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EQUIVARIANT MORSE RELATIONS

MAHUYA DATTA and NEETA PANDEY

(communicated by Ronald Brown)

Abstract
For a finite group G, Costenoble and Waner defined a cel-

lular (co-)homology theory for G-spaces X, which is graded
on virtual representations of the equivariant fundamental
groupoid πG(X). Using this homology, we associate an infinite
(Morse) series with an equivariant Morse function f defined
on a closed Riemannian G-manifold M . Wasserman has shown
that when the critical locus of f is a disjoint union of orbits,
M has a canonical decomposition into disc bundles. We show
that if this decomposition ‘corresponds’ to a virtual represen-
tation γ of πG(M), then the Morse relations are satisfied by
the ‘γth homology groups’. For semi-free G-actions, we char-
acterise the Morse functions which naturally give rise to such
representations γ of πG(M). We also show that correspond-
ing to any equivariant Morse function on a Z2-manifold, it is
always possible to define virtual representations γ so that the
Morse relation is satisfied by the ‘γth homology groups’. In
particular, the Morse relation is satisfied by Bredon homology.

1. Introduction

Let G be a finite group and M a closed Riemannian G-manifold. A natural
generalisation of a Morse function in the equivariant context is a smooth G-map
f : M −→ R whose critical locus is a disjoint union of non-degenerate critical orbits.
Such functions are dense in the space of all G-equivariant smooth real-valued func-
tions on M [10]. Morse theory of these functions has been discussed by Wasserman
as part of a more general study (see [10]). If f is an equivariant Morse function
of the above type on M , then M is equivariantly diffeomorphic to (N1, f) ∪g2
(N2, f) ∪g3 · · · ∪gk

(Nk, f), where (Ni, f) are handle-bundles over orbits, that is,
the Ni are of the form G×Hi (DVi ×DW i) for some orthogonal Hi-representation
spaces Vi and Wi. These handle-bundles are attached successively along
G×Hi (DVi × SW i) by the equivariant maps gi. Thus M has the equivariant homo-
topy type of (G×H1 DW1) ∪g2 (G×H2 DW2) ∪g3 · · · ∪gk

(G×Hk
DWk) ([10]). The

disc-bundles (G×Hi DWi) will be called Morse cells associated to f and the above
decomposition will be referred as the Morse complex of f .
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In our earlier paper [5], we tried to establish Morse relations for equivariant Morse
functions on M using Bredon cohomology. The Bredon homology and cohomology
theories do not support the above type of cells. Therefore, it is not surprising that
we can not explain Morse theory completely in terms of Bredon cohomology.

A more general cell structure which includes the disc bundles over orbits as
cells has been introduced by Costenoble and Waner [3]. These cell structures on a
G-space X are parametrised by ‘admissible’ virtual representations γ of the equiv-
ariant fundamental groupoid πG(X). A representation γ of dimension n essentially
associates to each G-map x : G/H −→ X a cell of the form G×H DW for some
n-dimensional H-representation space W so that corresponding to each morphism
in πG(X) there is a G-disc bundle map over the corresponding orbits [2]. A repre-
sentation γ then determines ‘admissible’ cell structures which are called G-CW(γ)
structures on X. This concept can be canonically extended to admissible virtual
representations of πG(X). If γ is the zero-dimensional trivial representation, then
the corresponding cell structure consists of Bredon cells. With this new definition
of G-CW complexes, Costenoble and Waner have defined an equivariant cellular
homology and cohomology theory graded on RO(πG(X)), the set of isomorphism
classes of virtual representations.

In this paper we try to explain Morse relations for an equivariant Morse func-
tion on a Riemannian G-manifold in the light of this RO(πG(X))-graded homol-
ogy theory. After discussing the notion of generalised G-CW-complexes and the
RO(πG(X))-graded homology and cohomology theory in Sections 2 and 3 respec-
tively, we prove the following in Section 4:

Let f : M −→ R be an equivariant Morse function on a Riemannian G-manifold
M whose critical locus is a disjoint union of G-orbits. If the Morse complex deter-
mined by f is a G-CW(γ)-complex for some admissible virtual representation γ
of πG(M), where each Morse cell occurs as a cell of the γ-complex, then the γth
homology groups, HG

γ+n, n ∈ Z, explain the Morse relations for f .
Moreover, when the G-action is semi-free, we characterise the Morse functions

which naturally give rise to such admissible virtual representations γ of πG(M).
In Section 5, we show that if M is a Z2-manifold, then it is always possible to

choose an admissible virtual representation γ of πG(M) so that the Morse complex
is a G-CW(γ)-complex, each Morse cell being a subcomplex of it. In particular we
may choose γ to be trivial to get a Bredon cell structure. We also show that the
Morse relation is satisfied in this case.

2. Generalised G-CW-complexes

In this section we shall briefly discuss the basic concept of generalised G-CW-
complexes introduced by Costenoble and Waner in [3].

A cell of type G/H is a space of the form G×H D(W ), where D(W ) is the unit
disc of an orthogonalH-representation spaceW . Thus a cell is canonically associated
with an orthogonal G-vector bundle over an orbit. Recall that an arbitrary G-
vector bundle over an orbit G/H is always of the form G×H W −→ G/H. The
dimension of the cell is defined to be the dimension of the representation space W .
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The canonical inclusion map G/H −→ G×H D(W ) is called the centre of the cell.
A cell complex is a G-space obtained from a collection of such cells via equivari-

ant attaching. If X is a cell complex, then the centre of a cell of X defines a G-map
x : G/H −→ X, that is, an element of πG(X). Recall that the equivariant funda-
mental groupoid πG(X) is the category of G-maps from orbits into X. A morphism
from x : G/H −→ X to y : G/K −→ X in this category is an equivalence class of a
pair (σ, ω), where σ : G/H −→ G/K is a G-map and ω is a G-homotopy from x to
y ◦ σ [1].

