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ON THE 2-ADIC K-LOCALIZATIONS OF H-SPACES
A.K. BOUSFIELD

(communicated by Donald M. Davis)

Abstract
We determine the 2-adic K-localizations for a large class
of H-spaces and related spaces. As in the odd primary case,
these localizations are expressed as fibers of maps between
specified infinite loop spaces, allowing us to approach the
2-primary vi-periodic homotopy groups of our spaces. The
present vy-periodic results have been applied very successfully
to simply-connected compact Lie groups by Davis, using knowl-
edge of the complex, real, and quaternionic representations of
the groups. We also functorially determine the united 2-adic
K-cohomology algebras (including the 2-adic KO-cohomology
algebras) for all simply-connected compact Lie groups in terms
of their representation theories, and we show the existence of
spaces realizing a wide class of united 2-adic K-cohomology

algebras with specified operations.

1. Introduction

In [20], Mahowald and Thompson determined the p-adic K-localizations of the
odd spheres at an arbitrary prime p, expressing these localizations as homotopy
fibers of maps between specified infinite loop spaces. Then, working at an odd prime
p in [8], we generalized this result to give the p-adic K-localizations for a large class
of H-spaces and related spaces. In the present paper, we obtain similar results for 2-
adic K-localizations of such spaces, using our preparatory work in [10] and [11]. By
a 2-adic K -localization, we mean a K/2,-localization (see [2], [3]), which is the same
as a K*(—; Zg)—localization, since the K/2,-equivalences of spaces or spectra are the
same as the K*(—; Zg)—equivalences. Our localization results in this paper will apply
to many (but not all) simply-connected finite H-spaces and to related spaces such as
the spheres S**~1 for k > 1. We show that these results allow computations of the
vy-periodic homotopy groups (see [13], [15]) of our spaces from their united 2-adic
K-cohomologies, and thus allow computations of the v;-periodic homotopy groups
for a large class of simply-connected compact Lie groups from their complex, real,
and quaternionic representation theories. The present results will be extended in a
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subsequent paper to cover the remaining simply-connected compact Lie groups and
various spaces related to the remaining odd spheres. This work has been applied
very successfully by Davis [14] to complete his 13-year program (with Bendersky)
of calculating the vi-periodic homotopy groups of all simply-connected compact Lie
groups, and has also been applied by Bendersky, Davis, and Mahowald [1].

Throughout this paper, we work at the prime 2 and rely on the united 2-adic
K -cohomology

Kip(X3Zs) = {K*(X;22), KO*(X;Z2)}

of a space or spectrum X as in [10]. This combines the usual periodic cohomologies
with certain operations between them, such as complexification and realification.
For our H-spaces and related spaces X, the cohomology Ky (X; Zg) is essentially
determined by the 2-adic Adams A-module

K3'(X:70) = {KN(X;25), KO (X;7), KO (X;7)}

which combines the specified cohomologies with the additive operations among them
(see Definition 6.1). In fact, for most simply-connected finite H-spaces X, we expect
to have an isomorphism K&y (X;Zs) = L(M) where M = {M¢, Mg, My} is the
submodule of primitives in K EI(X ; Zz) and where L is a functor that we introduce
in Lemma 4.5, extending the 2-adic exterior algebra functor on complex components.
For a simply-connected compact Lie group G, the required 2-adic Adams A-module
may be obtained as the indecomposables QRAG = {QRG, QRRG, QRHG} of the
complex, real, and quaternionic representation ring RAG = {RG, RgG, RyG} (see
Definition 10.1), and we have:

Theorem 1.1. For a simply-connected compact Lie group G, there is a natural
isomorphism K5p(G;Z2) = L(QRAG) of algebras.

This will follow from Theorem 10.3. It extends results of Hodgkin [17], Seymour
[23], Minami [21], and others on K*(G;Zy) and KO*(G;Zy). Our main result on
K /2,-localizations will apply to a space X with KER(X;ZQ) ~ LM for a 2-adic
Adams A-module M that is strong (see Definition 7.11). This technical algebraic
condition seems relatively mild and holds for QRAG when G is a simply-connected
compact simple Lie group other than Eg or Spin(4k + 2) with &k not a 2-power by
work of Davis (see Lemma 10.5). For a strong 2-adic Adams A-module M, we obtain
two stable 2-adic Adams A-modules M = {M¢, Mg, My} and pM = {Mc, Mp +
MH,MR N MH} where MC = M¢, MR = im(MR — Mc), and MH = im(MH —
M¢); and we obtain two corresponding K /2,-local spectra EM and £pM such that
K YEM;Zy) = M, KY(EM; Zy) = 0, KX'(EpM;Z2) = pM, and K°(EpM; Zs) =
0 (see Definition 8.1). Stated briefly, our main localization result is:

Theorem 1.2. If X is a connected space with K§p(X; Zg) ~ LM for a strong 2-

adic Adams A-module M, then its K /2, -localization X5 is the homotopy fiber of
a map from QPEM to Q*EpM with low dimensional modifications.

This will follow from Theorem 8.6. It will apply to simply-connected compact
simple Lie groups with the above-mentioned exceptions, and it should apply to many
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other simply-connected finite H-spaces and related spaces; in fact, there must exist
a great diversity of spaces with the required united 2-adic K-cohomology algebras
by:

Theorem 1.3. For each strong 2-adic Adams A-module M, there exists a simply-
connected space X with K5p(X;Z) = LM.

This will follow from Theorem 8.5. For our spaces X, we also obtain results on
the 2-primary v;-periodic homotopy groups v; L7, X, which are naturally isomor-
phic to stable homotopy groups m,7o®, X, where 75®1 X is the 2-torsion part of
the spectrum @, X obtained using the vy-stabilization functor ®1 constructed in
(4], [9], [16], and [18]. From this standpoint, the homotopy v; 'm, X is essentially
determined by the cohomology KO*(®1X;Z,), since there is an exact sequence

A 3_ A
s KO3 (01X 7) L2 KO3 (01X Z0) — (07 'mn X))
~ 3_ ~
s KO 2(D1X; 7)) L% KO (91X 75) — -+

where (—)# gives the Pontrjagin dual (see Theorem 9.2). A space X is called K/2,-
durable when the K /2,-localization induces an isomorphism vy e X = vy L Xk /2
or equivalently ®;X ~ ®; Xy /5. This condition holds for all connected H-spaces
(and many other spaces), and our K/2,-localization result implies:

Theorem 1.4. If X is a connected K/2.-durable space (e.g. H-space) with
K{p(XiZo) = LM for a strong 2-adic Adams A-module M , then there is a (co)fiber
sequence of spectra ®1X — EM — EpM with a KO*(—;Zy) cohomology exact se-
quence

0 — KO8(®1X;Z) — Mo /(Mg + My) 2 Me/Mp — KO~7(®1X; 7o)
0 — My /(Mg O M) — KO™S(®1X;Z) — Mg My = Ny —
KO 5(®1X;75) — 0 — 0 — KO~ 4(®1X;Z0) — M/ (Mp 0 My) 2

Me )My — KO™3(®1X;2) — (Mg + M)/ (Mg 0 M) 2
KO 2(®1X;7) — Mp + My 2 Mp — KO~ 1(®,X; Zs) — 0.

This will follow from Theorem 9.5. It allows effective computations of 2-primary
vy-periodic homotopy groups as shown by Davis [14], and its complex analogue
implies that our spaces X are usually I?q)l-gooct which means that QK" (X; Zg)/)\2
&~ K™(®,X;Zy) for n = —1,0.

Theorem 1.5. If X is as in Theorem 1.4 with A2: Mo — M¢c monic, then X is
K®1-good.

This will follow from Theorem 9.7. It will be used in a subsequent paper to
show that all simply-connected compact Lie groups (and many other spaces) are
K ®1-good, which is useful because the vi-periodic homotopy groups of K ®4-good
spaces are often accessible by [10], even when our K /2,-localization theorems do not
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apply. From the perspective of [10], the present work verifies important examples
of I?@l—good spaces beyond the odd spheres.

Throughout the paper, spaces and spectra will belong to the usual pointed sim-
plicial or CW homotopy categories. To provide a suitably precise setting for our
main theorems and proofs, we must devote considerable attention to developing the
algebraic infrastructure of united 2-adic K-cohomology theory. The paper is divided
into the following sections:

1. Introduction

The united 2-adic K-cohomologies of spectra and spaces
The 2-adic ¢ CR-algebras

The universal 2-adic ¢ CR-algebra functor L

Stable 2-adic Adams operations and K/2,-local spectra

On the united 2-adic K-cohomologies of infinite loop spaces
Strong 2-adic Adams A-modules

On the K/2,-localizations of our spaces

© ® NS e N

On the v;-periodic homotopy groups of our spaces

[y
e

Applications to simply-connected compact Lie groups

. Proofs of basic lemmas for L

-
p—

. Proof of the Bott exactness lemma for L

-
w N

. Proofs for regular modules
14. Proof of the realizability theorem for LM

Although we have long been interested in the K-localizations and wv-periodic
homotopy groups of spaces, we were prompted to develop the present results by
Martin Bendersky and Don Davis. We thank them for their questions and comments.

2. The united 2-adic K-cohomologies of spectra and spaces
We now consider the united 2-adic K-cohomologies
Cr(X322) = {K*(X;Z,), KO*(X;22)}
of spectra and spaces X, focusing on their basic structures as 2-adic CR-modules

or CR-algebras. We first recall:

Definition 2.1 (The 2-adic CR-modules). By a 2-adic CR-module, we mean a CR-
module over the category of 2-profinite abelian groups (see [10, 4.1]). Thus, a 2-adic
CR-module M = {M¢, MR} consists of Z-graded 2-profinite abelian groups M¢ and
Mg with continuous additive operations

B: M{ = M2, t: ME = M, Br: My, = M8,

n: Mj, — My, c: Mp — Mg, r: M& — Mg,
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satisfying the relations

21 =0, n’ =0, nBr = Brn,  nr=0, en =0,
2 =1, tB = —Bt, rt=r, tc = c, ¢Br = B'c,
rB* = Bpgr, cr =141, rc=2, rBe = 1n?, rB~le=0.

For z € M}, and = € M}, the elements tz € M}, and rB%cx € M}, are sometimes
written as z* (or ¢ ~1z) and &x. For a spectrum or space X, the united 2-adic
K-cohomology

Cr(X322) = {K*(X;Z,), KO*(X;22)}

has a natural 2-adic CR-module structure with the usual periodicities B: K*(X;Zs)
&~ K*2(X;Zy), and Br: KO*(X;Zy) = KO*3(X;Z,), conjugation t: K*(X;Zs)
= K*(X;ZQ)7 Hopf operation 7: KO*(X;ZQ) — KO*_l(X;ZQ), complexification
c: KO*(X;22) — K*(X;ZQ), and realification r: K*(X;ZQ) — KO*(X;ZQ).
Definition 2.2 (Bott exactness). As in [10, 4.1], we say that a 2-adic CR-module
M is Bott exact when the Bott sequence

B~
e M My S ME TR M*+2

is exact, and we note that the 2-adic CR-module K¢y (X; Zg) is always Bott exact
for a spectrum or space X. To compare CR-modules, we shall often use:

Lemma 2.3. For Bott exact 2-adic CR-modules M and N, a map f: M — N is
an isomorphism if and only if f: Mc — N¢ is an isomorphism.

Proof. For the “if” part, we treat the Bott sequences of M and N as exact couples,
and we note that f induces an isomorphism of the associated spectral sequences
since f: Mc = N¢. Using the map of second derived couples with f: Méz) = Ng),
we easily see that f: n? Mg = 72 Ng; then using the map of first derived couples with
f: Mél) = Nél), we easily see that f: nMp = nNg; and finally using the original
map of exact couples, we easily see that f: Mr & Ng. O
Definition 2.4 (The free 2-adic CR-modules). For each integer n and L = C, R,
there is a monogenic free 2-adic CR-module FL(g,n) on a generator g € FL(g,n)?
having the universal property that, for each 2-adic CR-module M and y € M7}, there
is a unique map f: F¥(g,n) — M with f(g) = y. The 2-adic CR modules F(g,n)
and F%(g,n) are given more explicitly by

FOg,n)e* =Ly & Zy = (B'g) ® (B'g"), FC(g,n)& * ' =0,

FC(g,n)y % =7y = (rB'g), FCgm)g "t =0,

FR(g,n)m? =7y = (B'cg), Fli(g,n)g 1 =0,

FR(g,n) % = Zy = (Bgg), Fl(g,n) 51 Z/2* (BRng),

Ff(g,n) %% = Z/2 = (Bpn’g), Fl(g,n) %" = Zy = (Bg&y),
FR(g,n)” 8i=k — 0 for k=3,5,6,7.

