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DEFORMATION OF LEIBNIZ ALGEBRA MORPHISMS

ASHIS MANDAL

(communicated by Jean-Louis Loday)

Abstract
We study formal deformations of Leibniz algebra mor-

phisms. The associated deformation cohomology that controls
deformations is constructed using the cochain complex defining
Leibniz cohomology.

1. Introduction

The aim of this paper is to study an algebraic deformation theory of Leibniz
algebra morphisms. Leibniz algebras and dialgebras were introduced by J.-L. Loday
in connection with cyclic homology and Hochschild homology of matrix algebras [10,
11]. Leibniz algebras have been introduced as a non-antisymmetric analogue of Lie
algebras. Leibniz algebras, dialgebras, and many others (e.g. Zinbiel, dendriform,
etc.) have been studied in [12]. Each of these is an algebra over a suitable operad.
For instance, Leibniz algebras are precisely the algebras over the binary quadratic
operad Leib. The original deformation theory of algebraic structures was introduced
by Gerstenhaber in his monumental work [2, 3, 4, 5, 6]. Gerstenhaber considered
the case of associative algebras. An algebraic deformation theory of associative
algebra morphisms was studied by Gerstenhaber and Schack in [7, 8, 9]. Soon after,
deformation theory of various other structures and associated morphisms began
to be studied by many mathematicians. The Lie algebra case has been studied by
Nijenhuis and Richardson in [15, 16]. Deformations of dialgebras have been studied
in [14]. Recently, deformations of dialgebra morphisms have been studied by Donald
Yau in [18]. He also studied deformations of Zinbiel algebra morphisms in [17].
In [1], David Balavoine studied formal deformations of algebras over a quadratic
operad. In his paper, he explained how to obtain deformation theory for all the
classical cases, including associative, Lie, and others, each of which is an algebra
over a suitable operad. He also explained the case of Leibniz algebras using his
theory. In this paper, we consider the relative version, namely, formal deformations
of Leibniz algebra morphisms.

The paper is organised as follows. In Section 2, we recall the definitions of Leibniz
algebra and its cohomology. In Section 3, we introduce the deformation complex
of a Leibniz algebra morphism. In Section 4, we study the notion of deformation
of a Leibniz algebra morphism, define the notion of equivalence of deformations,
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and study rigidity. Obstruction cochains that arise in extending deformations of
finite order with given infinitesimals are studied in the final section. One of the
main results in any deformation theory is to prove that obstruction cochains are
cocycles. In our context, this consists of two parts; one arising from deformations of
the Leibniz algebras in question and the other from deformation of the morphism
between the Leibniz algebras. In [1], David Balavoine showed that the obstruction
cochains arising from deformations of Leibniz algebras are cocycles. The other part
is done by a direct computation parallel to arguments given in [17, 18].

2. Leibniz algebra and its cohomology

In this section, we recall the definition of a Leibniz algebra and describe its
cohomology. Let K be a fixed field.

Definition 2.1. A Leibniz algebra is a K-module L, equipped with a bracket oper-
ation, which is K-bilinear and satisfies the Leibniz identity:

[x, [y, z]] = [[x, y], z]− [[x, z], y] for x, y, z ∈ L.
Any Lie algebra is automatically a Leibniz algebra, since in the presence of anti-

symmetry, the Jacobi identity reduces to the Leibniz identity. Here are some more
examples:

Example 2.2. Let (L, d) be a differential Lie algebra with the Lie bracket [, ]. Then
L is a Leibniz algebra with the bracket operation [x, y]d := [x, dy]. The new bracket
on L is called the derived bracket.

Example 2.3. On T̄ (V ) = V ⊕ V ⊗2 ⊕ · · · ⊕ V ⊗n ⊕ · · · , there is a unique bracket
that makes it into a Leibniz algebra and satisfies

x1x2 · · ·xn = [· · · [[x1, x2], x3], . . . , xn].

This is the free Leibniz algebra over a K-module V .

