́x(enκ ·m) = enκ ·m. Thus,

φ(rx(m)) = ρ̀yρ́x(enκ ·m) = ρ̀y(enκ ·m) = ry(enκ ·m).
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(2) From the definition of φ it follows that ρ̀y ρ́x(φ(enb)− κ · enb) = 0; therefore

φ(enb)− enκ · b ∈ enC(y)(x)− + enC(y)−(x)
= enC(x)−[y] + enC[x](y)− + enC(y)−(x)−.

Now multiplying the last expression by enµ and using the fact that enµ− 1 ∈
enC(x)−(y)−, we obtain

en(µ · φ(enb)− b) ∈ enC(x)−(y) + enC(x)(y)−
+ enC(y)−(x)− + enC(x)−(y)−(x)−.

On the other hand, since φ(enb) ∈ enB
τ , we have enµ · φ(enb)− enb ∈ enC(x)(y).

By comparing the last two inclusions we obtain

enµ · φ(enb)− enb ∈ enC(x)−(y) + enC(x)(y)−.

Hence ρ̀x ρ́y(enµ · φ(enb)− enb) = 0 and therefore ρ̀x ρ́y(enµ · φ(enb)) = enb for all
b ∈ Bτ . Defining now φ−1 : enB

τ → enB
τ by the formula φ−1(enb) := ρ̀x ρ́y(enµ · b)

we see that φ−1 ◦ φ = IdenBτ . On the other hand, reversing the roles of φ and
φ−1 in the above argument would give obviously φ ◦ φ−1 = IdenBτ . Thus, φ is an
isomorphism of a vector space, and φ−1 is indeed its inverse.

(3) is immediate from the definition of φ . For example, if b ∈ C[x] then enκ · b−
enb ∈ C(y)−(x) and therefore

φ(enb) := ρ̀y ρ́x(enκ · b) = ρ̀y ρ́x(enb) = b.

This finishes the proof of the proposition.

Remark 6.7. Once the isomorphism φ satisfying condition (1) of Proposition 6.6 is
established one can easily determine the isomorphism of quotient spaces φ̄ : Vx → Vy

and hence the isomorphism of complexes Φ = (φ, φ̄) : Lx → Ly.

We will now define our DG-module. Let L := Lx and endomorphisms X, Y ∈
EndC(L0) and X̄, Ȳ ∈ EndC(L1) are given by

X(enb) := φ−1(φ(enb) · x), Y (enb) = enb · y, (62)

X̄(enb) := φ̄−1(φ̄(enb) · x), Ȳ (enb) = enb · y, (63)

where “ · ” stands for the usual multiplication in Bτ . It is clear from the construction
that these endomorphisms satisfy (55). We next define the ‘cyclic’ vectors:

i : Wn → L0, en 7→ en, and ī : Wn → L1, en 7→ dL(en). (64)

Now condition (56) is a consequence of the following proposition.

Proposition 6.8. The endomorphisms (62) and (63) satisfy the equations

X Y − Y X + T = i j, X̄ Ȳ − Ȳ X̄ + T̄ = ī j̄ (65)

for some j : L0 →Wn and j̄ : L1 →Wn related by j = j̄dL.

Proof. It suffices to show that

X Y (enb)− Y X(enb) + T (enb) ∈ Cen for any b ∈ Bτ .

Indeed, if it holds, we can define j(enb) = X Y (enb)− Y X(enb) + T (enb). By the
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previous proposition it is then easy to see that j(enb) = 0 on Im(rx), and since
Im(rx) = Ker(dL) the second equation follows from the first.

Let b̃ := X(enb)− enb · x; then using (62) we have

φ(b̃) = φ(enb) · x− φ(enb · x) = ρ̀y (ρ́x(enκb) · x− ρ́x(enκb · x)).

