ON THE 2-ADIC K-LOCALIZATIONS OF H-SPACES

A.K. BOUSFIELD

(communicated by Donald M. Davis)

Abstract

We determine the 2-adic K-localizations for a large class of H-spaces and related spaces. As in the odd primary case, these localizations are expressed as fibers of maps between specified infinite loop spaces, allowing us to approach the 2-primary v_1 -periodic homotopy groups of our spaces. The present v_1 -periodic results have been applied very successfully to simply-connected compact Lie groups by Davis, using knowledge of the complex, real, and quaternionic representations of the groups. We also functorially determine the united 2-adic K-cohomology algebras) for all simply-connected compact Lie groups in terms of their representation theories, and we show the existence of spaces realizing a wide class of united 2-adic K-cohomology algebras with specified operations.

1. Introduction

In [20], Mahowald and Thompson determined the p-adic K-localizations of the odd spheres at an arbitrary prime p, expressing these localizations as homotopy fibers of maps between specified infinite loop spaces. Then, working at an odd prime p in [8], we generalized this result to give the p-adic K-localizations for a large class of H-spaces and related spaces. In the present paper, we obtain similar results for 2-adic K-localizations of such spaces, using our preparatory work in [10] and [11]. By a 2-adic K-localization, we mean a $K/2_*$ -localization (see [2], [3]), which is the same as a $K^*(-; \hat{\mathbb{Z}}_2)$ -localization, since the $K/2_*$ -equivalences of spaces or spectra are the same as the $K^*(-; \hat{\mathbb{Z}}_2)$ -equivalences. Our localization results in this paper will apply to many (but not all) simply-connected finite H-spaces and to related spaces such as the spheres S^{4k-1} for $k \ge 1$. We show that these results allow computations of the v_1 -periodic homotopy groups (see [13], [15]) of our spaces from their united 2-adic K-cohomologies, and thus allow computations of the v_1 -periodic homotopy groups for a large class of simply-connected compact Lie groups from their complex, real, and quaternionic representation theories. The present results will be extended in a

Received December 18, 2006, revised January 20, 2007; published on March 6, 2007. 2000 Mathematics Subject Classification: 55N15, 55P60, 55Q51, 55S25.

Key words and phrases: K-localizations, v_1 -periodic homotopy, 2-adic K-theory, united K-theory, compact Lie groups.

Copyright © 2007, International Press. Permission to copy for private use granted.

subsequent paper to cover the remaining simply-connected compact Lie groups and various spaces related to the remaining odd spheres. This work has been applied very successfully by Davis [14] to complete his 13-year program (with Bendersky) of calculating the v_1 -periodic homotopy groups of all simply-connected compact Lie groups, and has also been applied by Bendersky, Davis, and Mahowald [1].

Throughout this paper, we work at the prime 2 and rely on the $united\ 2$ -adic K-cohomology

$$K_{CR}^*(X; \hat{\mathbb{Z}}_2) = \{K^*(X; \hat{\mathbb{Z}}_2), KO^*(X; \hat{\mathbb{Z}}_2)\}$$

of a space or spectrum X as in [10]. This combines the usual periodic cohomologies with certain operations between them, such as complexification and realification. For our H-spaces and related spaces X, the cohomology $K^*_{CR}(X; \hat{\mathbb{Z}}_2)$ is essentially determined by the 2-adic Adams Δ -module

$$\widetilde{K}_{\Delta}^{-1}(X;\hat{\mathbb{Z}}_{2}) \; = \; \{\widetilde{K}^{-1}(X;\hat{\mathbb{Z}}_{2}), \widetilde{KO}^{-1}(X;\hat{\mathbb{Z}}_{2}), \widetilde{KO}^{-5}(X;\hat{\mathbb{Z}}_{2})\}$$

which combines the specified cohomologies with the additive operations among them (see Definition 6.1). In fact, for most simply-connected finite H-spaces X, we expect to have an isomorphism $K_{CR}^*(X;\hat{\mathbb{Z}}_2)\cong \hat{L}(M)$ where $M=\{M_C,M_R,M_H\}$ is the submodule of primitives in $K_{\Delta}^{-1}(X;\hat{\mathbb{Z}}_2)$ and where \hat{L} is a functor that we introduce in Lemma 4.5, extending the 2-adic exterior algebra functor on complex components. For a simply-connected compact Lie group G, the required 2-adic Adams Δ -module may be obtained as the indecomposables $\hat{Q}R_{\Delta}G=\{\hat{Q}RG,\hat{Q}R_RG,\hat{Q}R_HG\}$ of the complex, real, and quaternionic representation ring $R_{\Delta}G=\{RG,R_RG,R_HG\}$ (see Definition 10.1), and we have:

Theorem 1.1. For a simply-connected compact Lie group G, there is a natural isomorphism $K_{CR}^*(G; \hat{\mathbb{Z}}_2) \cong \hat{L}(\hat{Q}R_{\Delta}G)$ of algebras.

This will follow from Theorem 10.3. It extends results of Hodgkin [17], Seymour [23], Minami [21], and others on $K^*(G; \hat{\mathbb{Z}}_2)$ and $KO^*(G; \hat{\mathbb{Z}}_2)$. Our main result on $K/2_*$ -localizations will apply to a space X with $K_{CR}^*(X; \hat{\mathbb{Z}}_2) \cong \hat{L}M$ for a 2-adic Adams Δ -module M that is strong (see Definition 7.11). This technical algebraic condition seems relatively mild and holds for $\hat{Q}R_{\Delta}G$ when G is a simply-connected compact simple Lie group other than E_6 or Spin(4k+2) with k not a 2-power by work of Davis (see Lemma 10.5). For a strong 2-adic Adams Δ -module M, we obtain two stable 2-adic Adams Δ -modules $\bar{M}=\{\bar{M}_C,\bar{M}_R,\bar{M}_H\}$ and $\bar{\rho}\bar{M}=\{\bar{M}_C,\bar{M}_R+\bar{M}_H,\bar{M}_R\cap\bar{M}_H\}$ where $\bar{M}_C=M_C, \bar{M}_R=\operatorname{im}(M_R\to M_C)$, and $\bar{M}_H=\operatorname{im}(M_H\to M_C)$; and we obtain two corresponding $K/2_*$ -local spectra $\mathcal{E}\bar{M}$ and $\mathcal{E}\bar{\rho}\bar{M}$ such that $K_{\Delta}^{-1}(\mathcal{E}\bar{M};\hat{\mathbb{Z}}_2)=\bar{M}, K^0(\mathcal{E}\bar{M};\hat{\mathbb{Z}}_2)=0, K_{\Delta}^{-1}(\mathcal{E}\bar{\rho}\bar{M};\hat{\mathbb{Z}}_2)=\bar{\rho}\bar{M},$ and $K^0(\mathcal{E}\bar{\rho}\bar{M};\hat{\mathbb{Z}}_2)=0$ (see Definition 8.1). Stated briefly, our main localization result is:

Theorem 1.2. If X is a connected space with $K_{CR}^*(X; \hat{\mathbb{Z}}_2) \cong \hat{L}M$ for a strong 2-adic Adams Δ -module M, then its $K/2_*$ -localization $X_{K/2}$ is the homotopy fiber of a map from $\Omega^{\infty} \mathcal{E} \bar{M}$ to $\Omega^{\infty} \mathcal{E} \bar{\rho} \bar{M}$ with low dimensional modifications.

This will follow from Theorem 8.6. It will apply to simply-connected compact simple Lie groups with the above-mentioned exceptions, and it should apply to many

other simply-connected finite H-spaces and related spaces; in fact, there must exist a great diversity of spaces with the required united 2-adic K-cohomology algebras by:

Theorem 1.3. For each strong 2-adic Adams Δ -module M, there exists a simply-connected space X with $K_{CR}^*(X; \hat{\mathbb{Z}}_2) \cong \hat{L}M$.

This will follow from Theorem 8.5. For our spaces X, we also obtain results on the 2-primary v_1 -periodic homotopy groups $v_1^{-1}\pi_*X$, which are naturally isomorphic to stable homotopy groups $\pi_*\tau_2\Phi_1X$, where $\tau_2\Phi_1X$ is the 2-torsion part of the spectrum Φ_1X obtained using the v_1 -stabilization functor Φ_1 constructed in [4], [9], [16], and [18]. From this standpoint, the homotopy $v_1^{-1}\pi_*X$ is essentially determined by the cohomology $KO^*(\Phi_1X; \hat{\mathbb{Z}}_2)$, since there is an exact sequence

$$\cdots \longrightarrow KO^{n-3}(\Phi_1 X; \hat{\mathbb{Z}}_2) \xrightarrow{\psi^3 - 9} KO^{n-3}(\Phi_1 X; \hat{\mathbb{Z}}_2) \longrightarrow (v_1^{-1} \pi_n X)^{\#}$$
$$\longrightarrow KO^{n-2}(\Phi_1 X; \hat{\mathbb{Z}}_2) \xrightarrow{\psi^3 - 9} KO^{n-2}(\Phi_1 X; \hat{\mathbb{Z}}_2) \longrightarrow \cdots$$

where $(-)^{\#}$ gives the Pontrjagin dual (see Theorem 9.2). A space X is called $K/2_*$ -durable when the $K/2_*$ -localization induces an isomorphism $v_1^{-1}\pi_*X \cong v_1^{-1}\pi_*X_{K/2}$ or equivalently $\Phi_1X \simeq \Phi_1X_{K/2}$. This condition holds for all connected H-spaces (and many other spaces), and our $K/2_*$ -localization result implies:

Theorem 1.4. If X is a connected $K/2_*$ -durable space (e.g. H-space) with $K_{CR}^*(X; \hat{\mathbb{Z}}_2) \cong \hat{L}M$ for a strong 2-adic Adams Δ -module M, then there is a (co)fiber sequence of spectra $\Phi_1 X \to \mathcal{E} \bar{M} \to \mathcal{E} \bar{\rho} \bar{M}$ with a $KO^*(-; \hat{\mathbb{Z}}_2)$ cohomology exact sequence

$$0 \longrightarrow KO^{-8}(\Phi_1 X; \hat{\mathbb{Z}}_2) \longrightarrow \bar{M}_C/(\bar{M}_R + \bar{M}_H) \xrightarrow{\lambda^2} \bar{M}_C/\bar{M}_R \longrightarrow KO^{-7}(\Phi_1 X; \hat{\mathbb{Z}}_2)$$

$$\longrightarrow 0 \longrightarrow \bar{M}_H/(\bar{M}_R \cap \bar{M}_H) \longrightarrow KO^{-6}(\Phi_1 X; \hat{\mathbb{Z}}_2) \longrightarrow \bar{M}_R \cap \bar{M}_H \xrightarrow{\lambda^2} \bar{M}_H \longrightarrow$$

$$KO^{-5}(\Phi_1 X; \hat{\mathbb{Z}}_2) \longrightarrow 0 \longrightarrow 0 \longrightarrow KO^{-4}(\Phi_1 X; \hat{\mathbb{Z}}_2) \longrightarrow \bar{M}_C/(\bar{M}_R \cap \bar{M}_H) \xrightarrow{\lambda^2} \longrightarrow$$

$$\bar{M}_C/\bar{M}_H \longrightarrow KO^{-3}(\Phi_1 X; \hat{\mathbb{Z}}_2) \longrightarrow (\bar{M}_R + \bar{M}_H)/(\bar{M}_R \cap \bar{M}_H) \xrightarrow{\lambda^2} \longrightarrow$$

$$KO^{-2}(\Phi_1 X; \hat{\mathbb{Z}}_2) \longrightarrow \bar{M}_R + \bar{M}_H \xrightarrow{\lambda^2} \bar{M}_R \longrightarrow KO^{-1}(\Phi_1 X; \hat{\mathbb{Z}}_2) \longrightarrow 0.$$

This will follow from Theorem 9.5. It allows effective computations of 2-primary v_1 -periodic homotopy groups as shown by Davis [14], and its complex analogue implies that our spaces X are usually $\widehat{K}\Phi_1$ -good, which means that $\widehat{Q}K^n(X; \hat{\mathbb{Z}}_2)/\lambda^2 \cong K^n(\Phi_1X; \hat{\mathbb{Z}}_2)$ for n = -1, 0.

Theorem 1.5. If X is as in Theorem 1.4 with $\lambda^2 \colon M_C \to M_C$ monic, then X is $\widehat{K}\Phi_1$ -good.

This will follow from Theorem 9.7. It will be used in a subsequent paper to show that all simply-connected compact Lie groups (and many other spaces) are $\widehat{K}\Phi_1$ -good, which is useful because the v_1 -periodic homotopy groups of $\widehat{K}\Phi_1$ -good spaces are often accessible by [10], even when our $K/2_*$ -localization theorems do not

apply. From the perspective of [10], the present work verifies important examples of $\widehat{K}\Phi_1$ -good spaces beyond the odd spheres.