Example 2.4. Let A be any associative K-algebra equipped with a K-module map
D : A −→ A satisfyingD(x(Dy)) = DxDy = D((Dx)y) for x, y ∈ A. Then [x, y] :=
x(Dy)− (Dy)x is a Leibniz bracket on A. Some examples of D satisfying the above
identity are as follows:

1. D is an algebra map satisfying D2 = D.

2. A is a superalgebra (that is, any x ∈ A can be written uniquely as x = x+ +
x−) and D(x) = x+.

3. D is a square-zero derivation, that is,

D(xy) = (Dx)y + x(Dy) and D2x = 0 for x, y ∈ A.
Example 2.5. Let L be a vector space spanned by {e1, e2, e3} over K. Define a
bilinear map [ , ] : L× L −→ L by [e1, e3] = e2 and [e3, e3] = e1, all other products
of basis elements being 0. Then (L, [ , ]) is a Leibniz algebra of dimension 3 over K.
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Let L be a Leibniz algebra and M be a representation of L. By definition ([13]),
M is a K-module equipped with two actions (left and right) of L,

[−,−] : L×M −→M and [−,−] : M × L −→M such that

[x, [y, z]] = [[x, y], z]− [[x, z], y]

holds whenever one of the variables is from M and the others from L. In particular,
L is a representation of itself with the obvious action given by the bracket in L.

Definition 2.6. Let L be a Leibniz algebra and M be a representation of L. Let
CLn(L;M) := HomK(L⊗n,M), n > 0, and

δn : CLn(L;M) −→ CLn+1(L;M)

be the K-morphism given by

δnf(x1, . . . , xn+1) := [x1, f(x2, . . . , xn+1)] +
n+1∑

i=2

(−1)i[f(x1, . . . , x̂i, . . . , xn+1), xi]

+
∑

16i<j6n+1

(−1)j+1f(x1, . . . , xi−1, [xi, xj ], xi+1, . . . , x̂j , . . . , xn+1).

Then (CL∗(L;M), δ) is a cochain complex, [13], whose cohomology is denoted by
HL∗(L;M), called the cohomology of the Leibniz algebra L with coefficients in the
representation M . For M = L, with the obvious action as mentioned above, the
cohomology is denoted by HL∗(L;L).

3. Deformation complex of a Leibniz algebra morphism

In the present section, we introduce the deformation complex of a Leibniz algebra
morphism. We shall see in the subsequent sections that the second and the third
cohomologies associated to the complex encode all the information about deforma-
tions. Let L and M be Leibniz algebras over a field K. To make our exposition
simpler, we use the same notation [−,−] for the brackets of L and M .

Definition 3.1. A K-linear map f : L −→M is said to be a Leibniz algebra mor-
phism if it preserves the brackets. In other words, f([x, y]) = [f(x), f(y)] for x, y ∈ L.

Let f : L −→M be a Leibniz algebra morphism. We regardM as a representation
of L via f , where the actions of L on M , again denoted by [−,−], are [−,−] : L×
M −→M , [l,m] := [f(l),m] and [−,−] : M × L −→M , [m, l] := [m, f(l)] for l ∈ L
and m ∈M .

Define a cochain complex (CL∗(f ; f), d) as follows. Set CL0(f ; f) := 0. For n > 1,
the module of n-cochains is

CLn(f ; f) := CLn(L;L)× CLn(M ;M)× CLn−1(L;M).

The coboundary dn : CLn(f ; f) −→ CLn+1(f ; f) is defined by the formula

dn(u, v;w) := (δnu, δnv; fu− vf − δn−1w)

for (u, v;w) ∈ CLn(f ; f). Here the δn on the right-hand side are the coboundaries of
the complexes defining Leibniz cohomology groups, the map vf : L⊗n −→M is the
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linear map defined by vf(x1, · · · , xn) = v(f(x1), · · · , f(xn)), and fu is the com-
position of maps. Observe that for (u, v;w) ∈ CLn(f ; f), δn+1δnu = 0 = δn+1δnv
and

fδnu− (δnv)f − δn(fu− vf − δn−1w) = fδnu− (δnv)f − δnfu+ δnvf = 0.

Thus dn+1dn(u, v;w) = 0 for n > 0. Hence we obtain

Proposition 3.2. (CL∗(f ; f), d) is a cochain complex.

The cochain complex (CL∗(f ; f), d) is called the deformation complex of f , and
the corresponding cohomology modules are denoted by

HLn(f ; f) := Hn((CL∗(f ; f), d)).

The proof of the following proposition, which relates HL∗(f ; f) to HL∗(L;L),
HL∗(M ;M), and HL∗(L;M), is similar to that of Proposition 3.3 in [18].

