
Homology, Homotopy and Applications, vol. 9(1), 2007, pp.331–366

ON THE 2-ADIC K-LOCALIZATIONS OF H-SPACES

A.K. BOUSFIELD

(communicated by Donald M. Davis)

Abstract
We determine the 2-adic K-localizations for a large class

of H-spaces and related spaces. As in the odd primary case,
these localizations are expressed as fibers of maps between
specified infinite loop spaces, allowing us to approach the
2-primary v1-periodic homotopy groups of our spaces. The
present v1-periodic results have been applied very successfully
to simply-connected compact Lie groups by Davis, using knowl-
edge of the complex, real, and quaternionic representations of
the groups. We also functorially determine the united 2-adic
K-cohomology algebras (including the 2-adic KO-cohomology
algebras) for all simply-connected compact Lie groups in terms
of their representation theories, and we show the existence of
spaces realizing a wide class of united 2-adic K-cohomology
algebras with specified operations.

1. Introduction

In [20], Mahowald and Thompson determined the p-adic K-localizations of the
odd spheres at an arbitrary prime p, expressing these localizations as homotopy
fibers of maps between specified infinite loop spaces. Then, working at an odd prime
p in [8], we generalized this result to give the p-adic K-localizations for a large class
of H-spaces and related spaces. In the present paper, we obtain similar results for 2-
adic K-localizations of such spaces, using our preparatory work in [10] and [11]. By
a 2-adic K-localization, we mean a K/2∗-localization (see [2], [3]), which is the same
as a K∗(−; Ẑ2)-localization, since the K/2∗-equivalences of spaces or spectra are the
same as the K∗(−; Ẑ2)-equivalences. Our localization results in this paper will apply
to many (but not all) simply-connected finite H-spaces and to related spaces such as
the spheres S4k−1 for k > 1. We show that these results allow computations of the
v1-periodic homotopy groups (see [13], [15]) of our spaces from their united 2-adic
K-cohomologies, and thus allow computations of the v1-periodic homotopy groups
for a large class of simply-connected compact Lie groups from their complex, real,
and quaternionic representation theories. The present results will be extended in a
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subsequent paper to cover the remaining simply-connected compact Lie groups and
various spaces related to the remaining odd spheres. This work has been applied
very successfully by Davis [14] to complete his 13-year program (with Bendersky)
of calculating the v1-periodic homotopy groups of all simply-connected compact Lie
groups, and has also been applied by Bendersky, Davis, and Mahowald [1].

Throughout this paper, we work at the prime 2 and rely on the united 2-adic
K-cohomology

K∗
CR(X; Ẑ2) = {K∗(X; Ẑ2),KO∗(X; Ẑ2)}

of a space or spectrum X as in [10]. This combines the usual periodic cohomologies
with certain operations between them, such as complexification and realification.
For our H-spaces and related spaces X, the cohomology K∗

CR(X; Ẑ2) is essentially
determined by the 2-adic Adams ∆-module

K̃−1
∆ (X; Ẑ2) = {K̃−1(X; Ẑ2), K̃O

−1
(X; Ẑ2), K̃O

−5
(X; Ẑ2)}

which combines the specified cohomologies with the additive operations among them
(see Definition 6.1). In fact, for most simply-connected finite H-spaces X, we expect
to have an isomorphism K∗

CR(X; Ẑ2) ∼= L̂(M) where M = {MC ,MR,MH} is the
submodule of primitives in K̃−1

∆ (X; Ẑ2) and where L̂ is a functor that we introduce
in Lemma 4.5, extending the 2-adic exterior algebra functor on complex components.
For a simply-connected compact Lie group G, the required 2-adic Adams ∆-module
may be obtained as the indecomposables Q̂R∆G = {Q̂RG, Q̂RRG, Q̂RHG} of the
complex, real, and quaternionic representation ring R∆G = {RG,RRG,RHG} (see
Definition 10.1), and we have:

Theorem 1.1. For a simply-connected compact Lie group G, there is a natural
isomorphism K∗

CR(G; Ẑ2) ∼= L̂(Q̂R∆G) of algebras.

This will follow from Theorem 10.3. It extends results of Hodgkin [17], Seymour
[23], Minami [21], and others on K∗(G; Ẑ2) and KO∗(G; Ẑ2). Our main result on
K/2∗-localizations will apply to a space X with K∗

CR(X; Ẑ2) ∼= L̂M for a 2-adic
Adams ∆-module M that is strong (see Definition 7.11). This technical algebraic
condition seems relatively mild and holds for Q̂R∆G when G is a simply-connected
compact simple Lie group other than E6 or Spin(4k + 2) with k not a 2-power by
work of Davis (see Lemma 10.5). For a strong 2-adic Adams ∆-module M , we obtain
two stable 2-adic Adams ∆-modules M̄ = {M̄C , M̄R, M̄H} and ρ̄M̄ = {M̄C , M̄R +
M̄H , M̄R ∩ M̄H} where M̄C = MC , M̄R = im(MR →MC), and M̄H = im(MH →
MC); and we obtain two corresponding K/2∗-local spectra EM̄ and E ρ̄M̄ such that
K−1

∆ (EM̄ ; Ẑ2) = M̄ , K0(EM̄ ; Ẑ2) = 0, K−1
∆ (E ρ̄M̄ ; Ẑ2) = ρ̄M̄ , and K0(E ρ̄M̄ ; Ẑ2) =

0 (see Definition 8.1). Stated briefly, our main localization result is:

Theorem 1.2. If X is a connected space with K∗
CR(X; Ẑ2) ∼= L̂M for a strong 2-

adic Adams ∆-module M , then its K/2∗-localization XK/2 is the homotopy fiber of
a map from Ω∞EM̄ to Ω∞E ρ̄M̄ with low dimensional modifications.

This will follow from Theorem 8.6. It will apply to simply-connected compact
simple Lie groups with the above-mentioned exceptions, and it should apply to many
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other simply-connected finite H-spaces and related spaces; in fact, there must exist
a great diversity of spaces with the required united 2-adic K-cohomology algebras
by:

Theorem 1.3. For each strong 2-adic Adams ∆-module M , there exists a simply-
connected space X with K∗

CR(X; Ẑ2) ∼= L̂M .

This will follow from Theorem 8.5. For our spaces X, we also obtain results on
the 2-primary v1-periodic homotopy groups v−1

1 π∗X, which are naturally isomor-
phic to stable homotopy groups π∗τ2Φ1X, where τ2Φ1X is the 2-torsion part of
the spectrum Φ1X obtained using the v1-stabilization functor Φ1 constructed in
[4], [9], [16], and [18]. From this standpoint, the homotopy v−1

1 π∗X is essentially
determined by the cohomology KO∗(Φ1X; Ẑ2), since there is an exact sequence

· · · −→ KOn−3(Φ1X; Ẑ2)
ψ3−9−−−→ KOn−3(Φ1X; Ẑ2) −→ (v−1

1 πnX)#

−→ KOn−2(Φ1X; Ẑ2)
ψ3−9−−−→ KOn−2(Φ1X; Ẑ2) −→ · · ·

where (−)# gives the Pontrjagin dual (see Theorem 9.2). A space X is called K/2∗-
durable when the K/2∗-localization induces an isomorphism v−1

1 π∗X ∼= v−1
1 π∗XK/2

or equivalently Φ1X ' Φ1XK/2. This condition holds for all connected H-spaces
(and many other spaces), and our K/2∗-localization result implies:

Theorem 1.4. If X is a connected K/2∗-durable space (e.g. H-space) with
K∗

CR(X; Ẑ2) ∼= L̂M for a strong 2-adic Adams ∆-module M , then there is a (co)fiber
sequence of spectra Φ1X → EM̄ → E ρ̄M̄ with a KO∗(−; Ẑ2) cohomology exact se-
quence

0 −→ KO−8(Φ1X; Ẑ2) −→ M̄C/(M̄R + M̄H) λ2

−−−→ M̄C/M̄R −→ KO−7(Φ1X; Ẑ2)

−→ 0 −→ M̄H/(M̄R ∩ M̄H) −→ KO−6(Φ1X; Ẑ2) −→ M̄R ∩ M̄H
λ2

−−−→ M̄H −→
KO−5(Φ1X; Ẑ2) −→ 0 −→ 0 −→ KO−4(Φ1X; Ẑ2) −→ M̄C/(M̄R ∩ M̄H) λ2

−−−→
M̄C/M̄H −→ KO−3(Φ1X; Ẑ2) −→ (M̄R + M̄H)/(M̄R ∩ M̄H) λ2

−−−→−→
KO−2(Φ1X; Ẑ2) −→ M̄R + M̄H

λ2

−−−→ M̄R −→ KO−1(Φ1X; Ẑ2) −→ 0.

This will follow from Theorem 9.5. It allows effective computations of 2-primary
v1-periodic homotopy groups as shown by Davis [14], and its complex analogue
implies that our spaces X are usually K̂Φ1-good, which means that Q̂Kn(X; Ẑ2)/λ2

∼= Kn(Φ1X; Ẑ2) for n = −1, 0.

Theorem 1.5. If X is as in Theorem 1.4 with λ2 : MC →MC monic, then X is
K̂Φ1-good.

This will follow from Theorem 9.7. It will be used in a subsequent paper to
show that all simply-connected compact Lie groups (and many other spaces) are
K̂Φ1-good, which is useful because the v1-periodic homotopy groups of K̂Φ1-good
spaces are often accessible by [10], even when ourK/2∗-localization theorems do not
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apply. From the perspective of [10], the present work verifies important examples
of K̂Φ1-good spaces beyond the odd spheres.

Throughout the paper, spaces and spectra will belong to the usual pointed sim-
plicial or CW homotopy categories. To provide a suitably precise setting for our
main theorems and proofs, we must devote considerable attention to developing the
algebraic infrastructure of united 2-adic K-cohomology theory. The paper is divided
into the following sections:

1. Introduction

2. The united 2-adic K-cohomologies of spectra and spaces

3. The 2-adic φCR-algebras

4. The universal 2-adic φCR-algebra functor L̂

5. Stable 2-adic Adams operations and K/2∗-local spectra

6. On the united 2-adic K-cohomologies of infinite loop spaces

7. Strong 2-adic Adams ∆-modules

8. On the K/2∗-localizations of our spaces

9. On the v1-periodic homotopy groups of our spaces

10. Applications to simply-connected compact Lie groups

11. Proofs of basic lemmas for L̂

12. Proof of the Bott exactness lemma for L̂

13. Proofs for regular modules

14. Proof of the realizability theorem for L̂M

Although we have long been interested in the K-localizations and v1-periodic
homotopy groups of spaces, we were prompted to develop the present results by
Martin Bendersky and Don Davis. We thank them for their questions and comments.

2. The united 2-adic K-cohomologies of spectra and spaces

We now consider the united 2-adic K-cohomologies

K∗
CR(X; Ẑ2) = {K∗(X; Ẑ2),KO∗(X; Ẑ2)}

of spectra and spaces X, focusing on their basic structures as 2-adic CR-modules
or CR-algebras. We first recall:

Definition 2.1 (The 2-adic CR-modules). By a 2-adic CR-module, we mean a CR-
module over the category of 2-profinite abelian groups (see [10, 4.1]). Thus, a 2-adic
CR-moduleM = {MC ,MR} consists of Z-graded 2-profinite abelian groupsMC and
MR with continuous additive operations

B : M∗
C
∼= M∗−2

C , t : M∗
C
∼= M∗

C , BR : M∗
R
∼= M∗−8

R ,

η : M∗
R →M∗−1

R , c : M∗
R →M∗

C , r : M∗
C →M∗

R,
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satisfying the relations

2η = 0, η3 = 0, ηBR = BRη, ηr = 0, cη = 0,

t2 = 1, tB = −Bt, rt = r, tc = c, cBR = B4c,

rB4 = BRr, cr = 1 + t, rc = 2, rBc = η2, rB−1c = 0.

For z ∈M∗
C and x ∈M∗

R, the elements tz ∈M∗
C and rB2cx ∈M∗

R are sometimes
written as z∗ (or ψ−1z) and ξx. For a spectrum or space X, the united 2-adic
K-cohomology

K∗
CR(X; Ẑ2) = {K∗(X; Ẑ2),KO∗(X; Ẑ2)}

has a natural 2-adic CR-module structure with the usual periodicities B : K∗(X; Ẑ2)
∼= K∗−2(X; Ẑ2), and BR : KO∗(X; Ẑ2) ∼= KO∗−8(X; Ẑ2), conjugation t : K∗(X; Ẑ2)
∼= K∗(X; Ẑ2), Hopf operation η : KO∗(X; Ẑ2)→ KO∗−1(X; Ẑ2), complexification
c : KO∗(X; Ẑ2)→ K∗(X; Ẑ2), and realification r : K∗(X; Ẑ2)→ KO∗(X; Ẑ2).

Definition 2.2 (Bott exactness). As in [10, 4.1], we say that a 2-adic CR-module
M is Bott exact when the Bott sequence

· · · −→M∗+1
R

η−−→M∗
R

c−−→M∗
C

rB−1

−−−→M∗+2
R

η−−→ · · ·
is exact, and we note that the 2-adic CR-module K∗

CR(X; Ẑ2) is always Bott exact
for a spectrum or space X. To compare CR-modules, we shall often use:

Lemma 2.3. For Bott exact 2-adic CR-modules M and N , a map f : M → N is
an isomorphism if and only if f : MC → NC is an isomorphism.

Proof. For the “if” part, we treat the Bott sequences of M and N as exact couples,
and we note that f induces an isomorphism of the associated spectral sequences
since f : MC

∼= NC . Using the map of second derived couples with f : M (2)
C
∼= N

(2)
C ,

we easily see that f : η2MR
∼= η2NR; then using the map of first derived couples with

f : M (1)
C
∼= N

(1)
C , we easily see that f : ηMR

∼= ηNR; and finally using the original
map of exact couples, we easily see that f : MR

∼= NR.