Throughout the paper, spaces and spectra will belong to the usual pointed simplicial or CW homotopy categories. To provide a suitably precise setting for our main theorems and proofs, we must devote considerable attention to developing the algebraic infrastructure of united 2-adic K-cohomology theory. The paper is divided into the following sections:

- 1. Introduction
- 2. The united 2-adic K-cohomologies of spectra and spaces
- 3. The 2-adic ϕ *CR*-algebras
- 4. The universal 2-adic ϕ CR-algebra functor \hat{L}
- 5. Stable 2-adic Adams operations and $K/2_*$ -local spectra
- 6. On the united 2-adic K-cohomologies of infinite loop spaces
- 7. Strong 2-adic Adams Δ -modules
- 8. On the $K/2_*$ -localizations of our spaces
- 9. On the v_1 -periodic homotopy groups of our spaces
- 10. Applications to simply-connected compact Lie groups
- 11. Proofs of basic lemmas for \hat{L}
- 12. Proof of the Bott exactness lemma for \tilde{L}
- 13. Proofs for regular modules
- 14. Proof of the realizability theorem for $\hat{L}M$

Although we have long been interested in the K-localizations and v_1 -periodic homotopy groups of spaces, we were prompted to develop the present results by Martin Bendersky and Don Davis. We thank them for their questions and comments.

2. The united 2-adic K-cohomologies of spectra and spaces

We now consider the united 2-adic K-cohomologies

$$K_{CR}^*(X; \hat{\mathbb{Z}}_2) = \{K^*(X; \hat{\mathbb{Z}}_2), KO^*(X; \hat{\mathbb{Z}}_2)\}$$

of spectra and spaces X, focusing on their basic structures as 2-adic CR-modules or CR-algebras. We first recall:

Definition 2.1 (The 2-adic CR-modules). By a 2-adic CR-module, we mean a CR-module over the category of 2-profinite abelian groups (see [10, 4.1]). Thus, a 2-adic CR-module $M = \{M_C, M_R\}$ consists of \mathbb{Z} -graded 2-profinite abelian groups M_C and M_R with continuous additive operations

$$B: M_C^* \cong M_C^{*-2}, \qquad t: M_C^* \cong M_C^*, \qquad B_R: M_R^* \cong M_R^{*-8}, \\ \eta: M_R^* \to M_R^{*-1}, \qquad c: M_R^* \to M_C^*, \qquad r: M_C^* \to M_R^*,$$

satisfying the relations

$$2\eta = 0,$$
 $\eta^{3} = 0,$ $\eta B_{R} = B_{R}\eta,$ $\eta r = 0,$ $c\eta = 0,$ $t^{2} = 1,$ $tB = -Bt,$ $rt = r,$ $tc = c,$ $cB_{R} = B^{4}c,$ $rB^{4} = B_{R}r,$ $cr = 1 + t,$ $rc = 2,$ $rBc = \eta^{2},$ $rB^{-1}c = 0.$

For $z \in M_C^*$ and $x \in M_R^*$, the elements $tz \in M_C^*$ and $rB^2cx \in M_R^*$ are sometimes written as z^* (or $\psi^{-1}z$) and ξx . For a spectrum or space X, the united 2-adic K-cohomology

$$K_{CR}^*(X; \hat{\mathbb{Z}}_2) = \{K^*(X; \hat{\mathbb{Z}}_2), KO^*(X; \hat{\mathbb{Z}}_2)\}$$

has a natural 2-adic CR-module structure with the usual periodicities $B: K^*(X; \hat{\mathbb{Z}}_2) \cong K^{*-2}(X; \hat{\mathbb{Z}}_2)$, and $B_R: KO^*(X; \hat{\mathbb{Z}}_2) \cong KO^{*-8}(X; \hat{\mathbb{Z}}_2)$, conjugation $t: K^*(X; \hat{\mathbb{Z}}_2) \cong K^*(X; \hat{\mathbb{Z}}_2)$, Hopf operation $\eta: KO^*(X; \hat{\mathbb{Z}}_2) \to KO^{*-1}(X; \hat{\mathbb{Z}}_2)$, complexification $c: KO^*(X; \hat{\mathbb{Z}}_2) \to K^*(X; \hat{\mathbb{Z}}_2)$, and realification $r: K^*(X; \hat{\mathbb{Z}}_2) \to KO^*(X; \hat{\mathbb{Z}}_2)$.

Definition 2.2 (Bott exactness). As in [10, 4.1], we say that a 2-adic CR-module M is $Bott\ exact$ when the Bott sequence

$$\cdots \longrightarrow M_R^{*+1} \xrightarrow{-\eta} M_R^* \xrightarrow{c} M_C^* \xrightarrow{rB^{-1}} M_R^{*+2} \xrightarrow{\eta} \cdots$$

is exact, and we note that the 2-adic CR-module $K_{CR}^*(X; \hat{\mathbb{Z}}_2)$ is always Bott exact for a spectrum or space X. To compare CR-modules, we shall often use:

Lemma 2.3. For Bott exact 2-adic CR-modules M and N, a map $f: M \to N$ is an isomorphism if and only if $f: M_C \to N_C$ is an isomorphism.

Proof. For the "if" part, we treat the Bott sequences of M and N as exact couples, and we note that f induces an isomorphism of the associated spectral sequences since $f: M_C \cong N_C$. Using the map of second derived couples with $f: M_C^{(2)} \cong N_C^{(2)}$, we easily see that $f: \eta^2 M_R \cong \eta^2 N_R$; then using the map of first derived couples with $f: M_C^{(1)} \cong N_C^{(1)}$, we easily see that $f: \eta M_R \cong \eta N_R$; and finally using the original map of exact couples, we easily see that $f: M_R \cong N_R$.

Definition 2.4 (The free 2-adic CR-modules). For each integer n and L = C, R, there is a monogenic free 2-adic CR-module $F^L(g, n)$ on a generator $g \in F^L(g, n)_L^n$ having the universal property that, for each 2-adic CR-module M and $y \in M_L^n$, there is a unique map $f : F^L(g, n) \to M$ with f(g) = y. The 2-adic CR modules $F^C(g, n)$ and $F^R(g, n)$ are given more explicitly by

$$\begin{split} F^{C}(g,n)_{C}^{n-2i} &= \hat{\mathbb{Z}}_{2} \oplus \hat{\mathbb{Z}}_{2} = \langle B^{i}g \rangle \oplus \langle B^{i}g^{*} \rangle, \ F^{C}(g,n)_{C}^{n-2i-1} = 0, \\ F^{C}(g,n)_{R}^{n-2i} &= \hat{\mathbb{Z}}_{2} = \langle rB^{i}g \rangle, & F^{C}(g,n)_{R}^{n-2i-1} = 0, \\ F^{R}(g,n)_{C}^{n-2i} &= \hat{\mathbb{Z}}_{2} = \langle B^{i}cg \rangle, & F^{R}(g,n)_{C}^{n-2i-1} = 0, \\ F^{R}(g,n)_{R}^{n-8i} &= \hat{\mathbb{Z}}_{2} = \langle B^{i}_{R}g \rangle, & F^{R}(g,n)_{R}^{n-8i-1} = \mathbb{Z}/2 = \langle B^{i}_{R}\eta g \rangle, \\ F^{R}(g,n)_{R}^{n-8i-2} &= \mathbb{Z}/2 = \langle B^{i}_{R}\eta^{2}g \rangle, & F^{R}(g,n)_{R}^{n-8i-4} = \hat{\mathbb{Z}}_{2} = \langle B^{i}_{R}\xi g \rangle, \\ F^{R}(g,n)_{R}^{n-8i-k} &= 0 \ \text{for} \ k = 3,5,6,7. \end{split}$$

We note that $F^{C}(g,n)$ and $F^{R}(g,n)$ are Bott exact for all n. In general, a free

2-adic CR-module on a finite set of generators may be constructed as a direct sum of the corresponding monogenic free 2-adic CR-modules. To test for this freeness, we may use:

Lemma 2.5. For a Bott exact 2-adic CR-module M (e.g. for some $M = K_{CR}^*(X; \hat{\mathbb{Z}}_2)$), if M_C^* is a free module over $\hat{K}^* = \hat{\mathbb{Z}}_2[B, B^{-1}]$ on the generators $\{ca_i\}_i \coprod \{b_j\}_j \coprod \{b_j^*\}_j$ for finite sets of elements $\{a_i\}_i$ in M_R^* and $\{b_j\}_j$ in M_C^* , then M is a free 2-adic CR-module on the generators $\{a_i\}_i$ and $\{b_j\}_j$.

Proof. The canonical map to M from the specified 2-adic CR-module is an isomorphism by Lemma 2.3.

To describe the multiplicative structure of $K^*_{CR}(X; \hat{\mathbb{Z}}_2)$ for a space X, we introduce:

Definition 2.6 (The 2-adic CR-algebras). By a 2-adic CR-algebra $A = \{A_C, A_R\}$, we mean a 2-adic CR-module with continuous bilinear multiplications $A_L^m \times A_L^n \to A_L^{m+n}$ and elements $1 \in A_L^0$ for $m, n \in \mathbb{Z}$ and L = C, R such that:

- (i) the multiplication in A_C^* and A_R^* is graded commutative and associative with identity 1;
- (ii) B(zw) = (Bz)w = z(Bw) and $(zw)^* = z^*w^*$ for $z \in A_C^m$ and $w \in A_C^n$;
- (iii) $B_R(xy) = (B_R x)y = x(B_R y), \ \eta(xy) = (\eta x)y = x(\eta y), \ \text{and} \ \xi(xy) = (\xi x)y = x(\xi y) \text{ for } x \in A_R^m \text{ and } y \in A_R^n;$
- (iv) c1 = 1 and c(xy) = (cx)(cy) for $x \in A_R^m$ and $y \in A_R^n$;
- (v) r((cx)z) = x(rz) and r(z(cx)) = (rz)x for $x \in A_R^m$ and $z \in A_C^n$.

Equivalently, a 2-adic CR-algebra A consists of a 2-adic CR-module with a commutative associative multiplication $A \hat{\otimes}_{CR} A \to A$ with identity $\underline{e} \to A$ for $\underline{e} = F^R(1,0) \cong K_{CR}^*(\operatorname{pt}; \hat{\mathbb{Z}}_2)$, where $\hat{\otimes}_{CR}$ is the (symmetric monoidal) complete tensor product for 2-adic CR-modules [11, 2.6].

Definition 2.7 (Augmentations and nilpotency). For a 2-adic CR-algebra A, an augmentation is a map $A \to \underline{e}$ of 2-adic CR-algebras which is left inverse to the identity $\underline{e} \to A$. When A is augmented, we let $\tilde{A} = \{\tilde{A}_C, \tilde{A}_R\}$ denote the augmentation ideal, and for $m \geq 1$ we let $\tilde{A}(m)$ denote the m-th power of \tilde{A} given by the image of the m-fold product $\tilde{A} \otimes \tilde{C}_R \cap \tilde{A} \otimes \tilde{C}_R \cap \tilde{A} = \tilde{A} \cap \tilde{A} \cap \tilde{A} = \tilde{A} \cap \tilde{A} \cap \tilde{A} = \tilde{A} \cap \tilde{A} \cap \tilde{A} \cap \tilde{A} = \tilde{A} \cap \tilde$

3. The 2-adic ϕ CR-algebras

To capture some additional features of the 2-adic CR-algebras $K_{CR}^*(X; \hat{\mathbb{Z}}_2)$ for spaces X, we now introduce the 2-adic ϕCR -algebras. These structures are often surprisingly rigid and will allow us to construct convenient bases for $K_{CR}^*(X; \hat{\mathbb{Z}}_2)$ in some important general cases, for instance, when X is a simply-connected compact Lie group.

Definition 3.1 (The 2-adic ϕ CR-algebras). By a 2-adic ϕ CR-algebra A, we mean a 2-adic CR-algebra with continuous functions $\phi: A_C^0 \to A_R^0$ and $\phi: A_C^{-1} \to A_R^0$ such that:

- (i) $c\phi a = a^*a$ and $c\phi x = B^{-1}x^*x$ for $a \in A_C^0$ and $x \in A_C^{-1}$;
- (ii) $\phi(a+b)=\phi a+\phi b+r(a^*b)$ and $\phi(x+y)=\phi x+\phi y+rB^{-1}(x^*y)$ for $a,b\in A_C^0$ and $x,y\in A_C^{-1}$;
- (iii) $\phi(ab)=(\phi a)(\phi b),\ \phi(ax)=(\phi a)(\phi x),\ \text{and}\ \phi B^{-1}(xy)=(\phi x)(\phi y)\ \text{for}\ a,b\in A_C^0$ and $x,y\in A_C^{-1};$
- (iv) $\phi(1) = 1$, $\phi(ka) = k^2 \phi a$, $\phi(a^*) = \phi a$, $\phi(kx) = k^2 \phi x$, and $\phi(x^*) = -\phi x$ for $a \in A_C^0$, $x \in A_C^{-1}$, and $k \in \hat{\mathbb{Z}}_2$.