It is clear that the last expression lies in enC[y] and therefore, by Proposition 6.6(3),
we get b̃ ∈ enC[y] for all b ∈ Bτ . Now we have

(XY − Y X)(enb) + T (enb) = φ−1(φ(enby)x)− φ−1(φ(enb)x)y + T (enb)

=
(
φ−1(φ(enby)x)− enbyx

)
−

(
φ−1(φ(enb)x)− enbx

)
y ∈ enC[y].

On the other hand, if besides (62) we define X ′, Y ′ ∈ EndC(enB
τ ) by

X ′(enb) := enb · x , Y ′(enb) := φ(φ−1(enb) · y),

then by symmetry (X ′Y ′ − Y ′X ′)enb+ enb ∈ enC[x] for all b ∈ Bτ . But φX = X ′ φ
and φY = Y ′ φ. Hence

φ ([X, Y ]enb+ enb) = [X ′, Y ′]φ(enb) + φ(enb) ∈ enC[x];

therefore

[X, Y ]enb+ enb ∈ enC[y] ∩ φ−1(enC[x]) = enC[y] ∩ enC[x] = Cen,

where φ−1(enC[x]) = enC[x] is due to Proposition 6.6(3).

Finally, if we choose f = i j̄ then dC(f) = (f1, f2) = (i j, ī j̄) and therefore, by
Proposition 6.8, condition (56) holds.

7. Bijective correspondences

Let us remind the reader thatR(V,W ) is the set of isomorphism classes of projec-
tive modules M over Bτ such that [M ] = [W ] + [V ]([L]− 2[W0]) under K0(Bτ ) ∼=
K0(Γ). Further letM(V,W ) be the set of strict isomorphism classes of DG-models
as defined in Definition 1. Finally, let M̃τ

Γ(V,W ) =
⊔∞

k=0 Mτ
Γ(V ⊕ CΓ⊕k,W ) be a

disjoint union of Nakajima spaces. We then establish the following bijective corre-
spondences.

Theorem 7.1. There are four maps

R(V,W )
θ1-�
ω1

M(V,W )
θ2-�
ω2

M̃τ
Γ(V,W ), (66)

such that (θ1, ω1) and (θ2, ω2) are pairs of mutually inverse bijections.

Proof. The map θ1 is given by the construction in Section 6.3 which assigns to
an ideal M its DG-model M r→ L (Theorem 6.5). Passing from M to an isomor-
phic module produces a DG-model quasi-isomorphic to L, which by the uniqueness
theorem implies that they are DG isomorphic. Therefore this map is well-defined.



Homology, Homotopy and Applications, vol. 9(2), 2007 202

The map ω1 is defined simply by taking the cohomology of a DG-model which
is by definition a projective module of Bτ such that φ−1

1 ([M ]) = [W ] + [V ]([L]−
2[W0]). Now it is clear that ω1 ◦ θ1 = IdR, while θ1 ◦ ω1 = IdM follows again from
the uniqueness theorem.

In Section 2.2 we have constructed Nakajima data from a DG-model. Since the
action of B commutes with DG-module isomorphism we get a well-defined map θ2
from M to M̃τ

Γ(V,W ).
In Section 2.3 we have shown how to get a DG-model from a point in M̃τ

Γ(V,W ).
Now if we replace (X̄, Ȳ , ī, j̄) by equivalent data (gX̄g−1, gȲ g−1, g(̄i), j̄g−1), where
g ∈ GL(V ⊕ CΓ⊕k), then the functional λ remains the same, and hence so do the
ideal J and the R-module L0. On the other hand, the differential dL gets changed
to gdL. As a result, we obtain a DG-module L̃ strictly isomorphic to L, the iso-
morphism L→ L̃ being given by (IdL0 , g). Thus, the construction of Section 2.3
yields a well-defined map ω2 : M̃τ

Γ(V,W )→M.
Now we have to show that θ2 ◦ ω2 = Id and ω2 ◦ θ2 = IdM. The first equality

follows immediately from the constructions in Sections 2.2 and 2.3. The second
equality follows from Theorem 6.4 since both L and ω2 ◦ θ2(L) have the same linear
data (X̄, Ȳ , ī, j̄) and hence produce the same λ.