We note that F%(g,n) and F(g,n) are Bott exact for all n. In general, a free
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2-adic CR-module on a finite set of generators may be constructed as a direct sum
of the corresponding monogenic free 2-adic CR-modules. To test for this freeness,
we may use:

Lemma 2.5. For a Bott exact 2-adic CR-module M (e.g. for some M =
Kip(X;Z)), if Mg is a free module over K* = Zy[B,B™"] on the generators
{cai}i 1L{b;}; IL{b}}; for finite sets of elements {a;}; in My and {b;}; in ME,
then M is a free 2-adic CR-module on the generators {a;}; and {b;};.

Proof. The canonical map to M from the specified 2-adic CR-module is an isomor-
phism by Lemma 2.3. O

To describe the multiplicative structure of K§g(X; 22) for a space X, we intro-
duce:

Definition 2.6 (The 2-adic CR-algebras). By a 2-adic CR-algebra A = {A¢, Ar},
we mean a 2-adic CR-module with continuous bilinear multiplications A7* x A} —
AP and elements 1 € A% for m,n € Z and L = C, R such that:
(i) the multiplication in A¥, and A%, is graded commutative and associative with
identity 1;
(i) B(zw) = (Bz)w = z(Bw) and (2w)* = z*w* for z € A% and w € A};
(iii) Br(zy) = (Brr)y = ©(Bry), n(zy) = (nz)y = z(ny), and {(zy) = (Er)y =
z(&y) for x € AR and y € A};
(iv) el =1 and c(zy) = (cz)(cy) for x € A and y € A'k;
(v) 7((cx)z) = x(rz) and r(z(cz)) = (rz)x for € A and z € AL.
Equivalently, a 2-adic CR-algebra A consists of a 2-adic CR—module with a commu-
tative associative multiplication A® cpA — A with identity e — A for e = F®(1,0)

>~ K é«R(pt;Zg)7 where ®cp is the (symmetric monoidal) complete tensor product
for 2-adic CR-modules [11, 2.6].

Definition 2.7 (Augmentations and nilpotency). For a 2-adic CR-algebra A, an
augmentation is a map A — e of 2-adic CR-algebras which is left inverse to the
identity e — A. When A is augmented, we let A= {AC,AR} denote the augmen-
tation ideal, and for m > 1 we let A(m) denote the m-th power of A given by the
image of the m-fold product A®cg---®crA — A. Thus, A(m)¢ is the image of
the m-fold product A%®---®AY, — AY, while A(m)p is the image of the m-fold
product AR® - ©A% — A% plus the realification of A(m)c. The indecomposables
of A are given by the 2-adic CR-module QA = A/A(2). We call A nilpotent when
A(m) = 0 for sufficiently large m and call A pro-nilpotent when N, A(m) =0 or
equivalently when A 2 lim,,, A/A(m). For a space X, the cohomology K (X; Z2)
has a canonical augmentation K§p(X ;Zz) — e induced by the basepoint pt C X
with the usual augmentation ideal IN(ZYR(X; Zo) = {K*(X;Zs), %*(X; Z3)}. More-
over, when X is connected, the cohomology K¢ (X; 22) is pro-nilpotent since it is
the inverse limit of the cohomologies K}z (Xa; Zg) for the finite connected subspaces
Xo C X, where each K}p(Xa; Zg) is nilpotent.
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3. The 2-adic ¢ CR-algebras

To capture some additional features of the 2-adic CR-algebras K&y (X;Zs) for
spaces X, we now introduce the 2-adic ¢ CR-algebras. These structures are often
surprisingly rigid and will allow us to construct convenient bases for K7y (X; Zg) in
some important general cases, for instance, when X is a simply-connected compact
Lie group.

Definition 3.1 (The 2-adic ¢ CR-algebras). By a 2-adic ¢ CR-algebra A, we mean a
2-adic CR-algebra with continuous functions ¢: A%, — A% and ¢: Ag,l — A%, such
that:

(i) cpa = a*a and cgpz = B~ z*x for a € AY and = € AZY;
(ii) ¢(a+0b) = ga+ ¢b+r(a*b) and ¢(x +y) = ¢z + ¢y + rB~(z*y) for a,b €
A2 and z,y € AEI;
(iif) ¢(ab) = (a)(90), ¢(ax) = (¢a)(¢z), and $B™ (ay) = (d2)(¢y) for a,b € A
and x,y € AC ;

(i) 9(1) = 1, 6(ka) = K0, 9(a*) = da, d(ke) = Koz, and 6(a") =~ for a €
Ac7x€AC ,andkeZg

For convenience, we extend the operation ¢ periodically to give ¢: A%? — A% and
¢: AZT — AY with ¢w = ¢Bw for all i and elements w. For a space X, the coho-
mology Kp(X; Z) has a natural 2-adic ¢ CR-algebra structure with ¢: K*(X;Zs)
— KO°(X;Zsy) as in [11, Section 3]. In particular, e = Kfg(pt; Zs) is a 2-adic ¢ CR-
algebra with ¢(k1) = k21 for k € Zs. For a 2-adic ¢ CR-algebra A, an augmentation
is a map A — e of 2-adic ¢ CR-algebras which is left inverse to the identity, and we
retain the other notation and terminology of Definition 2.7. Thus, for a space X,
the ¢ CR-algebra K§p(X; Zg) has a canonical augmentation and is pro-nilpotent
whenever X is connected. To capture some other needed features, we introduce:

Definition 3.2 (The special 2-adic ¢ CR-algebras). A 2-adic ¢ CR-algebra A is
called special when:

(i) A is augmented and pro-nilpotent;

(ii) 22 =0 for z € A% with n odd;

(iii) y?> =0 for y € A% withn =1,—3 mod &;
(iv) ¢cx =0 for x € A}, with n = —1,—5 mod 8.

For a connected space X, the cohomology KFy(X;Z2) is a special 2-adic ¢ CR-
algebra by [11, Section 3].

Definition 3.3 (Simple systems of generators). Let A be a special 2-adic ¢ CR-
algebra. By a simple system of generators of odd degree for A, we mean finite
ordered sets of odd-degree elements {z;}; in Ag and {z;}; in A such that Ag is
an exterior algebra over K* = Zy[B, B~!] on the generators {cz;}; IT {z;}; IT {27}
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Such a simple system determines associated products

Tip - Z’im((ijl) c. (¢Zjn) S AR,
(cxiy) ... (cxq,, )(cdzjy) ... (chzj, )W, ... Wk, € Ac

where: i1 < -+ < i, withm > 0; ;1 < --- < jpwithn >0k, <--- < kg withg > 1;
each wy, is zy, or 2} with wy, = z,; and {ki1,...,k.} is disjoint from {ji,...,jn}
in each complex product.

Proposition 3.4. If A is a Bott exact special 2-adic ¢ CR-algebra with a simple sys-
tem of generators of odd degree, then A is a free 2-adic CR-module on the associated
products.

Proof. This follows by Lemma 2.5. O

When the cohomology K&y (X ;Zg) of a connected space X has a simple sys-
tem of generators of odd degree, this result will determine the 2-adic CR-algebra
structure of the cohomology, provided that we can compute the squares of the real
simple generators of degree = —1, —5 mod 8, since the squares of the other simple
generators and of their ¢’s must vanish. For a simply-connected compact Lie group
G, we shall see that the cohomology Ky (G; Zg) must always have a simple system
of generators of odd degree by Theorem 10.3 below.

4. The universal 2-adic ¢ CR-algebra functor L

We must now go beyond simple systems of generators and develop functorial
descriptions of cohomologies K§p(X :75) using universal special 2-adic ¢CR-
algebras. Our results will apply, for instance, when X is a suitable infinite loop
space (Theorem 6.7) or a simply-connected compact Lie group (Theorem 10.3). We
start by introducing the algebraic modules that will generate our universal algebras.

Definition 4.1 (The 2-adic A-modules). By a 2-adic A-module N = {N¢, Ng,
Ny}, we mean a triad of 2-profinite abelian groups N¢, Ng, and Ny with con-
tinuous additive operations

t: No 2 N¢, c: Np — Ng¢, r: No — Ng,

cd: Ny — N¢, q: No — Ny
satisfying the relations
t2=17 cr=1+1t, rc=2, tc =c, rt=r,
dg=1+t, qc’ =2, td = ¢, gt =gq

as in [10, 4.5]. For z € N¢, the element tz is sometimes written as z* or ¢ ~'z.
For a 2-adic CR-module N and integer n, we obtain a 2-adic A-module A"N =
{NZ, N, N~} with ¢/ = B~2¢: Np~* — N2 and ¢ = rB?: N — Np~*. In par-
ticular, we obtain a 2-adic A-module K} (X; Zy) = A"Kip(X; Zs) for a space X.
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We say that a 2-adic A-module N is torsion-free when N¢, Ng, and Ny are torsion-
free, and we say that IV is exact when the sequence

(r,q) c—c’ 1—t

-—> No ——— Nrp & Ny N¢ N¢ (r.) Nr® Ny — ---

is exact (see [10, 4.5]). It is straightforward to show:

Lemma 4.2. A 2-adic A-module N = {N¢, Ngr, Ny} is torsion-free and exact if
and only if:

(i) ¢: Np — N¢ and ¢': Ny — N¢ are monic;

(i) N¢ is torsion-free with ker(1 +t) =1im(1 —t) for t: No — N¢;
(i1i) ¢cNp+ ¢ Ny =ker(l —t) and cNg N Ny =im(1 +¢).

The 2-adic A-module
KN (X5Zo) = {K Y (X;Zs), KOTN(X;Zs), KO™°(X; Zs)}

of a space X has additional operations # which we now include in:
Definition 4.3 (The 2-adic §A-modules). By a 2-adic 0A-module M = {M¢, Mg,
My}, we mean a 2-adic A-module with continuous additive operations 6: Mc —

Me,0: Mp — Mp,and 0: My — Mpg satisfying the following relations for elements
z€ Mg, x € Mg, and y € My:

Ocx = cOx, 0c'y = cly, Otz = thz, fqz = Orz, 00rz = 0r6z.

In general, frz may differ from rfz, and we let ¢: Mo — Mp be the difference
operation with ¢z = 0rz —rfz for z € M. Using the above relations, we easily
deduce:

bex =0, oz =0, otz = ¢z,
202 =0, coz =0, 0oz = 0.
For a space X, the cohomology K" (X; Z5) has a natural 2-adic §A-module struc-
ture by [11, Section 3] with the operations
0 =—\: K N(X;Zy) — K~ (X;Zs),
0 =—-\2: KO~Y(X;Zs) — KO~ Y(X;Zy),
0=—-X\2: KO °(X;Zy) — KO~ YX;Zy).
Moreover, this structure interacts with the 2-adic ¢ CR-algebra structure of K§g(X;
Zs) in several ways.
Lemma 4.4. For a space X, we have:
(i) npz = ¢z for 2 € K~ (X; Lo);
(ii) 2% =nbz for x € KO (X;Zs);
(iii) y2 = Brnby fory € KO™°(X;Zs,).

Proof. This follows from [11, Section 3]. O
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We shall take account of these relations in our universal algebras. For a 2-adic
¢A-module M and a special 2-adic ¢ CR-algebra A, an admissible map a: M — A
consists of a 2-adic A-module map «: M — A~'A such that:

(i) npaz = apz in A" for each z € Mc;

(i) (az)? = nadz in AR? for each 2 € Mg;
(iii) (ay)? = Brnafy in AR for each y € M.
We say that a special 2-adic ¢ CR-algebra A with an admissible map a: M — A is

universal if, for each special 2-adic ¢ CR-algebra B with admissible map g: M — B,
there exists a unique ¢ CR-algebra map g: A — B such that ga = g.