It follows from the above that each cell complex X determines a map which takes
an x : G/H −→ X (which corresponds to the centre of a cell) onto a vector bundle
over G/H, which in turn is completely determined by a representation of H. This
motivates the following:

Definition 2.1. LetX be a G-space. An l-dimensional representation γ of πG(X) is
a functor that assigns to each element x : G/H −→ X of the groupoid an orthogonal
G-bundle over G/H of dimension l. Any morphism (σ, ω) : x→ y in πG(X) maps
onto the homotopy class of a G-bundle map γ(σ, ω) : γ(x)→ γ(y), the homotopy
being through orthogonal maps, so that equivalent morphisms in πG(X) are mapped
onto the same homotopy class of G-bundle maps [3, 2].

The representation is orientable if for any two objects x : G/H −→ X and
y : G/K −→ X of πG(X) and any two morphisms (σ, ω), (σ, ω ′) : x→ y in πG(X),
γ(σ, ω) = γ(σ, ω ′) [2].

A G-space X with a representation γ of its equivariant fundamental groupoid
will be denoted by (X, γ).

An l-dimensional representation γ is said to be trivial if it assigns the trivial
bundle G/H × Rl to each x : G/H −→ X. Also, for any morphism (σ, ω) : x→ y in
πG(X), γ(σ, ω) = σ × idR.

It is known that a representation is orientable if and only if it has an orientation
in the sense that there is a map from it to the universal orientable representation [2].
We will assume that all representations considered here are oriented.

Example 2.2.
(i) If V is an orthogonal representation space of a group G, then given any G-

space X we can define a representation (which we also denote by V by an
abuse of notation) that takes an element x : G/H −→ X in πG(X) onto the
vector bundle G/H × V .

(ii) If ξ is a vector bundle over X, then it defines a representation ξ̃ of πG(X) by
associating the pullback bundle x∗ξ to an element x : G/H −→ X.

Definition 2.3. Let γ be a representation of πG(X) for some G-space X. Let
φ : Y −→ X be a G-map. The induced representation φ∗γ on πG(Y ) is defined by
φ∗(γ)(x) = γ(φ ◦ x), where x ∈ πG(Y ).

Observation 2.4.
(i) Let X be a G-space such that the fixed point set XH is simply connected for

each subgroup H of G (for example, if V is a G-representation space, then
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the fixed point sets of V are linear subspaces and hence simply connected).
Then a representation of πG(X) factors through a representation of the orbit
category G of G.

(ii) If V is a G-representation space, then its tangent bundle τV is isomorphic to
the product bundle V × V over V . Hence, τ̃V is the same as the representation
defined by V on πG(V ) (see Example 2.2(i)).

(iii) If p : ξ −→ X is a G-vector bundle, then p̃∗ξ = p∗ξ̃.

(iv) Consider the G-vector bundle p : G×H W −→ G/H, where W is an orthogo-
nal H-representation space. We shall denote this bundle by ξW in any fur-
ther reference. The tangent bundle τ of the total space is isomorphic to
G×H TW = G×H (W ×W ) = p∗ξW . Thus it follows from the above obser-
vation that the representations τ̃ and p∗ξ̃W are equivalent.

(v) If a G-space X is G-homotopy equivalent to a G-space Y , then their equiv-
ariant fundamental groupoids are equivalent. Hence, if p : ξ −→ X is a G-
vector bundle, then any representation γ of πG(ξ) is equivalent to p∗i∗γ, where
i : X −→ ξ is the zero section.
In particular, a representation γ of πG(G×H D(W )) is completely determined
by γ(x0), where x0 : G/H −→ G×H DW is the centre of the cell.

Definition 2.5. Let γ be a representation of πG(X) of dimension l. A G-CW(γ)
structure [4] on X consists of a filtration X0 ⊂ X1 ⊂ · · · ⊂ X which satisfies the
following:

1. The 0-skeleton X0 is a disjoint union of orbits x : G/H −→ X such that
γ(x : G/H −→ X) is the trivial bundle G/H × Rl over G/H.

2. The n-skeleton Xn = Xn−1 ∪ψn

⋃
m e

n
m, where enm are cells of dimension n and

ψn is the attaching map. Let φnm : enm −→ X denote the characteristic map of
enm. Let x be the centre of a n-cell enm. If n 6 l, γ(φnm ◦ x) has a codimension
n trivial summand and enm ≡ D(γ(φnm ◦ x)ª Rl−n). If n > l, enm ≡ D(γ(φnm ◦
x)⊕ Rn−l).

A G-CW(γ) structure on X will also be called a γ structure on X for brevity.
Often, X will be referred as a G-CW-complex, suppressing the representation γ.

Remark 2.6. If γ is a trivial representation of any dimension, then G-CW(γ) struc-
ture means the Bredon cell structure. In fact, if γ is an arbitrary representation and
θ is a trivial representation, then a G-CW(γ) structure on X is also a G-CW(γ + θ)
structure on X and vice versa.