Definition 2.4 (The free 2-adic CR-modules). For each integer n and L = C,R,
there is a monogenic free 2-adic CR-module FL(g, n) on a generator g ∈ FL(g, n)nL
having the universal property that, for each 2-adic CR-module M and y ∈Mn

L , there
is a unique map f : FL(g, n)→M with f(g) = y. The 2-adic CR modules FC(g, n)
and FR(g, n) are given more explicitly by

FC(g, n)n−2i
C = Ẑ2 ⊕ Ẑ2 = 〈Big〉 ⊕ 〈Big∗〉, FC(g, n)n−2i−1

C = 0,

FC(g, n)n−2i
R = Ẑ2 = 〈rBig〉, FC(g, n)n−2i−1

R = 0,

FR(g, n)n−2i
C = Ẑ2 = 〈Bicg〉, FR(g, n)n−2i−1

C = 0,

FR(g, n)n−8i
R = Ẑ2 = 〈BiRg〉, FR(g, n)n−8i−1

R = Z/2 = 〈BiRηg〉,
FR(g, n)n−8i−2

R = Z/2 = 〈BiRη2g〉, FR(g, n)n−8i−4
R = Ẑ2 = 〈BiRξg〉,

FR(g, n)n−8i−k
R = 0 for k = 3, 5, 6, 7.

We note that FC(g, n) and FR(g, n) are Bott exact for all n. In general, a free
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2-adic CR-module on a finite set of generators may be constructed as a direct sum
of the corresponding monogenic free 2-adic CR-modules. To test for this freeness,
we may use:

Lemma 2.5. For a Bott exact 2-adic CR-module M (e.g. for some M =
K∗

CR(X; Ẑ2)), if M∗
C is a free module over K̂∗ = Ẑ2[B,B−1] on the generators

{cai}i q {bj}j q {b∗j}j for finite sets of elements {ai}i in M∗
R and {bj}j in M∗

C ,
then M is a free 2-adic CR-module on the generators {ai}i and {bj}j.
Proof. The canonical map to M from the specified 2-adic CR-module is an isomor-
phism by Lemma 2.3.

To describe the multiplicative structure of K∗
CR(X; Ẑ2) for a space X, we intro-

duce:

Definition 2.6 (The 2-adic CR-algebras). By a 2-adic CR-algebra A = {AC , AR},
we mean a 2-adic CR-module with continuous bilinear multiplications AmL ×AnL →
Am+n
L and elements 1 ∈ A0

L for m,n ∈ Z and L = C,R such that:
(i) the multiplication in A∗C and A∗R is graded commutative and associative with

identity 1;
(ii) B(zw) = (Bz)w = z(Bw) and (zw)∗ = z∗w∗ for z ∈ AmC and w ∈ AnC ;
(iii) BR(xy) = (BRx)y = x(BRy), η(xy) = (ηx)y = x(ηy), and ξ(xy) = (ξx)y =

x(ξy) for x ∈ AmR and y ∈ AnR;
(iv) c1 = 1 and c(xy) = (cx)(cy) for x ∈ AmR and y ∈ AnR;
(v) r((cx)z) = x(rz) and r(z(cx)) = (rz)x for x ∈ AmR and z ∈ AnC .

Equivalently, a 2-adic CR-algebra A consists of a 2-adic CR–module with a commu-
tative associative multiplication A⊗̂CRA→ A with identity e→ A for e = FR(1, 0)
∼= K∗

CR(pt; Ẑ2), where ⊗̂CR is the (symmetric monoidal) complete tensor product
for 2-adic CR-modules [11, 2.6].

Definition 2.7 (Augmentations and nilpotency). For a 2-adic CR-algebra A, an
augmentation is a map A→ e of 2-adic CR-algebras which is left inverse to the
identity e→ A. When A is augmented, we let Ã = {ÃC , ÃR} denote the augmen-
tation ideal, and for m > 1 we let Ã(m) denote the m-th power of Ã given by the
image of the m-fold product Ã⊗̂CR · · · ⊗̂CRÃ→ Ã. Thus, Ã(m)C is the image of
the m-fold product Ã∗C⊗̂ · · · ⊗̂Ã∗C → Ã∗C , while Ã(m)R is the image of the m-fold
product Ã∗R⊗̂ · · · ⊗̂Ã∗R → Ã∗R plus the realification of Ã(m)C . The indecomposables
of A are given by the 2-adic CR-module Q̂A = Ã/Ã(2). We call A nilpotent when
Ã(m) = 0 for sufficiently large m and call A pro-nilpotent when ∩mÃ(m) = 0 or
equivalently when A ∼= limmA/Ã(m). For a space X, the cohomology K∗

CR(X; Ẑ2)
has a canonical augmentation K∗

CR(X; Ẑ2)→ e induced by the basepoint pt ⊂ X
with the usual augmentation ideal K̃∗

CR(X; Ẑ2) = {K̃∗(X; Ẑ2), K̃O
∗
(X; Ẑ2)}. More-

over, when X is connected, the cohomology K∗
CR(X; Ẑ2) is pro-nilpotent since it is

the inverse limit of the cohomologiesK∗
CR(Xα; Ẑ2) for the finite connected subspaces

Xα ⊂ X, where each K∗
CR(Xα; Ẑ2) is nilpotent.
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3. The 2-adic φCR-algebras

To capture some additional features of the 2-adic CR-algebras K∗
CR(X; Ẑ2) for

spaces X, we now introduce the 2-adic φCR-algebras. These structures are often
surprisingly rigid and will allow us to construct convenient bases for K∗

CR(X; Ẑ2) in
some important general cases, for instance, when X is a simply-connected compact
Lie group.

Definition 3.1 (The 2-adic φCR-algebras). By a 2-adic φCR-algebra A, we mean a
2-adic CR-algebra with continuous functions φ : A0

C → A0
R and φ : A−1

C → A0
R such

that:

(i) cφa = a∗a and cφx = B−1x∗x for a ∈ A0
C and x ∈ A−1

C ;

(ii) φ(a+ b) = φa+ φb+ r(a∗b) and φ(x+ y) = φx+ φy + rB−1(x∗y) for a, b ∈
A0
C and x, y ∈ A−1

C ;

(iii) φ(ab) = (φa)(φb), φ(ax) = (φa)(φx), and φB−1(xy) = (φx)(φy) for a, b ∈ A0
C

and x, y ∈ A−1
C ;

(iv) φ(1) = 1, φ(ka) = k2φa, φ(a∗) = φa, φ(kx) = k2φx, and φ(x∗) = −φx for a ∈
A0
C , x ∈ A−1

C , and k ∈ Ẑ2.

For convenience, we extend the operation φ periodically to give φ : A2i
C → A0

R and
φ : A2i−1

C → A0
R with φw = φBiw for all i and elements w. For a space X, the coho-

mology K∗
CR(X; Ẑ2) has a natural 2-adic φCR-algebra structure with φ : K∗(X; Ẑ2)

→ KO0(X; Ẑ2) as in [11, Section 3]. In particular, e ∼= K∗
CR(pt; Ẑ2) is a 2-adic φCR-

algebra with φ(k1) = k21 for k ∈ Ẑ2. For a 2-adic φCR-algebra A, an augmentation
is a map A→ e of 2-adic φCR-algebras which is left inverse to the identity, and we
retain the other notation and terminology of Definition 2.7. Thus, for a space X,
the φCR-algebra K∗

CR(X; Ẑ2) has a canonical augmentation and is pro-nilpotent
whenever X is connected. To capture some other needed features, we introduce:

Definition 3.2 (The special 2-adic φCR-algebras). A 2-adic φCR-algebra A is
called special when:

(i) A is augmented and pro-nilpotent;

(ii) z2 = 0 for z ∈ AnC with n odd;

(iii) y2 = 0 for y ∈ AnR with n ≡ 1,−3 mod 8;

(iv) φcx = 0 for x ∈ AnR with n ≡ −1,−5 mod 8.

For a connected space X, the cohomology K∗
CR(X; Ẑ2) is a special 2-adic φCR-

algebra by [11, Section 3].

Definition 3.3 (Simple systems of generators). Let A be a special 2-adic φCR-
algebra. By a simple system of generators of odd degree for A, we mean finite
ordered sets of odd-degree elements {xi}i in ÃR and {zj}j in ÃC such that AC is
an exterior algebra over K̂∗ = Ẑ2[B,B−1] on the generators {cxi}i q {zj}j q {z∗j }j .
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Such a simple system determines associated products

xi1 . . . xim(φzj1) . . . (φzjn) ∈ AR,
(cxi1) . . . (cxim)(cφzj1) . . . (cφzjn)wk1 . . . wkq ∈ AC

where: i1 < · · · < im withm > 0; j1 < · · · < jn with n > 0; k1 < · · · < kq with q > 1;
each wkt

is zkt
or z∗kt

with wkq
= zkq

; and {k1, . . . , kq} is disjoint from {j1, . . . , jn}
in each complex product.

Proposition 3.4. If A is a Bott exact special 2-adic φCR-algebra with a simple sys-
tem of generators of odd degree, then A is a free 2-adic CR-module on the associated
products.

Proof. This follows by Lemma 2.5.

When the cohomology K∗
CR(X; Ẑ2) of a connected space X has a simple sys-

tem of generators of odd degree, this result will determine the 2-adic CR-algebra
structure of the cohomology, provided that we can compute the squares of the real
simple generators of degree ≡ −1,−5 mod 8, since the squares of the other simple
generators and of their φ’s must vanish. For a simply-connected compact Lie group
G, we shall see that the cohomology K∗

CR(G; Ẑ2) must always have a simple system
of generators of odd degree by Theorem 10.3 below.

4. The universal 2-adic φCR-algebra functor L̂

We must now go beyond simple systems of generators and develop functorial
descriptions of cohomologies K∗

CR(X; Ẑ2) using universal special 2-adic φCR-
algebras. Our results will apply, for instance, when X is a suitable infinite loop
space (Theorem 6.7) or a simply-connected compact Lie group (Theorem 10.3). We
start by introducing the algebraic modules that will generate our universal algebras.

Definition 4.1 (The 2-adic ∆-modules). By a 2-adic ∆-module N = {NC , NR,
NH}, we mean a triad of 2-profinite abelian groups NC , NR, and NH with con-
tinuous additive operations

t : NC ∼= NC , c : NR → NC , r : NC → NR,

c′ : NH → NC , q : NC → NH

satisfying the relations

t2 = 1, cr = 1 + t, rc = 2, tc = c, rt = r,

c′q = 1 + t, qc′ = 2, tc′ = c′, qt = q

as in [10, 4.5]. For z ∈ NC , the element tz is sometimes written as z∗ or ψ−1z.
For a 2-adic CR-module N and integer n, we obtain a 2-adic ∆-module ∆nN =
{Nn

C , N
n
R, N

n−4
R } with c′ = B−2c : Nn−4

R → Nn
C and q = rB2 : Nn

C → Nn−4
R . In par-

ticular, we obtain a 2-adic ∆-module Kn
∆(X; Ẑ2) = ∆nK∗

CR(X; Ẑ2) for a space X.
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We say that a 2-adic ∆-module N is torsion-free when NC , NR, and NH are torsion-
free, and we say that N is exact when the sequence

· · · −→ NC
(r,q)−−−−→ NR ⊕NH c−c′−−−−→ NC

1−t−−−→ NC
(r,q)−−−−→ NR ⊕NH −→ · · ·

is exact (see [10, 4.5]). It is straightforward to show:

Lemma 4.2. A 2-adic ∆-module N = {NC , NR, NH} is torsion-free and exact if
and only if:

(i) c : NR → NC and c′ : NH → NC are monic;
(ii) NC is torsion-free with ker(1 + t) = im(1− t) for t : NC → NC ;
(iii) cNR + c′NH = ker(1− t) and cNR ∩ c′NH = im(1 + t).

The 2-adic ∆-module

K−1
∆ (X; Ẑ2) = {K−1(X; Ẑ2),KO−1(X; Ẑ2),KO−5(X; Ẑ2)}

of a space X has additional operations θ which we now include in:

Definition 4.3 (The 2-adic θ∆-modules). By a 2-adic θ∆-module M = {MC ,MR,
MH}, we mean a 2-adic ∆-module with continuous additive operations θ : MC →
MC , θ : MR →MR, and θ : MH →MR satisfying the following relations for elements
z ∈MC , x ∈MR, and y ∈MH :

θcx = cθx, θc′y = cθy, θtz = tθz, θqz = θrz, θθrz = θrθz.

In general, θrz may differ from rθz, and we let φ̄ : MC →MR be the difference
operation with φ̄z = θrz − rθz for z ∈MC . Using the above relations, we easily
deduce:

φ̄cx = 0, φ̄c′x = 0, φ̄tz = φ̄z,

2φ̄z = 0, cφ̄z = 0, θφ̄z = 0.

For a space X, the cohomology K−1
∆ (X; Ẑ2) has a natural 2-adic θ∆-module struc-

ture by [11, Section 3] with the operations

θ = −λ2 : K−1(X; Ẑ2) −→ K−1(X; Ẑ2),

θ = −λ2 : KO−1(X; Ẑ2) −→ KO−1(X; Ẑ2),

θ = −λ2 : KO−5(X; Ẑ2) −→ KO−1(X; Ẑ2).

Moreover, this structure interacts with the 2-adic φCR-algebra structure of K∗
CR(X;

Ẑ2) in several ways.

Lemma 4.4. For a space X, we have:
(i) ηφz = φ̄z for z ∈ K−1(X; Ẑ2);

(ii) x2 = ηθx for x ∈ KO−1(X; Ẑ2);

(iii) y2 = BRηθy for y ∈ KO−5(X; Ẑ2).

Proof. This follows from [11, Section 3].
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We shall take account of these relations in our universal algebras. For a 2-adic
θ∆-module M and a special 2-adic φCR-algebra A, an admissible map α : M → A
consists of a 2-adic ∆-module map α : M → ∆−1Ã such that:

(i) ηφαz = αφ̄z in A−1
C for each z ∈MC ;

(ii) (αx)2 = ηαθx in A−2
R for each x ∈MR;

(iii) (αy)2 = BRηαθy in A−10
R for each y ∈MH .

We say that a special 2-adic φCR-algebra A with an admissible map α : M → A is
universal if, for each special 2-adic φCR-algebra B with admissible map g : M → B,
there exists a unique φCR-algebra map ḡ : A→ B such that ḡα = g.

Lemma 4.5. For each 2-adic θ∆-module M , there exists a universal special 2-adic
φCR-algebra L̂M with admissible map α : M → L̂M .