Lemma 4.5. For each 2-adic OA-module M, there exists a universal special 2-adic
¢CR-algebra LM with admissible map a: M — LM.

This will be proved later in Section 11. By universality, LM is unique up to
isomorphism and is natural in M, so that we have a functor L from the category of
2-adic #A-modules to the category of special 2-adic ¢ CR-algebras. We believe that
the ¢ CR-algebra LM can be given canonical operations  satisfying all the formulae
of [11, Section 3] and that this provides a strengthened version of L that is right
adjoint to A~1(). However, for simplicity, we rely on the present basic functor L. We
can describe the algebra (LM)¢ explicitly using the 2-adic exterior algebra AMe
with AMC = limg AMCB where Mcp ranges over the finite 2-adic quotients of M¢
(ignoring 0).

Lemma 4.6. For a 2-adic 0A-module M, the canonical map AMg — (IA/M)C is an
algebra isomorphism.

This will be proved later in Section 11. We must impose extra conditions on M
to ensure that LM is Bott exact and hence topologically relevant.

Definition 4.7 (The robust 2-adic §A-modules). We say that a 2-adic §A-module
M is profinite when it is the inverse limit of an inverse system of finite 2-adic §A-
modules, and we let M/¢p denote the 2-adic A-module {M¢, Mg/¢Mc, Mp}. We
call M robust when:

(i) M is profinite;

(ii) M/¢ is torsion-free and exact;

(iii) ker¢ = cMp + My + 2Mc.
When M is obtained from Kx'(X;Zs) for a space X, the profiniteness condition
will usually hold automatically since Kx'(X;Zg) = limg; K1 (Xa;Z2)/2 for the
system of finite subcomplexes X, C X and ¢ > 1. The following key lemma will be
proved later in Section 12.

Lemma 4.8. If M is a robust 2-adic 0A-module, then the special 2-adic ¢CR-
algebra LM is Bott exact; in fact, LM 1is the inverse limit of an inverse system of
finitely generated free 2-adic CR-modules.

This leads to a crucial comparison theorem.
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Theorem 4.9. For a connected space X and a robust 2-adic § A-module M, suppose
that g: M — K&l(X;Zg) 18 a 2-adic OA-module map that induces an isomorphism
AM¢o = K*(X;Zy). Then g induces an isomorphism LM =2 K%5(X;Z2) of special
2-adic ¢ CR-algebras.

Proof. Since g gives an admissible map M — K7, (X; ZQ) by Lemma 4.4, the result
follows by Lemmas 2.3, 4.6, and 4.8. O

When M is finitely generated in this theorem, we may easily choose a simple
system of odd-degree generators (see Definition 3.3) for K5 (X; Z3) from Mg, Mg,
and Mp. However, the present description of K§p(X :Z) as LM is more natural
and includes the full multiplicative structure. To check whether such a description
is possible for a given space X, we may use:

Remark 4.10 (Determination of M from K ER(X Z3)). For a connected space
X, we may take the indecomposables QK (X Zg) as in Definition 2.7 with the
operations 6 of Definition 4.3 to produce a 2-adic § A-module

QERN(X;Z2) = {QK Y(X;Zs), QKO M (X;Z2), QKO (X ; Zs)}

together with a natural quotient map f(_l(X Zg) QK_l(X Zg) Now by Lem-
ma 4.11 below, whenever Theorem 4.9 applies to X, there is a canonical isomorphism
M= QK! (X Zg) and the map ¢g: M — KA (X Z3) in the theorem corresponds
to a splitting of KA (X; Zg) QKA (X; Zg) When X is an H-space, we may
often obtain the required splitting by mapping QK&l(X ;Zz) to the primitives in
[?El(X ; Zz) For instance, this applies when X is a suitable infinite loop space or
simply-connected compact Lie group (see Theorems 6.7 and 10.3). Finally, we note
that the 2-adic A-module QKgl(X : Z5) will automatically be robust by Proposi-
tion 3.4 whenever K§,(X; Zg) has a simple system of odd-degree generators with
no real generators of degree =1, —3 mod 8. We have used:

Lemma 4.11. For a §A-module M, the canonical map M — A~*QLM is an iso-
morphism.

This will be proved later in Section 11.

5. Stable 2-adic Adams operations and K/2.-local spectra

We now bring stable Adams operations into our united 2-adic K-cohomology
theory and use this theory to classify the needed K/2,-local spectra. We first recall
some terminology from [8, 2.6].

Definition 5.1 (The stable 2-adic Adams modules). By a finite stable 2-adic
Adams module A, we mean a finite abelian 2-group with automorphisms ¢*: A =2 A
for the odd k € Z such that:

(i) ¥ =1 and /% = ¥ for the odd j, k € Z;
(i) when n is sufficiently large, the condition j = & mod 2" implies ¢’/ = ¥*.
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By a stable 2-adic Adams module A, we mean the topological inverse limit of an
inverse system of finite stable 2-adic Adams modules. Such an A has an underlying
2-profinite abelian structure with continuous automorphisms ¥*: A = A for the odd
k € Z (and in fact for k € ZJ ). We note that the operations 1! and ¢ on A deter-
mine all of the other stable Adams operations ¥* as in [5, 6.4]. Our main examples
of stable 2-adic Adams modules are the cohomologies K™ (X;Zsy) and KO™(X;Z,)
for a spectrum or space X and integer n with the usual stable Adams operations
k. We let A denote the abelian category of stable 2-adic Adams modules, and for
i€ Z welet §': A — A be the functor with SA equal to A4 as a group but with "
on S'A equal to kip* on A for the odd k € Z. We note that S'A = A in A for all i
when 24 = 0.

Definition 5.2 (The stable 2-adic Adams CR-modules). By a stable 2-adic Adams
CR-module M, we mean a 2-adic CR-module consisting of stable 2-adic Adams
modules {M, M}} such that the operations B: SMg = M2, t: M} = Mg,
Br: S*Mp = M8, n: My — MY, e: My — Mg, and r: My — Mp, are all
maps in /l, where =1 =t in M and Y~ ! =1in MF,. For a spectrum or space X,
the united 2-adic K-cohomology

or(XiZy) = {K*(X;Z2), KO*(X;Zy)}
has a natural stable 2-adic Adams CR-module structure with the usual operations.

Definition 5.3 (The stable 2-adic Adams A-modules). By a stable 2-adic Adams
A-module N, we mean a 2-adic A-module consisting of stable 2-adic Adams modules
{N¢, Ng, Ny} such that the operations t: No 2 N¢, ¢: Np — N¢, r: No — Ng,
¢+ Ny — N¢, and ¢: No — Np are all maps in A, where ¥~ =t in N¢ and
=1 = 1in both Ng and Ng. For a stable 2-adic Adams CR-module M and integer
n, we obtain a stable 2-adic Adams A-module

A"M = {Mg My, 52M"}

as in Definition 4.1. Thus, for a spectrum or space X and integer n, we now obtain
a stable 2-adic Adams A-module

KR(X;Zs) = A"K5p(X;Zs) = {K™(X;Zs), KO™(X;Zs), 5 2KO™"4(X;Z,)}.

To give another example, we say that a 2-profinite abelian group G with involution
t: G = G is positively torsion-free when G is torsion-free with ker(1 + ¢) = im(1 — ¢).
By [5, Proposition 3.8], this is equivalent to saying that G factors as a (possibly
infinite) product of Zo’s with t =1 and Zs ® tZ2’s. For a positively torsion-free
stable 2-adic Adams module A, we may use the operation ¢ ~': A = A to construct
a torsion-free exact stable 2-adic Adams A-module {A, A", A, } with AT = ker(1 —
), Ap =coker(1—op7 1Y), t=9y7L c=1, r=1+¢7!, /=1+9¢ " and ¢ =
1.

We let ACR (resp. AA) denote the abelian category of stable 2-adic Adams CR-
modules (resp. A-modules), and we note that the functor A™: ACR — AA forn € Z
has a left adjoint CR™: AA — ACR with CR™(N)% = N¢, with CR™(N)% ™' =0,
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and with

Ng for i =0
Ng/r fori=1
SN¢/c  fori=2
CR*(N)5 " = <0 for i = 3,7
SQNH fori =4
S®Ny/q fori=5
S3Nc/c fori=6

as in [10, 4.10]. We easily see that CR"(NN) is Bott exact whenever N is torsion-free
and exact. Qur next lemma will often allow us to work in the simpler category AA
instead of ACR.

Lemma 5.4. Forn € Z, the adjoint functors CR": AA — ACR and A™: ACR —
AA restrict to equivalences between the full subcategories of all torsion-free exact
N € AA and all Bott exact M € ACR with M positively torsion-free and Mg_l =
0.

Proof. For M € ACR as above, we see that A™M is a torsion-free exact A-module
by [10, 4.4 and 4.7] with an adjunction isomorphism CR"A"M — M by Lemma 2.3.
The corresponding result for N € AA is obvious. O

When FE is a spectrum with K" (E; Zg) positively torsion-free and K"~ (FE; Zg) =
0 for some n, we now have K%y (E; Z2) = CR™(N) in ACR for the torsion-free exact
module N = A"K%,(E;Zs) in AA, and we have the following existence theorem
for such spectra in the stable homotopy category.

Theorem 5.5. For each torsion-free exact N € AA andn € Z, there exists a K/2.-
local spectrum E"N with K&p(E"N;Zg) = CR"(N) in ACR. Moreover, E"N is
unique up to (noncanonical) equivalence.

Proof. This follows by Lemma 5.4 and [10, Theorem 5.3]. O

The spectrum "N in the theorem will be endowed with an isomorphism
KZR(é'"N;Zg) >~ CR™(N) in ACR. Thus, for an arbitrary spectrum E, a map
g: E — E"N induces a map g*: CR"(N) — KER(E;ZQ) in ACR. Each algebraic
map of this sort must come from a topological map by:

Theorem 5.6. For a torsion-free exact N € izlA, n € Z, and an arbitrary spectrum
E,ify: CR"(N) — K:p(E;Zs) is a map in ACR, then there exists a map of spectra
g: E— E"N with g* = ~.

Proof. Let 9F denote the 2-torsion part of E given by the homotopy fiber of
its localization away from 2. By Pontrjagin duality [10, Theorem 3.1], the map ~
corresponds to an ACR-module map K% (rE) — K% (12E" N) in the sense of [5],
where K F(E"N) is CR-exact with K, (12€™ N) divisible. This ACR-module map
prolongs canonically to an ACRT-module map K ?T (1, E) — KCET (16" N) by [5,
Theorem 7.14], and the results of [5, 9.8 and 7.11] now show that this prolonged
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algebraic map must come from a topological map 7 E — €™ N, which gives the
desired g: F — E™N. O

The map g in this theorem is generally not unique (see [10, 5.4]).

6. On the united 2-adic K-cohomologies of infinite loop
spaces

In preparation for our work on K /2,-localizations of spaces, we functorially deter-
mine the united 2-adic K-cohomologies of the needed infinite loop spaces (see The-
orem 6.7). We must first introduce:

Definition 6.1 (The 2-adic Adams A-modules). By a 2-adic Adams A-module M,
we mean a 2-adic #A-module (see Definition 4.3) consisting of stable 2-adic Adams
modules {M¢, Mg, My} such that the operations ¢: Mo = Me, ¢: Mr — Mc,
r: Mg — Mg, ¢: Mg — Mg, q: Mo — Mg, 0: Mc — Mg, 0: Mg — Mg, and
0: My — Mpg are all maps in fL where 1~! =t in M¢ and ¥~! =1 in both Mg
and Mpy. We let MA denote the abelian category of 2-adic Adams A-modules. We
say that M is @-nilpotent when it has 6% = 0 for sufficiently large 7, and we say that
M is 0-pro-nilpotent when it is the inverse limit of an inverse system of #-nilpotent
2-adic Adams A-modules. Thus, M is #-pro-nilpotent if and only if M = lim; M /6"
where M /0 is the quotient module of M in MA with

(M/0")c = M /0" M,
(M/0") g = Mgp/(0°Mg + 0" My + 16" Mc),
(M/6") g = My [q6"' Mc
for 4 > 1. More simply, M is f-pro-nilpotent if and only if N;0°Mc = 0 and N;6° Mg
= 0. It is not hard to show that whenever M is #-pro-nilpotent, M must be profinite
(i.e. M must be the inverse limit of an inverse system of finite 2-adic Adams A-
modules). For a space X, the cohomology
~ ~ ~ N ——1 A _ ———5 ~
K NX;Zo) = {K Y (X;Z2), KO (X;Z2),52KO (X;Z2)}

has a natural 2-adic Adams A-module structure by [11, Section 3], and we find:

Lemma 6.2. If X is a connected space with H(X; Zg) =0, then the 2-adic Adams
A-module Kgl(X; Zs) is B-pro-nilpotent.