Remark 2.7. Let G×H D(W ) be a cell of (X, γ) and φ : G×H D(W ) −→ X be
its characteristic map. Then G×H W ∼= γ(φ ◦ x0)ª Rk for some k, where x0 : G/H
−→ G×H D(W ) is the centre of the cell. By Observation 2.4(iv), φ∗(γ) is completely
determined by φ∗(γ)(x0) and hence is equivalent to ξ̃W . Explicitly, if x : G/K −→
G×H DW is a G-map, then φ∗(γ)(x) = â∗γ(x0) = G×a−1KaW , where a ∈ G is
such that x(eK) = aH. Thus the induced representation of a cell in a G-CW-
complex is its canonical representation.
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Remark 2.8. If X is a G-space and if γ is a representation of πG(X), then X may
not admit a G-CW(γ) structure; e.g. if X is a point and if γ is any non-trivial
representation of πG(X) then X does not admit a G-CW(γ)-structure. However, it
can be proved that given a pair (X, γ) there exists aG-CW(γ)-complex ΓX such that
(ΓX, γ) −→ (X, γ) is a weak G-homotopy equivalence. Here the representation γ on
ΓX means the induced representation on it by the weak homotopy equivalence [3, 9].

Remark 2.9. Every smooth G-manifold M admits a G-CW(τ̃M )-structure, where
τM is the tangent bundle of M [4].

Example 2.10. Let V be an orthogonal G-representation space and let SV denote
the unit sphere in V . Let x ∈ SV and let H be the isotropy subgroup of x. The rep-
resentation space V decomposes into the orthogonal direct sum V = 〈x〉 ⊕ Tx(SV )
as an H-space, where Tx(SV ) is the tangent space of SV at x. Since the H action on
〈x〉 is trivial, G×H V = G×H Tx(SV )⊕G/H × R. Therefore, by Remark 2.9(ii),
SV admits a G-CW(V ) structure.

Example 2.11. We have already observed that any representation γ of πG(G/H)
is defined by a bundle p : G×H W −→ G/H for some H-representation space W .
Hence if X = G/H, we may take ΓX = G×H DW . Indeed, since p∗γ is equivalent
to the tangent representation on πG(ΓX) (see Observation 2.4(iv)), it follows by
Remark 2.9 that ΓX is a G-CW(p∗γ) complex. The relative structure on (G×H
DW,G×H SW ) consists of exactly one cell of dimension dimW .

3. RO(πGX)-graded homology and cohomology theory

Let X be a G-space and let RO(πG(X)) denote the set of isomorphism classes
of virtual representations of πG(X). We shall not go into the detailed description
of virtual representations here but refer the reader to [3]. If X is compact, then
RO(πG(X)) can be characterised as the Grothendieck group of the monoid of the
isomorphism classes of representations of πG(X).

In this section we shall recall the salient features of the equivariant cellular homol-
ogy and cohomology theory graded on a subclass of RO(πG(X)), namely the set
of isomorphism classes of ‘admissible’ virtual representations of πG(X) following
Costenoble and Waner [3].

Let X be a G-CW(γ)-complex. Costenoble and Waner defined a chain complex
C∗(X, γ) where for each n > 0, Cn(X, γ) is a π̂G(X) group, i.e. a contravariant
functor from π̂G(X) to Ab, where π̂G(X) is the associated stable category. The
boundary maps are canonically defined natural transformations (see [3]).

One way of describing Cn(X, γ) is Cn(X, γ)(x) ∼=
∑
π̂X(x, x0), where the sum

runs over the centres x0 of the n-cells of X. Here π̂X(x, x0) denotes the morphisms
from x to x0 in the stable category.

If A is a G-CW(γ) subcomplex of (X, γ), then the relative chain complex is
defined by C∗(X,A, γ) = C∗(X, γ)/C∗(A, γ).

Given a stable local coefficient system (that is, a covariant, additive functor)
T : π̂G(X) −→ Ab, define abelian groups Cn(X, γ;T ) = Cn(X, γ)⊗π̂G(X) T , which
are obtained by taking the categorical tensor product of the functors Cn(X, γ) and T
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over π̂G(X). The categorical tensor product of two functors as above is obtained by
taking the quotient of the usual tensor product of the functors under the equivalence
relation

f∗a⊗ b ∼ a⊗ T (f)b.

Here f ∈ Mor (x, y) in π̂G(X), a ∈ Cn(X, γ)(y), b ∈ T (x).
For a contravariant functor T : π̂G(X) −→ Ab, the cochain complex can be de-

fined as the group of natural transformations C∗(X, γ;T ) = Hom (C∗(X, γ), T ).

Definition 3.1. Let (X, γ) be a G-CW(γ)-complex. Define HG
γ+n(X;T ) as the

(|γ|+ n)-dimensional homology groups of C∗(X, γ;T ) and Hγ+n
G (X;T ) as the

(|γ|+ n)-dimensional cohomology groups of C∗(X, γ;T ) respectively.
The homology and cohomology groups of a G-CW(γ) pair (X,A) can also be

defined in a similar way.

Definition 3.2. If X is a G-space with a representation γ of its fundamental
groupoid, then we define

HG
γ+n(X;T ) := HG

γ+n(ΓX;T ), (1)

where (ΓX, γ) is a G-CW(γ)-complex which is weak G-homotopy equivalent to
(X, γ).

Definition 3.3. The reduced homology groups of a based space X with the base
point ∗ can be defined by H̃γ+n(X;T ) = Hγ+n(X, ∗ ;T ) for all n > 0.

In general, the above homology and cohomology theories satisfy all the Steen-
rod axioms except the dimension axiom. If γ = 0, then the resulting homology
and cohomology groups reduce to Bredon homology and cohomology groups with
twisted coefficient system. Thus the homology and cohomology defined above when
evaluated on orbits in integer grading reduce to Bredon homology and cohomology
groups of the orbits and hence satisfy the dimension axiom.