8. G-equivariance

Let G = AutΓ(R) be the group of Γ-equivariant automorphisms of the algebra
R = C〈x, y〉 ∗ Γ preserving the form ω = xy − yx ∈ R. In this section we show that
G acts naturally on each of the spaces R(V,W ), Mτ

Γ(V,W ) and M(V,W ) and the
bijections of Theorem (7.1) are equivariant with respect to these actions.

We start by describing the action of G on the space of ideals R(V,W ). First,
we observe that G maps to the group AutΓ(Bτ ) of Γ-equivariant automorphisms of
the algebra Bτ as Bτ is, by definition, a quotient of the algebra R. Now, AutΓ(Bτ )
acts naturally on the category Mod(Bτ ) by twisting the structure of Bτ -modules by
automorphisms: to be precise, for each σ ∈ AutΓ(Bτ ) we have an auto-equivalence
σ∗ : Mod(Bτ )→ Mod(Bτ ), given by σ∗(M) = Mσ−1 . Clearly, the functors σ∗ restrict
to the subcategory PMod(Bτ ) of finitely generated projective Bτ -modules and their
action preserves the rank of projective modules. Thus, for each σ ∈ AutΓ(Bτ ) we
have a bijection R→ R induced by σ∗, and this defines an action of G on R via
the group homomorphism G→ AutΓ(Bτ ). We claim

Lemma 8.1. The action of G on R defined above respects the stratification (12).

Proof. The action of the group G on the category PMod(Bτ ) by exact additive func-
tors yields a well-defined group homomorphism G→ AutΓ(Bτ )→ Aut(K0(Bτ ));
thus for each σ ∈ G, we have an abelian group automorphism

σ∗ : K0(Bτ )→ K0(Bτ ), [M ] 7→ [Mσ−1 ].

Now, in the view of Lemma 3.2, if M ∈ R(V,W ), its stable isomorphism class [M ]
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can be decomposed K0(Bτ ) as

[M ] = [W ⊗CΓ B
τ ] + [(V ⊗ L)⊗CΓ B

τ ]− 2[V ⊗CΓ B
τ ]. (67)

Since σ ∈ G is Γ-equivariant, the corresponding algebra automorphism σ : Bτ →
Bτ an isomorphism Bτ ∼= (Bτ )σ−1 of CΓ-Bτ -bimodules. Hence, with decomposi-
tion (67), we set at once that [Mσ−1 ] = [M ] for every M ∈ R and σ ∈ G. This
finishes the proof of the lemma.

Thus, with Lemma 8.1, we can define an action of the group G on R(V,W )
simply by restricting its natural action on R.

Next, we define an action of G on M(V,W ). Again, we start by observing that
G maps naturally to the group DGAutΓ(B) of Γ-equivariant automorphisms of the
DG-algebra B: in fact, given σ ∈ G, we define σ̃ ∈ DGAutΓ(B) on generators by
σ̃(x) = σ(x), σ̃(y) = σ(y), σ̃(ν) = ν. Each σ̃ ∈ DGAutΓ(B) yields an auto-equivalence
σ̃∗ : DGMod(B)→ DGMod(B) by twisting the action of B by σ̃−1. It is clear that
such auto-equivalences preserve the class of DG-models, since each axiom of Def-
inition 2 is stable under twisting by σ̃ ∈ DGAutΓ(B). Moreover, if L ∈M(V,W ),
then H0(L) ∈ R(V,W ) and hence σ∗(H0(L)) ∈ R(V,W ) =⇒ σ̃∗(L) ∈M(V,W ) by
Lemma 8.1. Thus, the above action of G on DG-models preserves each stratum
M(V,W ), and it is obvious that the bijections θ1 and ω1 are G-equivariant with
respect to this action and the action of G on R(V,W ) defined in Lemma 8.1.

Finally, it remains to define an action of G on the quiver varieties Mτ
Γ(V,W ).