Proof. The condition N;#" K°(£.X;Z5) = 0 holds by [6, 5.4 and 5.5] since H2(X.X;

. —0 X

Z3) = 0, and a similar proof shows N;0* KO (XX;Zy) = 0 since H' (X X;7Z/2) = 0.
—0

This proof uses the fact that the A-ideal KO Y is y-nilpotent for a connected finite

CW complex Y by [10, Theorem 6.7] and the fact that the real line bundles over
Y are classified by H'(Y;Z/2). O

Definition 6.3 (The functor F). We shall construct a functor F: AA — A%lA
where AA is the abelian category of stable 2-adic Adams A-modules and MA
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is that of 2-adic Adams A-modules (see Definitions 5.3 and 6.1). This functor will
carry each N € AA to a universal f-pro-nilpotent target module FN € MA. For
N e /lA, we first let Ngy € A denote the pushout of Ng «—— N¢ L, Ny with a
map ¢: Ngy — N¢ induced by ¢ and ¢/, and with a map 7: N¢ — Ny induced
by r or q. We also let Noy € A denote N¢/(1 —t)N¢ and let Ngg € A denote
Ne¢/(eNg + ' Ng + 2N¢). We next let

pN = {N¢,Nru ® Ncg, Ncy}
be the stable 2-adic Adams A-module with operations given by tz = tz, ¢(x,w) =
cx, rz = (Tz,[z]), d[z] = (1 +t)z, and gz = [z]. We then obtain a stable 2-adic
Adams A-module

FN = NxpN xpN x ---

with components

FoN = Noex Ne x No x -+ -,

FrN = Np x Npyg X Nog X Nrg X Nog X -+,
FyN = Ny x Ny x Nog X - .

We finally define operations 6: FoN — F'CN, 0: FrN — Z:_'RN, and 0: FyN —
FRrN respectively by the formulae

9(2’1,22,23,...) = (0,21,2’2,2’3,...),
9($1,$2,22,$3,Z3,...) = (05 [J}]_],O,Z‘Q,O,I‘?,,O,...),
0(y1, 22,23, -..) = (0, [y1],0,729,0,723,0,...).

This gives a natural 2-adic Adams A-module FN and hence a functor F: AA —
MA. We let ¢: N — FN be the map in AA with tc(2) = (2,0,0,...), tr(x) =
(2,0,0,...), and ¢y (y) = (y,0,0,...), and we show:

Theorem 6.4. For a stable 2-adic Adams A-module N € AA, the 2-adic Adams
A-module FN € MA is 9-pro-nilpotent and the map v: N — EN has the universal
property that, for each O-pro-nilpotent M € MA and map f: N — M in AA, there
exists a unique map f: FN — M in MA with fu= f.

Proof. F'N is f-pro-nilpotent since it is the inverse limit of its quotient modules
FN/§*t =~ N x pN x --- x pN.
For i > 1, we define a map f@: pN — M in AA by
fé” = 0'fc: No — Mg,
1(;) = (0'fr,0' fu) + 0" ' fo: Nrw ® Noy — MR,
f}? = ¢0'fc: Now — Mpy.

We then define f: FN — M as the inverse limit of the maps

f+f(1)+...+f(i): N x pN x ---x pN — M /6!

in MA, and we check that fi = f. The uniqueness condition for f follows since the
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2-adic Adams A-modules ﬁ'N/G”‘1 =N X pN X --- X pN are generated by «N. [

To show the robustness (see Definition 4.7) of FN for suitable N, we need:

Definition 6.5 (The functor p: AA — AA). For N € AA, we let pN = {Ng,
Ngru, Nc+} be the stable 2-adic Adams A-module with operations given by ¢z =
tz, cx =c¢x, rz ="z, [z] = (1 +1t)z, and gz = [z]. Thus, pN is the quotient of
pN = {N¢,Nru & Ncg, Nc+} by Neog. If N is torsion-free and exact, then pN
is also torsion-free and exact by Lemma 4.2 since it is isomorphic to the module
{Nc,Nr+ Ny, Ngp N Np} with ¢ and ¢ treated as inclusions.

Lemma 6.6. If N € AA is torsion-free and exact, then FN & MA is robust.

Proof. We check that ¢: Fo N — FrN is given by

(21, 22,23,...) = (0,0,[21],0,[22],0,...)

for z; € Nc and [2;] € Ngg. Thus, ker ¢ = ¢FrN + FyN + 2FcN and FN/& =
N x pN x pN x ---. Hence, F'N/¢ is torsion-free and exact by Definition 6.5 as
required. O

Our main result in this section is:

Theorem 6.7. If E is a 0-connected spectrum with H'(E;Zy) = 0 = H2(E;Zs),
with K°(E;Zs) = 0, and with K~(FE;Zsy) positively torsion-free (5.3), then there
is a natural isomorphism LEK " (F;Z2) 2 Kp(Q®E; Zs).

Proof. Since IN(KI(Q"CE; Zg) is #-pro-nilpotent by Lemma 6.2, the infinite sus-
pension map o: K;l(E;ZQ) — f(;l(Q‘X’E;ZQ) induces a map G : FK;l(E;ZQ) —
I?;l(QOOE; Z3) in MA, where FKX'(FE;Zy) is robust by Lemmas 5.4 and 6.6. Thus
& induces an isomorphism LFK ' (F;Zy) = K5 (Q°E; Zy) by Theorem 4.9, since
it induces an isomorphism of the complex components by [6, Theorem 8.3]. O

7. Strong 2-adic Adams A-modules

Our main results on K /2,-localizations in Section 8 will involve a space X with
K*CR(X;ZQ) >~ LM for a 2-adic Adams A-module M that is strong in the sense
that it is robust, ¥>-splittable, and regular. In this section, we provide the required
algebraic definitions and explanations of these notions. We first recall:

Definition 7.1 (The robust modules). We say that a 2-adic Adams A-module M
is robust when it is robust in the sense of Definition 4.7, ignoring stable Adams
operations. When M is robust, the underlying 2-adic A-module M /¢ satisfies the
conditions of Lemma 4.2 and may be factored as a (possibly infinite) product of
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monogenic free 2-adic A-modules
FC(Z) = {ZQ D tZ?a 22722} = {<Z> D <tZ>, <TZ>7 <qz>}v
FR (@) = {22, 25,25} = {(cx), (x), (qe)},
FH(y) = {Z2, 22, Lo} = {(cy), (rc'y), (v)}

by an argument using the factorization of positively torsion-free groups in Defi-
nition 5.3. We let gen, M, genp M, and geny M respectively denote the number
of complex, real, and quaternionic monogenic free factors of M/¢. These numbers
do not depend on the factorization since they equal the dimensions of the respec-
tive Z/2-vector spaces (Mcy)*, (Mgr/(¢Mc +rMc))#, and (My/qMc)#, where
(—)# is the Pontrjagin duality functor from 2-profinite abelian groups to discrete
2-torsion abelian groups. Using the factorization of M/, we find that

gen Mc =2geno M + genp M + gengp M

where gen M denotes the number of Zs factors in the 2-profinite abelian group
Mc.

Definition 7.2 (The v3-splittable modules). For a 2-adic Adams A-module M €
MA, we consider the stable 2-adic Adams A-module M = M /o€ AA, and we say
that M is ¢3-splittable when the quotient map M — M has a right inverse s: M —
M in AA. We call such a map s a ¢>-splitting of M, and we note that it corresponds
to a left inverse s': Mg /rMc — ¢Mc of the canonical map ¢M¢c — Mg/rMc in
the category A of stable 2-adic Adams modules, or equivalently in the category of
profinite Z/2-modules with automorphisms 3. We deduce that M is automatically
13-splittable in some important cases:

Lemma 7.3. If M is a robust 2-adic Adams A-module with gen M =0 or genp M
=0, then M is ¢3-splittable.

Proof. Since M is positively torsion-free, the map cr =1+ ¢: Mcy — Mc is mon-
ic, and hence ¢: Mg — M is also monic. Thus, ¢Mc NrMe = 0 and there is a
short exact sequence

0 — ¢M¢c — Mg/rMc — Mg/(¢Mc +rMc) — 0

in A. Since geng M =0 or geng M = 0, this has éMc = 0or Mp/(pMc + rMeg) =
0, and hence the map ¢Mo — Mp/rMc has an obvious left inverse in A. O

We shall use the v>-splittability condition to give:

Definition 7.4 (The f-resolutions of modules). Let M € MA be a 2-adic Adams
A-module that is §-pro-nilpotent, robust, and 3-splittable. These conditions will
hold when M is strong (see Definition 7.11). For a 13-splitting s: M — M in AA,
we shall construct an associated 6-resolution

of M in MA, with pM = {M¢, Mrg, Mcy} as in Definition 6.5, where 5: FM —
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M is induced by s via Theorem 6.4. To specify d, we use the commutative square
oM —% s M

_
oM — M
in AA with pM = {M¢, Mgy & Moy, My } as in Definition 6.3, where s(!) is given
by the proof of Theorem 6.4, where 8 = {0, (0,0), g0}, and where o = {1, (1,64), 1},
using the map 04 Mgy — Moy = M¢c given by the composition of the sequence

_ s 6,0 — TO
Mpry — MRy 69, Mpr = Mg ® Mcy prot, Mey

in which the isomorphism is the inverse of (s, é) Mp @ Mcy =2 Mpg. The commu-
tative square now gives a map

d = (0,—0,0,0,...): pM — FM

inﬁ/iA with sd = 0, and this induces the required map d: FpM — FM in MA with
sd = 0.

Lemma 7.5. If M € MA is 0-pro-nilpotent and robust with a Y3-splitting s: M —
M, then the -resolution 0 — FpM 4 FM 5 M — 0 ds ezact in MA.

Proof. We easily check that 0 — (;S(FpM)C — gb(FM)C — ¢pMc — 0 is exact and
that 5/¢: FM/$ — M/ is onto. Hence, it suffices to show that the map FpM /¢ —
ker(5/¢) is an isomorphism. This follows by [10, Lemma 4.8] since the map

(F pM /) — ker(5/¢)c is clearly an isomorphism and since the 2-adic A-modules
FpM /¢ and ker(5/¢) are exact by Lemma 6.6 and by the short exact sequence rule
of [10, 4.5]. O

To formulate our regularity condition for M, we use:

Definition 7.6 (The 2-adic Adams modules). These are the unstable versions of the
stable 2-adic Adams modules and were previously discussed in [8, 2.8]. By a finite
2-adic Adams module A, we mean a finite abelian 2-group with endomorphisms
Y*: A — A for k € Z such that:

(i) ¥' =1 and ik = ¥ for j, k € Z;

(ii) when n is sufficiently large, the condition 5 = & mod 2" implies 17 = ¥*.
By a 2-adic Adams module A, we mean the topological inverse limit of an inverse
system of finite 2-adic Adams modules. Such an A has an underlying 2-profinite
abelian group with continuous endomorphisms ¢*: A — A for k € Z (and in fact
for k € Zs). For a space X, the cohomology K'(X;Zs) is a 2-adic Adams module
with the usual Adams operations 1* for k € Z as in [6, Example 5.2]. We note that
the operations ¢? and ¥*, for k odd, in K'(X; Zg) correspond via Bott periodicity
to 0 and to k~'¢F in K~1(X; Zg) In general, for a 6-pro-nilpotent 2-adic Adams

A-module M, we obtain a 2-adic Adams module M¢ having the same group as M¢
but having ¥° = 0 and having 1/*? equal to k~1¢*6* on M¢ for k odd and i > 0.
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Definition 7.7 (The linear and strictly nonlinear modules). As in [8, Section 4]
and [7, Section 2], a 2-adic Adams module H is called linear when it has ¢* = k for
all k € Z, and H is called quasilinear when 2H C 1?2 H. Each 2-adic Adams module
A has a largest linear quotient module

Lind = A/((¢* —2)A+ (6 + DA+ (i —3)A)

and also has a largest quasilinear submodule A, C A by Lemma 13.1 below. A 2-
adic Adams module A is called strictly nonlinear when Ay = 0. This implies that A
is torsion-free with NM;(1)?)*A = 0, and A will be strictly nonlinear by Remark 13.2
and [7, 2.5] whenever it is torsion-free with (¢2)*A C 2¢+1 A for some i > 1.