Definition 3.4 (Suspension Isomorphism). If V is a G-representation space,
then for any G-CW(γ)-complex X with a base point there is a natural (suspension)
isomorphism

H̃G
γ+n(X;T )

∼=−→ H̃G
γ+V+n(Σ

VX;T ) (2)

for all n > 0. Here ΣVX denotes the smash product of X and the one-point com-
pactification SV of V [7].

More generally, we have an isomorphism

σ : HG
γ+n(X,A;T ) −→ HG

γ+V+n((X,A)× (DV, SV );T ),

where the product of pairs (X,A) and (Y,B) is defined as (X × Y,X ×B ∪A× Y );
on the right hand side γ should be interpreted as the representation induced from
γ on πG(X) via the projection map p : X × Y −→ X. In fact, the isomorphism can
be proved at the chain level itself.

We have similar isomorphisms in cohomology as well.
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Definition 3.5. For any representation γ of πG(X) we can define

H̃G
γ−k(X;T ) := H̃G

γ (ΣkX;T ), H̃γ−k
G (X;T ) := H̃γ

G(ΣkX;T ),

where ΣkX = X ∧ Sk is the kth suspension of X for k > 0. This extends the grading
to virtual representations of the form γ − Rk. We shall call such virtual representa-
tions ‘admissible’.

Let δ = γ − Rk be an admissible virtual representation of πG(X). We will say
that X is a G-CW(δ)-complex if X is a G-CW(γ)-complex (see Remark 2.6).

4. Morse Relation

Definition 4.1. Let Ĝ be the stable orbit category of G and π : π̂G(X) −→ Ĝ
the canonical functor. Let T : Ĝ −→ Ab be a covariant additive functor such that
T (G/H) = k for all subgroups H of G, where k is a fixed field. All morphisms are
field homomorphisms. Consider the stable local coefficient system T ◦ π on π̂G(X)
which we denote by T for brevity.

If, for a fixed representation γ of πG(X), the equivariant homology groups
HG
γ+∗(X;T ) are finite dimensional, then we define the formal Poincaré series cor-

responding to γ as

P tγ(X;T ) =
∑

k∈Z
t|γ|+k dimHG

γ+k(X;T ). (3)

Morse Series. Let M be a closed Riemannian G-manifold, and f : M −→ R an
equivariant Morse function on M . If N is a non-degenerate critical submanifold of
f then we can decompose the normal bundle νN of N as ν+

N ⊕ ν−N , where ν+
N , ν

−
N

are the subbundles of νN on which the Hessian of f is positive and negative definite
respectively. The index of N is defined to be the dimension of ν−N .

It can be proved that M is equivariantly diffeomorphic to

(Dν+
N0
×Dν−N0

) ∪g1 (Dν+
N1
×Dν−N1

) ∪g2 · · · ∪gr (Dν+
Nr
×Dν−Nr

),

where N0, N1, . . . , Nr are the critical submanifolds of f . The bundles Dν+
Ni
×Dν−Ni

are attached successively along Dν+
Ni
× Sν−Ni

by the equivariant map gi [9].
Given a representation γ of πG(M) we define the Morse series M t

γ(f) by the
formula

M t
γ(f) :=

r∑

i=0

P tγNi
(Dν−Ni

, Sν−Ni
;T ), (4)

provided the relevant Poincaré series are defined. Here γNi denotes the representa-
tion φ∗i γ on πG(Dν−Ni

) induced by the characteristic map φi : Dν−Ni
−→M .

If Ni is an orbit of type G/Hi then νNi is of the form G×Hi (Vi ⊕Wi), where
G×Hi Wi = ν−Ni

. Hence if f is an equivariant Morse function whose critical locus
is the disjoint union of non-degenerate critical orbits, then M has the structure of
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a cell complex. In particular, it has the equivariant homotopy type of

G×H0 DW 0 ∪g1 G×H1 DW 1 ∪ · · · ∪gr G×Hr DWr, (5)

where the cellsG×Hi DWi are attached successively alongG×Hi SWi by the equiv-
ariant maps gi, and dimWi is the index of the critical orbit G/Hi ↪→ X.

We will refer to (5) as the Morse complex corresponding to the map f , and each
G×Hi

DW i, 0 6 i 6 r as a Morse cell associated to f .

Observation 4.2. In general, a Morse complex need not be a G-CW(γ)-complex
where each Morse cell occurs as a cell of the γ-complex. For example, consider the
Z2-action on S2 given by the reflection in the yz-plane, and the function f : S2 −→ R
defined by f(x, y, z) = z.

If (5) is a G-CW-complex then we obtain Morse relations. We first prove the
following lemma.

Lemma 4.3. Let ξ = G×H W . Then

HG
ξ+k(G×H DW,G×H SW ;T ) ∼=

{
T (G/H) if k = 0
0 if k 6= 0.

Proof. Let (X,A) denote the pair (G×H DW,G×H SW ) and let n = dimW . Then
X is a G-CW(ξ)-complex and A is a subcomplex of X. Moreover, there is exactly
one n-dimensional cell in the relative complex (X,A). Therefore, for k < dimW ,
Ck(X, ξ) = Ck(A, ξ), and for k > dimW , Ck(X, ξ) is zero, as there is no k-cell.
Hence for k 6= dimW , Ck(X,A, ξ) = 0. Thus Hξ+k(X,A) = 0 for all k 6= 0. Further
note that Cn(A, ξ) = 0 and Cn(X, ξ)(x) ∼= π̂X(x, x0), where x0 denotes the centre
of the n-cell of X. Thus

Hξ(X,A;T ) = Cn(X, ξ)⊗π̂X T =
∑
xK

π̂X(xK , x0)⊗ T (xK)/∼ ∼= T (x0).