To this end, as in Section 2, we represent the points of Mτ
Γ(V,W ) by quadruples

of matrices (X̄, Ȳ , ī, j̄) and let σ.(X̄, Ȳ , ī, j̄) := (σ−1(X̄), σ−1(Ȳ ), ī, j̄). Since σ is
Γ-equivariant and preserves the form ω = xy − yx, this action is well-defined: the
quadruple σ.(X̄, Ȳ , ī, j̄) satisfies the relations (2.7) and (2.8). Moreover, it is clear
that σ.(X̄, Ȳ , ī, j̄) are precisely the Nakajima data corresponding to the “twisted”
DG-model σ̃∗(L) if (X̄, Ȳ , ī, j̄) corresponds to L. Thus, we have an action of G on
Mτ

Γ(V,W ) such that the bijection θ2, ω2 are G-equivariant. Summing up, we have
established the following

Theorem 8.2. The maps (θ1, ω1) and (θ2, ω2) are G-equivariant bijective corre-
spondences.

9. Invariant subrings of the Weyl algebra

In this section we look at the simplest example of the algebra Oτ corresponding
to τ = 1. It is well-known that in this case the algebra Bτ is isomorphic to the
crossed product A1(C) ∗ Γ and Oτ to the subring AΓ

1 of invariants of the first Weyl
algebra A1(C) = C〈x, y〉/(xy − yx− 1) under the action x 7→ εx and y 7→ ε−1y. In
fact,

Bτ ∼= C〈x, y〉 ∗ Γ/(xy − yx− 1) ∼= (C〈x, y〉/(xy − yx− 1)) ∗ Γ,

Oτ ∼= AΓ
1 (C).

In the case of τ = 1, from the relation (8), for any point (X̄, Ȳ , ī, j̄) of the Naka-
jima variety Mτ

Γ(V,W ) we have

X̄Ȳ − Ȳ X̄ + I = īj̄, (68)



Homology, Homotopy and Applications, vol. 9(2), 2007 204

which is exactly the Calogero-Moser relation. Now, a pair (X̄, Ȳ ) satisfying this
relation does not have common invariant subspace (see [24, Lemma 1.3]); hence
condition (ii) of (6) in the definition of the Nakajima variety Mτ

Γ(V,W ) is redundant.
Thus, in the case of τ = 1, the Nakajima variety is the space of equivalence classes
of quadruples (X̄, Ȳ , ī, j̄) satisfying (68) and the following equations

X̄ Ḡ = ε(g) Ḡ X̄, Ȳ Ḡ = ε−1(g) Ḡ Ȳ . (69)

Now we will give another description of the Nakajima variety. For this we remind
the reader that {W0,W1, . . . ,Wm−1} is the complete set of irreducible Γ-modules
such that the character of Wi is εi. Then, if V ∼=

⊕m−1
i=0 Vi ⊗Wi is the irreducible

Γ-decomposition of V , we have

HomΓ(V, V ⊗ ε) ∼=
m−1⊕
i=0

Hom(Vi, Vi−1), HomΓ(V, V ⊗ ε−1) ∼=
m−1⊕
i=0

Hom(Vi, Vi+1),

HomΓ(Wn, V ) ∼= Hom(C, Vn), HomΓ(V,Wn) ∼= Hom(Vn,C).

We now introduce the following algebraic variety (see [20]):

Dn
(k0,...,km−1)

:=
{(
X̄0, X̄1, . . . , X̄m−1; Ȳ0, Ȳ1, . . . , Ȳm−1, īn, j̄n

) ∣∣∣ (70)

×X̄i ∈ Hom(Vi+1, Vi), Ȳi ∈ Hom(Vi, Vi+1),

×īn ∈ Hom(C, Vn) , j̄n ∈ Hom(Vn,C),

×X̄iȲi − Ȳi−1X̄i−1 + Idki
= 0, i 6= n,

×X̄nȲn − Ȳn−1X̄n−1 + Idkn = īnj̄n

}// ∏
i

GL(Vi),

where ki := dimC(Vi). Then, due to equations (68) and (69), there is a well-defined
map

ψ : Mτ
Γ(V,Wn) −→ Dn

(k0,...,km−1)
,

X̄ 7→ (X̄0, X̄1, . . . , X̄m−1), Ȳ 7→ (Ȳ0, Ȳ1, . . . , Ȳm−1), ī 7→ īn, j̄ 7→ j̄n.