Proposition 3.3. If HLn(L;L) = 0 = HLn(M ;M), and HLn−1(L;M) = 0, then
so is HLn(f ; f).

From now on we shall omit superscripts for coboundaries. It should be clear from
the context which coboundary is being used.

4. Deformation, equivalence, and rigidity

In this section, we study formal 1-parameter families of deformations of a Leibniz
algebra morphism, define equivalence of deformations, and obtain a condition for
rigidity. All the basic notions of deformation theory of algebraic structures and the
associated morphisms are originally due to Gerstenhaber [2, 3, 5, 6], and Gersten-
haber and Schack [7, 8, 9]. Here we briefly describe the analogous concepts related
to deformation of Leibniz algebra morphisms. From now on we shall assume that
K is a field of characteristic zero, and f : L −→M is a Leibniz algebra morphism.
Let K[[t]] be the ring of formal power series in t with coefficients in K.

Recall from [1] that a formal 1-parameter family of deformations of a Leibniz
algebra L is a Leibniz bracket µt on the K[[t]]-module Lt = L⊗KK[[t]], where µt =∑

i>0 µit
i, µi ∈ CL2(L;L) with µ0 being the original Leibniz bracket on L.

Definition 4.1. A deformation (µt, νt; ft) of f is a Leibniz algebra morphism
ft : Lt −→Mt of the form ft =

∑
i>0 fit

i where each fi : L −→M is a K-linear map
with f0 = f , and Lt = L⊗KK[[t]], Mt = M⊗KK[[t]] are formal 1-parameter family
of deformations of L and M given by brackets µt =

∑
i>0 µit

i and νt =
∑

i>0 νit
i,

respectively.

Thus a triple (µt, νt; ft), as given above, is a deformation of f provided the
following equalities hold:

µt(x, µt(y, z)) = µt(µt(x, y), z)− µt(µt(x, z), y) for x, y, z ∈ L,
νt(x, νt(y, z)) = νt(νt(x, y), z)− νt(νt(x, z), y) for x, y, z ∈M,

and ft(µt(x, y)) = νt(ft(x), ft(y)) for x, y ∈ L.
(1)

Now, expanding both sides of each of the equations in (1) and collecting coefficients
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of tn, we see that (1) is equivalent to the system of equations

(i)
∑

i+j=n

µi(x, µj(y, z)) =
∑

i+j=n

{µi(µj(x, y), z)− µi(µj(x, z), y)} for x, y, z ∈ L;

(ii)
∑

i+j=n

νi(x, νj(y, z)) =
∑

i+j=n

{νi(νj(x, y), z)− νi(νj(x, z), y)} for x, y, z ∈M ;

(iii)
∑

i+j=n

fi(µj(x, y)) =
∑

i+j+k=n

νi(fj(x), fk(y)) for x, y ∈ L.

Remark 4.2. For n = 0, conditions (i) and (ii) are equivalent to the usual Leibniz
identity of µ0 and ν0 respectively, and (iii) is equivalent to the fact that f is a Leibniz
algebra morphism. For n = 1, (i) and (ii) are equivalent to δµ1 = 0 = δν1, and (iii)
is equivalent to fµ1 − ν1f − δf1 = 0. Thus for n = 1, (i)–(iii) are equivalent to
saying that (µ1, ν1; f1) ∈ CL2(f ; f) is a cocycle. In general, for n > 2, (µn, νn; fn)
is just a 2-cochain in CL2(f ; f).

Definition 4.3. The 2-cochain (µ1, ν1; f1) is called the infinitesimal of the deforma-
tion (µt, νt; ft). More generally, if (µi, νi; fi) = 0 for 1 6 i 6 (n− 1), and (µn, νn; fn)
is a non-zero cochain in CL2(f ; f), then (µn, νn; fn) is called the n-infinitesimal of
the deformation (µt, νt; ft).

Proposition 4.4. The infinitesimal (µ1, ν1; f1) of the deformation (µt, νt; ft) is a 2-
cocycle in CL2(f ; f). More generally, the n-infinitesimal (µn, νn; fn) is a 2-cocycle.

Proof. By definition, d(µ1, ν1; f1) = (δµ1, δν1; fµ1 − ν1f − δf1). The result now fol-
lows from the above remark.