For convenience, we extend the operation ϕ periodically to give $\phi\colon A_C^{2i}\to A_R^0$ and $\phi\colon A_C^{2i-1}\to A_R^0$ with $\phi w=\phi B^i w$ for all i and elements w. For a space X, the cohomology $K_{CR}^*(X;\hat{\mathbb{Z}}_2)$ has a natural 2-adic ϕ CR-algebra structure with $\phi\colon K^*(X;\hat{\mathbb{Z}}_2)\to KO^0(X;\hat{\mathbb{Z}}_2)$ as in [11, Section 3]. In particular, $\underline{e}\cong K_{CR}^*(\operatorname{pt};\hat{\mathbb{Z}}_2)$ is a 2-adic ϕ CR-algebra with $\phi(k1)=k^21$ for $k\in\hat{\mathbb{Z}}_2$. For a 2-adic ϕ CR-algebra A, an augmentation is a map $A\to\underline{e}$ of 2-adic ϕ CR-algebras which is left inverse to the identity, and we retain the other notation and terminology of Definition 2.7. Thus, for a space X, the ϕ CR-algebra $K_{CR}^*(X;\hat{\mathbb{Z}}_2)$ has a canonical augmentation and is pro-nilpotent whenever X is connected. To capture some other needed features, we introduce:

Definition 3.2 (The special 2-adic ϕ CR-algebras). A 2-adic ϕ CR-algebra A is called *special* when:

- (i) A is augmented and pro-nilpotent;
- (ii) $z^2 = 0$ for $z \in A_C^n$ with n odd;
- (iii) $y^2 = 0$ for $y \in A_R^n$ with $n \equiv 1, -3 \mod 8$;
- (iv) $\phi cx = 0$ for $x \in A_R^n$ with $n \equiv -1, -5 \mod 8$.

For a connected space X, the cohomology $K_{CR}^*(X; \hat{\mathbb{Z}}_2)$ is a special 2-adic ϕCR -algebra by [11, Section 3].

Definition 3.3 (Simple systems of generators). Let A be a special 2-adic ϕ CR-algebra. By a *simple system of generators of odd degree* for A, we mean finite ordered sets of odd-degree elements $\{x_i\}_i$ in \tilde{A}_R and $\{z_j\}_j$ in \tilde{A}_C such that A_C is an exterior algebra over $\hat{K}^* = \hat{\mathbb{Z}}_2[B, B^{-1}]$ on the generators $\{cx_i\}_i \coprod \{z_j\}_j \coprod \{z_j^*\}_j$.

Such a simple system determines associated products

$$x_{i_1} \dots x_{i_m}(\phi z_{j_1}) \dots (\phi z_{j_n}) \in A_R,$$

 $(cx_{i_1}) \dots (cx_{i_m})(c\phi z_{j_1}) \dots (c\phi z_{j_n}) w_{k_1} \dots w_{k_q} \in A_C$

where: $i_1 < \cdots < i_m$ with $m \ge 0$; $j_1 < \cdots < j_n$ with $n \ge 0$; $k_1 < \cdots < k_q$ with $q \ge 1$; each w_{k_t} is z_{k_t} or $z_{k_t}^*$ with $w_{k_q} = z_{k_q}$; and $\{k_1, \ldots, k_q\}$ is disjoint from $\{j_1, \ldots, j_n\}$ in each complex product.

Proposition 3.4. If A is a Bott exact special 2-adic ϕ CR-algebra with a simple system of generators of odd degree, then A is a free 2-adic CR-module on the associated products.

Proof. This follows by Lemma 2.5.

When the cohomology $K_{CR}^*(X; \hat{\mathbb{Z}}_2)$ of a connected space X has a simple system of generators of odd degree, this result will determine the 2-adic CR-algebra structure of the cohomology, provided that we can compute the squares of the real simple generators of degree $\equiv -1, -5 \mod 8$, since the squares of the other simple generators and of their ϕ 's must vanish. For a simply-connected compact Lie group G, we shall see that the cohomology $K_{CR}^*(G; \hat{\mathbb{Z}}_2)$ must always have a simple system of generators of odd degree by Theorem 10.3 below.

4. The universal 2-adic ϕ CR-algebra functor \hat{L}

We must now go beyond simple systems of generators and develop functorial descriptions of cohomologies $K_{CR}^*(X; \hat{\mathbb{Z}}_2)$ using universal special 2-adic ϕCR -algebras. Our results will apply, for instance, when X is a suitable infinite loop space (Theorem 6.7) or a simply-connected compact Lie group (Theorem 10.3). We start by introducing the algebraic modules that will generate our universal algebras.

Definition 4.1 (The 2-adic Δ -modules). By a 2-adic Δ -module $N = \{N_C, N_R, N_H\}$, we mean a triad of 2-profinite abelian groups N_C , N_R , and N_H with continuous additive operations

$$t: N_C \cong N_C, \quad c: N_R \to N_C, \quad r: N_C \to N_R,$$

 $c': N_H \to N_C, \quad q: N_C \to N_H$

satisfying the relations

$$\begin{split} t^2 = 1, & cr = 1 + t, & rc = 2, & tc = c, & rt = r, \\ c'q = 1 + t, & qc' = 2, & tc' = c', & qt = q \end{split}$$

as in [10, 4.5]. For $z \in N_C$, the element tz is sometimes written as z^* or $\psi^{-1}z$. For a 2-adic CR-module N and integer n, we obtain a 2-adic Δ -module $\Delta^n N = \{N_C^n, N_R^n, N_R^{n-4}\}$ with $c' = B^{-2}c \colon N_R^{n-4} \to N_C^n$ and $q = rB^2 \colon N_C^n \to N_R^{n-4}$. In particular, we obtain a 2-adic Δ -module $K_\Delta^n(X; \hat{\mathbb{Z}}_2) = \Delta^n K_{CR}^*(X; \hat{\mathbb{Z}}_2)$ for a space X.

We say that a 2-adic Δ -module N is torsion-free when N_C , N_R , and N_H are torsion-free, and we say that N is exact when the sequence

$$\cdots \longrightarrow N_C \xrightarrow{(r,q)} N_R \oplus N_H \xrightarrow{c-c'} N_C \xrightarrow{1-t} N_C \xrightarrow{(r,q)} N_R \oplus N_H \longrightarrow \cdots$$

is exact (see [10, 4.5]). It is straightforward to show:

Lemma 4.2. A 2-adic Δ -module $N = \{N_C, N_R, N_H\}$ is torsion-free and exact if and only if:

- (i) $c: N_R \to N_C$ and $c': N_H \to N_C$ are monic;
- (ii) N_C is torsion-free with $\ker(1+t) = \operatorname{im}(1-t)$ for $t \colon N_C \to N_C$;
- (iii) $cN_R + c'N_H = \ker(1-t)$ and $cN_R \cap c'N_H = \operatorname{im}(1+t)$.

The 2-adic Δ -module

$$K_{\Delta}^{-1}(X;\hat{\mathbb{Z}}_2) \ = \ \{K^{-1}(X;\hat{\mathbb{Z}}_2), KO^{-1}(X;\hat{\mathbb{Z}}_2), KO^{-5}(X;\hat{\mathbb{Z}}_2)\}$$

of a space X has additional operations θ which we now include in:

Definition 4.3 (The 2-adic $\theta\Delta$ -modules). By a 2-adic $\theta\Delta$ -module $M = \{M_C, M_R, M_H\}$, we mean a 2-adic Δ -module with continuous additive operations $\theta \colon M_C \to M_C, \theta \colon M_R \to M_R$, and $\theta \colon M_H \to M_R$ satisfying the following relations for elements $z \in M_C, x \in M_R$, and $y \in M_H$:

$$\theta cx = c\theta x, \qquad \theta c'y = c\theta y, \qquad \theta tz = t\theta z, \qquad \theta qz = \theta rz, \qquad \theta \theta rz = \theta r\theta z.$$

In general, θrz may differ from $r\theta z$, and we let $\bar{\phi} \colon M_C \to M_R$ be the difference operation with $\bar{\phi}z = \theta rz - r\theta z$ for $z \in M_C$. Using the above relations, we easily deduce:

$$\bar{\phi}cx = 0,$$
 $\bar{\phi}c'x = 0,$ $\bar{\phi}tz = \bar{\phi}z,$ $2\bar{\phi}z = 0,$ $c\bar{\phi}z = 0,$ $\theta\bar{\phi}z = 0.$

For a space X, the cohomology $K_{\Delta}^{-1}(X; \hat{\mathbb{Z}}_2)$ has a natural 2-adic $\theta\Delta$ -module structure by [11, Section 3] with the operations

$$\theta = -\lambda^2 \colon K^{-1}(X; \hat{\mathbb{Z}}_2) \longrightarrow K^{-1}(X; \hat{\mathbb{Z}}_2),$$

$$\theta = -\lambda^2 \colon KO^{-1}(X; \hat{\mathbb{Z}}_2) \longrightarrow KO^{-1}(X; \hat{\mathbb{Z}}_2),$$

$$\theta = -\lambda^2 \colon KO^{-5}(X; \hat{\mathbb{Z}}_2) \longrightarrow KO^{-1}(X; \hat{\mathbb{Z}}_2).$$

Moreover, this structure interacts with the 2-adic ϕ CR-algebra structure of $K_{CR}^*(X; \hat{\mathbb{Z}}_2)$ in several ways.

Lemma 4.4. For a space X, we have:

- (i) $\eta \phi z = \bar{\phi} z \text{ for } z \in K^{-1}(X; \hat{\mathbb{Z}}_2);$
- (ii) $x^2 = \eta \theta x \text{ for } x \in KO^{-1}(X; \hat{\mathbb{Z}}_2);$
- (iii) $y^2 = B_R \eta \theta y \text{ for } y \in KO^{-5}(X; \hat{\mathbb{Z}}_2).$

Proof. This follows from [11, Section 3].

We shall take account of these relations in our universal algebras. For a 2-adic $\theta\Delta$ -module M and a special 2-adic ϕCR -algebra A, an admissible map $\alpha \colon M \to A$ consists of a 2-adic Δ -module map $\alpha \colon M \to \Delta^{-1}\tilde{A}$ such that:

- (i) $\eta \phi \alpha z = \alpha \bar{\phi} z$ in A_C^{-1} for each $z \in M_C$;
- (ii) $(\alpha x)^2 = \eta \alpha \theta x$ in A_R^{-2} for each $x \in M_R$;
- (iii) $(\alpha y)^2 = B_R \eta \alpha \theta y$ in A_R^{-10} for each $y \in M_H$.

We say that a special 2-adic ϕ CR-algebra A with an admissible map $\alpha \colon M \to A$ is universal if, for each special 2-adic ϕ CR-algebra B with admissible map $g \colon M \to B$, there exists a unique ϕ CR-algebra map $\bar{g} \colon A \to B$ such that $\bar{g}\alpha = g$.

Lemma 4.5. For each 2-adic $\theta\Delta$ -module M, there exists a universal special 2-adic ϕ CR-algebra $\hat{L}M$ with admissible map $\alpha \colon M \to \hat{L}M$.

This will be proved later in Section 11. By universality, $\hat{L}M$ is unique up to isomorphism and is natural in M, so that we have a functor \hat{L} from the category of 2-adic $\theta\Delta$ -modules to the category of special 2-adic ϕCR -algebras. We believe that the ϕCR -algebra $\hat{L}M$ can be given canonical operations θ satisfying all the formulae of [11, Section 3] and that this provides a strengthened version of \hat{L} that is right adjoint to $\Delta^{-1}(\hat{L})$. However, for simplicity, we rely on the present basic functor \hat{L} . We can describe the algebra $\hat{L}M$ explicitly using the 2-adic exterior algebra $\hat{L}M$ with $\hat{L}M$ with $\hat{L}M$ where $\hat{L}M$ are ranges over the finite 2-adic quotients of $\hat{L}M$ (ignoring $\hat{L}M$).

Lemma 4.6. For a 2-adic $\theta\Delta$ -module M, the canonical map $\hat{\Lambda}M_C \to (\hat{L}M)_C$ is an algebra isomorphism.

This will be proved later in Section 11. We must impose extra conditions on M to ensure that $\hat{L}M$ is Bott exact and hence topologically relevant.

Definition 4.7 (The robust 2-adic $\theta\Delta$ -modules). We say that a 2-adic $\theta\Delta$ -module M is profinite when it is the inverse limit of an inverse system of finite 2-adic $\theta\Delta$ -modules, and we let $M/\bar{\phi}$ denote the 2-adic Δ -module $\{M_C, M_R/\bar{\phi}M_C, M_H\}$. We call M robust when:

- (i) M is profinite;
- (ii) $M/\bar{\phi}$ is torsion-free and exact;
- (iii) $\ker \bar{\phi} = cM_R + c'M_H + 2M_C$.

When M is obtained from $K_{\Delta}^{-1}(X; \hat{\mathbb{Z}}_2)$ for a space X, the profiniteness condition will usually hold automatically since $K_{\Delta}^{-1}(X; \hat{\mathbb{Z}}_2) = \lim_{\alpha, i} K_{\Delta}^{-1}(X_{\alpha}; \hat{\mathbb{Z}}_2)/2^i$ for the system of finite subcomplexes $X_{\alpha} \subset X$ and $i \geq 1$. The following key lemma will be proved later in Section 12.