This will be proved later in Section 11. By universality, L̂M is unique up to
isomorphism and is natural in M , so that we have a functor L̂ from the category of
2-adic θ∆-modules to the category of special 2-adic φCR-algebras. We believe that
the φCR-algebra L̂M can be given canonical operations θ satisfying all the formulae
of [11, Section 3] and that this provides a strengthened version of L̂ that is right
adjoint to ∆−1(̃). However, for simplicity, we rely on the present basic functor L̂. We
can describe the algebra (L̂M)C explicitly using the 2-adic exterior algebra Λ̂MC

with Λ̂MC = limβ Λ̂MCβ where MCβ ranges over the finite 2-adic quotients of MC

(ignoring θ).

Lemma 4.6. For a 2-adic θ∆-module M , the canonical map Λ̂MC → (L̂M)C is an
algebra isomorphism.

This will be proved later in Section 11. We must impose extra conditions on M
to ensure that L̂M is Bott exact and hence topologically relevant.

Definition 4.7 (The robust 2-adic θ∆-modules). We say that a 2-adic θ∆-module
M is profinite when it is the inverse limit of an inverse system of finite 2-adic θ∆-
modules, and we let M/φ̄ denote the 2-adic ∆-module {MC ,MR/φ̄MC ,MH}. We
call M robust when:

(i) M is profinite;
(ii) M/φ̄ is torsion-free and exact;
(iii) ker φ̄ = cMR + c′MH + 2MC .

When M is obtained from K−1
∆ (X; Ẑ2) for a space X, the profiniteness condition

will usually hold automatically since K−1
∆ (X; Ẑ2) = limα,iK

−1
∆ (Xα; Ẑ2)/2i for the

system of finite subcomplexes Xα ⊂ X and i > 1. The following key lemma will be
proved later in Section 12.

Lemma 4.8. If M is a robust 2-adic θ∆-module, then the special 2-adic φCR-
algebra L̂M is Bott exact; in fact, L̂M is the inverse limit of an inverse system of
finitely generated free 2-adic CR-modules.

This leads to a crucial comparison theorem.
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Theorem 4.9. For a connected space X and a robust 2-adic θ∆-module M , suppose
that g : M → K̃−1

∆ (X; Ẑ2) is a 2-adic θ∆-module map that induces an isomorphism
Λ̂MC

∼= K∗(X; Ẑ2). Then g induces an isomorphism L̂M ∼= K∗
CR(X; Ẑ2) of special

2-adic φCR-algebras.

Proof. Since g gives an admissible map M → K∗
CR(X; Ẑ2) by Lemma 4.4, the result

follows by Lemmas 2.3, 4.6, and 4.8.

When M is finitely generated in this theorem, we may easily choose a simple
system of odd-degree generators (see Definition 3.3) for K∗

CR(X; Ẑ2) from MC , MR,
and MH . However, the present description of K∗

CR(X; Ẑ2) as L̂M is more natural
and includes the full multiplicative structure. To check whether such a description
is possible for a given space X, we may use:

Remark 4.10 (Determination of M from K∗
CR(X; Ẑ2)). For a connected space

X, we may take the indecomposables Q̂K∗
CR(X; Ẑ2) as in Definition 2.7 with the

operations θ of Definition 4.3 to produce a 2-adic θ∆-module

Q̂K−1
∆ (X; Ẑ2) = {Q̂K−1(X; Ẑ2), Q̂KO−1(X; Ẑ2), Q̂KO−5(X; Ẑ2)}

together with a natural quotient map K̃−1
∆ (X; Ẑ2) ³ Q̂K−1

∆ (X; Ẑ2). Now by Lem-
ma 4.11 below, whenever Theorem 4.9 applies toX, there is a canonical isomorphism
M ∼= Q̂K−1

∆ (X; Ẑ2) and the map g : M → K̃−1
∆ (X; Ẑ2) in the theorem corresponds

to a splitting of K̃−1
∆ (X; Ẑ2) ³ Q̂K−1

∆ (X; Ẑ2). When X is an H-space, we may
often obtain the required splitting by mapping Q̂K−1

∆ (X; Ẑ2) to the primitives in
K̃−1

∆ (X; Ẑ2). For instance, this applies when X is a suitable infinite loop space or
simply-connected compact Lie group (see Theorems 6.7 and 10.3). Finally, we note
that the 2-adic θ∆-module Q̂K−1

∆ (X; Ẑ2) will automatically be robust by Proposi-
tion 3.4 whenever K∗

CR(X; Ẑ2) has a simple system of odd-degree generators with
no real generators of degree ≡ 1,−3 mod 8. We have used:

Lemma 4.11. For a θ∆-module M , the canonical map M → ∆−1Q̂L̂M is an iso-
morphism.

This will be proved later in Section 11.

5. Stable 2-adic Adams operations and K/2∗-local spectra

We now bring stable Adams operations into our united 2-adic K-cohomology
theory and use this theory to classify the needed K/2∗-local spectra. We first recall
some terminology from [8, 2.6].

Definition 5.1 (The stable 2-adic Adams modules). By a finite stable 2-adic
Adams module A, we mean a finite abelian 2-group with automorphisms ψk : A ∼= A
for the odd k ∈ Z such that:

(i) ψ1 = 1 and ψjψk = ψjk for the odd j, k ∈ Z;
(ii) when n is sufficiently large, the condition j ≡ k mod 2n implies ψj = ψk.
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By a stable 2-adic Adams module A, we mean the topological inverse limit of an
inverse system of finite stable 2-adic Adams modules. Such an A has an underlying
2-profinite abelian structure with continuous automorphisms ψk : A ∼= A for the odd
k ∈ Z (and in fact for k ∈ Ẑ×2 ). We note that the operations ψ−1 and ψ3 on A deter-
mine all of the other stable Adams operations ψk as in [5, 6.4]. Our main examples
of stable 2-adic Adams modules are the cohomologies Kn(X; Ẑ2) and KOn(X; Ẑ2)
for a spectrum or space X and integer n with the usual stable Adams operations
ψk. We let Â denote the abelian category of stable 2-adic Adams modules, and for
i ∈ Z we let S̄i : Â → Â be the functor with S̄iA equal to A as a group but with ψk

on S̄iA equal to kiψk on A for the odd k ∈ Z. We note that S̄iA = A in Â for all i
when 2A = 0.

Definition 5.2 (The stable 2-adic Adams CR-modules). By a stable 2-adic Adams
CR-module M , we mean a 2-adic CR-module consisting of stable 2-adic Adams
modules {M∗

C ,M
∗
R} such that the operations B : S̄M∗

C
∼= M∗−2

C , t : M∗
C
∼= M∗

C ,
BR : S̄4M∗

R
∼= M∗−8

R , η : M∗
R →M∗−1

R , c : M∗
R →M∗

C , and r : M∗
C →M∗

R are all
maps in Â, where ψ−1 = t in M∗

C and ψ−1 = 1 in M∗
R. For a spectrum or space X,

the united 2-adic K-cohomology

K∗
CR(X; Ẑ2) = {K∗(X; Ẑ2),KO∗(X; Ẑ2)}

has a natural stable 2-adic Adams CR-module structure with the usual operations.

Definition 5.3 (The stable 2-adic Adams ∆-modules). By a stable 2-adic Adams
∆-module N , we mean a 2-adic ∆-module consisting of stable 2-adic Adams modules
{NC , NR, NH} such that the operations t : NC ∼= NC , c : NR → NC , r : NC → NR,
c′ : NH → NC , and q : NC → NH are all maps in Â, where ψ−1 = t in NC and
ψ−1 = 1 in both NR and NH . For a stable 2-adic Adams CR-module M and integer
n, we obtain a stable 2-adic Adams ∆-module

∆nM = {Mn
C ,M

n
R, S̄

−2Mn−4
R }

as in Definition 4.1. Thus, for a spectrum or space X and integer n, we now obtain
a stable 2-adic Adams ∆-module

Kn
∆(X; Ẑ2) = ∆nK∗

CR(X; Ẑ2) = {Kn(X; Ẑ2),KOn(X; Ẑ2), S̄−2KOn−4(X; Ẑ2)}.
To give another example, we say that a 2-profinite abelian group G with involution
t : G ∼= G is positively torsion-free whenG is torsion-free with ker(1 + t) = im(1− t).
By [5, Proposition 3.8], this is equivalent to saying that G factors as a (possibly
infinite) product of Ẑ2’s with t = 1 and Ẑ2 ⊕ tẐ2’s. For a positively torsion-free
stable 2-adic Adams module A, we may use the operation ψ−1 : A ∼= A to construct
a torsion-free exact stable 2-adic Adams ∆-module {A,A+, A+} with A+ = ker(1−
ψ−1), A+ = coker(1− ψ−1), t = ψ−1, c = 1, r = 1 + ψ−1, c′ = 1 + ψ−1, and q =
1.

We let ÂCR (resp. Â∆) denote the abelian category of stable 2-adic Adams CR-
modules (resp. ∆-modules), and we note that the functor ∆n : ÂCR → Â∆ for n ∈ Z
has a left adjoint CRn : Â∆→ ÂCR with CRn(N)nC = NC , with CRn(N)n−1

C = 0,
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and with

CRn(N)n−iR =





NR for i = 0
NR/r for i = 1
S̄NC/c

′ for i = 2
0 for i = 3, 7
S̄2NH for i = 4
S̄2NH/q for i = 5
S̄3NC/c for i = 6

as in [10, 4.10]. We easily see that CRn(N) is Bott exact whenever N is torsion-free
and exact. Our next lemma will often allow us to work in the simpler category Â∆
instead of ÂCR.

Lemma 5.4. For n ∈ Z, the adjoint functors CRn : Â∆→ ÂCR and ∆n : ÂCR →
Â∆ restrict to equivalences between the full subcategories of all torsion-free exact
N ∈ Â∆ and all Bott exact M ∈ ÂCR with Mn

C positively torsion-free and Mn−1
C =

0.

Proof. For M ∈ ÂCR as above, we see that ∆nM is a torsion-free exact ∆-module
by [10, 4.4 and 4.7] with an adjunction isomorphism CRn∆nM →M by Lemma 2.3.
The corresponding result for N ∈ Â∆ is obvious.

When E is a spectrum withKn(E; Ẑ2) positively torsion-free andKn−1(E; Ẑ2) =
0 for some n, we now have K∗

CR(E; Ẑ2) ∼= CRn(N) in ÂCR for the torsion-free exact
module N = ∆nK∗

CR(E; Ẑ2) in Â∆, and we have the following existence theorem
for such spectra in the stable homotopy category.

Theorem 5.5. For each torsion-free exact N ∈ Â∆ and n ∈ Z, there exists a K/2∗-
local spectrum EnN with K∗

CR(EnN ; Ẑ2) ∼= CRn(N) in ÂCR. Moreover, EnN is
unique up to (noncanonical) equivalence.

Proof. This follows by Lemma 5.4 and [10, Theorem 5.3].

The spectrum EnN in the theorem will be endowed with an isomorphism
K∗

CR(EnN ; Ẑ2) ∼= CRn(N) in ÂCR. Thus, for an arbitrary spectrum E, a map
g : E → EnN induces a map g∗ : CRn(N)→ K∗

CR(E; Ẑ2) in ÂCR. Each algebraic
map of this sort must come from a topological map by:

Theorem 5.6. For a torsion-free exact N ∈ Â∆, n ∈ Z, and an arbitrary spectrum
E, if γ : CRn(N)→ K∗

CR(E; Ẑ2) is a map in ÂCR, then there exists a map of spectra
g : E → EnN with g∗ = γ.

Proof. Let τ2E denote the 2-torsion part of E given by the homotopy fiber of
its localization away from 2. By Pontrjagin duality [10, Theorem 3.1], the map γ
corresponds to an ACR-module map KCR

∗ (τ2E)→ KCR
∗ (τ2EnN) in the sense of [5],

where KCR
∗ (τ2EnN) is CR-exact with K∗(τ2EnN) divisible. This ACR-module map

prolongs canonically to an ACRT -module mapKCRT
∗ (τ2E)→ KCRT

∗ (τ2EnN) by [5,
Theorem 7.14], and the results of [5, 9.8 and 7.11] now show that this prolonged
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algebraic map must come from a topological map τ2E → τ2EnN , which gives the
desired g : E → EnN .

The map g in this theorem is generally not unique (see [10, 5.4]).

6. On the united 2-adic K-cohomologies of infinite loop
spaces

In preparation for our work onK/2∗-localizations of spaces, we functorially deter-
mine the united 2-adic K-cohomologies of the needed infinite loop spaces (see The-
orem 6.7). We must first introduce:

Definition 6.1 (The 2-adic Adams ∆-modules). By a 2-adic Adams ∆-module M ,
we mean a 2-adic θ∆-module (see Definition 4.3) consisting of stable 2-adic Adams
modules {MC ,MR,MH} such that the operations t : MC

∼= MC , c : MR →MC ,
r : MC →MR, c′ : MH →MC , q : MC →MH , θ : MC →MC , θ : MR →MR, and
θ : MH →MR are all maps in Â, where ψ−1 = t in MC and ψ−1 = 1 in both MR

and MH . We let M̂∆ denote the abelian category of 2-adic Adams ∆-modules. We
say that M is θ-nilpotent when it has θi = 0 for sufficiently large i, and we say that
M is θ-pro-nilpotent when it is the inverse limit of an inverse system of θ-nilpotent
2-adic Adams ∆-modules. Thus, M is θ-pro-nilpotent if and only if M ∼= limiM/θi

where M/θi is the quotient module of M in M̂∆ with

(M/θi)C = MC/θ
iMC ,

(M/θi)R = MR/(θiMR + θiMH + rθiMC),

(M/θi)H = MH/qθ
iMC

for i > 1. More simply, M is θ-pro-nilpotent if and only if ∩iθiMC = 0 and ∩iθiMR

= 0. It is not hard to show that whenever M is θ-pro-nilpotent, M must be profinite
(i.e. M must be the inverse limit of an inverse system of finite 2-adic Adams ∆-
modules). For a space X, the cohomology

K̃−1
∆ (X; Ẑ2) = {K̃−1(X; Ẑ2), K̃O

−1
(X; Ẑ2), S̄−2K̃O

−5
(X; Ẑ2)}

has a natural 2-adic Adams ∆-module structure by [11, Section 3], and we find:

Lemma 6.2. If X is a connected space with H1(X; Ẑ2) = 0, then the 2-adic Adams
∆-module K̃−1

∆ (X; Ẑ2) is θ-pro-nilpotent.