Here xK denotes the centre of a cell of X of the form G×K DV . The isomorphism
is defined on the generators by F : f ⊗ a 7→ T (f)(a) and then extended canonically.
First note that F is well-defined. Let f ∈ π̂X(xK , x0) and h ∈ π̂X(xL, xK). Then
F (f ⊗ T (h)(b)) = T (f)(T (h)(b)) = T (fh)(b) = T (h∗f)(b) = F (h∗f ⊗ b).
F is onto because for any a ∈ T (x0), F (id⊗ a) = T (id)⊗ a = a. To show that

F is one-one, take f ⊗ a ∈ π̂X(xK , x0)⊗ T (xK) and g ⊗ b ∈ π̂X(xL, x0)⊗ T (xL)
and suppose that T (f)(a) = T (g)(b). Then id⊗ T (f)(a) = id⊗ T (g)(b) which is
the same as f ⊗ a = g ⊗ b under the equivalence relation.

Theorem 4.4. Let f : M −→ R be an equivariant Morse function whose critical
locus is the disjoint union of non-degenerate critical orbits N0, N1, . . . , Nr having
indices λ0, λ1, . . . , λr respectively. Suppose that the Morse complex (5) defined by
f is a G-CW(γ)-complex for some zero-dimensional virtual representation γ of



Homology, Homotopy and Applications, vol. 9(1), 2007 475

πG(M). Then

dimHG
γ+k(M ;T ) 6 nk,

where nk denotes the number of critical orbits of index k. Further,

M t
γ(f) =

r∑

i=0

tλi ,

M t
γ(f)− P tγ(M) = (1 + t)Q(t)

for some polynomial Q(t) with positive coefficients.

Proof. Let Ma denote the half space {x ∈M |f(x) 6 a} in M for a ∈ R. If a1 <
a2 < · · · < an are the critical values of the function f , then Maj is obtained from
Maj−1 by attaching finitely many handle bundles, one handle bundle for each crit-
ical orbit. Moreover, these handles are attached disjointly to Maj−1 . Let Ni, i =
mj−1 + 1, . . . ,mj denote the critical orbits of f corresponding to the critical value
aj in f−1(aj−1, aj ]. Since each Ni is an orbit and γ is zero-dimensional, we have
γNi + Rλi = p∗ν̃−Ni

for i = 0, 1, . . . , r (see Remark 2.7). For brevity, we denote the
representation p∗ν̃−Ni

of πG(ν−Ni
) by ν−Ni

. Thus we get

HG
γ+k(M

aj ,Maj−1 ;T ) = ⊕mj

i=mj−1+1H
G
γ+k(Dν

−
Ni
, Sν−Ni

;T )

= ⊕mj

i=mj−1+1H
G
ν−Ni

−λi+k
(Dν−Ni

, Sν−Ni
;T ).

Since Ni is an orbit, the homology group HG
ν−Ni

−λi+k
(Ni;T ) is nontrivial if and only

if λi = k (Lemma 4.3). Now the first inequality follows from the subadditivity of
dimHG

γ+∗(−;T ) [8], namely

dimHG
γ+k(M ;T ) 6

n∑

j=1

dimHG
γ+k(M

aj ,Maj−1 ;T ).

It is clear from Lemma 4.3 that M t
γ(f) is defined in this case, and

M t
γ(f) =

r∑

i=0

P t
ν−Ni

−λi
(Dν−Ni

, Sν−Ni
;T )

=
r∑

i=0

∑

k

tk dimHG
ν−Ni

−λi+k
(Dν−Ni

, Sν−Ni
;T )

=
r∑

i=0

tλi (by Lemma 4.3).

To prove the last statement, consider a G-CW(γ)-complex X and a subcomplex
Y of X such that X = Y ∪φ e, where e = G×H DW and γ is a virtual represen-
tation of πG(X) of dimension zero so that γ|e + Rλ = ξW , λ being the dimension
of W . Then Hγ+k(X,Y ;T ) ∼= HξW−λ+k(G×H DW,G×H SW ;T ) ∼= T (G/H) ∼= k
when k = λ and zero otherwise. Let us denote the generator of Hγ(X,Y ;T ) by [e].
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It follows from the homology long exact sequence of (X,Y ),

0→ Hγ+λ(Y ;T ) i0−→ Hγ+λ(X;T )
j∗−→ Hγ+λ(X,Y ;T ) ∂−→

Hγ+λ−1(Y ;T ) i1−→ Hγ+λ−1(X;T )→ 0,

that if ∂[e] = 0, then

dimHγ+λ(X;T ) = dimHγ+λ(Y ;T ) + 1

and

dimHγ+λ−1(X;T ) = dimHγ+λ−1(Y ;T ).

On the other hand, if ∂[e] 6= 0, then it follows that

dimHγ+λ(X;T ) = dimHγ+λ(Y ;T )

and

dimHγ+λ−1(X;T ) = dimHγ+λ−1(Y ;T )− 1.

Therefore attaching a cell amounts to an increment of tλ or −tλ−1 in the Poincaré
polynomial. On the other hand, attaching a cell of dimension λ contributes tλ to
the Morse polynomial.

Since M is obtained by successive attachment of cells it follows from the above
discussion that M t

γ(f)− P tγ(M) = (1 + t)Q(t) for some polynomial Q(t) with posi-
tive coefficients.

In the rest of the section we restrict ourselves to semi-free G-action on M and
characterise Morse functions which satisfy the hypothesis of Theorem 4.4.

Note that a representation γ of πG(M) determines a unique (up to equivalence)
G-representation space for each component of the G-fixed point set of M . When
the G-action is semi-free, the converse is also true. We have the following result.