Lemma 4.8. If M is a robust 2-adic $\theta\Delta$ -module, then the special 2-adic ϕCR -algebra $\hat{L}M$ is Bott exact; in fact, $\hat{L}M$ is the inverse limit of an inverse system of finitely generated free 2-adic CR-modules.

This leads to a crucial comparison theorem.

Theorem 4.9. For a connected space X and a robust 2-adic $\theta\Delta$ -module M, suppose that $g \colon M \to \widetilde{K}_{\Delta}^{-1}(X; \hat{\mathbb{Z}}_2)$ is a 2-adic $\theta\Delta$ -module map that induces an isomorphism $\hat{\Lambda}M_C \cong K^*(X; \hat{\mathbb{Z}}_2)$. Then g induces an isomorphism $\hat{L}M \cong K^*_{CR}(X; \hat{\mathbb{Z}}_2)$ of special 2-adic ϕ CR-algebras.

Proof. Since g gives an admissible map $M \to K^*_{CR}(X; \hat{\mathbb{Z}}_2)$ by Lemma 4.4, the result follows by Lemmas 2.3, 4.6, and 4.8.

When M is finitely generated in this theorem, we may easily choose a simple system of odd-degree generators (see Definition 3.3) for $K_{CR}^*(X; \hat{\mathbb{Z}}_2)$ from M_C , M_R , and M_H . However, the present description of $K_{CR}^*(X; \hat{\mathbb{Z}}_2)$ as $\hat{L}M$ is more natural and includes the full multiplicative structure. To check whether such a description is possible for a given space X, we may use:

Remark 4.10 (Determination of M from $K_{CR}^*(X; \hat{\mathbb{Z}}_2)$). For a connected space X, we may take the indecomposables $\hat{Q}K_{CR}^*(X; \hat{\mathbb{Z}}_2)$ as in Definition 2.7 with the operations θ of Definition 4.3 to produce a 2-adic $\theta\Delta$ -module

$$\hat{Q}K_{\Lambda}^{-1}(X;\hat{\mathbb{Z}}_2) = \{\hat{Q}K^{-1}(X;\hat{\mathbb{Z}}_2), \hat{Q}KO^{-1}(X;\hat{\mathbb{Z}}_2), \hat{Q}KO^{-5}(X;\hat{\mathbb{Z}}_2)\}$$

together with a natural quotient map $\widetilde{K}_{\Delta}^{-1}(X;\hat{\mathbb{Z}}_2) \twoheadrightarrow \hat{Q}K_{\Delta}^{-1}(X;\hat{\mathbb{Z}}_2)$. Now by Lemma 4.11 below, whenever Theorem 4.9 applies to X, there is a canonical isomorphism $M \cong \hat{Q}K_{\Delta}^{-1}(X;\hat{\mathbb{Z}}_2)$ and the map $g\colon M \to \widetilde{K}_{\Delta}^{-1}(X;\hat{\mathbb{Z}}_2)$ in the theorem corresponds to a splitting of $\widetilde{K}_{\Delta}^{-1}(X;\hat{\mathbb{Z}}_2) \twoheadrightarrow \hat{Q}K_{\Delta}^{-1}(X;\hat{\mathbb{Z}}_2)$. When X is an H-space, we may often obtain the required splitting by mapping $\hat{Q}K_{\Delta}^{-1}(X;\hat{\mathbb{Z}}_2)$ to the primitives in $\widetilde{K}_{\Delta}^{-1}(X;\hat{\mathbb{Z}}_2)$. For instance, this applies when X is a suitable infinite loop space or simply-connected compact Lie group (see Theorems 6.7 and 10.3). Finally, we note that the 2-adic $\theta\Delta$ -module $\hat{Q}K_{\Delta}^{-1}(X;\hat{\mathbb{Z}}_2)$ will automatically be robust by Proposition 3.4 whenever $K_{CR}^*(X;\hat{\mathbb{Z}}_2)$ has a simple system of odd-degree generators with no real generators of degree $\equiv 1, -3 \mod 8$. We have used:

Lemma 4.11. For a $\theta\Delta$ -module M, the canonical map $M \to \Delta^{-1}\hat{Q}\hat{L}M$ is an isomorphism.

This will be proved later in Section 11.

5. Stable 2-adic Adams operations and $K/2_*$ -local spectra

We now bring stable Adams operations into our united 2-adic K-cohomology theory and use this theory to classify the needed $K/2_*$ -local spectra. We first recall some terminology from [8, 2.6].

Definition 5.1 (The stable 2-adic Adams modules). By a *finite stable 2-adic Adams module A*, we mean a finite abelian 2-group with automorphisms $\psi^k \colon A \cong A$ for the odd $k \in \mathbb{Z}$ such that:

- (i) $\psi^1 = 1$ and $\psi^j \psi^k = \psi^{jk}$ for the odd $j, k \in \mathbb{Z}$;
- (ii) when n is sufficiently large, the condition $j \equiv k \mod 2^n$ implies $\psi^j = \psi^k$.

By a stable 2-adic Adams module A, we mean the topological inverse limit of an inverse system of finite stable 2-adic Adams modules. Such an A has an underlying 2-profinite abelian structure with continuous automorphisms $\psi^k \colon A \cong A$ for the odd $k \in \mathbb{Z}$ (and in fact for $k \in \hat{\mathbb{Z}}_2^{\times}$). We note that the operations ψ^{-1} and ψ^{3} on A determine all of the other stable Adams operations ψ^{k} as in $[\mathbf{5}, 6.4]$. Our main examples of stable 2-adic Adams modules are the cohomologies $K^n(X; \hat{\mathbb{Z}}_2)$ and $KO^n(X; \hat{\mathbb{Z}}_2)$ for a spectrum or space X and integer n with the usual stable Adams operations ψ^k . We let \hat{A} denote the abelian category of stable 2-adic Adams modules, and for $i \in \mathbb{Z}$ we let $\hat{S}^i \colon \hat{A} \to \hat{A}$ be the functor with $\hat{S}^i A$ equal to A as a group but with ψ^k on $\hat{S}^i A$ equal to $k^i \psi^k$ on A for the odd $k \in \mathbb{Z}$. We note that $\hat{S}^i A = A$ in \hat{A} for all i when 2A = 0.

Definition 5.2 (The stable 2-adic Adams CR-modules). By a stable 2-adic Adams CR-module M, we mean a 2-adic CR-module consisting of stable 2-adic Adams modules $\{M_C^*, M_R^*\}$ such that the operations $B \colon \bar{S}M_C^* \cong M_C^{*-2}$, $t \colon M_C^* \cong M_C^*$, $B_R \colon \bar{S}^4M_R^* \cong M_R^{*-8}$, $\eta \colon M_R^* \to M_R^{*-1}$, $c \colon M_R^* \to M_C^*$, and $r \colon M_C^* \to M_R^*$ are all maps in \hat{A} , where $\psi^{-1} = t$ in M_C^* and $\psi^{-1} = 1$ in M_R^* . For a spectrum or space X, the united 2-adic K-cohomology

$$K_{CR}^*(X; \hat{\mathbb{Z}}_2) = \{K^*(X; \hat{\mathbb{Z}}_2), KO^*(X; \hat{\mathbb{Z}}_2)\}$$

has a natural stable 2-adic Adams CR-module structure with the usual operations.

Definition 5.3 (The stable 2-adic Adams Δ -modules). By a stable 2-adic Adams Δ -module N, we mean a 2-adic Δ -module consisting of stable 2-adic Adams modules $\{N_C, N_R, N_H\}$ such that the operations $t \colon N_C \cong N_C$, $c \colon N_R \to N_C$, $r \colon N_C \to N_R$, $c' \colon N_H \to N_C$, and $q \colon N_C \to N_H$ are all maps in \hat{A} , where $\psi^{-1} = t$ in N_C and $\psi^{-1} = 1$ in both N_R and N_H . For a stable 2-adic Adams CR-module M and integer n, we obtain a stable 2-adic Adams Δ -module

$$\Delta^n M = \{M_C^n, M_R^n, \bar{S}^{-2} M_R^{n-4}\}$$

as in Definition 4.1. Thus, for a spectrum or space X and integer n, we now obtain a stable 2-adic Adams Δ -module

$$K^n_{\Delta}(X;\hat{\mathbb{Z}}_2) \ = \ \Delta^n K^*_{CR}(X;\hat{\mathbb{Z}}_2) \ = \ \{K^n(X;\hat{\mathbb{Z}}_2), KO^n(X;\hat{\mathbb{Z}}_2), \bar{S}^{-2}KO^{n-4}(X;\hat{\mathbb{Z}}_2)\}.$$

To give another example, we say that a 2-profinite abelian group G with involution $t\colon G\cong G$ is positively torsion-free when G is torsion-free with $\ker(1+t)=\operatorname{im}(1-t)$. By [5, Proposition 3.8], this is equivalent to saying that G factors as a (possibly infinite) product of $\hat{\mathbb{Z}}_2$'s with t=1 and $\hat{\mathbb{Z}}_2\oplus t\hat{\mathbb{Z}}_2$'s. For a positively torsion-free stable 2-adic Adams module A, we may use the operation $\psi^{-1}\colon A\cong A$ to construct a torsion-free exact stable 2-adic Adams Δ -module $\{A,A^+,A_+\}$ with $A^+=\ker(1-\psi^{-1}),\ A_+=\operatorname{coker}(1-\psi^{-1}),\ t=\psi^{-1},\ c=1,\ r=1+\psi^{-1},\ c'=1+\psi^{-1},\ \text{and}\ q=1$

We let $\hat{\mathcal{ACR}}$ (resp. $\hat{\mathcal{A}}\Delta$) denote the abelian category of stable 2-adic Adams CR-modules (resp. Δ -modules), and we note that the functor $\Delta^n : \hat{\mathcal{ACR}} \to \hat{\mathcal{A}}\Delta$ for $n \in \mathbb{Z}$ has a left adjoint $CR^n : \hat{\mathcal{A}}\Delta \to \hat{\mathcal{ACR}}$ with $CR^n(N)_C^n = N_C$, with $CR^n(N)_C^{n-1} = 0$,

and with

$$CR^{n}(N)_{R}^{n-i} = \begin{cases} N_{R} & \text{for } i = 0\\ N_{R}/r & \text{for } i = 1\\ \bar{S}N_{C}/c' & \text{for } i = 2\\ 0 & \text{for } i = 3,7\\ \bar{S}^{2}N_{H} & \text{for } i = 4\\ \bar{S}^{2}N_{H}/q & \text{for } i = 5\\ \bar{S}^{3}N_{C}/c & \text{for } i = 6 \end{cases}$$

as in [10, 4.10]. We easily see that $CR^n(N)$ is Bott exact whenever N is torsion-free and exact. Our next lemma will often allow us to work in the simpler category $\hat{\mathcal{A}}\Delta$ instead of $\hat{\mathcal{A}}\mathcal{C}\mathcal{R}$.

Lemma 5.4. For $n \in \mathbb{Z}$, the adjoint functors $CR^n : \hat{\mathcal{A}}\Delta \to \hat{\mathcal{A}}CR$ and $\Delta^n : \hat{\mathcal{A}}CR \to \hat{\mathcal{A}}\Delta$ restrict to equivalences between the full subcategories of all torsion-free exact $N \in \hat{\mathcal{A}}\Delta$ and all Bott exact $M \in \hat{\mathcal{A}}CR$ with M_C^n positively torsion-free and $M_C^{n-1} = 0$

Proof. For $M \in \hat{A}CR$ as above, we see that $\Delta^n M$ is a torsion-free exact Δ -module by [10, 4.4 and 4.7] with an adjunction isomorphism $CR^n\Delta^n M \to M$ by Lemma 2.3. The corresponding result for $N \in \hat{A}\Delta$ is obvious.

When E is a spectrum with $K^n(E; \hat{\mathbb{Z}}_2)$ positively torsion-free and $K^{n-1}(E; \hat{\mathbb{Z}}_2) = 0$ for some n, we now have $K^*_{CR}(E; \hat{\mathbb{Z}}_2) \cong CR^n(N)$ in $\hat{\mathcal{ACR}}$ for the torsion-free exact module $N = \Delta^n K^*_{CR}(E; \hat{\mathbb{Z}}_2)$ in $\hat{\mathcal{A}}\Delta$, and we have the following existence theorem for such spectra in the stable homotopy category.

Theorem 5.5. For each torsion-free exact $N \in \hat{A}\Delta$ and $n \in \mathbb{Z}$, there exists a $K/2_*$ -local spectrum $\mathcal{E}^n N$ with $K_{CR}^*(\mathcal{E}^n N; \hat{\mathbb{Z}}_2) \cong CR^n(N)$ in $\hat{A}CR$. Moreover, $\mathcal{E}^n N$ is unique up to (noncanonical) equivalence.