Proof. The condition ∩iθiK̃0(ΣX; Ẑ2) = 0 holds by [6, 5.4 and 5.5] since H2(ΣX;

Ẑ2) = 0, and a similar proof shows ∩iθiK̃O
0
(ΣX; Ẑ2) = 0 since H1(ΣX;Z/2) = 0.

This proof uses the fact that the λ-ideal K̃O
0
Y is γ-nilpotent for a connected finite

CW complex Y by [10, Theorem 6.7] and the fact that the real line bundles over
Y are classified by H1(Y ;Z/2).

Definition 6.3 (The functor F̃ ). We shall construct a functor F̃ : Â∆→ M̂∆
where Â∆ is the abelian category of stable 2-adic Adams ∆-modules and M̂∆
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is that of 2-adic Adams ∆-modules (see Definitions 5.3 and 6.1). This functor will
carry each N ∈ Â∆ to a universal θ-pro-nilpotent target module F̃N ∈ M̂∆. For
N ∈ Â∆, we first let NRH ∈ Â denote the pushout of NR

r←−− NC q−−→ NH with a
map c̄ : NRH → NC induced by c and c′, and with a map r̄ : NC → NRH induced
by r or q. We also let NC+ ∈ Â denote NC/(1− t)NC and let NCφ ∈ Â denote
NC/(cNR + c′NH + 2NC). We next let

ρN = {NC , NRH ⊕NCφ, NC+}
be the stable 2-adic Adams ∆-module with operations given by tz = tz, c(x,w) =
c̄x, rz = (r̄z, [z]), c′[z] = (1 + t)z, and qz = [z]. We then obtain a stable 2-adic
Adams ∆-module

F̃N = N × ρN × ρN × · · ·
with components

F̃CN = NC ×NC ×NC × · · · ,
F̃RN = NR ×NRH ×NCφ ×NRH ×NCφ × · · · ,

F̃HN = NH ×NC+ ×NC+ × · · · .
We finally define operations θ : F̃CN → F̃CN , θ : F̃RN → F̃RN , and θ : F̃HN →
F̃RN respectively by the formulae

θ(z1, z2, z3, . . . ) = (0, z1, z2, z3, . . . ),
θ(x1, x2, z2, x3, z3, . . . ) = (0, [x1], 0, x2, 0, x3, 0, . . . ),

θ(y1, z2, z3, . . . ) = (0, [y1], 0, r̄z2, 0, r̄z3, 0, . . . ).

This gives a natural 2-adic Adams ∆-module F̃N and hence a functor F̃ : Â∆→
M̂∆. We let ι : N → F̃N be the map in Â∆ with ιC(z) = (z, 0, 0, . . . ), ιR(x) =
(x, 0, 0, . . . ), and ιH(y) = (y, 0, 0, . . . ), and we show:

Theorem 6.4. For a stable 2-adic Adams ∆-module N ∈ Â∆, the 2-adic Adams
∆-module F̃N ∈ M̂∆ is θ-pro-nilpotent and the map ι : N → F̃N has the universal
property that, for each θ-pro-nilpotent M ∈ M̂∆ and map f : N →M in Â∆, there
exists a unique map f̄ : F̃N →M in M̂∆ with f̄ ι = f .

Proof. F̃N is θ-pro-nilpotent since it is the inverse limit of its quotient modules

F̃N/θi+1 ∼= N × ρN × · · · × ρN.
For i > 1, we define a map f (i) : ρN →M in Â∆ by

f
(i)
C = θifC : NC −→MC ,

f
(i)
R = (θifR, θifH) + φ̄θi−1fC : NRH ⊕NCφ −→MR,

f
(i)
H = qθifC : NC+ −→MH .

We then define f̄ : F̃N →M as the inverse limit of the maps

f + f (1) + · · ·+ f (i) : N × ρN × · · · × ρN −→M/θi+1

in M̂∆, and we check that f̄ ι = f . The uniqueness condition for f̄ follows since the
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2-adic Adams ∆-modules F̃N/θi+1 = N × ρN × · · · × ρN are generated by ιN .

To show the robustness (see Definition 4.7) of F̃N for suitable N , we need:

Definition 6.5 (The functor ρ̄ : Â∆→ Â∆). For N ∈ Â∆, we let ρ̄N = {NC ,
NRH , NC+} be the stable 2-adic Adams ∆-module with operations given by tz =
tz, cx = c̄x, rz = r̄z, c′[z] = (1 + t)z, and qz = [z]. Thus, ρ̄N is the quotient of
ρN = {NC , NRH ⊕NCφ, NC+} by NCφ. If N is torsion-free and exact, then ρ̄N
is also torsion-free and exact by Lemma 4.2 since it is isomorphic to the module
{NC , NR +NH , NR ∩NH} with c and c′ treated as inclusions.

Lemma 6.6. If N ∈ Â∆ is torsion-free and exact, then F̃N ∈ M̂∆ is robust.

Proof. We check that φ̄ : F̃CN → F̃RN is given by

φ̄(z1, z2, z3, . . . ) = (0, 0, [z1], 0, [z2], 0, . . . )

for zi ∈ NC and [zi] ∈ NCφ. Thus, ker φ̄ = cF̃RN + c′F̃HN + 2F̃CN and F̃N/φ̄ ∼=
N × ρ̄N × ρ̄N × · · · . Hence, F̃N/φ̄ is torsion-free and exact by Definition 6.5 as
required.

Our main result in this section is:

Theorem 6.7. If E is a 0-connected spectrum with H1(E; Ẑ2) = 0 = H2(E; Ẑ2),
with K0(E; Ẑ2) = 0, and with K−1(E; Ẑ2) positively torsion-free (5.3), then there
is a natural isomorphism L̂F̃K−1

∆ (E; Ẑ2) ∼= K∗
CR(Ω∞E; Ẑ2).

Proof. Since K̃−1
∆ (Ω∞E; Ẑ2) is θ-pro-nilpotent by Lemma 6.2, the infinite sus-

pension map σ : K−1
∆ (E; Ẑ2)→ K̃−1

∆ (Ω∞E; Ẑ2) induces a map σ̄ : F̃K−1
∆ (E; Ẑ2)→

K̃−1
∆ (Ω∞E; Ẑ2) in M̂∆, where F̃K−1

∆ (E; Ẑ2) is robust by Lemmas 5.4 and 6.6. Thus
σ̄ induces an isomorphism L̂F̃K−1

∆ (E; Ẑ2) ∼= K∗
CR(Ω∞E; Ẑ2) by Theorem 4.9, since

it induces an isomorphism of the complex components by [6, Theorem 8.3].

7. Strong 2-adic Adams ∆-modules

Our main results on K/2∗-localizations in Section 8 will involve a space X with
K∗

CR(X; Ẑ2) ∼= L̂M for a 2-adic Adams ∆-module M that is strong in the sense
that it is robust, ψ3-splittable, and regular. In this section, we provide the required
algebraic definitions and explanations of these notions. We first recall:

Definition 7.1 (The robust modules). We say that a 2-adic Adams ∆-module M
is robust when it is robust in the sense of Definition 4.7, ignoring stable Adams
operations. When M is robust, the underlying 2-adic ∆-module M/φ̄ satisfies the
conditions of Lemma 4.2 and may be factored as a (possibly infinite) product of
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monogenic free 2-adic ∆-modules

FC(z) = {Ẑ2 ⊕ tẐ2, Ẑ2, Ẑ2} = {〈z〉 ⊕ 〈tz〉, 〈rz〉, 〈qz〉},
FR(x) = {Ẑ2, Ẑ2, Ẑ2} = {〈cx〉, 〈x〉, 〈qcx〉},
FH(y) = {Ẑ2, Ẑ2, Ẑ2} = {〈c′y〉, 〈rc′y〉, 〈y〉}

by an argument using the factorization of positively torsion-free groups in Defi-
nition 5.3. We let genCM , genRM , and genHM respectively denote the number
of complex, real, and quaternionic monogenic free factors of M/φ̄. These numbers
do not depend on the factorization since they equal the dimensions of the respec-
tive Z/2-vector spaces (MCφ)#, (MR/(φ̄MC + rMC))#, and (MH/qMC)#, where
(−)# is the Pontrjagin duality functor from 2-profinite abelian groups to discrete
2-torsion abelian groups. Using the factorization of M/φ̄, we find that

genMC = 2 genCM + genRM + genHM

where genMC denotes the number of Ẑ2 factors in the 2-profinite abelian group
MC .

Definition 7.2 (The ψ3-splittable modules). For a 2-adic Adams ∆-module M ∈
M̂∆, we consider the stable 2-adic Adams ∆-module M̄ = M/φ̄ ∈ Â∆, and we say
that M is ψ3-splittable when the quotient map M ³ M̄ has a right inverse s : M̄ →
M in Â∆. We call such a map s a ψ3-splitting of M , and we note that it corresponds
to a left inverse s′ : MR/rMC → φ̄MC of the canonical map φ̄MC →MR/rMC in
the category Â of stable 2-adic Adams modules, or equivalently in the category of
profinite Z/2-modules with automorphisms ψ3. We deduce that M is automatically
ψ3-splittable in some important cases:

Lemma 7.3. If M is a robust 2-adic Adams ∆-module with genCM = 0 or genRM
= 0, then M is ψ3-splittable.

Proof. Since MC is positively torsion-free, the map cr = 1 + t : MC+ →MC is mon-
ic, and hence c : rMC →MC is also monic. Thus, φ̄MC ∩ rMC = 0 and there is a
short exact sequence

0 −→ φ̄MC −→MR/rMC −→MR/(φ̄MC + rMC) −→ 0

in Â. Since genCM = 0 or genRM = 0, this has φ̄MC = 0 or MR/(φ̄MC + rMC) =
0, and hence the map φ̄MC →MR/rMC has an obvious left inverse in Â.

We shall use the ψ3-splittability condition to give:

Definition 7.4 (The θ-resolutions of modules). Let M ∈ M̂∆ be a 2-adic Adams
∆-module that is θ-pro-nilpotent, robust, and ψ3-splittable. These conditions will
hold when M is strong (see Definition 7.11). For a ψ3-splitting s : M̄ →M in Â∆,
we shall construct an associated θ-resolution

0 −→ F̃ ρ̄M̄
d̄−−→ F̃ M̄

s̄−−→M −→ 0

of M in M̂∆, with ρ̄M̄ = {M̄C , M̄RH , M̄C+} as in Definition 6.5, where s̄ : F̃ M̄ →
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M is induced by s via Theorem 6.4. To specify d̄, we use the commutative square

ρ̄M̄
θ−−−−→ M̄

yσ
ys

ρM̄
s(1)−−−−→ M

in Â∆ with ρM̄ = {M̄C , M̄RH ⊕ M̄Cφ, M̄C+} as in Definition 6.3, where s(1) is given
by the proof of Theorem 6.4, where θ = {θ, (θ, θ), qθ}, and where σ = {1, (1, θφ), 1},
using the map θφ : M̄RH → M̄Cφ = MCφ given by the composition of the sequence

M̄RH
s−−→MRH

(θ,θ)−−−−→MR
∼= M̄R ⊕MCφ

proj−−−−→MCφ

in which the isomorphism is the inverse of (s, φ̄) : M̄R ⊕MCφ
∼= MR. The commu-

tative square now gives a map

d = (θ,−σ, 0, 0, . . . ) : ρ̄M̄ → F̃ M̄

in Â∆ with s̄d = 0, and this induces the required map d̄ : F̃ ρ̄M̄ → F̃ M̄ in M̂∆ with
s̄d̄ = 0.

Lemma 7.5. If M ∈ M̂∆ is θ-pro-nilpotent and robust with a ψ3-splitting s : M̄ →
M , then the θ-resolution 0→ F̃ ρ̄M̄

d̄−→ F̃ M̄
s̄−→M → 0 is exact in M̂∆.

Proof. We easily check that 0→ φ̄(F̃ ρ̄M̄)C → φ̄(F̃ M̄)C → φ̄MC → 0 is exact and
that s̄/φ̄ : F̃ M̄/φ̄→M/φ̄ is onto. Hence, it suffices to show that the map F̃ ρ̄M̄/φ̄→
ker(s̄/φ̄) is an isomorphism. This follows by [10, Lemma 4.8] since the map
(F̃ ρ̄M̄/φ̄)C → ker(s̄/φ̄)C is clearly an isomorphism and since the 2-adic ∆-modules
F̃ ρ̄M̄/φ̄ and ker(s̄/φ̄) are exact by Lemma 6.6 and by the short exact sequence rule
of [10, 4.5].

To formulate our regularity condition for M , we use:

Definition 7.6 (The 2-adic Adams modules). These are the unstable versions of the
stable 2-adic Adams modules and were previously discussed in [8, 2.8]. By a finite
2-adic Adams module A, we mean a finite abelian 2-group with endomorphisms
ψk : A→ A for k ∈ Z such that:

(i) ψ1 = 1 and ψjψk = ψjk for j, k ∈ Z;
(ii) when n is sufficiently large, the condition j ≡ k mod 2n implies ψj = ψk.

By a 2-adic Adams module A, we mean the topological inverse limit of an inverse
system of finite 2-adic Adams modules. Such an A has an underlying 2-profinite
abelian group with continuous endomorphisms ψk : A→ A for k ∈ Z (and in fact
for k ∈ Ẑ2). For a space X, the cohomology K1(X; Ẑ2) is a 2-adic Adams module
with the usual Adams operations ψk for k ∈ Z as in [6, Example 5.2]. We note that
the operations ψ2 and ψk, for k odd, in K1(X; Ẑ2) correspond via Bott periodicity
to θ and to k−1ψk in K−1(X; Ẑ2). In general, for a θ-pro-nilpotent 2-adic Adams
∆-module M , we obtain a 2-adic Adams module MC having the same group as MC

but having ψ0 = 0 and having ψk2
i

equal to k−1ψkθi on MC for k odd and i > 0.
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Definition 7.7 (The linear and strictly nonlinear modules). As in [8, Section 4]
and [7, Section 2], a 2-adic Adams module H is called linear when it has ψk = k for
all k ∈ Z, and H is called quasilinear when 2H ⊂ ψ2H. Each 2-adic Adams module
A has a largest linear quotient module

LinA = A/((ψ2 − 2)A+ (ψ−1 + 1)A+ (ψ3 − 3)A)

and also has a largest quasilinear submodule Aql ⊂ A by Lemma 13.1 below. A 2-
adic Adams module A is called strictly nonlinear when Aql = 0. This implies that A
is torsion-free with ∩i(ψ2)iA = 0, and A will be strictly nonlinear by Remark 13.2
and [7, 2.5] whenever it is torsion-free with (ψ2)iA ⊂ 2i+1A for some i > 1.