Theorem 4.5. Let G act semi-freely on a smooth manifold M and let f : M −→ R
be an equivariant Morse function whose critical locus is a disjoint union of orbits.
A necessary and sufficient condition for (5) to represent a G-CW(γ)-complex for
some representation γ is the following:

If p is a G-fixed critical point of f , then the isomorphism class of ν−p ª (ν−p )G

depends only on the path component of p in MG.

Proof. There are only two orbit types in this case. We define a zero-dimensional
orientable virtual representation γ of πG(M) as follows: Let us choose a fixed critical
point pC in C for each component C of MG containing a critical point of f . If
x : G −→M is aG-map, define γ(x) = G. Any morphism between x, x ◦ g : G −→M
is mapped to the bundle map induced by g. On the other hand, if x : G/G −→MG,
then there are two cases. If x maps into a component C of MG containing a critical
point of f , then define γ(G/G −→ C) = ν−pC

ª RλpC , where λpC is the index of f
at pC . Any morphism between x, y : G/G −→ C is mapped to the identity virtual
bundle map on ν−pC

ª RλpC . Any morphism between x : G −→M and y : G/G −→
C, where C is a component of MG containing a critical point of f , maps to the
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bundle map induced by the action G× RλpC −→ ν−pC
. If x maps into a component

C that does not contain any critical point of f , then define γ(G/G −→ C) = 0.
The effect of γ on the rest of the morphisms is obvious. Thus γ is an admissible
orientable virtual representation of πG(M) and (5) is a G-CW(γ)-complex.

The necessity of the condition follows from the functorial property of γ.

Observation 4.6. The hypothesis of Theorem 4.5 is satisfied in the following cases:
1. G is the trivial group so that ν−p = (ν−p )G.
2. The G-action is free.
3. The G-action is semi-free and G-fixed set MG is discrete.

Corollary 4.7. Let G = Z2 and let f : M −→ R be as in Theorem 4.5. Let λp
denote the index of f at a G-fixed critical point p and let λGp denote the dimen-
sion of (ν−p )G. If the value of λp − λGp depends only on the path component of p in
MG, then there exists a representation γ of πG(M) such that the cell complex (5)
defined by f is a G-CW(γ)-complex in which the Morse cells appear as cells of the
complex.

Proof. Every action of G = Z2 is semi-free. The proof now follows from Theorem 4.5
with the observation that there are only two irreducible representations ofG, namely
the trivial representation and the antipodal representation.

We now give an example of functions which satisfy the hypothesis of the above
corollary.

Example 4.8. Consider the manifold M = Sn−1 and the function f : Rn −→ R de-
fined by f(x1, x2, . . . , xn) = a1x

2
1 + · · ·+ anx

2
n, where 0 < a1 < a2 < · · · < an. The

restriction of f to Sn−1 is a Morse function.
Let ej denote the unit vector in Rn having the jth coordinate equal to 1. For

each j = 1, . . . , n, f has two critical points, namely ej and −ej , which are both
non-degenerate (since ai 6= aj for i 6= j) and f has the same index j − 1 at these
two points. The number j − 1 corresponds to the number of ai’s which are strictly
less than aj .

Let G = Z2 act orthogonally on Sn−1 so that the fixed point set is the inter-
section of Sn−1 with the subspace spanned by ej , ej+1, . . . , ek for some integers
j, k > j. Then for the critical point ei, j 6 i 6 k, λei is equal to the dimension of
the subspace 〈e1, . . . , ei−1〉 while λGei

= dim〈ej , . . . , ei−1〉. Thus for any critical point
p in (Sn−1)Z2 , λp − λGp = j − 1 and hence the hypothesis of the above corollary is
satisfied.

5. Morse theory on a Z2-manifold

In the previous section we proved that an equivariant Morse function f : M −→
R whose critical locus is a disjoint union of orbits satisfies the Morse relations
(Theorem 4.4), provided the Morse complex associated to f gives rise to a G-CW-
complex in which each Morse cell appears as a cell of the complex. In general, this
condition is not satisfied.
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In this section, restricting ourselves to a Z2-manifold, we canonically define a
virtual representation γ of πG(M) associated to a Morse function f . It turns out
that the Morse complex determined by f is a G-CW(γ)-complex where each cell of
the Morse complex appears as a subcomplex. Next, we fix a coefficient system T and
prove Morse relations with homology groups Hγ+∗(M ;T ). We also observe that the
Morse relations are satisfied by Bredon homology.

Throughout this section G = Z2. Let ρn denote the antipodal action of G on
Rn, as well as the corresponding representation of Z2 on Rn. Let θn be the trivial
representation of dimension n. The only linear representations of Z2 are of the form
ρk ⊕ θm.

We shall first describe a class of admissible G-CW structures on the generalised
cells when G = Z2.

Example 5.1. It is clear from the definition of a G-CW-complex that there can not
be any ρk structure on X = D(ρl ⊕ θm) for k > l. However for k 6 l there is a
ρk-structure on X; we give an explicit description of such a structure.

• First of all, for 0 6 p < k, we attach successively one p-cell ep of type G/e
which gives a ρk-structure on S(ρk).

• Then for k 6 p 6 k +m− 1, we attach two p-cells, ep, ēp of type G/G which
gives a ρk-structure on S(ρk ⊕ θm).

• Next, we attach a (k +m)-cell e′k+m of type G/G whose interior is mapped
homeomorphically into the interior of the disc X to obtain a ρk-structure on
D(ρk ⊕ θm).

• Finally, for each p, k +m 6 p < m+ l, we attach first a p-cell ep of type G/e
which lies on the boundary and then a (p+ 1)-cell e′p+1 of type G/e whose
interior is mapped into the interior of X.