Proof. This follows by Lemma 5.4 and [10, Theorem 5.3].

The spectrum $\mathcal{E}^n N$ in the theorem will be endowed with an isomorphism $K^*_{CR}(\mathcal{E}^n N; \hat{\mathbb{Z}}_2) \cong CR^n(N)$ in $\hat{A}\mathcal{C}\mathcal{R}$. Thus, for an arbitrary spectrum E, a map $g \colon E \to \mathcal{E}^n N$ induces a map $g^* \colon CR^n(N) \to K^*_{CR}(E; \hat{\mathbb{Z}}_2)$ in $\hat{A}\mathcal{C}\mathcal{R}$. Each algebraic map of this sort must come from a topological map by:

Theorem 5.6. For a torsion-free exact $N \in \hat{A}\Delta$, $n \in \mathbb{Z}$, and an arbitrary spectrum E, if $\gamma \colon CR^n(N) \to K^*_{CR}(E; \hat{\mathbb{Z}}_2)$ is a map in $\hat{A}CR$, then there exists a map of spectra $g \colon E \to \mathcal{E}^n N$ with $g^* = \gamma$.

Proof. Let $\tau_2 E$ denote the 2-torsion part of E given by the homotopy fiber of its localization away from 2. By Pontrjagin duality [10, Theorem 3.1], the map γ corresponds to an ACR-module map $K_*^{CR}(\tau_2 E) \to K_*^{CR}(\tau_2 \mathcal{E}^n N)$ in the sense of [5], where $K_*^{CR}(\tau_2 \mathcal{E}^n N)$ is CR-exact with $K_*(\tau_2 \mathcal{E}^n N)$ divisible. This ACR-module map prolongs canonically to an ACRT-module map $K_*^{CRT}(\tau_2 E) \to K_*^{CRT}(\tau_2 \mathcal{E}^n N)$ by [5, Theorem 7.14], and the results of [5, 9.8 and 7.11] now show that this prolonged

algebraic map must come from a topological map $\tau_2 E \to \tau_2 \mathcal{E}^n N$, which gives the desired $g: E \to \mathcal{E}^n N$.

The map g in this theorem is generally not unique (see [10, 5.4]).

6. On the united 2-adic K-cohomologies of infinite loop spaces

In preparation for our work on $K/2_*$ -localizations of spaces, we functorially determine the united 2-adic K-cohomologies of the needed infinite loop spaces (see Theorem 6.7). We must first introduce:

Definition 6.1 (The 2-adic Adams Δ -modules). By a 2-adic Adams Δ -module M, we mean a 2-adic $\theta\Delta$ -module (see Definition 4.3) consisting of stable 2-adic Adams modules $\{M_C, M_R, M_H\}$ such that the operations $t \colon M_C \cong M_C, \ c \colon M_R \to M_C, \ r \colon M_C \to M_R, \ c' \colon M_H \to M_C, \ q \colon M_C \to M_H, \ \theta \colon M_C \to M_C, \ \theta \colon M_R \to M_R, \ \text{and} \ \theta \colon M_H \to M_R \ \text{are all maps in } \hat{\mathcal{A}}, \ \text{where} \ \psi^{-1} = t \ \text{in} \ M_C \ \text{and} \ \psi^{-1} = 1 \ \text{in both} \ M_R \ \text{and} \ M_H.$ We let $\hat{\mathcal{M}}\Delta$ denote the abelian category of 2-adic Adams Δ -modules. We say that M is θ -nilpotent when it has $\theta^i = 0$ for sufficiently large i, and we say that M is θ -pro-nilpotent when it is the inverse limit of an inverse system of θ -nilpotent 2-adic Adams Δ -modules. Thus, M is θ -pro-nilpotent if and only if $M \cong \lim_i M/\theta^i$ where M/θ^i is the quotient module of M in $\hat{\mathcal{M}}\Delta$ with

$$(M/\theta^{i})_{C} = M_{C}/\theta^{i}M_{C},$$

$$(M/\theta^{i})_{R} = M_{R}/(\theta^{i}M_{R} + \theta^{i}M_{H} + r\theta^{i}M_{C}),$$

$$(M/\theta^{i})_{H} = M_{H}/q\theta^{i}M_{C}$$

for $i \ge 1$. More simply, M is θ -pro-nilpotent if and only if $\cap_i \theta^i M_C = 0$ and $\cap_i \theta^i M_R = 0$. It is not hard to show that whenever M is θ -pro-nilpotent, M must be profinite (i.e. M must be the inverse limit of an inverse system of finite 2-adic Adams Δ -modules). For a space X, the cohomology

$$\widetilde{K}_{\Lambda}^{-1}(X; \hat{\mathbb{Z}}_2) = \{\widetilde{K}^{-1}(X; \hat{\mathbb{Z}}_2), \widetilde{KO}^{-1}(X; \hat{\mathbb{Z}}_2), \bar{S}^{-2}\widetilde{KO}^{-5}(X; \hat{\mathbb{Z}}_2)\}$$

has a natural 2-adic Adams Δ -module structure by [11, Section 3], and we find:

Lemma 6.2. If X is a connected space with $H^1(X; \hat{\mathbb{Z}}_2) = 0$, then the 2-adic Adams Δ -module $\widetilde{K}_{\Delta}^{-1}(X; \hat{\mathbb{Z}}_2)$ is θ -pro-nilpotent.

Proof. The condition $\cap_i \theta^i \widetilde{K}^0(\Sigma X; \hat{\mathbb{Z}}_2) = 0$ holds by $[\mathbf{6}, 5.4 \text{ and } 5.5]$ since $H^2(\Sigma X; \hat{\mathbb{Z}}_2) = 0$, and a similar proof shows $\cap_i \theta^i \widetilde{KO}^0(\Sigma X; \hat{\mathbb{Z}}_2) = 0$ since $H^1(\Sigma X; \mathbb{Z}/2) = 0$. This proof uses the fact that the λ -ideal $\widetilde{KO}^0 Y$ is γ -nilpotent for a connected finite CW complex Y by $[\mathbf{10}, \text{ Theorem } 6.7]$ and the fact that the real line bundles over Y are classified by $H^1(Y; \mathbb{Z}/2)$.

Definition 6.3 (The functor \tilde{F}). We shall construct a functor $\tilde{F}: \hat{A}\Delta \to \hat{\mathcal{M}}\Delta$ where $\hat{A}\Delta$ is the abelian category of stable 2-adic Adams Δ -modules and $\hat{\mathcal{M}}\Delta$

is that of 2-adic Adams Δ -modules (see Definitions 5.3 and 6.1). This functor will carry each $N \in \hat{\mathcal{A}}\Delta$ to a universal θ -pro-nilpotent target module $\tilde{F}N \in \hat{\mathcal{M}}\Delta$. For $N \in \hat{\mathcal{A}}\Delta$, we first let $N_{RH} \in \hat{\mathcal{A}}$ denote the pushout of $N_R \stackrel{r}{\longleftarrow} N_C \stackrel{q}{\longrightarrow} N_H$ with a map $\bar{c} \colon N_{RH} \to N_C$ induced by c and c', and with a map $\bar{r} \colon N_C \to N_{RH}$ induced by r or q. We also let $N_{C+} \in \hat{\mathcal{A}}$ denote $N_C/(1-t)N_C$ and let $N_{C\phi} \in \hat{\mathcal{A}}$ denote $N_C/(cN_R + c'N_H + 2N_C)$. We next let

$$\rho N = \{N_C, N_{RH} \oplus N_{C\phi}, N_{C+}\}$$

be the stable 2-adic Adams Δ -module with operations given by tz=tz, $c(x,w)=\bar{c}x$, $rz=(\bar{r}z,[z])$, c'[z]=(1+t)z, and qz=[z]. We then obtain a stable 2-adic Adams Δ -module

$$\tilde{F}N = N \times \rho N \times \rho N \times \cdots$$

with components

$$\begin{split} \tilde{F}_C N &= N_C \times N_C \times N_C \times \cdots, \\ \tilde{F}_R N &= N_R \times N_{RH} \times N_{C\phi} \times N_{RH} \times N_{C\phi} \times \cdots, \\ \tilde{F}_H N &= N_H \times N_{C+} \times N_{C+} \times \cdots. \end{split}$$

We finally define operations $\theta \colon \tilde{F}_C N \to \tilde{F}_C N$, $\theta \colon \tilde{F}_R N \to \tilde{F}_R N$, and $\theta \colon \tilde{F}_H N \to \tilde{F}_R N$ respectively by the formulae

$$\theta(z_1, z_2, z_3, \dots) = (0, z_1, z_2, z_3, \dots),$$

$$\theta(x_1, x_2, z_2, x_3, z_3, \dots) = (0, [x_1], 0, x_2, 0, x_3, 0, \dots),$$

$$\theta(y_1, z_2, z_3, \dots) = (0, [y_1], 0, \bar{r}z_2, 0, \bar{r}z_3, 0, \dots).$$

This gives a natural 2-adic Adams Δ -module $\tilde{F}N$ and hence a functor $\tilde{F}: \hat{\mathcal{A}}\Delta \to \hat{\mathcal{M}}\Delta$. We let $\iota: N \to \tilde{F}N$ be the map in $\hat{\mathcal{A}}\Delta$ with $\iota_C(z) = (z, 0, 0, \ldots)$, $\iota_R(x) = (x, 0, 0, \ldots)$, and $\iota_H(y) = (y, 0, 0, \ldots)$, and we show:

Theorem 6.4. For a stable 2-adic Adams Δ -module $N \in \hat{\mathcal{A}}\Delta$, the 2-adic Adams Δ -module $\tilde{F}N \in \hat{\mathcal{M}}\Delta$ is θ -pro-nilpotent and the map $\iota: N \to \tilde{F}N$ has the universal property that, for each θ -pro-nilpotent $M \in \hat{\mathcal{M}}\Delta$ and map $f: N \to M$ in $\hat{\mathcal{A}}\Delta$, there exists a unique map $\bar{f}: \tilde{F}N \to M$ in $\hat{\mathcal{M}}\Delta$ with $\bar{f}\iota = f$.

Proof. FN is θ -pro-nilpotent since it is the inverse limit of its quotient modules

$$\tilde{F}N/\theta^{i+1} \cong N \times \rho N \times \cdots \times \rho N.$$

For $i \geqslant 1$, we define a map $f^{(i)} : \rho N \to M$ in $\hat{\mathcal{A}}\Delta$ by

$$f_C^{(i)} = \theta^i f_C \colon N_C \longrightarrow M_C,$$

$$f_R^{(i)} = (\theta^i f_R, \theta^i f_H) + \bar{\phi} \theta^{i-1} f_C \colon N_{RH} \oplus N_{C\phi} \longrightarrow M_R,$$

$$f_H^{(i)} = q \theta^i f_C \colon N_{C+} \longrightarrow M_H.$$

We then define $\bar{f}: \tilde{F}N \to M$ as the inverse limit of the maps

$$f + f^{(1)} + \cdots + f^{(i)} : N \times \rho N \times \cdots \times \rho N \longrightarrow M/\theta^{i+1}$$

in $\hat{\mathcal{M}}\Delta$, and we check that $\bar{f}\iota=f$. The uniqueness condition for \bar{f} follows since the

2-adic Adams Δ -modules $\tilde{F}N/\theta^{i+1} = N \times \rho N \times \cdots \times \rho N$ are generated by ιN . \square

To show the robustness (see Definition 4.7) of $\tilde{F}N$ for suitable N, we need:

Definition 6.5 (The functor $\bar{\rho}: \hat{A}\Delta \to \hat{A}\Delta$). For $N \in \hat{A}\Delta$, we let $\bar{\rho}N = \{N_C, N_{RH}, N_{C+}\}$ be the stable 2-adic Adams Δ -module with operations given by tz = tz, $cx = \bar{c}x$, $rz = \bar{r}z$, c'[z] = (1+t)z, and qz = [z]. Thus, $\bar{\rho}N$ is the quotient of $\rho N = \{N_C, N_{RH} \oplus N_{C\phi}, N_{C+}\}$ by $N_{C\phi}$. If N is torsion-free and exact, then $\bar{\rho}N$ is also torsion-free and exact by Lemma 4.2 since it is isomorphic to the module $\{N_C, N_R + N_H, N_R \cap N_H\}$ with c and c' treated as inclusions.

Lemma 6.6. If $N \in \hat{A}\Delta$ is torsion-free and exact, then $\tilde{F}N \in \hat{\mathcal{M}}\Delta$ is robust.

Proof. We check that $\bar{\phi} \colon \tilde{F}_C N \to \tilde{F}_R N$ is given by

$$\bar{\phi}(z_1, z_2, z_3, \dots) = (0, 0, [z_1], 0, [z_2], 0, \dots)$$

for $z_i \in N_C$ and $[z_i] \in N_{C\phi}$. Thus, $\ker \bar{\phi} = c\tilde{F}_R N + c'\tilde{F}_H N + 2\tilde{F}_C N$ and $\tilde{F}N/\bar{\phi} \cong N \times \bar{\rho}N \times \bar{\rho}N \times \cdots$. Hence, $\tilde{F}N/\bar{\phi}$ is torsion-free and exact by Definition 6.5 as required.