In fact one can easily prove the following result:

Theorem 9.1. The map ψ is an isomorphism of algebraic varieties with the inverse
map defined by

(X̄0, X̄1, . . . , X̄m−1) 7→ X̄, (Ȳ0, Ȳ1, . . . , Ȳm−1) 7→ Ȳ , īn 7→ ī, j̄n 7→ j̄,

where X̄ and Ȳ are the following matrices:

X̄ :=



0 X̄0 0 . . . 0
0 0 X̄1 . . . 0

0 0 0
. . .

...
...

...
. . . . . . X̄m−2

X̄m−1 0 . . . 0 0

 , Ȳ :=



0 0 0 . . . Ȳm−1

Ȳ0 0 0 . . . 0

0 Ȳ1 0
. . .

...
...

...
. . . . . . 0

0 0 . . . Ȳm−2 0

 .
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Moreover,
dimC Dn

(k0,k1)
= 2(kn − (k0 − k1)2), for m = 2, (71)

and

dimC D
n
(k0,...,km−1)

= 2
(
kn −

( m−1∑
i=0

k2
i −

m−1∑
i=0

kiki+1 − k0km−1

))
, for m > 2. (72)

Let us define the following set

Nn =
{

(k0, k1, . . . , km−1) ∈ Nm

∣∣∣∣ kn −
( m−1∑

i=0

k2
i −

m−1∑
i=0

kiki+1 − k0km−1

)
> 0

}
.

From (72) we can see that this set consists exactly of those points of Nm for which
the corresponding Nakajima variety Dn

(k0,...,km−1)
is nonempty. With this notation

we can restate Theorem 2.5 as follows.

Corollary 9.2. The set R(AΓ
1 ) of isomorphism classes of ideals of AΓ

1 is in bijection
with the union of algebraic varieties

m−1⊔
n=0

⊔
(k0,...,km−1)∈Nn

Dn
(k0,...,km−1)

.

In the casem = 2, the varietiesDn
(k0,...,km−1)

have been introduced recently in [18]
(see loc. cit., Theorem 3) to classify the ideals of the Z2-invariant subring of A1(C).
Thus our Corollary 9.2 may be viewed as a generalization of this description to the
case of an arbitrary cyclic group Zm.

Appendix A. A∞-morphisms of DG-modules

The DG-algebra B, regarded as an A∞-algebra, has only two nonzero struc-
ture maps mB

1 := dB and mB
2 , the usual associative multiplication in B. Any DG-

module L over B, viewed as an A∞-module, also has only two nontrivial structure
maps, which satisfy the Leibnitz rule:

mL
1 m

L
2 = mL

2 (mL
1 ⊗ 1) +mL

2 (1⊗ dB).

Now we recall the definition of morphisms of A∞-modules (see [14]).

Definition A.1. A morphism of A∞-modules f : L→ E is a sequence of graded
morphisms

fn : L⊗B⊗n−1 → E (73)

of degree 1− n such that for each n > 1, we have∑
(−1)r+stfu ◦ (1⊗r ⊗ms ⊗ 1⊗t) =

∑
(−1)(r+1)smu ◦ (fr ⊗ 1⊗s), (74)

where the left-hand sum is taken over all decompositions n = r + s+ t, r, t > 0,
s > 1 and we put u = r + 1 + t. The right-hand sum is taken over all decompositions
n = r + s, r > 1, s > 0 and we put u = 1 + s.
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Lemma A.2. Let L and E be DG-modules over B, L having nonzero components
only in degree 0 and 1 and E positively graded: L = L0 ⊕ L1 and E = E0 ⊕ E1 ⊕
E2 . . . .