Let (µt, νt; ft) and (µ̃t, ν̃t; f̃t) be two deformations of f . A formal isomorphism
between the deformations µt and µ̃t of a Leibniz algebra L is a power series Φt =∑

i>0 φit
i, where each φi : L −→ L is a K-linear map with φ0 = idL, the identity

map on L, such that µ̃t(x, y) = Φt ◦ µt(Φt
−1(x), Φt

−1(y)) for x, y ∈ L.

Definition 4.5. A formal isomorphism (Φt,Ψt) : (µt, νt; ft) −→ (µ̃t, ν̃t; f̃t) between
two deformations of a Leibniz algebra morphism f : L −→M consists of a pair of
formal isomorphisms Φt : µt −→ µ̃t and Ψt : νt −→ ν̃t of deformations of the Leibniz
algebras L and M respectively such that f̃t = Ψt ◦ ft ◦ Φt

−1.

Definition 4.6. Two deformations (µt, νt; ft) and (µ̃t, ν̃t; f̃t) are said to be equiv-
alent if and only if there exists a formal isomorphism

(Φt,Ψt) : (µt, νt; ft) −→ (µ̃t, ν̃t; f̃t).

Definition 4.7. Any deformation of f : L −→M that is equivalent to the defor-
mation (µ0, ν0; f) is said to be a trivial deformation.

Theorem 4.8. The cohomology class of the infinitesimal of a deformation
(µt, νt; ft) of f : L −→M is determined by the equivalence class of (µt, νt; ft).
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Proof. Let (Φt,Ψt) : (µt, νt; ft) −→ (µ̃t, ν̃t; f̃t) be an equivalence. Then µ̃t = Φt ◦
µt ◦ Φt

−1, ν̃t = Ψt ◦ νt ◦Ψt
−1, and f̃t = Ψt ◦ ft ◦ Φt

−1. Expanding the above identi-
ties and comparing coefficients of t, we have that µ1 − µ̃1 = δφ1, ν1 − ν̃1 = δψ1, and
f1 − f̃1 = fφ1 − ψ1f . Then it follows that d(φ1, ψ1; 0) = (µ1, ν1; f1)− (µ̃1, ν̃1; f̃1).

Definition 4.9. A Leibniz algebra morphism f : L −→M is said to be rigid if and
only if every deformation of f is trivial.

Theorem 4.10. A non-trivial deformation of a Leibniz algebra morphism is equiv-
alent to a deformation whose n-infinitesimal is not a coboundary for some n > 1.

Proof. Let (µt, νt; ft) be a deformation of f with n-infinitesimal (µn, νn; fn), for
some n > 1. Assume that there exists a 1-cochain (φ, ψ;m) ∈ CL1(f ; f) with

d(φ, ψ;m) = (µn, νn; fn).

We may assume that m = 0, as d(φ, ψ;m) = d(φ, ψ + δm, 0). This yields µn = δφ,
νn = δψ, and fn = fφ− ψf . Set Φt = idL + φtn and Ψt = idM + ψtn. We now have
a deformation (µ̃t, ν̃t; f̃t), where µ̃t = Φt ◦ µt ◦ Φt

−1, ν̃t = Ψt ◦ νt ◦Ψt
−1, and f̃t =

Ψt ◦ ft ◦ Φt
−1. For x, y ∈ L, the first equality gives µ̃t(Φt(x),Φt(y)) = Φt(µt(x, y)).

Expanding both sides of this equality and equating coefficients of ti, i 6 n, we get
µ̃i = 0, 1 6 i 6 n− 1, and µ̃n = µn − δφ = 0. Similarly, the other two equalities
yield ν̃i = 0 and f̃i = 0 for i 6 n. Thus the given deformation is equivalent to a
deformation (µ̃t, ν̃t; f̃t) for which (µ̃i, ν̃i; f̃i) = 0 for 1 6 i 6 n. Hence we can repeat
the argument to kill off any infinitesimal that is a coboundary. So the process must
stop if the deformation is non-trivial.

Corollary 4.11. If HL2(f ; f) = 0, then f : L −→M is rigid.

Remark 4.12. In view of Proposition 3.3, if HL2(L;L) = 0 = HL2(M ;M), and
HL1(L;M) = 0, then the morphism f : L −→M is rigid.