Our main result in this section is:

Theorem 6.7. If E is a 0-connected spectrum with $H^1(E; \hat{\mathbb{Z}}_2) = 0 = H^2(E; \hat{\mathbb{Z}}_2)$, with $K^0(E; \hat{\mathbb{Z}}_2) = 0$, and with $K^{-1}(E; \hat{\mathbb{Z}}_2)$ positively torsion-free (5.3), then there is a natural isomorphism $\hat{L}\tilde{F}K_{\Delta}^{-1}(E; \hat{\mathbb{Z}}_2) \cong K_{CR}^*(\Omega^{\infty}E; \hat{\mathbb{Z}}_2)$.

Proof. Since $\widetilde{K}_{\Delta}^{-1}(\Omega^{\infty}E;\hat{\mathbb{Z}}_2)$ is θ -pro-nilpotent by Lemma 6.2, the infinite suspension map $\sigma\colon K_{\Delta}^{-1}(E;\hat{\mathbb{Z}}_2)\to \widetilde{K}_{\Delta}^{-1}(\Omega^{\infty}E;\hat{\mathbb{Z}}_2)$ induces a map $\bar{\sigma}\colon \widetilde{F}K_{\Delta}^{-1}(E;\hat{\mathbb{Z}}_2)\to \widetilde{K}_{\Delta}^{-1}(\Omega^{\infty}E;\hat{\mathbb{Z}}_2)$ in $\hat{\mathcal{M}}\Delta$, where $\tilde{F}K_{\Delta}^{-1}(E;\hat{\mathbb{Z}}_2)$ is robust by Lemmas 5.4 and 6.6. Thus $\bar{\sigma}$ induces an isomorphism $\hat{L}\tilde{F}K_{\Delta}^{-1}(E;\hat{\mathbb{Z}}_2)\cong K_{CR}^*(\Omega^{\infty}E;\hat{\mathbb{Z}}_2)$ by Theorem 4.9, since it induces an isomorphism of the complex components by [6, Theorem 8.3].

7. Strong 2-adic Adams Δ -modules

Our main results on $K/2_*$ -localizations in Section 8 will involve a space X with $K_{CR}^*(X; \hat{\mathbb{Z}}_2) \cong \hat{L}M$ for a 2-adic Adams Δ -module M that is strong in the sense that it is robust, ψ^3 -splittable, and regular. In this section, we provide the required algebraic definitions and explanations of these notions. We first recall:

Definition 7.1 (The robust modules). We say that a 2-adic Adams Δ -module M is robust when it is robust in the sense of Definition 4.7, ignoring stable Adams operations. When M is robust, the underlying 2-adic Δ -module $M/\bar{\phi}$ satisfies the conditions of Lemma 4.2 and may be factored as a (possibly infinite) product of

monogenic free 2-adic Δ -modules

$$F^{C}(z) = \{\hat{\mathbb{Z}}_{2} \oplus t\hat{\mathbb{Z}}_{2}, \hat{\mathbb{Z}}_{2}, \hat{\mathbb{Z}}_{2}\} = \{\langle z \rangle \oplus \langle tz \rangle, \langle rz \rangle, \langle qz \rangle\},$$

$$F^{R}(x) = \{\hat{\mathbb{Z}}_{2}, \hat{\mathbb{Z}}_{2}, \hat{\mathbb{Z}}_{2}\} = \{\langle cx \rangle, \langle x \rangle, \langle qcx \rangle\},$$

$$F^{H}(y) = \{\hat{\mathbb{Z}}_{2}, \hat{\mathbb{Z}}_{2}, \hat{\mathbb{Z}}_{2}\} = \{\langle c'y \rangle, \langle rc'y \rangle, \langle y \rangle\}$$

by an argument using the factorization of positively torsion-free groups in Definition 5.3. We let $\operatorname{gen}_C M$, $\operatorname{gen}_R M$, and $\operatorname{gen}_H M$ respectively denote the number of complex, real, and quaternionic monogenic free factors of $M/\bar{\phi}$. These numbers do not depend on the factorization since they equal the dimensions of the respective $\mathbb{Z}/2$ -vector spaces $(M_{C\phi})^\#$, $(M_R/(\bar{\phi}M_C+rM_C))^\#$, and $(M_H/qM_C)^\#$, where $(-)^\#$ is the Pontrjagin duality functor from 2-profinite abelian groups to discrete 2-torsion abelian groups. Using the factorization of $M/\bar{\phi}$, we find that

$$gen M_C = 2 gen_C M + gen_R M + gen_H M$$

where gen M_C denotes the number of $\hat{\mathbb{Z}}_2$ factors in the 2-profinite abelian group M_C .

Definition 7.2 (The ψ^3 -splittable modules). For a 2-adic Adams Δ -module $M \in \hat{\mathcal{M}}\Delta$, we consider the stable 2-adic Adams Δ -module $\bar{M} = M/\bar{\phi} \in \hat{\mathcal{A}}\Delta$, and we say that M is ψ^3 -splittable when the quotient map $M \to \bar{M}$ has a right inverse $s \colon \bar{M} \to M$ in $\hat{\mathcal{A}}\Delta$. We call such a map s a ψ^3 -splitting of M, and we note that it corresponds to a left inverse $s' \colon M_R/rM_C \to \bar{\phi}M_C$ of the canonical map $\bar{\phi}M_C \to M_R/rM_C$ in the category $\hat{\mathcal{A}}$ of stable 2-adic Adams modules, or equivalently in the category of profinite $\mathbb{Z}/2$ -modules with automorphisms ψ^3 . We deduce that M is automatically ψ^3 -splittable in some important cases:

Lemma 7.3. If M is a robust 2-adic Adams Δ -module with $\operatorname{gen}_C M = 0$ or $\operatorname{gen}_R M = 0$, then M is ψ^3 -splittable.

Proof. Since M_C is positively torsion-free, the map $cr=1+t\colon M_{C+}\to M_C$ is monic, and hence $c\colon rM_C\to M_C$ is also monic. Thus, $\bar{\phi}M_C\cap rM_C=0$ and there is a short exact sequence

$$0 \longrightarrow \bar{\phi} M_C \longrightarrow M_R/rM_C \longrightarrow M_R/(\bar{\phi} M_C + rM_C) \longrightarrow 0$$

in $\hat{\mathcal{A}}$. Since gen_C M=0 or gen_R M=0, this has $\bar{\phi}M_C=0$ or $M_R/(\bar{\phi}M_C+rM_C)=0$, and hence the map $\bar{\phi}M_C\to M_R/rM_C$ has an obvious left inverse in $\hat{\mathcal{A}}$.

We shall use the ψ^3 -splittability condition to give:

Definition 7.4 (The θ -resolutions of modules). Let $M \in \hat{\mathcal{M}}\Delta$ be a 2-adic Adams Δ -module that is θ -pro-nilpotent, robust, and ψ^3 -splittable. These conditions will hold when M is strong (see Definition 7.11). For a ψ^3 -splitting $s : \bar{M} \to M$ in $\hat{\mathcal{A}}\Delta$, we shall construct an associated θ -resolution

$$0 \longrightarrow \tilde{F} \bar{\rho} \bar{M} \stackrel{\bar{d}}{\longrightarrow} \tilde{F} \bar{M} \stackrel{\bar{s}}{\longrightarrow} M \longrightarrow 0$$

of M in $\hat{\mathcal{M}}\Delta$, with $\bar{\rho}\bar{M}=\{\bar{M}_C,\bar{M}_{RH},\bar{M}_{C+}\}$ as in Definition 6.5, where $\bar{s}\colon \tilde{F}\bar{M}\to$

M is induced by s via Theorem 6.4. To specify \bar{d} , we use the commutative square

$$\begin{array}{ccc} \bar{\rho}\bar{M} & \stackrel{\theta}{\longrightarrow} & \bar{M} \\ \downarrow^{\sigma} & & \downarrow^{s} \\ \rho\bar{M} & \stackrel{s^{(1)}}{\longrightarrow} & M \end{array}$$

in $\hat{\mathcal{A}}\Delta$ with $\rho \bar{M} = \{\bar{M}_C, \bar{M}_{RH} \oplus \bar{M}_{C\phi}, \bar{M}_{C+}\}$ as in Definition 6.3, where $s^{(1)}$ is given by the proof of Theorem 6.4, where $\theta = \{\theta, (\theta, \theta), q\theta\}$, and where $\sigma = \{1, (1, \theta_{\phi}), 1\}$, using the map $\theta_{\phi} \colon \bar{M}_{RH} \to \bar{M}_{C\phi} = M_{C\phi}$ given by the composition of the sequence

$$\bar{M}_{RH} \xrightarrow{s} M_{RH} \xrightarrow{(\theta,\theta)} M_R \cong \bar{M}_R \oplus M_{C\phi} \xrightarrow{\operatorname{proj}} M_{C\phi}$$

in which the isomorphism is the inverse of $(s, \bar{\phi})$: $\bar{M}_R \oplus M_{C\phi} \cong M_R$. The commutative square now gives a map

$$d = (\theta, -\sigma, 0, 0, \dots) : \bar{\rho}\bar{M} \to \tilde{F}\bar{M}$$

in $\hat{A}\Delta$ with $\bar{s}d=0$, and this induces the required map $\bar{d}\colon \tilde{F}\bar{\rho}\bar{M}\to \tilde{F}\bar{M}$ in $\hat{\mathcal{M}}\Delta$ with $\bar{s}\bar{d}=0$.

Lemma 7.5. If $M \in \hat{\mathcal{M}}\Delta$ is θ -pro-nilpotent and robust with a ψ^3 -splitting $s \colon \bar{M} \to M$, then the θ -resolution $0 \to \tilde{F}\bar{\rho}\bar{M} \xrightarrow{\bar{d}} \tilde{F}\bar{M} \xrightarrow{\bar{s}} M \to 0$ is exact in $\hat{\mathcal{M}}\Delta$.

Proof. We easily check that $0 \to \bar{\phi}(\tilde{F}\bar{\rho}\bar{M})_C \to \bar{\phi}(\tilde{F}\bar{M})_C \to \bar{\phi}M_C \to 0$ is exact and that $\bar{s}/\bar{\phi} \colon \tilde{F}\bar{M}/\bar{\phi} \to M/\bar{\phi}$ is onto. Hence, it suffices to show that the map $\tilde{F}\bar{\rho}\bar{M}/\bar{\phi} \to \ker(\bar{s}/\bar{\phi})$ is an isomorphism. This follows by [10, Lemma 4.8] since the map $(\tilde{F}\bar{\rho}\bar{M}/\bar{\phi})_C \to \ker(\bar{s}/\bar{\phi})_C$ is clearly an isomorphism and since the 2-adic Δ -modules $\tilde{F}\bar{\rho}\bar{M}/\bar{\phi}$ and $\ker(\bar{s}/\bar{\phi})$ are exact by Lemma 6.6 and by the short exact sequence rule of [10, 4.5].

To formulate our regularity condition for M, we use:

Definition 7.6 (The 2-adic Adams modules). These are the unstable versions of the stable 2-adic Adams modules and were previously discussed in [8, 2.8]. By a *finite* 2-adic Adams module A, we mean a finite abelian 2-group with endomorphisms $\psi^k \colon A \to A$ for $k \in \mathbb{Z}$ such that:

- (i) $\psi^1 = 1$ and $\psi^j \psi^k = \psi^{jk}$ for $j, k \in \mathbb{Z}$;
- (ii) when n is sufficiently large, the condition $j \equiv k \mod 2^n$ implies $\psi^j = \psi^k$.

By a 2-adic Adams module A, we mean the topological inverse limit of an inverse system of finite 2-adic Adams modules. Such an A has an underlying 2-profinite abelian group with continuous endomorphisms $\psi^k \colon A \to A$ for $k \in \mathbb{Z}$ (and in fact for $k \in \hat{\mathbb{Z}}_2$). For a space X, the cohomology $K^1(X; \hat{\mathbb{Z}}_2)$ is a 2-adic Adams module with the usual Adams operations ψ^k for $k \in \mathbb{Z}$ as in [6, Example 5.2]. We note that the operations ψ^2 and ψ^k , for k odd, in $K^1(X; \hat{\mathbb{Z}}_2)$ correspond via Bott periodicity to θ and to $k^{-1}\psi^k$ in $K^{-1}(X; \hat{\mathbb{Z}}_2)$. In general, for a θ -pro-nilpotent 2-adic Adams Δ -module M, we obtain a 2-adic Adams module M^C having the same group as M_C but having $\psi^0 = 0$ and having ψ^{k2^i} equal to $k^{-1}\psi^k\theta^i$ on M_C for k odd and $i \geqslant 0$.