Definition 7.8 (The regular modules). As in [8, 4.4], we say that a 2-adic Adams
module A is reqular when the kernel of A — Lin A is strictly nonlinear. This implies
that N;(¥?)*A = 0, and A will be regular whenever it is an extension of a strictly
nonlinear submodule by a linear quotient module. We also say that a 2-adic Adams
A-module M is regular when it is 6-pro-nilpotent with M¢ regular as a 2-adic
Adams module. For a connected space X with H'(X; Zg) = 0, the 2-adic Adams A-
module I?;l(X; Zg) is aleays f-pro-nilpotent by Lemma 6.2, and hence I?gl(X; Zg)
is regular if and only if K*(X; Zg) is regular as a 2-adic Adams module. The fol-
lowing two lemmas will often guarantee regularity for our modules.

Lemma 7.9. Let X be a connected space with HY(X;Z3) = 0, with H™(X; Z2) = 0
for sufficiently large m, and with K'(X; Z3) torsion-free. Then K'(X;Zs) is regular
with ¥?: KY(X;%Z) — KY(X;Zs) monic, and hence K;l(X;Zg) is reqular with
0: K~ (X;Zy) — K~ Y(X;Zs) monic.

Lemma 7.10. For a reqular 2-adic Adams module A, each submodule is regular,

and each torsion-free quotient module is reqular when A is finitely generated over
Zo.

The proofs are in Section 13. Combining the preceding definitions, we finally
introduce:

Definition 7.11 (The strong modules). We say that a 2-adic Adams A-module
M € MA is strong when:

(i) M is robust;

(i) M is ¢3-splittable;

(ili) M is regular.

Such an M is automatically 8-pro-nilpotent (and hence profinite) since it is regular.

8. On the K/2.-localizations of our spaces

We recall that the K/2,-localizations of spaces or spectra are the same as the
K*(—;Zs)-localizations since the K/2,-equivalences are the same as the K*(—; Zs)-
equivalences. In this section, we give our main result (Theorem 8.6) on the K/2,-

localization of a connected space X with K*CR(X;ZQ) ~ M for a strong 2-adic
Adams A-module M. We first consider:
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Definition 8.1 (Building blocks for K/2.-localizations). For a torsion-free exact
stable 2-adic Adams A-module N € AA, we let EN denote the K/2,-local spectrum
E7'N of Theorem 5.5 with an isomorphism K%, (EN;Zs) = CR™'N in the category
ACR of stable 2-adic Adams CR-modules. As in [8, 3.5], we let EN — EN — P2EN
denote the Postnikov fiber sequence of spectra with mEN = 1,EN for i > 2, with
mEN =0 for i < 2, and with TEN = tomEN, where fomaEN C mEN denotes
the Ext-2-completion of the torsion subgroup of mEN. We now obtain a simply-
connected infinite loop space Q°EN which is K/2,-local by [8, Theorem 3.8]. These
Q°EN, with their companions Q& pN, will serve as our building blocks for K/2,-
localizations of spaces, where p/N denotes the torsion-free exact stable 2-adic Adams
A-module pN = {N¢, Ng + Ny, Ng N Ny} of Definition 6.5.

Definition 8.2 (Strict homomorphisms and isomorphisms). For a 2-adic Adams
A-module M € MA and a connected space X, a strict homomorphism (resp. strict
isomorphism) LM — K*CR(X;ZQ) is a homomorphism (resp. isomorphism) of spe-
cial 2-adic ¢ CR-algebras induced by a map M — I?;l(X ;Zg) of 2-adic Adams
A-modules. For instance, there is a strict isomorphism

LEN = K5p(Q°EN; Zs)

for each torsion-free exact stable 2-adic Adams A-module N € AA by Theorem 6.7,
and we have:

Lemma 8.3. For a torsion-free exact module N € AA and a connected space X
with H'(X; Zy) = 0 = H*(X; Zy), each strict homomorphism LEN — K¢p(X;Zs)
is induced by a (possibly non-unique) map X — Q®EN.

Proof. A strict homomorphism LFN — K tr(X ;Zg) corresponds successively to:
a map FN — KKI(X;ZQ) in MA, a map N — KKI(X;ZQ) in AA, and a map
CR™'N — KER(EOOX;ZQ) in ACR. By Theorem 5.6, this last map is induced by
amap XX — EN, which lifts uniquely to a map ¥*°X — N, and we can easily
check that the adjoint map X — Q°°EN induces the original strict homomorphism.

O

Definition 8.4 (The key construction). For a strong 2-adic Adams A-module M €
MA, we may take a f-resolution (see Definition 7.4)

using the torsion-free exact module M = M/¢ € AA. We may then apply Lem-
ma 8.3 to give amap f: Q°EM — Q®°EpM inducing the K% (—; Za)-homomorph-
ism f* = Ld: ﬁFﬁ]\Zf — LFM. Any such f will be called a companion map of M,
and its homotopy fiber Fib f will be K/2,-local since Q°EM and Q*°EpM are. As
in [8, 4.6] and Definition 8.1, we let

Fibf — Fib f — P2Fib f

denote the Postnikov fiber sequence with mf‘% f = m; Fib f for ¢ > 2, with ml/?% f=
0 for i < 2, and with m;Fibf = tymFibf. We note that P?Fib f is an infinite loop
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space which is K/2,-local by [8, Theorem 3.8|, and we conclude that Fibf is also
K/2,-local. Moreover, we have Ky (Fibf; 22) =~ LM by:

Theorem 8.5. For a strong 2-adic Adams A-module M € MA and any companion
map f: Q®EM — Q®EpM, there is a strict isomorphism LM = K5 (Fibf; Zs).

Thus, LM is topologically realizable for each strong M € MA. This theorem
will be proved in Section 14 and leads immediately to our main result on K/2,-
localizations of spaces.

Theorem 8.6. If X is a connected space with a strict isomorphism LM = K p(X;
Zg) for a strong 2-adic Adams A-module M € MA, then there is an equivalence
XK o > f‘%f for some companion map f: Q®°EM — QoogﬁM of M, where the
equivalence induces the canonical isomorphism KZR(ﬁBf;ZQ) ~ M = Kip(X;
Zs). Moreover, H'(X;Zy) = 0 = H*(X; Zsy).

Proof. The last statement follows by [6, 5.4]. For the first, we take a #-resolution
0 —>~1:“_/3M 94 FM i: M — 0 of M and apply Lemma 8.3 to give a map h: X —
Q*EM with h* = Ls: LFM — LM. We then apply Lemma 8.3 again to give a
map k: Cof h — Q®EpM with
k* = Ld: LEpM — Kp(Cof h; Zy) C LFM.

Composing k with the cofiber map, we obtain a companion map f: Q®EM —
QOOS[)M of M such that h lifts to a map u: X — Fibf which is a K/2,-equivalence
by Theorem 8.5. Since Fibf is K /2,-local, this gives the desired equivalence X /o ~
Fibf. O

In this theorem, M is uniquely determined by the space X since there is a canon-
ical isomorphism M & QK&I(X; Zs) in MA by Remark 4.10 and [11, Section 3].

9. On the v;-periodic homotopy groups of our spaces

The p-primary vi-periodic homotopy groups vy L1, X of a space X at a prime
p were defined by Davis and Mahowald [15] and have been studied extensively
(see [13]). In this section, we apply the preceding result (Theorem 8.6) on the
K /2,-localizations of our spaces to approach v;-periodic homotopy groups at p = 2
using:

Definition 9.1 (The functor ®1). As in [4], [9], [16], and [18], there is a ;-
stabilization functor ®; from the homotopy category of spaces to that of spectra
such that:

(i) for a space X, there is a natural isomorphism vy '7, X 2 7,7®; X where
To®1 X is the 2-torsion part of ®; X (given by the fiber of its localization away
from 2);

(ii) ®1X is K/2,-local for each space X;
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(iii) for a spectrum FE, there is a natural equivalence ®1(Q>°FE) ~ Ex ;
(iv) @ preserves fiber squares.

Various other properties of ®; are described in [10, Section 2], and the isomorphism
vy M X = m,7® X may be applied as in [10, Theorem 3.2] to show:

Theorem 9.2. For a space X, there is a natural long exact sequence
N 3_ .
s KO (01X ) L5 KO 3(01X; 70) — (v] ' X)#
. 3_ .
— KO" (31X Z) 22 KO (9, X Z) — -+~

where (—)# is the Pontrjagin duality functor from discrete 2-torsion abelian groups
to 2-profinite abelian groups.

This may be used to calculate vy 'm, X from KO*(®1X;Zs) up to extension. To
approach KO*(®1X;7Zs) or K*(®1X;7Zs), we require:

Definition 9.3 (The K/2,.-durable spaces). Following [8, 7.8], we say that a space
X is K/2,-durable when the K/2,-localization X — X /o induces an equivalence
@1 X ~ & Xp /5 (or equivalently induces an isomorphism vflﬂ'*X ~ vflﬂ'*XK/g),
and we recall that each connected H-space is K/2.-durable. For such X, we may
apply our key result on K /2,-localizations (Theorem 8.6) to deduce:

Theorem 9.4. If X is a connected K/2,-durable space (e.g. f{—space) with a strict
isomorphism LM = K§ip(X;Zs) for a strong module M € MA, then there is a
(co)fiber sequence of spectra ®1X — EM 5 EpM such that € : K&p(EpM;Zy) —
Kip(EM;Z) is given by CR™'0: CR™*'pM — CR™'M.
Here, the map 6: pM — M is given by
9 = (9,9,9)1 {Mc,MR—FMH,MRmMH} — {MC7MR7MH}

in AA. This theorem will be proved below and may be used to calculate K*(®1X;
Zs) and KO*(®1X;7Zs) since it immediately implies:

Theorem 9.5. For X as in Theorem 9.4, there is a K*(f;Zg) cohomology exact
sequence

0 — K 2(®,X;25) — Mc —2 M — K~ Y(®1X;23) — 0,
and there is a KO*(—; ZQ) cohomology exact sequence
0— K0_8(®1X;Zg) — M¢c /(Mg + Mpg) AN Mg /Mp —
KO "(®,X;729) — 0 — My /(Mg N My) — KO %(®,X;Z,) —
Mg My -2 My — KO5(®,X;75) — 0 — 0 — KO (&1 X;7,) —
Mc /(Mg 0 My) -2 M /My — KO 3(®,X;7,) —
(Mp + Mpy) /(Mg 0 My) ~2 Mp/(Mp 0 My) —
KO (&1 X;Zs) — Mp + My 2 Mp — KO~ 1 (®1X;Zs) — 0.
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In these sequences, 6 may be replaced by A2 = —0. Also, for i,k € Z with k odd,
the Adams operation V¥ in K*~Y(®,X;Zs), K*~2(®1X;7Z), KO* H®,X;Zs),
or KO*~2(®,X;7y) agrees with k=" in the adjacent M terms.

Thus, for X as in Theorem 9.4, we may essentially calculate vy . X from M
(up to extension problems) using Theorems 9.2 and 9.5. By [10, 7.6], this approach
to vy Lr.X may be extended to various other important spaces X using:

Definition 9.6 (The K ®;-goodness condition). For a space X, we let ®; : IN(*(}R(X;
Zy) — K&p(®1X;Zy) denote the vy -stabilization homomorphism of [10, 7.1], and
we recall that it induces a homomorphism ®;: QK% (X;Zy)/0 — K2(®1X;Zs)
in AA for n = —1,0 by [10, 7.4], where QK% (X;Z3)/6 is as in Remark 4.10 and
Definition 6.1. Following [10, 7.5], we say that a space X is l?d)l—good when the
complex vi-stabilization homomorphism @1 : QK”(X; Zg)/G — K™"(91 X Zg) is an
isomorphism for n = —1,0. Our next theorem will provide initial examples of K Py-
good spaces from which other examples may be built.