(a) Any A∞-morphism f : L→ E is determined by two components (f1, f2) sat-
isfying the relations:

mE
1 f

0
1 = f1

1m
L
1 , (75)

f0
1 (mL

2 (u, a))−mE
2 (f0

1 (u), a) = f2(mL
1 (u), a), ∀u ∈ L0, a ∈ R, (76)

f1
1 (mL

2 (v, a))−mE
2 (f1

1 (v), a) = mE
1 f2(v, a), ∀ v ∈ L1, a ∈ R, (77)

f0
1 (mL

2 (v, c))−mE
2 (f1

1 (v), c) = −f2(v, dBc), ∀ v ∈ L1, c ∈ I, (78)

f2(v, ab) = mE
2 (f2(v, a), b) + f2(mL

2 (v, a), b), ∀u ∈ L0, a, b ∈ R. (79)

(b) If mL
1 is surjective then equations (77)–(79) are formal consequences of (75)

and (76).

Proof. Relation (75) follows easily from (74) for n = 1. For n = 2 we get the equa-
tion

−f2(1⊗ dB) + f1 ◦mL
2 − f2(mL

1 ⊗ 1) = mE
2 (f1 ⊗ 1) +mE

1 ◦ f2. (80)

Since deg(f2) = −1 it has only one component f2 : L1 ⊗R→ E0 and therefore rela-
tions (76)–(78) are consequences of (80). For n = 3, equation (74) has the following
form:

f3(1⊗ 1⊗ dB) + f3(1⊗ dB ⊗ 1) + f3(mL
1 ⊗ 1⊗ 1)

− f2(1⊗mB
2 ) + f2(mL

2 ⊗ 1) + f1 ◦mL
3

= mE
3 (f1 ⊗ 1⊗ 1)−mE

2 (f2 ⊗ 1) +mE
1 ◦ f3. (81)

By the degree argument we can conclude that fn = 0 for n > 3. Now since both L
and E are DG-modules we have mL

3 = mE
3 = 0. Equation (81) can be simplified

−f2(1⊗mB
2 ) + f2(mL

2 ⊗ 1) = mE
2 (f2 ⊗ 1) (82)

which is equivalent to (78)–(79).
To prove part (b) we first apply m1 to equation (76). Then using (75) and R-

linearity of m1 (i.e. dB(a) = 0 for any a ∈ R) we have

m1(f0
1 (mL

2 (u, a)))−m1(mE
2 (f0

1 (u), a))

= f1
1 (mL

2 (m1(u), a))−mE
2 (f1

1 (m1(u)), a)

= mE
1 f2(m1(u), a).

Since m1 is surjective this implies (77). Now let a = dLc and v = mL
1 (u) in (76).

Then
f0
1 (mL

2 (u, dBc))−mE
2 (f0

1 (u), dBc) = f2(mL
1 (u), dBc). (83)

Since mL
2 (u, c) = 0 for all c ∈ I and u ∈ L0 by the Leibnitz rule we get

mL
2 (mL

1 (u), c) = −mL
2 (u, dBc).

Similarly one can show that mE
2 (f0

1 (u), dBc) = −mE
2 (f1

1 (v), c). By plugging the last
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two relations into (83) we obtain (78).
Now we will show that (76) implies (79). Let v = mL

1 (u); then from (76) we have

f2(mL
1 (u), ab) = f0

1 (mL
2 (u, ab))−mE

2 (f0
1 (u), ab), (84)

mE
2 (f2(mL

1 (u), a), b) = mE
2 (f0

1 (mL
2 (u, a)), b)−mE

2 (f0
1 (u), ab), (85)

f2(mL
2 (mL

1 (u), a), b) = f0
1 (mL

2 (u, ab))−mE
2 (f0

1 (mL
2 (u, a)), b). (86)

Adding now (85) and (86) and using (84) we easily derive (79).
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