Definition 7.7 (The linear and strictly nonlinear modules). As in [8, Section 4] and [7, Section 2], a 2-adic Adams module H is called *linear* when it has $\psi^k = k$ for all $k \in \mathbb{Z}$, and H is called *quasilinear* when $2H \subset \psi^2 H$. Each 2-adic Adams module A has a largest linear quotient module

$$\operatorname{Lin} A = A/((\psi^2 - 2)A + (\psi^{-1} + 1)A + (\psi^3 - 3)A)$$

and also has a largest quasilinear submodule $A_{ql} \subset A$ by Lemma 13.1 below. A 2-adic Adams module A is called *strictly nonlinear* when $A_{ql} = 0$. This implies that A is torsion-free with $\bigcap_i (\psi^2)^i A = 0$, and A will be strictly nonlinear by Remark 13.2 and [7, 2.5] whenever it is torsion-free with $(\psi^2)^i A \subset 2^{i+1} A$ for some $i \geq 1$.

Definition 7.8 (The regular modules). As in [8, 4.4], we say that a 2-adic Adams module A is regular when the kernel of $A \to \text{Lin } A$ is strictly nonlinear. This implies that $\cap_i(\psi^2)^i A = 0$, and A will be regular whenever it is an extension of a strictly nonlinear submodule by a linear quotient module. We also say that a 2-adic Adams Δ -module M is regular when it is θ -pro-nilpotent with M^C regular as a 2-adic Adams module. For a connected space X with $H^1(X; \hat{\mathbb{Z}}_2) = 0$, the 2-adic Adams Δ -module $\widetilde{K}_{\Delta}^{-1}(X; \hat{\mathbb{Z}}_2)$ is always θ -pro-nilpotent by Lemma 6.2, and hence $\widetilde{K}_{\Delta}^{-1}(X; \hat{\mathbb{Z}}_2)$ is regular if and only if $\widetilde{K}^1(X; \hat{\mathbb{Z}}_2)$ is regular as a 2-adic Adams module. The following two lemmas will often guarantee regularity for our modules.

Lemma 7.9. Let X be a connected space with $H^1(X; \hat{\mathbb{Z}}_2) = 0$, with $H^m(X; \hat{\mathbb{Z}}_2) = 0$ for sufficiently large m, and with $\widetilde{K}^1(X; \hat{\mathbb{Z}}_2)$ torsion-free. Then $\widetilde{K}^1(X; \hat{\mathbb{Z}}_2)$ is regular with $\psi^2 \colon \widetilde{K}^1(X; \hat{\mathbb{Z}}_2) \to \widetilde{K}^1(X; \hat{\mathbb{Z}}_2)$ monic, and hence $\widetilde{K}_{\Delta}^{-1}(X; \hat{\mathbb{Z}}_2)$ is regular with $\theta \colon \widetilde{K}^{-1}(X; \hat{\mathbb{Z}}_2) \to \widetilde{K}^{-1}(X; \hat{\mathbb{Z}}_2)$ monic.

Lemma 7.10. For a regular 2-adic Adams module A, each submodule is regular, and each torsion-free quotient module is regular when A is finitely generated over $\hat{\mathbb{Z}}_2$.

The proofs are in Section 13. Combining the preceding definitions, we finally introduce:

Definition 7.11 (The strong modules). We say that a 2-adic Adams Δ -module $M \in \hat{\mathcal{M}}\Delta$ is strong when:

- (i) M is robust;
- (ii) M is ψ^3 -splittable;
- (iii) M is regular.

Such an M is automatically θ -pro-nilpotent (and hence profinite) since it is regular.

8. On the $K/2_*$ -localizations of our spaces

We recall that the $K/2_*$ -localizations of spaces or spectra are the same as the $K^*(-; \hat{\mathbb{Z}}_2)$ -localizations since the $K/2_*$ -equivalences are the same as the $K^*(-; \hat{\mathbb{Z}}_2)$ -equivalences. In this section, we give our main result (Theorem 8.6) on the $K/2_*$ -localization of a connected space X with $K^*_{CR}(X; \hat{\mathbb{Z}}_2) \cong \hat{L}M$ for a strong 2-adic Adams Δ -module M. We first consider:

Definition 8.1 (Building blocks for $K/2_*$ -localizations). For a torsion-free exact stable 2-adic Adams Δ -module $N \in \hat{\mathcal{A}}\Delta$, we let $\mathcal{E}N$ denote the $K/2_*$ -local spectrum $\mathcal{E}^{-1}N$ of Theorem 5.5 with an isomorphism $K_{CR}^*(\mathcal{E}N; \hat{\mathbb{Z}}_2) \cong CR^{-1}N$ in the category $\hat{\mathcal{A}}\mathcal{C}\mathcal{R}$ of stable 2-adic Adams CR-modules. As in [8, 3.5], we let $\tilde{\mathcal{E}}N \to \mathcal{E}N \to \bar{P}^2\mathcal{E}N$ denote the Postnikov fiber sequence of spectra with $\pi_i\tilde{\mathcal{E}}N \cong \pi_i\mathcal{E}N$ for i>2, with $\pi_i\tilde{\mathcal{E}}N=0$ for i<2, and with $\pi_2\tilde{\mathcal{E}}N\cong\hat{t}_2\pi_2\mathcal{E}N$, where $\hat{t}_2\pi_2\tilde{\mathcal{E}}N\subset\pi_2\mathcal{E}N$ denotes the Ext-2-completion of the torsion subgroup of $\pi_2\mathcal{E}N$. We now obtain a simply-connected infinite loop space $\Omega^\infty\tilde{\mathcal{E}}N$ which is $K/2_*$ -local by [8, Theorem 3.8]. These $\Omega^\infty\tilde{\mathcal{E}}N$, with their companions $\Omega^\infty\tilde{\mathcal{E}}\bar{\rho}N$, will serve as our building blocks for $K/2_*$ -localizations of spaces, where $\bar{\rho}N$ denotes the torsion-free exact stable 2-adic Adams Δ -module $\bar{\rho}N=\{N_C,N_R+N_H,N_R\cap N_H\}$ of Definition 6.5.

Definition 8.2 (Strict homomorphisms and isomorphisms). For a 2-adic Adams Δ -module $M \in \hat{\mathcal{M}}\Delta$ and a connected space X, a *strict homomorphism* (resp. *strict isomorphism*) $\hat{L}M \to K^*_{CR}(X;\hat{\mathbb{Z}}_2)$ is a homomorphism (resp. isomorphism) of special 2-adic ϕCR -algebras induced by a map $M \to \widetilde{K}_{\Delta}^{-1}(X;\hat{\mathbb{Z}}_2)$ of 2-adic Adams Δ -modules. For instance, there is a strict isomorphism

$$\hat{L}\tilde{F}N \cong K_{CR}^*(\Omega^{\infty}\tilde{\mathcal{E}}N;\hat{\mathbb{Z}}_2)$$

for each torsion-free exact stable 2-adic Adams Δ -module $N \in \hat{\mathcal{A}}\Delta$ by Theorem 6.7, and we have:

Lemma 8.3. For a torsion-free exact module $N \in \hat{A}\Delta$ and a connected space X with $H^1(X; \hat{\mathbb{Z}}_2) = 0 = H^2(X; \hat{\mathbb{Z}}_2)$, each strict homomorphism $\hat{L}\tilde{F}N \to K_{CR}^*(X; \hat{\mathbb{Z}}_2)$ is induced by a (possibly non-unique) map $X \to \Omega^\infty \tilde{\mathcal{E}}N$.

Proof. A strict homomorphism $\hat{L}\tilde{F}N \to K_{CR}^*(X;\hat{\mathbb{Z}}_2)$ corresponds successively to: a map $\tilde{F}N \to K_{\Delta}^{-1}(X;\hat{\mathbb{Z}}_2)$ in $\hat{\mathcal{M}}\Delta$, a map $N \to K_{\Delta}^{-1}(X;\hat{\mathbb{Z}}_2)$ in $\hat{\mathcal{A}}\Delta$, and a map $CR^{-1}N \to K_{CR}^*(\Sigma^{\infty}X;\hat{\mathbb{Z}}_2)$ in $\hat{\mathcal{A}}\mathcal{C}\mathcal{R}$. By Theorem 5.6, this last map is induced by a map $\Sigma^{\infty}X \to \mathcal{E}N$, which lifts uniquely to a map $\Sigma^{\infty}X \to \tilde{\mathcal{E}}N$, and we can easily check that the adjoint map $X \to \Omega^{\infty}\tilde{\mathcal{E}}N$ induces the original strict homomorphism.

Definition 8.4 (The key construction). For a strong 2-adic Adams Δ -module $M \in \hat{\mathcal{M}}\Delta$, we may take a θ -resolution (see Definition 7.4)

$$0 \longrightarrow \tilde{F} \bar{\rho} \bar{M} \stackrel{\bar{d}}{\longrightarrow} \tilde{F} \bar{M} \stackrel{\bar{s}}{\longrightarrow} M \longrightarrow 0$$

using the torsion-free exact module $\bar{M}=M/\bar{\phi}\in\hat{\mathcal{A}}\Delta$. We may then apply Lemma 8.3 to give a map $f\colon \Omega^\infty \tilde{\mathcal{E}} \bar{M} \to \Omega^\infty \tilde{\mathcal{E}} \bar{\rho} \bar{M}$ inducing the $K_{CR}^*(-;\hat{\mathbb{Z}}_2)$ -homomorphism $f^*=\hat{L}\bar{d}\colon \hat{L}\tilde{F}\bar{\rho}\bar{M}\to \hat{L}\tilde{F}M$. Any such f will be called a *companion map* of M, and its homotopy fiber Fib f will be $K/2_*$ -local since $\Omega^\infty \tilde{\mathcal{E}} M$ and $\Omega^\infty \tilde{\mathcal{E}} \bar{\rho} M$ are. As in $[\mathbf{8}, 4.6]$ and Definition 8.1, we let

$$\widetilde{\mathrm{Fib}}f\longrightarrow \mathrm{Fib}\,f\longrightarrow \bar{P}^2\,\mathrm{Fib}\,f$$

denote the Postnikov fiber sequence with $\pi_i \widetilde{\text{Fib}} f \cong \pi_i \operatorname{Fib} f$ for i > 2, with $\pi_i \widetilde{\text{Fib}} f = 0$ for i < 2, and with $\pi_i \widetilde{\text{Fib}} f \cong \hat{t}_2 \pi_2 \widetilde{\text{Fib}} f$. We note that $\bar{P}^2 \operatorname{Fib} f$ is an infinite loop

space which is $K/2_*$ -local by [8, Theorem 3.8], and we conclude that $\widetilde{\text{Fib}}f$ is also $K/2_*$ -local. Moreover, we have $K_{CR}^*(\widetilde{\text{Fib}}f; \hat{\mathbb{Z}}_2) \cong \hat{L}M$ by:

Theorem 8.5. For a strong 2-adic Adams Δ -module $M \in \hat{\mathcal{M}}\Delta$ and any companion map $f: \Omega^{\infty} \tilde{\mathcal{E}} \bar{M} \to \Omega^{\infty} \tilde{\mathcal{E}} \bar{\rho} \bar{M}$, there is a strict isomorphism $\hat{L}M \cong K_{CR}^*(\widetilde{\mathrm{Fib}} f; \hat{\mathbb{Z}}_2)$.

Thus, $\hat{L}M$ is topologically realizable for each strong $M \in \hat{\mathcal{M}}\Delta$. This theorem will be proved in Section 14 and leads immediately to our main result on $K/2_*$ -localizations of spaces.

Theorem 8.6. If X is a connected space with a strict isomorphism $\hat{L}M \cong K_{CR}^*(X; \hat{\mathbb{Z}}_2)$ for a strong 2-adic Adams Δ -module $M \in \hat{\mathcal{M}}\Delta$, then there is an equivalence $X_{K/2} \simeq \widetilde{\mathrm{Fib}}f$ for some companion map $f \colon \Omega^{\infty} \tilde{\mathcal{E}} \overline{M} \to \Omega^{\infty} \tilde{\mathcal{E}} \overline{\rho} \overline{M}$ of M, where the equivalence induces the canonical isomorphism $K_{CR}^*(\widetilde{\mathrm{Fib}}f; \hat{\mathbb{Z}}_2) \cong \hat{L}M \cong K_{CR}^*(X; \hat{\mathbb{Z}}_2)$. Moreover, $H^1(X; \hat{\mathbb{Z}}_2) = 0 = H^2(X; \hat{\mathbb{Z}}_2)$.