Definition 7.8 (The regular modules). As in [8, 4.4], we say that a 2-adic Adams
module A is regular when the kernel of A→ LinA is strictly nonlinear. This implies
that ∩i(ψ2)iA = 0, and A will be regular whenever it is an extension of a strictly
nonlinear submodule by a linear quotient module. We also say that a 2-adic Adams
∆-module M is regular when it is θ-pro-nilpotent with MC regular as a 2-adic
Adams module. For a connected space X with H1(X; Ẑ2) = 0, the 2-adic Adams ∆-
module K̃−1

∆ (X; Ẑ2) is always θ-pro-nilpotent by Lemma 6.2, and hence K̃−1
∆ (X; Ẑ2)

is regular if and only if K̃1(X; Ẑ2) is regular as a 2-adic Adams module. The fol-
lowing two lemmas will often guarantee regularity for our modules.

Lemma 7.9. Let X be a connected space with H1(X; Ẑ2) = 0, with Hm(X; Ẑ2) = 0
for sufficiently large m, and with K̃1(X; Ẑ2) torsion-free. Then K̃1(X; Ẑ2) is regular
with ψ2 : K̃1(X; Ẑ2)→ K̃1(X; Ẑ2) monic, and hence K̃−1

∆ (X; Ẑ2) is regular with
θ : K̃−1(X; Ẑ2)→ K̃−1(X; Ẑ2) monic.

Lemma 7.10. For a regular 2-adic Adams module A, each submodule is regular,
and each torsion-free quotient module is regular when A is finitely generated over
Ẑ2.

The proofs are in Section 13. Combining the preceding definitions, we finally
introduce:

Definition 7.11 (The strong modules). We say that a 2-adic Adams ∆-module
M ∈ M̂∆ is strong when:

(i) M is robust;
(ii) M is ψ3-splittable;
(iii) M is regular.
Such an M is automatically θ-pro-nilpotent (and hence profinite) since it is regular.

8. On the K/2∗-localizations of our spaces

We recall that the K/2∗-localizations of spaces or spectra are the same as the
K∗(−; Ẑ2)-localizations since the K/2∗-equivalences are the same as the K∗(−; Ẑ2)-
equivalences. In this section, we give our main result (Theorem 8.6) on the K/2∗-
localization of a connected space X with K∗

CR(X; Ẑ2) ∼= L̂M for a strong 2-adic
Adams ∆-module M . We first consider:
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Definition 8.1 (Building blocks for K/2∗-localizations). For a torsion-free exact
stable 2-adic Adams ∆-module N ∈ Â∆, we let EN denote the K/2∗-local spectrum
E−1N of Theorem 5.5 with an isomorphismK∗

CR(EN ; Ẑ2) ∼= CR−1N in the category
ÂCR of stable 2-adic Adams CR-modules. As in [8, 3.5], we let ẼN → EN → P̄ 2EN
denote the Postnikov fiber sequence of spectra with πiẼN ∼= πiEN for i > 2, with
πiẼN = 0 for i < 2, and with π2ẼN ∼= t̂2π2EN , where t̂2π2ẼN ⊂ π2EN denotes
the Ext-2-completion of the torsion subgroup of π2EN . We now obtain a simply-
connected infinite loop space Ω∞ẼN which is K/2∗-local by [8, Theorem 3.8]. These
Ω∞ẼN , with their companions Ω∞Ẽ ρ̄N , will serve as our building blocks for K/2∗-
localizations of spaces, where ρ̄N denotes the torsion-free exact stable 2-adic Adams
∆-module ρ̄N = {NC , NR +NH , NR ∩NH} of Definition 6.5.

Definition 8.2 (Strict homomorphisms and isomorphisms). For a 2-adic Adams
∆-module M ∈ M̂∆ and a connected space X, a strict homomorphism (resp. strict
isomorphism) L̂M → K∗

CR(X; Ẑ2) is a homomorphism (resp. isomorphism) of spe-
cial 2-adic φCR-algebras induced by a map M → K̃−1

∆ (X; Ẑ2) of 2-adic Adams
∆-modules. For instance, there is a strict isomorphism

L̂F̃N ∼= K∗
CR(Ω∞ẼN ; Ẑ2)

for each torsion-free exact stable 2-adic Adams ∆-module N ∈ Â∆ by Theorem 6.7,
and we have:

Lemma 8.3. For a torsion-free exact module N ∈ Â∆ and a connected space X
with H1(X; Ẑ2) = 0 = H2(X; Ẑ2), each strict homomorphism L̂F̃N → K∗

CR(X; Ẑ2)
is induced by a (possibly non-unique) map X → Ω∞ẼN .

Proof. A strict homomorphism L̂F̃N → K∗
CR(X; Ẑ2) corresponds successively to:

a map F̃N → K̃−1
∆ (X; Ẑ2) in M̂∆, a map N → K̃−1

∆ (X; Ẑ2) in Â∆, and a map
CR−1N → K∗

CR(Σ∞X; Ẑ2) in ÂCR. By Theorem 5.6, this last map is induced by
a map Σ∞X → EN , which lifts uniquely to a map Σ∞X → ẼN , and we can easily
check that the adjoint map X → Ω∞ẼN induces the original strict homomorphism.

Definition 8.4 (The key construction). For a strong 2-adic Adams ∆-module M ∈
M̂∆, we may take a θ-resolution (see Definition 7.4)

0 −→ F̃ ρ̄M̄
d̄−−→ F̃ M̄

s̄−−→M −→ 0

using the torsion-free exact module M̄ = M/φ̄ ∈ Â∆. We may then apply Lem-
ma 8.3 to give a map f : Ω∞ẼM̄ → Ω∞Ẽ ρ̄M̄ inducing the K∗

CR(−; Ẑ2)-homomorph-
ism f∗ = L̂d̄ : L̂F̃ ρ̄M̄ → L̂F̃M . Any such f will be called a companion map of M ,
and its homotopy fiber Fib f will be K/2∗-local since Ω∞ẼM and Ω∞Ẽ ρ̄M are. As
in [8, 4.6] and Definition 8.1, we let

F̃ibf −→ Fib f −→ P̄ 2 Fib f

denote the Postnikov fiber sequence with πiF̃ibf ∼= πi Fib f for i > 2, with πiF̃ibf =
0 for i < 2, and with πiF̃ibf ∼= t̂2π2F̃ibf . We note that P̄ 2 Fib f is an infinite loop
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space which is K/2∗-local by [8, Theorem 3.8], and we conclude that F̃ibf is also
K/2∗-local. Moreover, we have K∗

CR(F̃ibf ; Ẑ2) ∼= L̂M by:

Theorem 8.5. For a strong 2-adic Adams ∆-module M ∈ M̂∆ and any companion
map f : Ω∞ẼM̄ → Ω∞Ẽ ρ̄M̄ , there is a strict isomorphism L̂M ∼= K∗

CR(F̃ibf ; Ẑ2).

Thus, L̂M is topologically realizable for each strong M ∈ M̂∆. This theorem
will be proved in Section 14 and leads immediately to our main result on K/2∗-
localizations of spaces.

Theorem 8.6. If X is a connected space with a strict isomorphism L̂M ∼= K∗
CR(X;

Ẑ2) for a strong 2-adic Adams ∆-module M ∈ M̂∆, then there is an equivalence
XK/2 ' F̃ibf for some companion map f : Ω∞ẼM̄ → Ω∞Ẽ ρ̄M̄ of M , where the
equivalence induces the canonical isomorphism K∗

CR(F̃ibf ; Ẑ2) ∼= L̂M ∼= K∗
CR(X;

Ẑ2). Moreover, H1(X; Ẑ2) = 0 = H2(X; Ẑ2).

Proof. The last statement follows by [6, 5.4]. For the first, we take a θ-resolution

0→ F̃ ρ̄M̄
d̄−→ F̃ M̄

s̄−→M → 0 of M and apply Lemma 8.3 to give a map h : X →
Ω∞ẼM̄ with h∗ = L̂s̄ : L̂F̃ M̄ → L̂M . We then apply Lemma 8.3 again to give a
map k : Cof h→ Ω∞Ẽ ρ̄M̄ with

k∗ = L̂d̄ : L̂F̃ ρ̄M̄ −→ K∗
CR(Cof h; Ẑ2) ⊂ L̂F̃ M̄ .

Composing k with the cofiber map, we obtain a companion map f : Ω∞ẼM̄ →
Ω∞Ẽ ρ̄M̄ of M such that h lifts to a map u : X → F̃ibf which is a K/2∗-equivalence
by Theorem 8.5. Since F̃ibf is K/2∗-local, this gives the desired equivalence XK/2 '
F̃ibf .

In this theorem, M is uniquely determined by the space X since there is a canon-
ical isomorphism M ∼= Q̂K−1

∆ (X; Ẑ2) in M̂∆ by Remark 4.10 and [11, Section 3].

9. On the v1-periodic homotopy groups of our spaces

The p-primary v1-periodic homotopy groups v−1
1 π∗X of a space X at a prime

p were defined by Davis and Mahowald [15] and have been studied extensively
(see [13]). In this section, we apply the preceding result (Theorem 8.6) on the
K/2∗-localizations of our spaces to approach v1-periodic homotopy groups at p = 2
using:

Definition 9.1 (The functor Φ1). As in [4], [9], [16], and [18], there is a v1-
stabilization functor Φ1 from the homotopy category of spaces to that of spectra
such that:

(i) for a space X, there is a natural isomorphism v−1
1 π∗X ∼= π∗τ2Φ1X where

τ2Φ1X is the 2-torsion part of Φ1X (given by the fiber of its localization away
from 2);

(ii) Φ1X is K/2∗-local for each space X;
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(iii) for a spectrum E, there is a natural equivalence Φ1(Ω∞E) ' EK/2;
(iv) Φ1 preserves fiber squares.
Various other properties of Φ1 are described in [10, Section 2], and the isomorphism
v−1
1 π∗X ∼= π∗τ2Φ1X may be applied as in [10, Theorem 3.2] to show:

Theorem 9.2. For a space X, there is a natural long exact sequence

· · · −→ KOn−3(Φ1X; Ẑ2)
ψ3−9−−−→ KOn−3(Φ1X; Ẑ2) −→ (v−1

1 πnX)#

−→ KOn−2(Φ1X; Ẑ2)
ψ3−9−−−→ KOn−2(Φ1X; Ẑ2) −→ · · ·

where (−)# is the Pontrjagin duality functor from discrete 2-torsion abelian groups
to 2-profinite abelian groups.

This may be used to calculate v−1
1 π∗X from KO∗(Φ1X; Ẑ2) up to extension. To

approach KO∗(Φ1X; Ẑ2) or K∗(Φ1X; Ẑ2), we require:

Definition 9.3 (The K/2∗-durable spaces). Following [8, 7.8], we say that a space
X is K/2∗-durable when the K/2∗-localization X → XK/2 induces an equivalence
Φ1X ' Φ1XK/2 (or equivalently induces an isomorphism v−1

1 π∗X ∼= v−1
1 π∗XK/2),

and we recall that each connected H-space is K/2∗-durable. For such X, we may
apply our key result on K/2∗-localizations (Theorem 8.6) to deduce:

Theorem 9.4. If X is a connected K/2∗-durable space (e.g. H-space) with a strict
isomorphism L̂M ∼= K∗

CR(X; Ẑ2) for a strong module M ∈ M̂∆, then there is a
(co)fiber sequence of spectra Φ1X → EM̄ ε−→ E ρ̄M̄ such that ε∗ : K∗

CR(E ρ̄M̄ ; Ẑ2)→
K∗

CR(EM̄ ; Ẑ2) is given by CR−1θ : CR−1ρ̄M̄ → CR−1M̄ .

Here, the map θ : ρ̄M̄ → M̄ is given by

θ = (θ, θ, θ) : {M̄C , M̄R + M̄H , M̄R ∩ M̄H} −→ {M̄C , M̄R, M̄H}
in Â∆. This theorem will be proved below and may be used to calculate K∗(Φ1X;
Ẑ2) and KO∗(Φ1X; Ẑ2) since it immediately implies:

Theorem 9.5. For X as in Theorem 9.4, there is a K∗(−; Ẑ2) cohomology exact
sequence

0 −→ K−2(Φ1X; Ẑ2) −→ M̄C
θ−−→ M̄C −→ K−1(Φ1X; Ẑ2) −→ 0,

and there is a KO∗(−; Ẑ2) cohomology exact sequence

0 −→ KO−8(Φ1X; Ẑ2) −→ M̄C/(M̄R + M̄H) θ−−→ M̄C/M̄R −→
KO−7(Φ1X; Ẑ2) −→ 0 −→ M̄H/(M̄R ∩ M̄H) −→ KO−6(Φ1X; Ẑ2) −→

M̄R ∩ M̄H
θ−−→ M̄H −→ KO−5(Φ1X; Ẑ2) −→ 0 −→ 0 −→ KO−4(Φ1X; Ẑ2) −→
M̄C/(M̄R ∩ M̄H) θ−−→ M̄C/M̄H −→ KO−3(Φ1X; Ẑ2) −→

(M̄R + M̄H)/(M̄R ∩ M̄H) θ−−→ M̄R/(M̄R ∩ M̄H) −→
KO−2(Φ1X; Ẑ2) −→ M̄R + M̄H

θ−−→ M̄R −→ KO−1(Φ1X; Ẑ2) −→ 0.
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In these sequences, θ may be replaced by λ2 = −θ. Also, for i, k ∈ Z with k odd,
the Adams operation ψk in K2i−1(Φ1X; Ẑ2), K2i−2(Φ1X; Ẑ2), KO2i−1(Φ1X; Ẑ2),
or KO2i−2(Φ1X; Ẑ2) agrees with k−iψk in the adjacent M̄ terms.