5. Obstruction Cocycles

In this section, we shall study the problem of realising a 2-cocycle in CL2(f ; f) as
the infinitesimal of a deformation of f . This will be done by detecting any obstruc-
tions to extending a given deformation modulo tk to a deformation modulo tk+1,
k > 1. Let N be a positive integer.

Definition 5.1. A deformation of f : L −→M of order N is a triple (µt, νt; ft)
such that µt =

∑N
i=0 µit

i and νt =
∑N

i=0 νit
i are deformations modulo tN+1 of L

and M respectively, that is, µt and νt satisfy (i) and (ii) respectively for 0 6 i 6 N ,
and ft =

∑N
i=0 fit

i with f0 = f , each fi : L −→M being K-linear, satisfies (iii) for
0 6 i 6 N .

If there exists a 2-cochain (µN+1, νN+1; fN+1) ∈ CL2(f ; f), such that the triple
(µ̃t, ν̃t; f̃t) with µ̃t = µt + µN+1t

N+1, ν̃t = νt + νN+1t
N+1, and f̃t = ft + fN+1t

N+1

is a deformation of f of order (N + 1), then we say that (µt, νt; ft) extends to a
deformation of f of order (N + 1).
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Definition 5.2. Let (µt, νt; ft) be a deformation of f of order N . Consider the
cochains θ(L) ∈ CL3(L;L), θ(M) ∈ CL3(M ;M), and θ(f) ∈ CL2(L;M) where

θ(L)(x, y, z) =
∑

i+j=N+1
i,j>0

{µi(µj(x, y), z)− µi(µj(x, z), y)− µi(x, µj(y, z))}

for x, y, z ∈ L, θ(M) has an expression similar to θ(L) with µ replaced by ν, and

θ(f)(x, y) =
′∑
νi(fj(x), fk(y))−

∑

i+j=N+1
i,j>0

fi(µj(x, y)) for x, y ∈ L.

Here,
′∑

=
∑

i+j=N+1
i,j>0 ; k = 0

+
∑

i+k=N+1
i,k>0 ; j = 0

+
∑

j+k=N+1
j,k>0 ; i = 0

+
∑

i+j+k=N+1
i,j,k>0

.

The 3-cochain θ(µt, νt; ft) = (θ(L), θ(M); θ(f)) ∈ CL3(f ; f) is called the obstruc-
tion cochain for extending the deformation (µt, νt; ft) of f of order N to a defor-
mation of f of order N + 1.

Observe that θ(L) is the obstruction for extending the deformation µt modulo
tN+1 of L to a deformation modulo tN+2. A similar remark holds for θ(M). Our
primary goal is to show that the obstruction cochain as defined above is a cocycle.
This will follow from [1] and by a direct computation following [17, 18].

Let Sn be the symmetric group of n symbols. Recall that a permutation σ ∈
Sp+q is called a (p, q)-shuffle, if σ(1) < σ(2) < · · · < σ(p), and σ(p+ 1) < σ(p+ 2) <
· · · < σ(p+ q). We denote the set of all (p, q)-shuffles in Sp+q by Sh(p, q).

Let L be a Leibniz algebra. For α ∈ CLp+1(L;L) and β ∈ CLq+1(L;L), define
α ◦ β ∈ CLp+q+1(L;L) by

α ◦ β(x1, . . . , xp+q+1)

=
p+1∑

k=1

(−1)q(k−1){
∑

σ∈Sh(q,p−k+1)

sgn(σ)α(x1, . . . , xk−1, β(xk, xσ(k+1), . . . , xσ(k+q)),

xσ(k+q+1), . . . , xσ(p+q+1))}.
Then the graded cochain module CL∗(L;L) =

⊕
p CL

p(L;L) equipped with the
bracket

[α, β] = α ◦ β + (−1)pq+1β ◦ α for α ∈ CLp+1(L;L) and β ∈ CLq+1(L;L)

is a graded Lie algebra [1]. It is straightforward to check that the above bracket on
CL∗(L;L) is related to the coboundary map as follows.

Lemma 5.3. For α ∈ CLp+1(L;L), δα = −[α, µ0].

Now observe that in terms of the bracket on CL∗(L;L), the obstruction cochain
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θ(L) can be written as

θ(L) =
1
2

∑

i+j=N+1
i,j>0

[µi, µj ].