Theorem 9.7. If X is a connected K/2.-durable space (e.g. H-space) with a strict
isomorphism LM = Kfp(X; Zg) for a strong module M € MA such that 0: M¢ —
Me is monic, then X is I?@l—good with K0(<I>1X;Zg) =0, with K_l((I)lX;ZQ) =
Mc /6, and with Kx* (91 X;Zy) = M/0.

To prove Theorems 9.4 and 9.7, we first consider the spectrum EN for a torsion-
free exact module N € AA and note that ®;Q°EN ~ (EN) g2 ~ EN.

Lemma 9.8. The space Q©EN is I?Cl)l—good, and the vy -stabilization gives a nat-
ural isomorphism

Dy QKANQ®EN; L)/ = K NEN;Ly).

Proof. By [10, 7.1], the homomorphism ®;: K;l(QOOEN;Zg) — K&l(EN;Zg) is
left inverse to the infinite suspension homomorphism, and the lemma now follows
by Theorem 6.7 together with Lemma 4.11, and Definition 6.3. O

Proof of Theorem 9.4. Applying the functor ®; to the fiber sequence of Theo-
rem 8.6, we obtain a (co)fiber sequence of spectra

®1XK/2 I (DlQOOgM EL (I)lgoog‘ﬁM
for some companion map f of M. We then deduce that ®, f corresponds to a map

EM — EpM having the desired properties by Lemmas 9.8 and 5.4. O

Proof of Theorem 9.7. The results on K*(®,X;7Z,) and Kgl(tle;Zg) follow
from Theorem 9.5. Since K*(X; Zg) ~ AM¢ by Lemma 4.6, we obtain isomorphisms
QKO(X;Z5)/0 = 0and QK ~1(X;Zy)/0 = M¢ /0, and we deduce that ®;: QK™ (X;
75)/0 = K™(®,X;Zs) for n = —1,0 by Lemma 9.8 and naturality. O
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10. Applications to simply-connected compact Lie groups

We now apply the preceding results to a simply-connected compact Lie group G.
We first use the representation theory of G to functorially determine the united 2-
adic K-cohomology ring K (G; Zs) = {K*(G; Z2), KO* (G5 Zs)} in Theorem 10.3.
Then, with slight restrictions on the group, we use the representation theory of G
to give expressions for the K/2,-localization G /o, for the v;-stabilization ®,G,

and for the cohomology KO*(®,G; ZQ), and we also show that G is I?@l—good. Our
results are summarized in Theorem 10.6 and permit calculations of the 2-primary
vi-periodic homotopy groups vy Lr.G using Theorem 9.2, as accomplished very
successfully by Davis [14]. In this section, we assume some general familiarity with
the representation rings of our Lie groups as described in [12, Sections I1.6 and
VI.4] and [14, Theorem 2.3].

Definition 10.1 (The representation ring RaG). For a simply-connected compact
Lie group G, we let RG be the complex representation ring and let RrG, RyG C
RG be the real and quaternionic parts of RG with the usual A-ring structures on
RG and RRG ® RyG. We also let t =¥~ ': RG = RG, c: RgG C RG, r: RG —
RRrG, ¢: RgG C RG, and q: RG — Ry G be the usual operations satisfying the A-
module relations of Definition 4.1. These structures are compatible in the expected
ways and combine to give a AX-ring RAG = {RG, RrG, Ry G} in the sense of [10,
6.2]. We let RAG = {RG RRG, RHG} be the augmentation ideal of RAG given by
the kernel RG of the complex augmentation dim: RG — Z, where RrG = RrG N
RG and RyG = RyG N RG. We also let QRAG = {QRG,QRRG,QRHG} be the
indecomposables of RAG given by

QRG = RG/(RG)?,
QRrG = RrG/((RRG)? + (RyG)? + r(RG)?),
QRyG = RyG/((RrG)(RuG) + q(RG)?).

It is straightforward to show that RaG and QRAG inherit Al-ring structures
(without identities) from RAG. Since QRAG is a A)-ring with trivial multipli-
cation, it is equipped with additive operations t: QRG = QRG, c¢: QRrG — QRG,
r: QRG — QRRrG, ¢: QRyG — QRG, q: QRG — QRuG, 0 =—-X?: QRG —
QRG, 6= —-X2: QRrG — QRRrG, 0= —-)\2: QRyG — QRrG, v*: QRG —
QRG, Y*: QRrG — QRRG, and 9*: QRyG — QRyG for the odd k € Z. We
now let QRAG = {QRG, QRrG, QR G} be the 2-adic completion of QRAG with
the induced additive operations on the components QRG = Z, ® QRG, QRrG =
ZQ ® QRrG, and QRHG = ZQ R QRyG.

Lemma 10.2. For a simply-connected compact Lie group G, QRAG is a robust
2-adic Adams A-module.

This will be proved below. To determine the cohomology ring Ky (G, Zg)
{K( (G Z3), KO*(G;Zy)} from the representation theory of G, we now let 3: QRAG
— K 1(@; Z3) be the 2-adic Adams A-module homomorphism induced by the com-
position of the canonical homomorphisms RAG — Kg(BG, Zy) — KA (G; 7).
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Theorem 10.3. For a_simply-connected compact Lie group G, there is a natural
strict isomorphism 3: L(QRAG) = Kp(G; Z2).

Proof. This follows by Lemma 10.2 and Theorem 4.9 since 3: QRG — K~YG; Zg)
induces an isomorphism A(QRG) = K*(G;Zy) by [17]. O

We note that K¢, (G Z) has a simple system of generators (see Definition 3.3)
consisting of the Bz, € K~(G; Zg), the pz, € KO_I(G;ZQ), and the [yg €
K0_5(G; ZQ) obtained from the analysis of QRAG below in Remark 10.7. Thus, by
Proposition 3.4, K55(G; Zg) is a free 2-adic CR-module on the associated products.
However, our description of K%, (G;Z2) as L(QRAG) is more natural and includes

the full multiplicative structure. Moreover, it will let us apply our main results to
G.

Lemma 10.4. For a simply-connected compact Lie group G, the 2-adic Adams A-
module QRAG is regular with 8: QRG — QRG monic.

Proof. This follows by Lemmas 7.9 and 7.10 since 3: QRG — I~(_1(G; Z) is monic
by Theorem 10.3. O

Thus, QRAG is strong (robust, ¥?>-splittable, and regular) if and only if it is
13-splittable, and this is usually the case by:

Lemma 10.5. For a simply-connected compact simple Lie group G, the 2-adic

Adams A-module QRAG is ¢3-splittable (and hence strong) if and only if G is
not Eg or Spin(4k + 2) with k not a 2-power.

This will be proved below using work of Davis [14]. For a simply-connected
compact Lie group G, we now let Qa = {Q, Qr, Qg } briefly denote the associated

stable 2-adic Adams A-module QaRG = (QaRG)/¢. This agrees with the notation
of [10, 9.2] and [14], since our Qa = {Q, Qr, QH} is the 2-adic completion of their
Qa ={Q,Qr,Qp}. Our main results now give the following omnibus theorem,
whose four parts may be expanded in the obvious ways to match the cited theorems.

Theorem 10.6. Let G be a simply-connected compact Lie group such that the 2-
adic Adams A-module QARG is 3-splittable (see Lemma 10.5), and let Qa =
{Q,Qr,Qm} be the associated stable 2-adic Adams A-module. Then:

(i) the K/2.-localization G o is the homotopy fiber of a map Q°EQA —
QOOF:',EQA with low dimensional modifications as in Theorem 8.6;

(ii) the 2-adic vi-stabilization ®1G is the homotopy fiber of a map of spectra
EQA — EpQa as in Theorem 9.4;

(iti) there is an exact sequence
0 — KO 3(®,G; Zs) — Q/(Qr + Qu) ~— Q/Qr — - --
continuing as in Theorem 9.5;
(iv) G is K®1-good at the prime 2 as in Theorem 9.7.
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The exact sequence in (iii) permits calculations of the 2-primary wv;-periodic
homotopy groups v; LG using Theorem 9.2 as accomplished by Davis [14]. This
exact sequence was previously obtained in [10, Theorem 9.3] using indirect alge-
braic methods under the hard-to-verify condition that G was K ®;-good. It is now
obtained using the KO*(—;Zy) cohomology exact sequence of the (co)fiber sequence
in (ii) under an accessible algebraic condition that implies the K ®1-goodness of G
by (iv).

We devote the rest of the section to proving Lemmas 10.2 and 10.5 using:

Remark 10.7 (Generators for representation rings). For a simply-connected com-
pact Lie group G, standard results summarized in [14, Theorem 2.3] show that RG
is a finitely generated polynomial ring Z[z., z:,xa,yg]%aﬁ on certain basic com-
plex representations z., together with their conjugates 27 = ¢z, certain basic real
representations x,, and certain basic quaternionic representations yg. Moreover,
in terms of these generators, the Z/2-graded ring {RrG, RyG} is characterized
by the fact that its quotient { RrG/rRG, RyG/qRG} is a Z/2-graded polynomial
algebra Z/2[xq, ¢z, Ygla,,5 on the real generators x, and ¢z, (with cgz, = 23 2y)
and the quaternionic generators yg. Consequently, the indecomposables QRAG =
{QRG,QRrG,QRyG} may be expressed as

QRG = Z{Z.\/, Z:, C(fa, 0/17,8}7,04,5,
QRRG = Z{rz,, %, Tcl?jﬁ}%%ﬁ & Z/Q{&gw}'ya
QRHG = Z{qéva qclq, gﬁ}%a,ﬂ
where w denotes w — dimw for w € RG. Thus, the 2-adic indecomposables QRAG

= {QRG QRRG, QRHG} may be expressed similarly using Zs in place of Z, and
the stable 2-adic indecomposables QA = {Q7 Q R, Q u } may be expressed as

¢Q>

ZQ{Z’W wa C.’Ea,C :‘/B}W a,Bs

R ZQ{TZ’Y7xa7TC yﬁ}’Y a,Bs

Qu = 2{(1277 4CT0; B}y, 8-

Proof of Lemma 10.2. Since QRAG is a A)X-ring with trivial multiplication, it
is straightforward to check all of the required relations for operations (see Defini-
tions 4.3 and 6.1) . In particular, we deduce 60r = 0rf from the relations \r =
AL+ PAZ, At = —X2A%, 6 = A2r — 1A%, 20 =0, and 6 = —\?, which hold gener-
ally in AA-rings with trivial multiplication [10, 6.2]. We next observe that QRG,
QRrG, and QRyG are stable 2-adic Adams modules by [6, 6.2], since QRG and
QRRrG @ QRpG are y-nilpotent and finitely generated abelian (because they have
trivial multiplications and have finite generating sets of elements w for representa-
tions w). Thus, QRAG is a 2-adic Adams A-module, and it must be robust by the
analysis of Remark 10.7. O

To check the ¢3-splittability of QRAG, we let hG = ker(1 —t)/im(1 4 t) be the
augmented algebra over Z /2 obtained from RG using the involution t = ¢p~1: RG =
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RG. This is a polynomial algebra hG = Z/2[ci o, 232, '§pla .5 Which is Z/2-grad-
ed, since there is an isomorphism

¢+ RRG/rRG ® RyG/qRG = hG,

and we let QrhG = Z/2{cZq, 232y } o denote the real (degree 0) indecomposables.
We define a homomorphism s: QRG — QrhG by s[u] = [u*u] for u € RG and note
that sQRG = Z/2{z%%,},. We view s as a homomorphism of ¢/*-modules (abelian
groups with endomorphisms v?) as in [14, 2.4].

Lemma 10.8. For a simply-connected compact Lie group G, QRAG is 13-splittable
if and only if the 13-submodule sSQRG C QrhG is a direct summand.