Definition 5.2 (Definition of γ). Let M be a G-manifold and f : M −→ R a Morse
function whose critical locus is a disjoint union of orbits. Let C be a component of
MG containing critical points of f . There can be only finitely many critical points in
a component. Let λC = min{λp − λGp : p is a critical point in C}. There is at least
one critical point pC in C for which λpC − λGpC

= λC . Further we observe that the
bundle ν−pC

ª (ν−pC
)G is isomorphic with ρλC

.
If x : G −→M is a G-map, define γ(x) = G. On the other hand, if x : G/G −→

MG, then there are two cases. If x maps into a component C of MG containing
a critical point p of f , then define γ(G/G −→ C) = ρλC ª RλC . If x maps into a
component C that does not contain any critical point of f , then define γ(G/G −→
C) = 0. Then γ is an admissible virtual representation of πG(M), because if p is a
G-fixed critical point of f , then by definition the isomorphism class of γ(p : G/G −→
M) depends only on the path component of p in MG. It is worth noting that the
restriction of γ to the Morse cell corresponding to a critical point p is ρλC ª RλC ,
where C is the component of MG containing p. As explained in the above example,
the Morse cell D(ν−p ) admits a ρλC

structure since λC 6 λp. Consequently, the
Morse complex admits a G-CW(γ) structure with each Morse cell as a subcomplex.
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Remark 5.3. It is possible to define otherG-CW(γ) structures on the Morse complex
so that each Morse cell is a subcomplex. This can be simply done by choosing each
λC less or equal to min{λp − λGp : p is a critical point in C}. In particular, we may
take λC = 0 for all C to get a Bredon cell structure. In the subsequent discussion,
γ will be any of these virtual representations.

Definition 5.4 (Coefficient System T ). Let G = Z2. We define a coefficient sys-
tem on Ĝ, the stable orbit category of G whose objects are G/e and G/G [3]. In
the following, the arrows will denote the morphisms in the orbit category G.
Ĝ(G/e,G/e) is generated by the equivalence classes of the morphisms

φg : G← G→ G, g ∈ G,
where the right arrow is the identity morphism and the left arrow is ĝ.
Ĝ(G/e,G/G) is generated by the equivalence class of the morphism

α : G/e← G/e→ G/G,

where the morphism G/e→ G/e is the identity map.
Ĝ(G/G,G/e) is generated by the equivalence class of the morphism

ᾱ : G/G← G/e→ G/e,

where ᾱ is the dual of α.
Ĝ(G/G,G/G) is generated by the equivalence class of the morphism

ψ : G/G← G/e→ G/G

and the class of the identity isomorphism.
The morphisms satisfy the following composition relations:

(a) φgφh = φg+h, (b) φgᾱ = ᾱ,

(c) αφg = α, (d) ψψ = ⊕g∈G ψ,
(e) ᾱα = ⊕g∈G φg, (f) αᾱ = ψ,

(g) ψα = ⊕g∈G α, (h) ᾱψ = ⊕g∈G ᾱ.
We fix a coefficient system T which assigns to both G/e and G/G the field Z2.

Further, T (φg) = 1 for all g ∈ G (so that T (G/e) is a trivial G-module), T (α) = 0,
T (ᾱ) = 0 and T (ψ) = 0.

Proposition 5.5. For any pair of G-CW-complexes (X,Y ),

HG
∗ (X,Y ;T ) ∼= H∗(X/G, Y/G ∪XG;Z2)⊕H∗(XG, Y G;Z2).

Proof. First observe that the coefficient system T defined as above is naturally
equivalent to the direct sum of two coefficient systems. Let T1 be the coefficient
system such that T1(G/e) = Z2, T1(G/G) = 0, T1(φg) = 1 for all g ∈ G and T1 maps
all other morphisms to 0. Let T2 be the coefficient system such that T2(G/e) = 0,
T2(G/G) = Z2, and T2 maps all non identity morphisms to 0. Then T is naturally
equivalent to the direct sum of T1 and T2.
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This implies that

HG
∗ (X,Y ;T ) ∼= HG

∗ (X,Y ;T1)⊕HG
∗ (X,Y ;T2).

On the other hand, H∗(X/G, Y/G ∪XG;Z2) defines an integer graded ordinary
equivariant homology theory on pairs (X,Y ). Its value on orbits is the same as
the value of HG

∗ (− ;T1) on orbits. By the uniqueness of Bredon homology it fol-
lows that HG

∗ (X,Y ;T1) ∼= H∗(X/G, Y/G ∪XG;Z2). A similar argument shows that
HG
∗ (X,Y ;T2) ∼= H∗(XG, Y G;Z2).

Lemma 5.6. With the coefficient system T as above,

HG
i (D(ρl ⊕ θm), S(ρl ⊕ θm);T ) ∼=

{
Z2 for all m 6 i 6 l +m

0 otherwise.

We shall give a proof of this lemma in the next section.

Corollary 5.1. The ρk-homology of (D(ρl ⊕ θm), S(ρl ⊕ θm)), for 0 6 k 6 l, is giv-
en as

HG
ρk+i(D(ρl ⊕ θm), S(ρl ⊕ θm);T ) ∼= Z2, for all m 6 i 6 l +m− k,

and zero otherwise. Hence the corresponding Poincaré polynomial is

P tρk
(D(ρl ⊕ θm), S(ρl ⊕ θm);T ) =

l+m∑

i=k+m

ti.