In [1], David Balavoine proved that for any Leibniz algebra L, the obstruction
cochain θ(L) for extending a deformation modulo tN+1 to a deformation modulo
tN+2 is a cocycle. This is done by using the above expression of θ(L), Lemma 5.3,
and the Jacobi identity in the graded Lie algebra (CL∗(L;L), [−,−]).

Theorem 5.4. The obstruction cochain θ(µt, νt; ft) of a deformation (µt, νt; ft) of
f of order N is a 3-cocycle in CL3(f ; f).

Proof. In view of the above observations, it remains to prove that δθ(f)− fθ(L)
+ θ(M)f = 0. This is done by a direct computation parallel to the proof of the
corresponding results in [17, 18]. Note that for x, y, z ∈ L,

(fθ(L)− θ(M)f)(x, y, z) =
∑

fµi(µj(x, y), z)−
∑

fµi(µj(x, z), y)

−
∑

fµi(x, µj(y, z))−
∑

νi(νj(f(x), f(y)), f(z))

+
∑

νi(νj(f(x), f(z)), f(y))

+
∑

νi(f(x), νj(f(y), f(z))), (2)

where we are using the abbreviated symbol
∑

for
∑

i+j=N+1
i,j>0

in (2) and in the

subsequent computations. By (2.6) and (5.2) we have,

δθ(f)(x, y, z) =
′∑
ν0(f(x), νi(fj(y), fk(z)))−

∑
ν0(f(x), fiµj(y, z))

+
′∑
ν0(νi(fj(x), fk(z)), f(y))−

∑
ν0(fiµj(x, z), f(y))

−
′∑
ν0(νi(fj(x), fk(y)), f(z)) +

∑
ν0(fiµj(x, y), f(z))

−
′∑
νi(fjµ0(x, y), fk(z)) +

∑
fiµj(µ0(x, y), z)

+
′∑
νi(fjµ0(x, z), fk(y))−

∑
fiµj(µ0(x, z), y)

+
′∑
νi(fj(x), fkµ0(y, z))−

∑
fiµj(x, µ0(y, z)).

(3)

The main idea involved is to rewrite some of the sums on the right-hand side
of (3) using (i)–(iii) for 0 6 n 6 N , in order to cancel terms appearing in (2). First
consider the 7th sum. Using (iii) for each j, we have

fjµ0(x, y) =
∑

α+β+γ=j
α,β,γ>0

να(fβ(x), fγ(y))−
∑

p+q=j
16q6j

fpµq(x, y).
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Substituting this expression for fjµ0(x, y), the 7th sum on the right-hand side of (3)
becomes

−
′∑

α+β+γ=j
α,β,γ>0

νi(να(fβ(x), fγ(y)), fk(z)) +
′∑

p+q=j
16q6j

νi(fpµq(x, y), fk(z)). (4)

Here as explained in [18], the first sum of (4) is given by
′∑

α+β+γ=j
α,β,γ>0

=
∑

i+α+β+γ=N+1
i,(α+β+γ)>0
k=0; α,β,γ>0

+
∑

i+k=N+1
i,k>0

α=β=γ=0

+
∑

α+β+γ+k=N+1
k,(α+β+γ)>0
i=0; α,β,γ>0

+
∑

i+α+β+γ+k=N+1
i,(α+β+γ),k>0

α,β,γ>0

(5)

and the second sum is given by
′∑

p+q=j
16q6j

=
∑

i+p+q=N+1
i,q>0; p>0

k=0

+
∑

p+q+k=N+1
q,k>0; p>0

i=0

∑

i+p+q+k=N+1
i,k,q>0; p>0

. (6)

Thus the first sum of (4) splits into four sums, the first of which can be written as

−
∑

i+α+β+γ=N+1
i,(α+β+γ)>0
k=0; α,β,γ>0

νi(να(fβ(x), fγ(y)), fk(z)) (7)

= −
∑

i+α=N+1
i,α>0

νi(να(f(x), f(y)), f(z))−
∑

i+α+β+γ=N+1
i,(β+γ)>0
α,β,γ>0

νi(να(fβ(x), fγ(y)), f(z)).