Proof. By Definition 7.2 and the proof of Lemma 7.3, QRAG is ¢3-splittable if
and only if the 13-submodule ¢QRG C QRRG/rQRG (or equivalently pQRG C
QRrG/rQRG) is a direct summand. The lemma now follows since pQRG corre-
sponds to sQ RG under the isomorphism ¢: QRrG/rQRG = QrhG. O

Proof of Lemma 10.5. By Lemma 10.8 and Davis [14, Theorem 1.3], the follow-
ing conditions are successively equivalent: QRAG is ¢»3-splittable; the 1/3-submodule
SQRG C QrhG is a direct summand; G satisfies the Technical Condition of [14,
Definition 2.4]; G is not Eg or Spin(4k + 2) with k not a 2-power. O

11. Proofs of basic lemmas for L

We shall prove Lemmas 4.5, 4.6, and 4.11 showing the basic properties of the
functor L: 0AMod — ¢CR.Alg, where A Mod is the category of 2-adic 8 A-modules
and ¢CRAlg is that of special 2-adic ¢ CR-algebras (see Definitions 4.3 and 3.2).
We first introduce an intermediate category of modules.

Definition 11.1 (The 2-adic nA-modules). By a 2-adic nA-module N = {N¢, Ng,
Ny, Ng}, we mean a 2-adic A-module {N¢, Ng, Ny }, with operations ¢, ¢, r, ¢, and
q as in Definition 4.1, together with a 2-profinite abelian group Ng and continuous
additive operations ¢: N¢ — Ng, n: Ng — Ng, O¥: Ngp — Ng, and ()Pl: Ny —
Ng satisfying the following relations for elements z € N¢, © € Ng, and y € Ny

bcx =0, ocy =0, otz = dz, 20z =0, coz =0,
()P =0,  2mz=0,  yrz=0, (q2) = (r2)?) = ng=.
We let nAMod denote the category of 2-adic nA-modules.

Remark 11.2 (A functorial interpretation of admissible maps). Let J: 6AMod —
nAMod be the functor carrying a 2-adic §A-module M to the 2-adic nA-module
JM = {M¢c,Mgr, My, Mr/rMc} having the original operations ¢, ¢, r, ¢, ¢, and
¢ together with operations 7: Mr — Mg/rMc, ()¥: Mp — Mgp/rMg, and
OB Mg — Mg/rMc given by nx = [z], 2Pl = [02], and y?? = [9y] for 2 € Mg
and y € My. Let I: (bCR/llg — nAMod be the functor carrying a special 2-adic
¢ CR-algebra A to the 2-adic nA-module TA = {12151,121;31,1411—%5,141;2} having the
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operations ¢, c r, ¢, and q of A~A (see Deﬁnltlon 4.1) together ~Wlth oper-
ations ¢: Agl — ARt n: ARt — AR ()Rl AR — AZ% and ()12 ;2 _>A%2
given by (;Sz =noz, nx=nz, ¥ =z

2andy = Bp'y? for 2 € AZ', z € AR,
and y € A§5. We now easily see:

Lemma 11.3. For M € 0AMod and A € qSQR/llg, an admissible map f: M — A
is equivalent to a map f: JM — I A in nAMaod.

To construct the functor L, we need:

Lemma 11.4. The functor I: $CRAlg — nAMod has a left adjoint V- nAMod
— ¢CRAlg.

Proof. This follows by the Special Adjoint Functor Theorem (see [19]) since [
preserves small limits and since pCR.Alg has a small cogenerating set by Lemma 11.5
below. O

A special 2-adic ¢ CR-algebra A will be called finite when the groups A and
AE are finite for all m.

Lemma 11.5. Each special 2-adic ¢ CR-algebra A is the inverse limit of its finite
quotients in §CRAlg.

Proof. This is similar to the corresponding result for topological rings in [22, 5.1.2].
For a 2-adic CR-submodule G C A with A /G finite, we must obtain a special 2-adic
$CR-ideal H of A with H C G and A/H finite. We first obtain an ideal M of Ag
(closed under Bp, Bgl, n, and &) with M C Gg and AR/M finite as in [22]. We
next obtain an ideal N of A¢ (closed under B, B~!, and t) with N € Ge Nr~ M N
¢~1M° and Ac/N finite as in [22]. The desired ideal H is now given by Ho = N
and Hr = M Nc ' N. O

Proof of Lemma 4.5. Using Lemmas 11.3 and 11.4, we obtain the desired uni-
versal algebra LM from the functor L = VJ: AMod — ¢CRMod. O

A 2-adic nA-module N is called sharp when 7: Ng/rNe — Ng is an isomor-
phism, and we may now derive the properties of L from the corresponding properties
of V on such sharp modules.

Lemma 11.6. For a sharp 2-adic nA-module N, the canonical map ANg —
(VN)¢ is an algebra isomorphism.

Proof. Let W: ¢CRAlg — C.Alg be the forgetful functor carrying each A € pCR.Alg
to its complex part Ac € CAlg where CAlg is the category of special 2-adic C-
algebras, which are defined similarly to special 2-adic ¢ CR-algebras (see Defini-
tion 3.2) but using only complex terms and their operations. The functor W has a
right adjoint H: CAlg — ¢CRAlg where (HX)c = X and (HX)g = {z € X|tz =
x} with c=1, r=1+t, n=0, ¢z=2%2 for z€ X°, and ¢pw = B~ w*w for
w € X! For each N € nAMod and each X € CAlg, amap N — IHX in nAMod
corresponds to a map N¢ — X! respecting ¢, which in turn corresponds to a map
ANC — X in CAlg Hence, since WV is left adjoint to IH, the canonical map
ANe — WVN is an isomorphism. O
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Proof of Lemma 4.6. For a 2-adic §A-module M, the canonical map AMe —
(LM)¢ is an isomorphism by Lemma 11.6 and by the above proof of Lemma 4.5. [

Let Q: d)CRAlg — (;SCRMod be the functor carrying each A € ¢CRAlg to its
indecomposables QA € ¢CRMod where gCRMod is the category of special 2-adic
¢ CR-modules, which may be defined as the augmentation ideals of the special 2-adic
¢ CR-algebras having trivial multiplication.

Lemma 11.7. For a sharp 2-adic nA-module N, the canonical map {N¢, Ng, Ni}
— ATYQV N is an isomorphism.

Proof. The functor Q has a right adjoint E': gbCRMod — ¢CR/Ug where EX =e&®
X. Since QV: nAMod — quRMod is left adjoint to I E, a detailed analysis shows
that QV N is a special 2-adic ¢ CR-module with (QVN)El = N¢, (QVN)}_%1 = Ng,
and (QVN)z° = Ng. O

Proof of Lemma 4.11. For a 2-adic #A-module M, the canonical map M —
A~1QLM is an isomorphism by Lemma 11.7 and the above proof of Lemma 4.5. [J

12. Proof of the Bott exactness lemma for L

We must now prove Lemma 4.8 showing the Bott exactness of LM for a robust
2-adic #A-module M. This lemma will follow easily from the corresponding result
for nA-modules (Lemma 12.1), whose proof will extend through most of this section.
We say that a 2-adic nA-module N is profinitely sharp when it is the inverse limit
of an inverse system of finite sharp 2-adic nA-modules. This obviously implies that
N is sharp. We call N robust when:

(i) N is profinitely sharp;
(ii) the 2-adic A-module {N¢c, Nr/éNc, N} is torsion-free and exact;
(iii) ker¢ = cNg + ¢/ Ny + 2N¢.

Lemma 12.1. If N is a robust 2-adic nA-module, then the special 2-adic ¢CR-
algebra VN is Bott exact; in fact, VN is the inverse limit of an inverse system of
finitely generated free 2-adic CR-modules.

This will be proved at the end of the section.

Proof of Lemma 4.8. For a robust 2-adic #A-module M, the 2-adic nA-module
JM is also robust, and hence LM has the required properties by Lemma 12.1 and
the proof of Lemma 4.5 in Section 11. O

Before proving Lemma 12.1, we must analyze the robust 2-adic nA-modules, and
we start with:

Definition 12.2 (The complex 2-adic nA-modules). The functor (=)¢: npAMod —
Ab from the 2-adic nA-modules to the 2-profinite abelian groups has a left adjoint
C: Ab — nAMod with C(G)e = Gd G =G 16, C(G)r =G ®G/2 =1G & ¢G,
C(G)y =G =qG, and C(Q)s = G/2 = (62 for G € Ab. A 2-adic nA-module
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will be called complexr when it is isomorphic to C(G) for some G. If G is torsion-
free, then C'(G) is obviously robust. For an arbitrary N € nAMod and G € Ab,
we may describe the possible maps N — C(G) as follows. Let f: No — G and
g: Ng — G/2 be maps such that the diagram

Nr & Ny M G

Jor g

Ng — . G/2
commutes. Then there is amap F(f,g): N — C(G) with components (f, ft): No —
GoG, (fe,gn): Np - G@®G/2, fcd': Ny — G, and g: Ng — G/2. Moreover,
each map N — C(G) is of the above form for some f and g. When N is robust, the
compatibility condition on f: No — G and g: Ng — G/2 may be expressed by the
commutativity of the diagram

NE —L

- |
Ny —2— G/2

where N/, = {z € N¢|tz = 2} and 7 is the composition of (¢,c’): Ng/¢Nc [y, Nu
=~ NS and (): Nr/¢Nc 1y, Nu — Ns. Letting N = {z € N¢|tz = —z}, we
now have:

Lemma 12.3. If N C N is an inclusion of robust 2-adic nA-modules such that
NC/NC is torsion-free and NC = Ng, then each map N — C(G) for G € Ab may
be extended to a map N — C(G) of 2-adic nA-modules.

Proof. For a given map F(f,§): N — C(G), we first extend § g: Ns — G/2 to amap
g: Ng — G/2. Since Ng/NJ = NC7 Ng/NF = NC_, and Ng = Ng, we see that
N¢ is the pushout of the inclusions NJr — NJr — Ng. Thus, the maps gm: NJr
G/2and [f]: No — G/2 induce a map f’. N¢ — G/2, and we obtain a commutative
diagram

Ne —— @
< [
Ne —L ape.

Since NC/NC is projective in Ab, we may now choose a lifting f: N¢ — G in the
diagram, and this gives the desired extension F(f,g): No — C(G) of F(f,g). O

Lemma 12.4. For a robust 2-adic nA-module N, there exists a decomposition N =
C(G) ® P where G is torsion-free and P is robust with t =1 on Pc.

Proof. By the factorization of positively torsion-free groups in Definition 5.3, there
exists a decomposition No = (G @ tG) ® H witht =1 on H, and we let i: C(G) —
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N be the induced map. Then 4 is monic since i: {G ® tG,G,G} — {N¢, Nr/o¢N¢,
Ng} is monic by [10, Lemma 4.8], and since i: G/2 — ¢N¢ and n: ¢No — Ns
are monic by the proof of Lemma 7.3. Thus, i: C(G) — N has a left inverse by
Lemma 12.3, and the result follows. O

Definition 12.5 (The t¢-trivial 2-adic nA-modules). A 2-adic nA-module N will
be called t-trivial when t = 1 on Neo. When N is t-trivial and robust, it must have
é =0: Ng — Npsince No = cNg + ¢’ Ng by the exactness of {N¢, Np/¢Ng, Ng}.
Moreover, it must also have (rNg)? =0, (¢N¢)?' =0, and ¢+ ¢': Np/rNe @
Ny /qNe = N /2 by [10, Lemma 4.7]. Hence, the operations (OPl: Np — Ng and
(OP: Ny — Ng induce operations 0: Ng/rNo — Ng/rN¢ and 0: Ny /qNo —
Ng/rN¢, where the f-module Ng/rN¢ is profinite since N is profinitely sharp.
In this way, a t-trivial robust 2-adic nA-module N corresponds to a torsion-free
group G € Ab together with a decomposition (G/2)r @ (G/2)g = G/2 equipped
with operations 6: (G/2)r — (G/2)r and 0: (G/2)g — (G/2)r such that the 6-
module (G/2)g is profinite. We say that a 2-adic nA-module N is of finite type
when Ng, Ng, Ny, and Ng are finitely generated over Zg, and we now easily
deduce:

Lemma 12.6. A t-trivial robust 2-adic nA-module may be expressed as the inverse
limit of an inverse system of t-trivial robust quotient modules of finite type.