Thus, for X as in Theorem 9.4, we may essentially calculate v−1
1 π∗X from M̄

(up to extension problems) using Theorems 9.2 and 9.5. By [10, 7.6], this approach
to v−1

1 π∗X may be extended to various other important spaces X using:

Definition 9.6 (The K̂Φ1-goodness condition). For a space X, we let Φ1 : K̃∗
CR(X;

Ẑ2) −→ K∗
CR(Φ1X; Ẑ2) denote the v1-stabilization homomorphism of [10, 7.1], and

we recall that it induces a homomorphism Φ1 : Q̂Kn
∆(X; Ẑ2)/θ −→ Kn

∆(Φ1X; Ẑ2)
in Â∆ for n = −1, 0 by [10, 7.4], where Q̂Kn

∆(X; Ẑ2)/θ is as in Remark 4.10 and
Definition 6.1. Following [10, 7.5], we say that a space X is K̂Φ1-good when the
complex v1-stabilization homomorphism Φ1 : Q̂Kn(X; Ẑ2)/θ → Kn(Φ1X; Ẑ2) is an
isomorphism for n = −1, 0. Our next theorem will provide initial examples of K̂Φ1-
good spaces from which other examples may be built.

Theorem 9.7. If X is a connected K/2∗-durable space (e.g. H-space) with a strict
isomorphism L̂M ∼= K∗

CR(X; Ẑ2) for a strong module M ∈ M̂∆ such that θ : M̄C →
M̄C is monic, then X is K̂Φ1-good with K0(Φ1X; Ẑ2) = 0, with K−1(Φ1X; Ẑ2) =
M̄C/θ, and with K−1

∆ (Φ1X; Ẑ2) ∼= M̄/θ.

To prove Theorems 9.4 and 9.7, we first consider the spectrum ẼN for a torsion-
free exact module N ∈ Â∆ and note that Φ1Ω∞ẼN ' (ẼN)K/2 ' EN .

Lemma 9.8. The space Ω∞ẼN is K̂Φ1-good, and the v1-stabilization gives a nat-
ural isomorphism

Φ1 : Q̂K−1
∆ (Ω∞ẼN ; Ẑ2)/θ ∼= K−1

∆ (EN ; Ẑ2).

Proof. By [10, 7.1], the homomorphism Φ1 : K−1
∆ (Ω∞ẼN ; Ẑ2)→ K−1

∆ (EN ; Ẑ2) is
left inverse to the infinite suspension homomorphism, and the lemma now follows
by Theorem 6.7 together with Lemma 4.11, and Definition 6.3.

Proof of Theorem 9.4. Applying the functor Φ1 to the fiber sequence of Theo-
rem 8.6, we obtain a (co)fiber sequence of spectra

Φ1XK/2 −→ Φ1Ω∞ẼM̄ Φ1f−−−−→ Φ1Ω∞Ẽ ρ̄M̄
for some companion map f of M . We then deduce that Φ1f corresponds to a map
EM̄ → E ρ̄M̄ having the desired properties by Lemmas 9.8 and 5.4.

Proof of Theorem 9.7. The results on K∗(Φ1X; Ẑ2) and K−1
∆ (Φ1X; Ẑ2) follow

from Theorem 9.5. SinceK∗(X; Ẑ2) ∼= Λ̂MC by Lemma 4.6, we obtain isomorphisms
Q̂K0(X; Ẑ2)/θ = 0 and Q̂K−1(X; Ẑ2)/θ ∼= MC/θ, and we deduce that Φ1 : Q̂Kn(X;
Ẑ2)/θ ∼= Kn(Φ1X; Ẑ2) for n = −1, 0 by Lemma 9.8 and naturality.
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10. Applications to simply-connected compact Lie groups

We now apply the preceding results to a simply-connected compact Lie group G.
We first use the representation theory of G to functorially determine the united 2-
adic K-cohomology ring K∗

CR(G; Ẑ2) = {K∗(G; Ẑ2),KO∗(G; Ẑ2)} in Theorem 10.3.
Then, with slight restrictions on the group, we use the representation theory of G
to give expressions for the K/2∗-localization GK/2, for the v1-stabilization Φ1G,
and for the cohomology KO∗(Φ1G; Ẑ2), and we also show that G is K̂Φ1-good. Our
results are summarized in Theorem 10.6 and permit calculations of the 2-primary
v1-periodic homotopy groups v−1

1 π∗G using Theorem 9.2, as accomplished very
successfully by Davis [14]. In this section, we assume some general familiarity with
the representation rings of our Lie groups as described in [12, Sections II.6 and
VI.4] and [14, Theorem 2.3].

Definition 10.1 (The representation ring R∆G). For a simply-connected compact
Lie group G, we let RG be the complex representation ring and let RRG,RHG ⊂
RG be the real and quaternionic parts of RG with the usual λ-ring structures on
RG and RRG⊕RHG. We also let t = ψ−1 : RG ∼= RG, c : RRG ⊂ RG, r : RG→
RRG, c′ : RHG ⊂ RG, and q : RG→ RHG be the usual operations satisfying the ∆-
module relations of Definition 4.1. These structures are compatible in the expected
ways and combine to give a ∆λ-ring R∆G = {RG,RRG,RHG} in the sense of [10,
6.2]. We let R̃∆G = {R̃G, R̃RG, R̃HG} be the augmentation ideal of R∆G given by
the kernel R̃G of the complex augmentation dim: RG→ Z, where R̃RG = RRG ∩
R̃G and R̃HG = RHG ∩ R̃G. We also let QR∆G = {QRG,QRRG,QRHG} be the
indecomposables of R∆G given by

QRG = R̃G/(R̃G)2,

QRRG = R̃RG/((R̃RG)2 + (R̃HG)2 + r(R̃G)2),

QRHG = R̃HG/((R̃RG)(R̃HG) + q(R̃G)2).

It is straightforward to show that R̃∆G and QR∆G inherit ∆λ-ring structures
(without identities) from R∆G. Since QR∆G is a ∆λ-ring with trivial multipli-
cation, it is equipped with additive operations t : QRG ∼= QRG, c : QRRG→ QRG,
r : QRG→ QRRG, c′ : QRHG→ QRG, q : QRG→ QRHG, θ = −λ2 : QRG→
QRG, θ = −λ2 : QRRG→ QRRG, θ = −λ2 : QRHG→ QRRG, ψk : QRG→
QRG, ψk : QRRG→ QRRG, and ψk : QRHG→ QRHG for the odd k ∈ Z. We
now let Q̂R∆G = {Q̂RG, Q̂RRG, Q̂RHG} be the 2-adic completion of QR∆G with
the induced additive operations on the components Q̂RG = Ẑ2 ⊗QRG, Q̂RRG =
Ẑ2 ⊗QRRG, and Q̂RHG = Ẑ2 ⊗QRHG.

Lemma 10.2. For a simply-connected compact Lie group G, Q̂R∆G is a robust
2-adic Adams ∆-module.

This will be proved below. To determine the cohomology ring K∗
CR(G; Ẑ2) =

{K∗(G; Ẑ2),KO∗(G; Ẑ2)} from the representation theory ofG, we now let β : Q̂R∆G

→ K̃−1
∆ (G; Ẑ2) be the 2-adic Adams ∆-module homomorphism induced by the com-

position of the canonical homomorphisms R̃∆G→ K̃0
∆(BG; Ẑ2)→ K̃−1

∆ (G; Ẑ2).
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Theorem 10.3. For a simply-connected compact Lie group G, there is a natural
strict isomorphism β̄ : L̂(Q̂R∆G) ∼= K∗

CR(G; Ẑ2).

Proof. This follows by Lemma 10.2 and Theorem 4.9 since β : Q̂RG→ K−1(G; Ẑ2)
induces an isomorphism Λ̂(Q̂RG) ∼= K∗(G; Ẑ2) by [17].

We note that K∗
CR(G; Ẑ2) has a simple system of generators (see Definition 3.3)

consisting of the βz̃γ ∈ K−1(G; Ẑ2), the βx̃α ∈ KO−1(G; Ẑ2), and the βỹβ ∈
KO−5(G; Ẑ2) obtained from the analysis of Q̂R∆G below in Remark 10.7. Thus, by
Proposition 3.4, K∗

CR(G; Ẑ2) is a free 2-adic CR-module on the associated products.
However, our description of K∗

CR(G; Ẑ2) as L̂(Q̂R∆G) is more natural and includes
the full multiplicative structure. Moreover, it will let us apply our main results to
G.

Lemma 10.4. For a simply-connected compact Lie group G, the 2-adic Adams ∆-
module Q̂R∆G is regular with θ : Q̂RG→ Q̂RG monic.

Proof. This follows by Lemmas 7.9 and 7.10 since β : Q̂RG→ K̃−1(G; Ẑ2) is monic
by Theorem 10.3.

Thus, Q̂R∆G is strong (robust, ψ3-splittable, and regular) if and only if it is
ψ3-splittable, and this is usually the case by:

Lemma 10.5. For a simply-connected compact simple Lie group G, the 2-adic
Adams ∆-module Q̂R∆G is ψ3-splittable (and hence strong) if and only if G is
not E6 or Spin(4k + 2) with k not a 2-power.

This will be proved below using work of Davis [14]. For a simply-connected
compact Lie group G, we now let Q̂∆ = {Q̂, Q̂R, Q̂H} briefly denote the associated
stable 2-adic Adams ∆-module Q̂∆RG = (Q̂∆RG)/φ̄. This agrees with the notation
of [10, 9.2] and [14], since our Q̂∆ = {Q̂, Q̂R, Q̂H} is the 2-adic completion of their
Q∆ = {Q,QR, QH}. Our main results now give the following omnibus theorem,
whose four parts may be expanded in the obvious ways to match the cited theorems.

Theorem 10.6. Let G be a simply-connected compact Lie group such that the 2-
adic Adams ∆-module Q̂∆RG is ψ3-splittable (see Lemma 10.5), and let Q̂∆ =
{Q̂, Q̂R, Q̂H} be the associated stable 2-adic Adams ∆-module. Then:

(i) the K/2∗-localization GK/2 is the homotopy fiber of a map Ω∞ẼQ̂∆ →
Ω∞Ẽ ρ̄Q̂∆ with low dimensional modifications as in Theorem 8.6;

(ii) the 2-adic v1-stabilization Φ1G is the homotopy fiber of a map of spectra
EQ̂∆ → E ρ̄Q̂∆ as in Theorem 9.4;

(iii) there is an exact sequence

0 −→ KO−8(Φ1G; Ẑ2) −→ Q̂/(Q̂R + Q̂H) θ−−→ Q̂/Q̂R −→ · · ·
continuing as in Theorem 9.5;

(iv) G is K̂Φ1-good at the prime 2 as in Theorem 9.7.
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The exact sequence in (iii) permits calculations of the 2-primary v1-periodic
homotopy groups v−1

1 π∗G using Theorem 9.2 as accomplished by Davis [14]. This
exact sequence was previously obtained in [10, Theorem 9.3] using indirect alge-
braic methods under the hard-to-verify condition that G was K̂Φ1-good. It is now
obtained using the KO∗(−; Ẑ2) cohomology exact sequence of the (co)fiber sequence
in (ii) under an accessible algebraic condition that implies the K̂Φ1-goodness of G
by (iv).

We devote the rest of the section to proving Lemmas 10.2 and 10.5 using:

Remark 10.7 (Generators for representation rings). For a simply-connected com-
pact Lie group G, standard results summarized in [14, Theorem 2.3] show that RG
is a finitely generated polynomial ring Z[zγ , z∗γ , xα, yβ ]γ,α,β on certain basic com-
plex representations zγ together with their conjugates z∗γ = tzγ , certain basic real
representations xα, and certain basic quaternionic representations yβ . Moreover,
in terms of these generators, the Z/2-graded ring {RRG,RHG} is characterized
by the fact that its quotient {RRG/rRG,RHG/qRG} is a Z/2-graded polynomial
algebra Z/2[xα, φ̄zγ , yβ ]α,γ,β on the real generators xα and φ̄zγ (with cφ̄zγ = z∗γzγ)
and the quaternionic generators yβ . Consequently, the indecomposables QR∆G =
{QRG,QRRG,QRHG} may be expressed as

QRG = Z{z̃γ , z̃∗γ , cx̃α, c′ỹβ}γ,α,β ,
QRRG = Z{rz̃γ , x̃α, rc′ỹβ}γ,α,β ⊕ Z/2{φ̄z̃γ}γ ,
QRHG = Z{qz̃γ , qcx̃α, ỹβ}γ,α,β

where w̃ denotes w − dimw for w ∈ RG. Thus, the 2-adic indecomposables Q̂R∆G
= {Q̂RG, Q̂RRG, Q̂RHG} may be expressed similarly using Ẑ2 in place of Z, and
the stable 2-adic indecomposables Q̂∆ = {Q̂, Q̂R, Q̂H} may be expressed as

Q̂ = Ẑ2{z̃γ , z̃∗γ , cx̃α, c′ỹβ}γ,α,β ,
Q̂R = Ẑ2{rz̃γ , x̃α, rc′ỹβ}γ,α,β ,
Q̂H = Ẑ2{qz̃γ , qcx̃α, ỹβ}γ,α,β .

Proof of Lemma 10.2. Since QR∆G is a ∆λ-ring with trivial multiplication, it
is straightforward to check all of the required relations for operations (see Defini-
tions 4.3 and 6.1) . In particular, we deduce θθr = θrθ from the relations λ4r =
rλ4 + φ̄λ2, λ4 = −λ2λ2, φ̄ = λ2r − rλ2, 2φ̄ = 0, and θ = −λ2, which hold gener-
ally in ∆λ-rings with trivial multiplication [10, 6.2]. We next observe that Q̂RG,
Q̂RRG, and Q̂RHG are stable 2-adic Adams modules by [6, 6.2], since QRG and
QRRG⊕QRHG are γ-nilpotent and finitely generated abelian (because they have
trivial multiplications and have finite generating sets of elements w̃ for representa-
tions w). Thus, Q̂R∆G is a 2-adic Adams ∆-module, and it must be robust by the
analysis of Remark 10.7.

To check the ψ3-splittability of Q̂R∆G, we let hG = ker(1− t)/ im(1 + t) be the
augmented algebra over Z/2 obtained from RG using the involution t = ψ−1 : RG ∼=
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RG. This is a polynomial algebra hG ∼= Z/2[cx̃α, z̃∗γ z̃γ , c′ỹβ ]α,γ,β which is Z/2-grad-
ed, since there is an isomorphism

c+ c′ : RRG/rRG⊕RHG/qRG ∼= hG,

and we let QRhG ∼= Z/2{cx̃α, z̃∗γ z̃γ}α,γ denote the real (degree 0) indecomposables.
We define a homomorphism s : QRG→ QRhG by s[u] = [u∗u] for u ∈ R̃G and note
that sQRG = Z/2{z̃∗γ z̃γ}γ . We view s as a homomorphism of ψ3-modules (abelian
groups with endomorphisms ψ3) as in [14, 2.4].