Note that the first sum on the right-hand side of (7) appears in (2) as one of the
three summands of −θ(M)f(x, y, z). Analogously we rewrite the 9th sum and the
11th sum on the right-hand side of (3) using (iii), as described above. In the 8th
sum on the right-hand side of (3), we use (i) to substitute µj(µ0(x, y), z), obtaining

∑

i+j=N+1
i,j>0

fiµj(µ0(x, y), z) =
∑

i+j=N+1
i,j>0

fiµj(x, µ0(y, z))

+
∑

i+j+k=N+1
i,k>0; j>0

fiµj(x, µk(y, z)) +
∑

i+j=N+1
i,j>0

fiµj(µ0(x, z), y) (8)

+
∑

i+j+k=N+1
i,k>0; j>0

fiµj(µk(x, z), y)−
∑

i+j+k=N+1
i,k>0; j>0

fiµj(µk(x, y), z).

Observe that the first and the third sums on the right-hand side of (8) cancel with
the 12th and the 10th sums respectively on the right-hand side of (3). Next, note
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that the 2nd sum on the right-hand side of (8) can be written as

N∑

k=1

∑

i+j+k=N+1
i,j>0

fiµj(x, µk(y, z))− f
∑

j+k=N+1
j,k>0

µj(x, µk(y, z)), (9)

and the 2nd sum of (9) appears in fθ(L)(x, y, z). Also, by (iii), the first sum splits
as

N∑

k=1

∑

α+β+γ+k=N+1
α,β,γ>0

να(fβ(x), fγµk(y, z))

=
∑

i+j=N+1
i,j>0

ν0(f(x), fiµj(y, z)) +
′∑

p+q=k
16q6k

νi(fj(x), fpµq(y, z)).

The first sum in the last step appears as the 2nd term on the right-hand side
of (3) with opposite sign, whereas the other sum can be seen to appear in the new
expression of the 11th sum on the right-hand side of (3) with opposite sign. We
apply a similar argument to express the 4th and the 5th sum on the right-hand side
of (8). Finally as in [18], we substitute the new expressions for the 7th, 8th, 9th,
and 11th sum in (3) and use (2) to obtain

(δθ(f)−fθ(L) + θ(M)f)(x, y, z)

=
∑̃

[νi(fα(x), νj(fβ(y), fγ(z)))− νi(νj(fα(x), fβ(y)), fγ(z))

+ νi(νj(fα(x), fγ(z)), fβ(y))],

where
∑̃

=
∑

i+β+γ+j=N+1
α=0, β,γ>0

+
∑

i+j+α+γ=N+1
β=0, α,γ>0

+
∑

i+j+α+β=N+1
γ=0, α,β>0

+
∑

i+j+γ=N+1
α=0=β,γ>0

+
∑

i+j+β=N+1
α=0=γ,β>0

+
∑

i+j+α=N+1
β=0=γ,α>0

+
∑

i+j+α+β+γ=N+1
α,β,γ>0

.

It follows from (ii) that (δθ(f)− fθ(L) + θ(M)f)(x, y, z) = 0.

Theorem 5.5. Let (µt, νt; ft) be a deformation of f of order N . Then (µt, νt; ft)
extends to a deformation of order N + 1 if and only if the cohomology class of
θ(µt, νt; ft) vanishes.

Proof. Suppose that a deformation (µt, νt; ft) of f of order N extends to a defor-
mation of f of order N + 1. Then (i)–(iii) hold for n = N + 1. As a result, we
get θ(L) = δµN+1, θ(M) = δνN+1, and θ(f) = fµN+1 − νN+1f − δfN+1. In other
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words, the obstruction cochain θ(µt, νt; ft) = d(µN+1, νN+1; fN+1). So its cohomol-
ogy class vanishes. Conversely, let θ(µt, νt; ft) be a coboundary. Suppose that

θ(µt, νt; ft) = d(µN+1, νN+1; fN+1)

for some 2-cochain (µN+1, νN+1; fN+1) ∈ CL2(f ; f). Set

(µ̃t, ν̃t; f̃t) = (µt + µN+1t
N+1, νt + νN+1t

N+1; ft + fN+1t
N+1).

Then (µ̃t, ν̃t; f̃t) satisfies (i)–(iii) for 0 6 n 6 N + 1, so (µ̃t, ν̃t; f̃t) is an extension
of (µt, νt; ft) of order N + 1.

Corollary 5.6. If HL3(f ; f) = 0, then every 2-cocycle in CL2(f ; f) is the infinites-
imal of some deformation of f .
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