A similar result obviously holds for the robust 2-adic nA-modules C(G) with G
torsion-free, and the following lemma will now let us restrict our study of V' to the
robust modules of finite type.

Lemma 12.7. If a 2-adic nA-module N s the inverse limit of an inverse system
{Nu}a of quotient modules, then VN = lim, VN,.

Proof. For a finite special 2-adic ¢ CR-algebra F', there is a canonical isomorphism
Hom(limy VN, F) 2 Hom(V N, F'). Hence the map VN — lim, VN, is an isomor-
phism by Lemma 11.5. O

Proof of Lemma 12.1. Tt now suffices to show that VN is a free 2-adic CR-
module when N = C(G) @ P for a finitely generated free Zy-module G and a t-
trivial robust 2-adic nA-module P of finite type. By Definition 7.1, we may choose
finite ordered sets of elements {z}x in G, {z;}; in Pg, and {y;}; in Py such that
G is a free Zs-module on {zk} and {Pc, Pr, Pg} is a free 2-adic A-module on
{x:}: and {y;};. Since Ps is a free Z/2-module on the generators {nz;};, there are

expressions xiQ =r; and yj[?] = s; for each 7 and j where the r; and s; are Z/2-linear

combinations of these generators. We may now obtain Vi\fv as the free augmented 2-
adic CR-algebra on the generators z; € (VN)g', y; € (VN)Z°, 2z, € (VN)Z!, and
bz € (VN)% subject to the relations z? = 7, yJ2 = Bgsj, 2; =0, z;zx = Beozg,
and (¢zx)? = 0 for each 4, j, and k. It follows by a straightforward analysis that
VN is a free 2-adic CR-module on the associated products (see Definition 3.3) of

{xi}i, {y;}5, and {21} O
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13. Proofs for regular modules

We first show that our strict nonlinearity condition (see Definition 7.7) for 2-adic
Adams modules agrees with that of [7, 2.4], and we then prove Lemmas 7.9 and 7.10
for regular modules. For a 2-adic Adams module A, we let T'A C A be given by the
pullback square

TA —— (A/p?A)\2

e e
A ——  ANRA

where (A/1?A)\2 is the kernel of 2: A/1?A — A/1?A. Since the square is also a
pushout, A is quasilinear if and only if TA = A. Now let T°° A be the intersection
of the submodules T*A C A for i > 0.

Lemma 13.1. T*°A is the largest quasilinear submodule of A, and hence Ay =
T>A.

Proof. Using the inverse limit of the pullback squares for T*A with i > 0, we find
that 7°° A contains each quasilinear submodule of A and that T(T*A) =T>*A. O

Remark 13.2 (Strict nonlinearity conditions). Our definition of strict nonlinearity
in Section 7 is equivalent to our earlier definition in [7, 2.3 and 2.4]. In fact, for a
2-adic Adams module A, the largest quasilinear submodule A, remains unchanged
in the earlier category of 2-adic ¥?-modules, since it is still given by 7°° A. To prove
Lemma 7.10, we need:

Lemma 13.3. For a strictly nonlinear 2-adic Adams module A, each submodule is
strictly nonlinear. Moreover, when A is finitely generated over Zs, each torsion-free
quotient module is strictly nonlinear.

Proof. The first statement is clear, and we shall prove the second by working in the
earlier category N of 2-adic 1)2-modules that are 1)2-pro-nilpotent. Let 0 — A —
A— A—0be a short exact sequence in N with A strictly nonlinear and finitely
generated over Zs and with A torsion-free. To show that A is strictly nonlinear,
it suffices to show that Hom N(H A) =0 for each torsion-free quasilinear H € N
that is finitely generated over Zs. Since A is torsion-free, it now suffices to show
that Hom (H, A) is finite for such H. Hence, since Hom(H, A) =0 by strict
nonlinearity, it suffices to show that Extjlv(H , A) is finite for such H. This finiteness
follows using the exact sequence

0 — Hom,(H, A) — Hom 4, (H, A) — Hom 4, (H, A) — Ext).(H, A) —

with Hom - (H, A) = 0 by strict nonlinearity, where Ab is the category of 2-profinite
abelian groups. O

Proof of Lemma 7.10. This result follows easily from Definition 7.8 and Lem-
ma 13.3. [



Homology, Homotopy and Applications, vol. 9(1), 2007 363

Proof of Lemma 7.9. By [8, Lemma 5.5], there is an exact sequence
0 — K'(X/X%25) — K'(X;Z2) — H*(X;2s)

of 2-adic Adams modules with H3(X;Zs) linear and K'(X/X3;Zsy) torsion-free,
where X3 is the 3-skeleton of X. Hence, it suffices to show that K'(X/X3;Z,)
is strictly nonlinear with monic 2. Since H™(X ;Zg) = 0 for sufficiently large m,
the map K'(X/X3:7Zy) — K*(X™/X3;75) is monic for such m. Thus by skele-
tal induction, the operator ¥? on Q ® I?l(X/X3;Zz) is annihilated by the poly-
nomial f(z) = (z —22)(z —23)...(z — 2¥) for sufficiently large k. It follows that
Q® K! (X/ X3 Zg) is the direct sum of the eigenspaces E; of 1 with eigenvalues
2 for 2 < i < k, and hence 9?2 is monic on K (X/X?3;Zs) as desired. Moreover, the
projection to Ej is given by the operator fi(1?)/f;(2!) on Q ® K! (X/X3;Zy) where
fi(x) = f(x)/(x — 2°). This implies that 2* K (X/X3; Zs) is contained in EBf:2 E;n
KY(X/X3;Z,) where 2¥ is the highest power of 2 dividing an integer f;(2') for
some 4. Since the above direct sum is strictly nonlinear, so is 2 K*(X/X3;Zs) by
Lemma 13.3, and hence so is K'(X/X?;Z,). O

14. Proof of the realizability theorem for LM

We shall prove Theorem 8.5, giving a strict isomorphism LM~K ER(EB I Zg)
for a companion map f: Q®EM — Q®°EHM of a strong 2-adic Adams A-module
M. For this, it will suffice by Theorem 4.9 to obtain an isomorphism AM¢ =
K*(Fibf ;Zg) of the complex components. We do this by adapting our proof of
the corresponding odd primary result (Theorem 4.7) in [8]. First, to determine the
2-adic K-cohomology of the loops on Q®°EM or Q°EpM , we may replace Theorem
11.2 of [8] by the following two theorems.

Theorem 14.1. If X = Q°FE for a 1-connected spectrum E with HZ(E;ZQ) =0,
with K°(E;Zs) =0, and with K'(E;Zs) torsion-free, then K*(QX;Zy) =0 and
K%(QX;Zy) is torsion-free.

Proof. This follows from [6, Theorem 8.3]. O

Using notation and terminology of [7] for a l-connected space X, we obtain
an augmented 2-adic ¥?-module QK (X;Zs) | H3(X;Zs) representing the Atiyah-
Hirzebruch map K'(X;Zs) — H?*(X;Z,), and we have:

Theorem 14.2. If X is a 1-connected H-space with K*(QX;Z3) = 0 and K°(QX;
Zs) torsion-free, then o: U(QKY(X;Zs2) | H3(X;Z2)) = K°(0X;Zs).

Proof. This follows from [7, Theorem 10.2]. O

When X is Q©°EM or Q°EpM, we shall determine H3(X; Zy) from the united 2-

— 1 .
adic K-cohomology of X. For any 1-connected space X, welet ag: KO (X;Zs) —
H?(X;Zs3) be the homomorphism induced by the Postnikov section KOZo —
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PYKOZs. Using the indecomposables QKO*(X;ZQ) of Definition 2.7 and Remark
4.10, we have:

Lemma 14.3. If X is a 1-connected space with HZ(X;ZQ) =0, then ag: 1?671()(;
Zs) — H3(X;Z3) factors through QKO~Y(X;Z3) and vanishes on the following
subgroups: K ~1(X;Z,), (0 — 2)?6_1()(;22), (0 — rB’2c)I?6_5(X;ZQ), and
(W* —9)KO  (X;Z).

Proof. The map ap factors through QK o1 (X; Zg) by a suspension argument using
the isomorphism H?(X;Zy) = H?(QX; Zs). Since X is 1-connected with H2(X; Zs)
= 0, there is a natural isomorphism H?3(X;Zs) 2 (m(12X))# by [8, Lemma 11.4].
Thus, it suffices by naturality to prove the desired vanishing results when X is
52 Ugk €3 for k > 1, and these results now follow from the elementary case X = §3
since the collapsing map 52 Usr €3 — S3 induces epimorphisms of the cohomologies

KY(=:7), KO (=:7s), and KO (=:Zs). 0

For a 1-connected space X with HQ(X;ZQ) =0, the above ar now induces a
homomorphism ag: Lin® QKgl(X;Zg) — H3(X;7Zs) where QK;l(X;ZQ) is the
2-adic Adams A-module of indecomposables given by Remark 4.10 and Defini-
tion 6.1, and where Lin® carries a 2-adic Adams A-module M to the group

Lin® M = Mg/(6Mc + (6 — 2)Mp + (60 — r¢' )My + (> — 9)Mp).

To determine H3(X;Z;) when X is Q&M or Q& pM , we may replace Proposition
11.3 of [8] by:

Proposition 14.4. If N is a torsion-free exact stable 2-adic Adams A-module, then
ag: Lin® QK N Q®EN; Zy) = H3(Q®EN; Zy).

Proof. Since there is a stable isomorphism ag: KO Y (EN;Zy)/(¢? —9) = H3(EN;
Z2) by [10, Theorem 3.2] and [8, Lemma 11.4], the proposition follows using The-
orem 6.7 and Lemma 4.11. O

For any #-pro-nilpotent 2-adic Adams A-module M, we obtain a homomorphism
r: MY — Lin® M of 2-adic Adams modules with M€ as in Definition 7.6 and
Lin® M linear. Such a homomorphism is called properly torsion-free [7, 4.5] when
its source is torsion-free and its kernel is strictly nonlinear (see Definition 7.7). We
shall need:

Lemma 14.5. If M is a strong 2-adic Adams A-module, then r: MC — Lin® M
is properly torsion-free.

Proof. Since M is strong, M is torsion-free and ker(M¢ — Lin M©) is strictly
nonlinear. Using the maps r: Lin M¢ — Lin® M and ¢: Lin® M — Lin M€ with
cr = 2, we see that 2ker(MY — Lin® M) is contained in ker(M® — Lin M). Thus
ker(MY — Lin® M) is strictly nonlinear by Lemma 13.3. O
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As in [8, Section 11], for a strong 2-adic Adams A-module M and a companion
map f, we obtain a ladder of p-complete fiber sequences

ﬁgf—> X _f Y

| ! |

Fibf —— Q&M —L Q=&

such that:

(i) X and Y satisfy the hypotheses of Theorems 14.1 and 14.2;

(ii) the vertical maps from X and Y are K*(—; Zg)—equivalences;

(iii) H3(Y;Zy) =0 and the sequence H3(Q®EpM;ZLy) — H3(Q®EM;Zy) —

H3(X;Zs) — 0 is exact.
Lemma 14.6. There is a canonical isomorphism H?3(X; Zg) >~ Lin® M.
Proof. Since f*: Kip(Q®EGM;Zy) — Kip(Q°EM;Zy) is equivalent to Ld:
LFpM — LFM for the f-resolution map d, the homomorphism f*: H3(Q>*EpM:;
7o) — H3(Q®EM; Zs) is equivalent to Lin® d: Lin® FpM — Lin® FM by Propo-
sition 14.4. Hence, there is an isomorphism of cokernels H3(X;Zy) = Lin® M. [
Proof of Theorem 8.5. The proof of Theorem 4.7 in [8] is now easily adapted to
give Theorem 8.5. In more detail, Propositions 11.5 and 11.6 of [8] remain valid in
our setting using Lemmas 14.5 and 14.6 together with the short exact sequence
0 — (FMC | 0) — (FM® | Lin® M) — (MC | Lin® M) — 0

induced by the f-resolution. Propositions 11.7 and 11.8 likewise remain valid, and
thus AM© = K*(Fibf;Zy), so that Theorem 8.5 follows by Theorem 4.9. O
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