Lemma 10.8. For a simply-connected compact Lie group G, Q̂R∆G is ψ3-splittable
if and only if the ψ3-submodule sQRG ⊂ QRhG is a direct summand.

Proof. By Definition 7.2 and the proof of Lemma 7.3, Q̂R∆G is ψ3-splittable if
and only if the ψ3-submodule φ̄Q̂RG ⊂ Q̂RRG/rQ̂RG (or equivalently φ̄QRG ⊂
QRRG/rQRG) is a direct summand. The lemma now follows since φ̄QRG corre-
sponds to sQRG under the isomorphism c : QRRG/rQRG ∼= QRhG.

Proof of Lemma 10.5. By Lemma 10.8 and Davis [14, Theorem 1.3], the follow-
ing conditions are successively equivalent: Q̂R∆G is ψ3-splittable; the ψ3-submodule
sQRG ⊂ QRhG is a direct summand; G satisfies the Technical Condition of [14,
Definition 2.4]; G is not E6 or Spin(4k + 2) with k not a 2-power.

11. Proofs of basic lemmas for L̂

We shall prove Lemmas 4.5, 4.6, and 4.11 showing the basic properties of the
functor L̂ : θ∆M̂od→ φCRÂlg, where θ∆M̂od is the category of 2-adic θ∆-modules
and φCRÂlg is that of special 2-adic φCR-algebras (see Definitions 4.3 and 3.2).
We first introduce an intermediate category of modules.

Definition 11.1 (The 2-adic η∆-modules). By a 2-adic η∆-module N = {NC , NR,
NH , NS}, we mean a 2-adic ∆-module {NC , NR, NH}, with operations t, c, r, c′, and
q as in Definition 4.1, together with a 2-profinite abelian group NS and continuous
additive operations φ̄ : NC → NR, η : NR → NS , ()[2] : NR → NS , and ()[2] : NH →
NS satisfying the following relations for elements z ∈ NC , x ∈ NR, and y ∈ NH :

φ̄cx = 0, φ̄c′y = 0, φ̄tz = φ̄z, 2φ̄z = 0, cφ̄z = 0,

(φ̄z)[2] = 0, 2ηx = 0, ηrz = 0, (qz)[2] = (rz)[2] = ηφ̄z.

We let η∆M̂od denote the category of 2-adic η∆-modules.

Remark 11.2 (A functorial interpretation of admissible maps). Let J : θ∆M̂od→
η∆M̂od be the functor carrying a 2-adic θ∆-module M to the 2-adic η∆-module
JM = {MC ,MR,MH ,MR/rMC} having the original operations t, c, r, c′, q, and
φ̄ together with operations η : MR →MR/rMC , ()[2] : MR →MR/rMC , and
()[2] : MH →MR/rMC given by ηx = [x], x[2] = [θx], and y[2] = [θy] for x ∈MR

and y ∈MH . Let I : φCRÂlg → η∆M̂od be the functor carrying a special 2-adic
φCR-algebra A to the 2-adic η∆-module IA = {Ã−1

C , Ã−1
R , Ã−5

R , Ã−2
R } having the
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operations t, c, r, c′, and q of ∆−1Ã (see Definition 4.1) together with oper-
ations φ̄ : Ã−1

C → Ã−1
R , η : Ã−1

R → Ã−2
R , ()[2] : Ã−1

R → Ã−2
R , and ()[2] : Ã−5

R → Ã−2
R

given by φ̄z = ηφz, ηx = ηx, x[2] = x2, and y[2] = B−1
R y2 for z ∈ A−1

C , x ∈ A−1
R ,

and y ∈ A−5
R . We now easily see:

Lemma 11.3. For M ∈ θ∆M̂od and A ∈ φCRÂlg, an admissible map f : M → A
is equivalent to a map f : JM → IA in η∆M̂od.

To construct the functor L̂, we need:

Lemma 11.4. The functor I : φCRÂlg → η∆M̂od has a left adjoint V̂ : η∆M̂od
→ φCRÂlg.
Proof. This follows by the Special Adjoint Functor Theorem (see [19]) since I
preserves small limits and since φCRÂlg has a small cogenerating set by Lemma 11.5
below.

A special 2-adic φCR-algebra A will be called finite when the groups ÃmC and
ÃmR are finite for all m.

Lemma 11.5. Each special 2-adic φCR-algebra A is the inverse limit of its finite
quotients in φCRÂlg.
Proof. This is similar to the corresponding result for topological rings in [22, 5.1.2].
For a 2-adic CR-submodule G ⊂ Ã with Ã/G finite, we must obtain a special 2-adic
φCR-ideal H of A with H ⊂ G and Ã/H finite. We first obtain an ideal M of AR
(closed under BR, B−1

R , η, and ξ) with M ⊂ GR and ÃR/M finite as in [22]. We
next obtain an ideal N of AC (closed under B, B−1, and t) with N ⊂ GC ∩ r−1M ∩
φ−1M0 and ÃC/N finite as in [22]. The desired ideal H is now given by HC = N
and HR = M ∩ c−1N .

Proof of Lemma 4.5. Using Lemmas 11.3 and 11.4, we obtain the desired uni-
versal algebra L̂M from the functor L̂ = V̂ J : θ∆M̂od→ φCRM̂od.

A 2-adic η∆-module N is called sharp when η : NR/rNC → NS is an isomor-
phism, and we may now derive the properties of L̂ from the corresponding properties
of V̂ on such sharp modules.

Lemma 11.6. For a sharp 2-adic η∆-module N , the canonical map Λ̂NC →
(V̂ N)C is an algebra isomorphism.

Proof. LetW : φCRÂlg → CÂlg be the forgetful functor carrying each A ∈ φCRÂlg
to its complex part AC ∈ CÂlg where CÂlg is the category of special 2-adic C-
algebras, which are defined similarly to special 2-adic φCR-algebras (see Defini-
tion 3.2) but using only complex terms and their operations. The functor W has a
right adjoint H : CÂlg → φCRÂlg where (HX)C = X and (HX)R = {x ∈ X|tx =
x} with c = 1, r = 1 + t, η = 0, φz = z∗z for z ∈ X0, and φw = B−1w∗w for
w ∈ X−1. For each N ∈ η∆M̂od and each X ∈ CÂlg, a map N → IHX in η∆M̂od
corresponds to a map NC → X̃−1 respecting t, which in turn corresponds to a map
Λ̂NC → X in CÂlg. Hence, since WV̂ is left adjoint to IH, the canonical map
Λ̂NC →WV̂ N is an isomorphism.
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Proof of Lemma 4.6. For a 2-adic θ∆-module M , the canonical map Λ̂MC →
(L̂M)C is an isomorphism by Lemma 11.6 and by the above proof of Lemma 4.5.

Let Q̂ : φCRÂlg → φCRM̂od be the functor carrying each A ∈ φCRÂlg to its
indecomposables Q̂A ∈ φCRM̂od where φCRM̂od is the category of special 2-adic
φCR-modules, which may be defined as the augmentation ideals of the special 2-adic
φCR-algebras having trivial multiplication.

Lemma 11.7. For a sharp 2-adic η∆-module N , the canonical map {NC , NR, NH}
→ ∆−1Q̂V̂ N is an isomorphism.

Proof. The functor Q̂ has a right adjoint E : φCRM̂od→ φCRÂlg where EX = e⊕
X. Since Q̂V̂ : η∆M̂od→ φCRM̂od is left adjoint to IE, a detailed analysis shows
that Q̂V̂ N is a special 2-adic φCR-module with (Q̂V̂ N)−1

C = NC , (Q̂V̂ N)−1
R = NR,

and (Q̂V̂ N)−5
R = NH .

Proof of Lemma 4.11. For a 2-adic θ∆-module M , the canonical map M →
∆−1Q̂L̂M is an isomorphism by Lemma 11.7 and the above proof of Lemma 4.5.

12. Proof of the Bott exactness lemma for L̂

We must now prove Lemma 4.8 showing the Bott exactness of L̂M for a robust
2-adic θ∆-module M . This lemma will follow easily from the corresponding result
for η∆-modules (Lemma 12.1), whose proof will extend through most of this section.
We say that a 2-adic η∆-module N is profinitely sharp when it is the inverse limit
of an inverse system of finite sharp 2-adic η∆-modules. This obviously implies that
N is sharp. We call N robust when:

(i) N is profinitely sharp;
(ii) the 2-adic ∆-module {NC , NR/φ̄NC , NH} is torsion-free and exact;
(iii) ker φ̄ = cNR + c′NH + 2NC .

Lemma 12.1. If N is a robust 2-adic η∆-module, then the special 2-adic φCR-
algebra V̂ N is Bott exact; in fact, V̂ N is the inverse limit of an inverse system of
finitely generated free 2-adic CR-modules.

This will be proved at the end of the section.

Proof of Lemma 4.8. For a robust 2-adic θ∆-module M , the 2-adic η∆-module
JM is also robust, and hence L̂M has the required properties by Lemma 12.1 and
the proof of Lemma 4.5 in Section 11.

Before proving Lemma 12.1, we must analyze the robust 2-adic η∆-modules, and
we start with:

Definition 12.2 (The complex 2-adic η∆-modules). The functor (−)C : η∆M̂od→
Âb from the 2-adic η∆-modules to the 2-profinite abelian groups has a left adjoint
C : Âb→ η∆M̂od with C(G)C = G⊕G = G⊕ tG, C(G)R = G⊕G/2 = rG⊕ φ̄G,
C(G)H = G = qG, and C(G)S = G/2 = (φ̄G)[2] for G ∈ Âb. A 2-adic η∆-module
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will be called complex when it is isomorphic to C(G) for some G. If G is torsion-
free, then C(G) is obviously robust. For an arbitrary N ∈ η∆M̂od and G ∈ Âb,
we may describe the possible maps N → C(G) as follows. Let f : NC → G and
g : NS → G/2 be maps such that the diagram

NR ⊕NH fc+fc′−−−−→ Gy()[2]
y1

NS
g−−−−→ G/2

commutes. Then there is a map F (f, g) : N → C(G) with components (f, ft) : NC →
G⊕G, (fc, gη) : NR → G⊕G/2, fc′ : NH → G, and g : NS → G/2. Moreover,
each map N → C(G) is of the above form for some f and g. When N is robust, the
compatibility condition on f : NC → G and g : NS → G/2 may be expressed by the
commutativity of the diagram

N+
C

f−−−−→ Gyπ
y1

NS
g−−−−→ G/2

whereN+
C = {z ∈ NC |tz = z} and π is the composition of (c, c′) : NR/φ̄NC

∐
NC

NH
∼= N+

C and ()[2] : NR/φ̄NC
∐
NC

NH → NS . Letting N−
C = {z ∈ NC |tz = −z}, we

now have:

Lemma 12.3. If Ñ ⊂ N is an inclusion of robust 2-adic η∆-modules such that
NC/ÑC is torsion-free and Ñ−

C = N−
C , then each map Ñ → C(G) for G ∈ Âb may

be extended to a map N → C(G) of 2-adic η∆-modules.

Proof. For a given map F (f̃ , g̃) : Ñ → C(G), we first extend g̃ : ÑS → G/2 to a map
g : NS → G/2. Since ÑC/Ñ+

C
∼= Ñ−

C , NC/N
+
C
∼= N−

C , and Ñ−
C = N−

C , we see that
NC is the pushout of the inclusions N+

C ← Ñ+
C → ÑC . Thus, the maps gπ : N+

C →
G/2 and [f̃ ] : ÑC → G/2 induce a map f ′ : NC → G/2, and we obtain a commutative
diagram

ÑC
f̃−−−−→ G

y⊂
y1

NC
f ′−−−−→ G/2.

Since NC/ÑC is projective in Âb, we may now choose a lifting f : NC → G in the
diagram, and this gives the desired extension F (f, g) : NC → C(G) of F (f̃ , g̃).

Lemma 12.4. For a robust 2-adic η∆-module N , there exists a decomposition N ∼=
C(G)⊕ P where G is torsion-free and P is robust with t = 1 on PC .

Proof. By the factorization of positively torsion-free groups in Definition 5.3, there
exists a decomposition NC ∼= (G⊕ tG)⊕H with t = 1 on H, and we let i : C(G)→
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N be the induced map. Then i is monic since i : {G⊕ tG,G,G} → {NC , NR/φ̄NC ,
NH} is monic by [10, Lemma 4.8], and since i : G/2→ φ̄NC and η : φ̄NC → NS
are monic by the proof of Lemma 7.3. Thus, i : C(G)→ N has a left inverse by
Lemma 12.3, and the result follows.

Definition 12.5 (The t-trivial 2-adic η∆-modules). A 2-adic η∆-module N will
be called t-trivial when t = 1 on NC . When N is t-trivial and robust, it must have
φ̄ = 0: NC → NR sinceNC = cNR + c′NH by the exactness of {NC , NR/φ̄NC , NH}.
Moreover, it must also have (rNC)[2] = 0, (qNC)[2] = 0, and c+ c′ : NR/rNC ⊕
NH/qNC ∼= NC/2 by [10, Lemma 4.7]. Hence, the operations ()[2] : NR → NS and
()[2] : NH → NS induce operations θ̄ : NR/rNC → NR/rNC and θ̄ : NH/qNC →
NR/rNC , where the θ̄-module NR/rNC is profinite since N is profinitely sharp.
In this way, a t-trivial robust 2-adic η∆-module N corresponds to a torsion-free
group G ∈ Âb together with a decomposition (G/2)R ⊕ (G/2)H = G/2 equipped
with operations θ̄ : (G/2)R → (G/2)R and θ̄ : (G/2)H → (G/2)R such that the θ̄-
module (G/2)R is profinite. We say that a 2-adic η∆-module N is of finite type
when NC , NR, NH , and NS are finitely generated over Ẑ2, and we now easily
deduce:

Lemma 12.6. A t-trivial robust 2-adic η∆-module may be expressed as the inverse
limit of an inverse system of t-trivial robust quotient modules of finite type.

A similar result obviously holds for the robust 2-adic η∆-modules C(G) with G
torsion-free, and the following lemma will now let us restrict our study of V̂ to the
robust modules of finite type.