Proof. It is enough to note that by the Suspension Theorem,

HG
ρk+i(D(ρl ⊕ θm), S(ρl ⊕ θm);T ) =HG

ρk+i(Σ
ρkD(ρl−k ⊕ θm),ΣρkS(ρl−k ⊕ θm);T )

∼=HG
i (D(ρl−k ⊕ θm), S(ρl−k ⊕ θm);T ).

The result then follows from the above lemma.

Theorem 5.7. Let M be a Z2-manifold and f : M −→ R an equivariant Morse
function whose critical locus is a disjoint union of orbits. Let T and γ be as defined
above. Then f satisfies the Morse relation M t

γ(f)− P tγ(f) = (1 + t)Q(t), where Q(t)
is a polynomial with positive coefficients.

In particular, the Morse relations are satisfied in Bredon homology.

Proof. Let D(ρl ⊕ θm) be attached as f passes through a critical point p, and let γ
restrict to ρk ª Rk on D(ρl ⊕ θm) where k 6 l. We have seen, in Example 5.1, that
the relative ρk-structure on (D(ρl ⊕ θm), S(ρl ⊕ θm)) is given by one (m+ k)-cell
em+k of type G/G and one i-cell ei of type G/e for all m+ k + 1 6 i 6 l +m.

Suppose the cells are attached one by one in the order of increasing dimension.
As we noted in the proof of Theorem 4.4, attaching a cell of dimension n causes
an increment of tn or −tn−1 in the Poincaré polynomial. Thus for each n, m+ k 6
n 6 m+ l, attachment of the cell en contributes an increment of atn − btn−1 in
the Poincaré polynomial, where (a, b) is either (1, 0) or (0, 1). Summing over all
n between m+ k and m+ l, we get the value of ∆p(P tγ), the increment in the
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Poincaré polynomial while f passes through the critical point p. On the other hand,
it follows from the above corollary that the contribution to Morse polynomial is∑m+l
n=m+k t

n for the same critical point p. Therefore ∆p(M t
γ(f)− P tγ) = (1 + t)Q(t)

for some polynomial Q(t).

6. Proof of Lemma 5.6

Proof of Lemma 5.6. Let us denote S(ρl ⊕ θr) byXr for all r > 0. ThenD(ρl ⊕ θm)
is a cone over Xr and we denote it by CXr. Thus we need to compute the relative
homology groups of (CXr, Xr).

Let r > 0. The cone CXr over Xr is contractible. Hence by the Bredon homology
long exact sequence of (CXr, Xr), we get

HG
i (CXr, Xr;T ) ∼= HG

i−1(Xr;T ) for all i > 2. (6)

Thus we need to compute the homology groups HG
0 (CXr, Xr;T ), HG

1 (CXr, Xr;T )
and HG

i (Xr;T ) for i > 1.
First, observe that (CXr)G = Dr and (Xr)G = Sr−1, while X0 = ∅ by conven-

tion. By using Proposition 5.5 we obtain

HG
0 (CXr;T ) ∼= 0⊕ Z2 for all r > 0

HG
0 (Xr;T ) ∼=





Z2 ⊕ 0 if r = 0
0⊕ (Z2 ⊕ Z2) if r = 1
0⊕ Z2 if r > 2

(7)

HG
0 (CXr, Xr;T ) ∼=

{
0 if r > 1
0⊕ Z2 if r = 0.

We write the homology in split form to indicate that the components correspond
to the splitting mentioned in Proposition 5.5.

Next, considering the exact sequence

0→ HG
1 (CXr, Xr;T )→ HG

0 (Xr;T )
φ→ HG

0 (CXr;T )→ HG
0 (CXr, Xr;T )→ 0,

we obtain that

HG
1 (CXr, Xr;T ) ∼=

{
Z2 if r = 0, 1
0 if r > 2.

(8)

It now remains to determine the homology groups of Xr. Since the suspension
ΣXr of Xr is Xr+1 for all r > 0 by the suspension isomorphism, we get

HG
i (Xr;T ) ∼= HG

i−1(Xr−1;T ) for all i > 2, r > 1.

Therefore

HG
i (Xr;T ) ∼=

{
HG
i−r(X0;T ) if i > r + 1

HG
1 (Xr−i+1;T ) if 1 6 i < r + 1.

(9)

The G-action on X0 is free and X0/G = RP l−1. Hence by Proposition 5.5,

HG
i (X0;T ) ∼= Z2 for all 0 6 i 6 l − 1. (10)
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Now, considering the long exact sequence of (ΣXr, CXr), we get

HG
i (ΣXr, CXr;T ) ∼= HG

i (ΣXr;T ) for all i > 2

and the exact sequence

0→ HG
1 (ΣXr;T )→ HG

1 (ΣXr, CXr;T ) δ→ HG
0 (CXr;T )

β→
HG

0 (ΣXr;T )→ HG
0 (ΣXr, CXr;T )→ 0. (11)

We also have, by excision, for all i > 0,

HG
i (ΣXr, CXr;T ) ∼= HG

i (CXr, Xr;T ).

Hence, noting that δ is the zero map, we obtain by (7),

HG
1 (ΣXr;T ) ∼=

{
Z2 if r = 0, 1
0 if r > 2.

(12)

Summarising Equations (7), (8) and (12) we get

r = 0 r = 1 r > 2
HG

0 (CXr, Xr;T ) Z2 0 0
HG

1 (CXr, Xr;T ) Z2 Z2 0
HG

1 (ΣXr;T ) Z2 Z2 0

Now, taking into account Equations (6), (9) and (10), it follows from the above
table that

HG
i (D(ρl ⊕ θm), S(ρl ⊕ θm);T ) ∼=

{
Z2 m 6 i 6 l +m

0 otherwise.
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