Lemma 12.7. If a 2-adic η∆-module N is the inverse limit of an inverse system
{Nα}α of quotient modules, then V̂ N ∼= limα V̂ Nα.

Proof. For a finite special 2-adic φCR-algebra F , there is a canonical isomorphism
Hom(limα V̂ Nα, F ) ∼= Hom(V̂ N, F ). Hence the map V̂ N → limα V̂ Nα is an isomor-
phism by Lemma 11.5.

Proof of Lemma 12.1. It now suffices to show that V̂ N is a free 2-adic CR-
module when N = C(G)⊕ P for a finitely generated free Ẑ2-module G and a t-
trivial robust 2-adic η∆-module P of finite type. By Definition 7.1, we may choose
finite ordered sets of elements {zk}k in G, {xi}i in PR, and {yj}j in PH such that
G is a free Ẑ2-module on {zk}k and {PC , PR, PH} is a free 2-adic ∆-module on
{xi}i and {yj}j . Since PS is a free Z/2-module on the generators {ηxi}i, there are
expressions x[2]

i = ri and y[2]
j = sj for each i and j where the ri and sj are Z/2-linear

combinations of these generators. We may now obtain V̂ N as the free augmented 2-

adic CR-algebra on the generators xi ∈ (˜̂
V N)−1

R , yj ∈ (˜̂
V N)−5

R , zk ∈ (˜̂
V N)−1

C , and

φzk ∈ (˜̂
V N)0R subject to the relations x2

i = ri, y2
j = BRsj , z2

k = 0, z∗kzk = Bcφzk,
and (φzk)2 = 0 for each i, j, and k. It follows by a straightforward analysis that
V̂ N is a free 2-adic CR-module on the associated products (see Definition 3.3) of
{xi}i, {yj}j , and {zk}k.
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13. Proofs for regular modules

We first show that our strict nonlinearity condition (see Definition 7.7) for 2-adic
Adams modules agrees with that of [7, 2.4], and we then prove Lemmas 7.9 and 7.10
for regular modules. For a 2-adic Adams module A, we let TA ⊂ A be given by the
pullback square

TA −−−−→ (A/ψ2A)\2y⊂
y⊂

A −−−−→ A/ψ2A

where (A/ψ2A)\2 is the kernel of 2 : A/ψ2A→ A/ψ2A. Since the square is also a
pushout, A is quasilinear if and only if TA = A. Now let T∞A be the intersection
of the submodules T iA ⊂ A for i > 0.

Lemma 13.1. T∞A is the largest quasilinear submodule of A, and hence Aql =
T∞A.

Proof. Using the inverse limit of the pullback squares for T iA with i > 0, we find
that T∞A contains each quasilinear submodule of A and that T (T∞A) = T∞A.

Remark 13.2 (Strict nonlinearity conditions). Our definition of strict nonlinearity
in Section 7 is equivalent to our earlier definition in [7, 2.3 and 2.4]. In fact, for a
2-adic Adams module A, the largest quasilinear submodule Aql remains unchanged
in the earlier category of 2-adic ψ2-modules, since it is still given by T∞A. To prove
Lemma 7.10, we need:

Lemma 13.3. For a strictly nonlinear 2-adic Adams module A, each submodule is
strictly nonlinear. Moreover, when A is finitely generated over Ẑ2, each torsion-free
quotient module is strictly nonlinear.

Proof. The first statement is clear, and we shall prove the second by working in the
earlier category N̂ of 2-adic ψ2-modules that are ψ2-pro-nilpotent. Let 0→ Ã→
A→ Ā→ 0 be a short exact sequence in N̂ with A strictly nonlinear and finitely
generated over Ẑ2 and with Ā torsion-free. To show that Ā is strictly nonlinear,
it suffices to show that HomN̂ (H, Ā) = 0 for each torsion-free quasilinear H ∈ N̂
that is finitely generated over Ẑ2. Since Ā is torsion-free, it now suffices to show
that HomN̂ (H, Ā) is finite for such H. Hence, since HomN̂ (H,A) = 0 by strict
nonlinearity, it suffices to show that Ext1N̂ (H, Ã) is finite for such H. This finiteness
follows using the exact sequence

0 −→ HomN̂ (H, Ã) −→ HomÂb(H, Ã) −→ HomÂb(H, Ã) −→ Ext1N̂ (H, Ã) −→ 0

with HomN̂ (H, Ã) = 0 by strict nonlinearity, where Âb is the category of 2-profinite
abelian groups.

Proof of Lemma 7.10. This result follows easily from Definition 7.8 and Lem-
ma 13.3.
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Proof of Lemma 7.9. By [8, Lemma 5.5], there is an exact sequence

0 −→ K̃1(X/X3; Ẑ2) −→ K̃1(X; Ẑ2) −→ H3(X; Ẑ2)

of 2-adic Adams modules with H3(X; Ẑ2) linear and K̃1(X/X3; Ẑ2) torsion-free,
where X3 is the 3-skeleton of X. Hence, it suffices to show that K̃1(X/X3; Ẑ2)
is strictly nonlinear with monic ψ2. Since Hm(X; Ẑ2) = 0 for sufficiently large m,
the map K̃1(X/X3; Ẑ2)→ K̃1(Xm/X3; Ẑ2) is monic for such m. Thus by skele-
tal induction, the operator ψ2 on Q⊗ K̃1(X/X3; Ẑ2) is annihilated by the poly-
nomial f(x) = (x− 22)(x− 23) . . . (x− 2k) for sufficiently large k. It follows that
Q⊗ K̃1(X/X3; Ẑ2) is the direct sum of the eigenspaces Ei of ψ2 with eigenvalues
2i for 2 6 i 6 k, and hence ψ2 is monic on K̃(X/X3; Ẑ2) as desired. Moreover, the
projection to Ei is given by the operator fi(ψ2)/fi(2i) on Q⊗ K̃1(X/X3; Ẑ2) where
fi(x) = f(x)/(x− 2i). This implies that 2vK̃1(X/X3; Ẑ2) is contained in

⊕k
i=2Ei ∩

K̃1(X/X3; Ẑ2) where 2v is the highest power of 2 dividing an integer fi(2i) for
some i. Since the above direct sum is strictly nonlinear, so is 2vK̃1(X/X3; Ẑ2) by
Lemma 13.3, and hence so is K̃1(X/X3; Ẑ2).

14. Proof of the realizability theorem for L̂M

We shall prove Theorem 8.5, giving a strict isomorphism L̂M ∼= K∗
CR(F̃ibf ; Ẑ2)

for a companion map f : Ω∞ẼM̄ → Ω∞Ẽ ρ̄M̄ of a strong 2-adic Adams ∆-module
M . For this, it will suffice by Theorem 4.9 to obtain an isomorphism Λ̂MC

∼=
K∗(F̃ibf ; Ẑ2) of the complex components. We do this by adapting our proof of
the corresponding odd primary result (Theorem 4.7) in [8]. First, to determine the
2-adic K-cohomology of the loops on Ω∞ẼM̄ or Ω∞Ẽ ρ̄M̄ , we may replace Theorem
11.2 of [8] by the following two theorems.

Theorem 14.1. If X = Ω∞E for a 1-connected spectrum E with H2(E; Ẑ2) = 0,
with K0(E; Ẑ2) = 0, and with K1(E; Ẑ2) torsion-free, then K1(ΩX; Ẑ2) = 0 and
K0(ΩX; Ẑ2) is torsion-free.

Proof. This follows from [6, Theorem 8.3].

Using notation and terminology of [7] for a 1-connected space X, we obtain
an augmented 2-adic ψ2-module Q̂K1(X; Ẑ2) ↓ H3(X; Ẑ2) representing the Atiyah-
Hirzebruch map K1(X; Ẑ2)→ H3(X; Ẑ2), and we have:

Theorem 14.2. If X is a 1-connected H-space with K1(ΩX; Ẑ2) = 0 and K0(ΩX;
Ẑ2) torsion-free, then σ : U(Q̂K1(X; Ẑ2) ↓ H3(X; Ẑ2)) ∼= K0(ΩX; Ẑ2).

Proof. This follows from [7, Theorem 10.2].

When X is Ω∞ẼM̄ or Ω∞Ẽ ρ̄M̄ , we shall determine H3(X; Ẑ2) from the united 2-

adic K-cohomology of X. For any 1-connected space X, we let αR : K̃O
−1

(X; Ẑ2)→
H3(X; Ẑ2) be the homomorphism induced by the Postnikov section KOẐ2 →
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P 4KOẐ2. Using the indecomposables Q̂KO∗(X; Ẑ2) of Definition 2.7 and Remark
4.10, we have:

Lemma 14.3. If X is a 1-connected space with H2(X; Ẑ2) = 0, then αR : K̃O
−1

(X;
Ẑ2)→ H3(X; Ẑ2) factors through Q̂KO−1(X; Ẑ2) and vanishes on the following

subgroups: φ̄K̃−1(X; Ẑ2), (θ − 2)K̃O
−1

(X; Ẑ2), (θ − rB−2c)K̃O
−5

(X; Ẑ2), and

(ψ3 − 9)K̃O
−1

(X; Ẑ2).

Proof. The map αR factors through Q̂KO−1(X; Ẑ2) by a suspension argument using
the isomorphism H3(X; Ẑ2) ∼= H2(ΩX; Ẑ2). Since X is 1-connected with H2(X; Ẑ2)
= 0, there is a natural isomorphism H3(X; Ẑ2) ∼= (π2(τ2X))# by [8, Lemma 11.4].
Thus, it suffices by naturality to prove the desired vanishing results when X is
S2 ∪2k e3 for k > 1, and these results now follow from the elementary case X = S3

since the collapsing map S2 ∪2k e3 → S3 induces epimorphisms of the cohomologies
K̃−1(−; Ẑ2), K̃O

−1
(−; Ẑ2), and K̃O

−5
(−; Ẑ2).

For a 1-connected space X with H2(X; Ẑ2) = 0, the above αR now induces a
homomorphism ᾱR : Lin∆ Q̂K−1

∆ (X; Ẑ2)→ H3(X; Ẑ2) where Q̂K−1
∆ (X; Ẑ2) is the

2-adic Adams ∆-module of indecomposables given by Remark 4.10 and Defini-
tion 6.1, and where Lin∆ carries a 2-adic Adams ∆-module M to the group

Lin∆M = MR/(φ̄MC + (θ − 2)MR + (θ − rc′)MH + (ψ3 − 9)MR).

To determineH3(X; Ẑ2) whenX is Ω∞ẼM̄ or Ω∞Ẽ ρ̄M̄ , we may replace Proposition
11.3 of [8] by:

Proposition 14.4. If N is a torsion-free exact stable 2-adic Adams ∆-module, then

ᾱR : Lin∆ Q̂K−1
∆ (Ω∞ẼN ; Ẑ2) ∼= H3(Ω∞ẼN ; Ẑ2).

Proof. Since there is a stable isomorphism ᾱR : KO−1(ẼN ; Ẑ2)/(ψ3 − 9) ∼= H3(ẼN ;
Ẑ2) by [10, Theorem 3.2] and [8, Lemma 11.4], the proposition follows using The-
orem 6.7 and Lemma 4.11.

For any θ-pro-nilpotent 2-adic Adams ∆-module M , we obtain a homomorphism
r : MC → Lin∆M of 2-adic Adams modules with MC as in Definition 7.6 and
Lin∆M linear. Such a homomorphism is called properly torsion-free [7, 4.5] when
its source is torsion-free and its kernel is strictly nonlinear (see Definition 7.7). We
shall need:

Lemma 14.5. If M is a strong 2-adic Adams ∆-module, then r : MC → Lin∆M
is properly torsion-free.

Proof. Since M is strong, MC is torsion-free and ker(MC → LinMC) is strictly
nonlinear. Using the maps r : LinMC → Lin∆M and c : Lin∆M → LinMC with
cr = 2, we see that 2 ker(MC → Lin∆M) is contained in ker(MC → LinM). Thus
ker(MC → Lin∆M) is strictly nonlinear by Lemma 13.3.
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As in [8, Section 11], for a strong 2-adic Adams ∆-module M and a companion
map f , we obtain a ladder of p-complete fiber sequences

F̃ibf −−−−→ X
f̃−−−−→ Yy

y
y

Fib f −−−−→ Ω∞ẼM̄ f−−−−→ Ω∞Ẽ ρ̄M̄
such that:

(i) X and Y satisfy the hypotheses of Theorems 14.1 and 14.2;

(ii) the vertical maps from X and Y are K∗(−; Ẑ2)-equivalences;

(iii) H3(Y ; Ẑ2) = 0 and the sequence H3(Ω∞Ẽ ρ̄M̄ ; Ẑ2)→ H3(Ω∞ẼM̄ ; Ẑ2)→
H3(X; Ẑ2)→ 0 is exact.

Lemma 14.6. There is a canonical isomorphism H3(X; Ẑ2) ∼= Lin∆M .

Proof. Since f∗ : K∗
CR(Ω∞Ẽ ρ̄M̄ ; Ẑ2)→ K∗

CR(Ω∞ẼM̄ ; Ẑ2) is equivalent to L̂d̄ :
L̂F̃ ρ̄M̄ → L̂F̃ M̄ for the θ-resolution map d̄, the homomorphism f∗ : H3(Ω∞Ẽ ρ̄M̄ ;
Ẑ2)→ H3(Ω∞ẼM̄ ; Ẑ2) is equivalent to Lin∆ d̄ : Lin∆ F̃ ρ̄M̄ → Lin∆ F̃ M̄ by Propo-
sition 14.4. Hence, there is an isomorphism of cokernels H3(X; Ẑ2) ∼= Lin∆M .

Proof of Theorem 8.5. The proof of Theorem 4.7 in [8] is now easily adapted to
give Theorem 8.5. In more detail, Propositions 11.5 and 11.6 of [8] remain valid in
our setting using Lemmas 14.5 and 14.6 together with the short exact sequence

0 −→ (F̃MC ↓ 0) −→ (F̃MC ↓ Lin∆M) −→ (MC ↓ Lin∆M) −→ 0

induced by the θ-resolution. Propositions 11.7 and 11.8 likewise remain valid, and
thus Λ̂MC ∼= K∗(F̃ibf ; Ẑ2), so that Theorem 8.5 follows by Theorem 4.9.
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