Proof. The last statement follows by [6, 5.4]. For the first, we take a θ -resolution $0 \to \tilde{F} \bar{\rho} \bar{M} \xrightarrow{\bar{d}} \tilde{F} \bar{M} \xrightarrow{\bar{s}} M \to 0$ of M and apply Lemma 8.3 to give a map $h: X \to \Omega^{\infty} \tilde{\mathcal{E}} \bar{M}$ with $h^* = \hat{L} \bar{s} \colon \hat{L} \tilde{F} \bar{M} \to \hat{L} M$. We then apply Lemma 8.3 again to give a map $k: \operatorname{Cof} h \to \Omega^{\infty} \tilde{\mathcal{E}} \bar{\rho} \bar{M}$ with

$$k^* = \hat{L}\bar{d} : \hat{L}\tilde{F}\bar{\rho}\bar{M} \longrightarrow K_{CR}^*(\operatorname{Cof} h; \hat{\mathbb{Z}}_2) \subset \hat{L}\tilde{F}\bar{M}.$$

Composing k with the cofiber map, we obtain a companion map $f: \Omega^{\infty} \tilde{\mathcal{E}} \overline{M} \to \Omega^{\infty} \tilde{\mathcal{E}} \overline{P} \overline{M}$ of M such that h lifts to a map $u: X \to \widetilde{\text{Fib}} f$ which is a $K/2_*$ -equivalence by Theorem 8.5. Since $\widetilde{\text{Fib}} f$ is $K/2_*$ -local, this gives the desired equivalence $X_{K/2} \simeq \widetilde{\text{Fib}} f$.

In this theorem, M is uniquely determined by the space X since there is a canonical isomorphism $M \cong \hat{Q}K_{\Delta}^{-1}(X; \hat{\mathbb{Z}}_2)$ in $\hat{\mathcal{M}}\Delta$ by Remark 4.10 and [11, Section 3].

9. On the v_1 -periodic homotopy groups of our spaces

The p-primary v_1 -periodic homotopy groups $v_1^{-1}\pi_*X$ of a space X at a prime p were defined by Davis and Mahowald [15] and have been studied extensively (see [13]). In this section, we apply the preceding result (Theorem 8.6) on the $K/2_*$ -localizations of our spaces to approach v_1 -periodic homotopy groups at p=2 using:

Definition 9.1 (The functor Φ_1). As in [4], [9], [16], and [18], there is a v_1 -stabilization functor Φ_1 from the homotopy category of spaces to that of spectra such that:

- (i) for a space X, there is a natural isomorphism $v_1^{-1}\pi_*X \cong \pi_*\tau_2\Phi_1X$ where $\tau_2\Phi_1X$ is the 2-torsion part of Φ_1X (given by the fiber of its localization away from 2);
- (ii) $\Phi_1 X$ is $K/2_*$ -local for each space X;

- (iii) for a spectrum E, there is a natural equivalence $\Phi_1(\Omega^{\infty}E) \simeq E_{K/2}$;
- (iv) Φ_1 preserves fiber squares.

Various other properties of Φ_1 are described in [10, Section 2], and the isomorphism $v_1^{-1}\pi_*X \cong \pi_*\tau_2\Phi_1X$ may be applied as in [10, Theorem 3.2] to show:

Theorem 9.2. For a space X, there is a natural long exact sequence

$$\cdots \longrightarrow KO^{n-3}(\Phi_1 X; \hat{\mathbb{Z}}_2) \xrightarrow{\psi^3 - 9} KO^{n-3}(\Phi_1 X; \hat{\mathbb{Z}}_2) \longrightarrow (v_1^{-1} \pi_n X)^{\#}$$
$$\longrightarrow KO^{n-2}(\Phi_1 X; \hat{\mathbb{Z}}_2) \xrightarrow{\psi^3 - 9} KO^{n-2}(\Phi_1 X; \hat{\mathbb{Z}}_2) \longrightarrow \cdots$$

where $(-)^{\#}$ is the Pontrjagin duality functor from discrete 2-torsion abelian groups to 2-profinite abelian groups.

This may be used to calculate $v_1^{-1}\pi_*X$ from $KO^*(\Phi_1X;\hat{\mathbb{Z}}_2)$ up to extension. To approach $KO^*(\Phi_1X;\hat{\mathbb{Z}}_2)$ or $K^*(\Phi_1X;\hat{\mathbb{Z}}_2)$, we require:

Definition 9.3 (The $K/2_*$ -durable spaces). Following [8, 7.8], we say that a space X is $K/2_*$ -durable when the $K/2_*$ -localization $X \to X_{K/2}$ induces an equivalence $\Phi_1 X \simeq \Phi_1 X_{K/2}$ (or equivalently induces an isomorphism $v_1^{-1} \pi_* X \cong v_1^{-1} \pi_* X_{K/2}$), and we recall that each connected H-space is $K/2_*$ -durable. For such X, we may apply our key result on $K/2_*$ -localizations (Theorem 8.6) to deduce:

Theorem 9.4. If X is a connected $K/2_*$ -durable space (e.g. H-space) with a strict isomorphism $\hat{L}M \cong K_{CR}^*(X; \hat{\mathbb{Z}}_2)$ for a strong module $M \in \hat{\mathcal{M}}\Delta$, then there is a (co)fiber sequence of spectra $\Phi_1 X \to \mathcal{E}\bar{M} \xrightarrow{\epsilon} \mathcal{E}\bar{\rho}\bar{M}$ such that $\epsilon^* \colon K_{CR}^*(\mathcal{E}\bar{\rho}\bar{M}; \hat{\mathbb{Z}}_2) \to K_{CR}^*(\mathcal{E}\bar{M}; \hat{\mathbb{Z}}_2)$ is given by $CR^{-1}\theta \colon CR^{-1}\bar{\rho}\bar{M} \to CR^{-1}\bar{M}$.

Here, the map $\theta \colon \bar{\rho}\bar{M} \to \bar{M}$ is given by

$$\theta = (\theta, \theta, \theta) : \{ \bar{M}_C, \bar{M}_R + \bar{M}_H, \bar{M}_R \cap \bar{M}_H \} \longrightarrow \{ \bar{M}_C, \bar{M}_R, \bar{M}_H \}$$

in $\hat{A}\Delta$. This theorem will be proved below and may be used to calculate $K^*(\Phi_1X; \hat{\mathbb{Z}}_2)$ and $KO^*(\Phi_1X; \hat{\mathbb{Z}}_2)$ since it immediately implies:

Theorem 9.5. For X as in Theorem 9.4, there is a $K^*(-; \hat{\mathbb{Z}}_2)$ cohomology exact sequence

$$0 \longrightarrow K^{-2}(\Phi_1 X; \hat{\mathbb{Z}}_2) \longrightarrow \bar{M}_C \stackrel{\theta}{\longrightarrow} \bar{M}_C \longrightarrow K^{-1}(\Phi_1 X; \hat{\mathbb{Z}}_2) \longrightarrow 0,$$

and there is a $KO^*(-; \hat{\mathbb{Z}}_2)$ cohomology exact sequence

$$0 \longrightarrow KO^{-8}(\Phi_1 X; \hat{\mathbb{Z}}_2) \longrightarrow \bar{M}_C/(\bar{M}_R + \bar{M}_H) \stackrel{\theta}{\longrightarrow} \bar{M}_C/\bar{M}_R \longrightarrow$$

$$KO^{-7}(\Phi_1 X; \hat{\mathbb{Z}}_2) \longrightarrow 0 \longrightarrow \bar{M}_H/(\bar{M}_R \cap \bar{M}_H) \longrightarrow KO^{-6}(\Phi_1 X; \hat{\mathbb{Z}}_2) \longrightarrow$$

$$\bar{M}_R \cap \bar{M}_H \stackrel{\theta}{\longrightarrow} \bar{M}_H \longrightarrow KO^{-5}(\Phi_1 X; \hat{\mathbb{Z}}_2) \longrightarrow 0 \longrightarrow 0 \longrightarrow KO^{-4}(\Phi_1 X; \hat{\mathbb{Z}}_2) \longrightarrow$$

$$\bar{M}_C/(\bar{M}_R \cap \bar{M}_H) \stackrel{\theta}{\longrightarrow} \bar{M}_C/\bar{M}_H \longrightarrow KO^{-3}(\Phi_1 X; \hat{\mathbb{Z}}_2) \longrightarrow$$

$$(\bar{M}_R + \bar{M}_H)/(\bar{M}_R \cap \bar{M}_H) \stackrel{\theta}{\longrightarrow} \bar{M}_R/(\bar{M}_R \cap \bar{M}_H) \longrightarrow$$

$$KO^{-2}(\Phi_1 X; \hat{\mathbb{Z}}_2) \longrightarrow \bar{M}_R + \bar{M}_H \stackrel{\theta}{\longrightarrow} \bar{M}_R \longrightarrow KO^{-1}(\Phi_1 X; \hat{\mathbb{Z}}_2) \longrightarrow 0.$$

In these sequences, θ may be replaced by $\lambda^2 = -\theta$. Also, for $i, k \in \mathbb{Z}$ with k odd, the Adams operation ψ^k in $K^{2i-1}(\Phi_1X; \hat{\mathbb{Z}}_2)$, $K^{2i-2}(\Phi_1X; \hat{\mathbb{Z}}_2)$, $KO^{2i-1}(\Phi_1X; \hat{\mathbb{Z}}_2)$, or $KO^{2i-2}(\Phi_1X; \hat{\mathbb{Z}}_2)$ agrees with $k^{-i}\psi^k$ in the adjacent \bar{M} terms.

Thus, for X as in Theorem 9.4, we may essentially calculate $v_1^{-1}\pi_*X$ from \bar{M} (up to extension problems) using Theorems 9.2 and 9.5. By [10, 7.6], this approach to $v_1^{-1}\pi_*X$ may be extended to various other important spaces X using:

Definition 9.6 (The $\widehat{K}\Phi_1$ -goodness condition). For a space X, we let $\Phi_1: \widetilde{K}^*_{CR}(X; \hat{\mathbb{Z}}_2) \longrightarrow K^*_{CR}(\Phi_1X; \hat{\mathbb{Z}}_2)$ denote the v_1 -stabilization homomorphism of $[\mathbf{10}, 7.1]$, and we recall that it induces a homomorphism $\Phi_1: \hat{Q}K^n_{\Delta}(X; \hat{\mathbb{Z}}_2)/\theta \longrightarrow K^n_{\Delta}(\Phi_1X; \hat{\mathbb{Z}}_2)$ in $\hat{A}\Delta$ for n=-1,0 by $[\mathbf{10}, 7.4]$, where $\hat{Q}K^n_{\Delta}(X; \hat{\mathbb{Z}}_2)/\theta$ is as in Remark 4.10 and Definition 6.1. Following $[\mathbf{10}, 7.5]$, we say that a space X is $\widehat{K}\Phi_1$ -good when the complex v_1 -stabilization homomorphism $\Phi_1: \hat{Q}K^n(X; \hat{\mathbb{Z}}_2)/\theta \to K^n(\Phi_1X; \hat{\mathbb{Z}}_2)$ is an isomorphism for n=-1,0. Our next theorem will provide initial examples of $\widehat{K}\Phi_1$ -good spaces from which other examples may be built.

Theorem 9.7. If X is a connected $K/2_*$ -durable space (e.g. H-space) with a strict isomorphism $\hat{L}M \cong K_{CR}^*(X; \hat{\mathbb{Z}}_2)$ for a strong module $M \in \hat{\mathcal{M}}\Delta$ such that $\theta \colon \bar{M}_C \to \bar{M}_C$ is monic, then X is $\hat{K}\Phi_1$ -good with $K^0(\Phi_1X; \hat{\mathbb{Z}}_2) = 0$, with $K^{-1}(\Phi_1X; \hat{\mathbb{Z}}_2) = \bar{M}_C/\theta$, and with $K_{\Delta}^{-1}(\Phi_1X; \hat{\mathbb{Z}}_2) \cong \bar{M}/\theta$.

To prove Theorems 9.4 and 9.7, we first consider the spectrum $\tilde{\mathcal{E}}N$ for a torsion-free exact module $N \in \hat{\mathcal{A}}\Delta$ and note that $\Phi_1\Omega^\infty \tilde{\mathcal{E}}N \simeq (\tilde{\mathcal{E}}N)_{K/2} \simeq \mathcal{E}N$.

Lemma 9.8. The space $\Omega^{\infty} \tilde{\mathcal{E}} N$ is $\widehat{K} \Phi_1$ -good, and the v_1 -stabilization gives a natural isomorphism

$$\Phi_1 \colon \hat{Q} K_{\Delta}^{-1}(\Omega^{\infty} \tilde{\mathcal{E}} N; \hat{\mathbb{Z}}_2) / \theta \cong K_{\Delta}^{-1}(\mathcal{E} N; \hat{\mathbb{Z}}_2).$$

Proof. By [10, 7.1], the homomorphism $\Phi_1: K_{\Delta}^{-1}(\Omega^{\infty}\tilde{\mathcal{E}}N; \hat{\mathbb{Z}}_2) \to K_{\Delta}^{-1}(\mathcal{E}N; \hat{\mathbb{Z}}_2)$ is left inverse to the infinite suspension homomorphism, and the lemma now follows by Theorem 6.7 together with Lemma 4.11, and Definition 6.3.

Proof of Theorem 9.4. Applying the functor Φ_1 to the fiber sequence of Theorem 8.6, we obtain a (co)fiber sequence of spectra

$$\Phi_1 X_{K/2} \longrightarrow \Phi_1 \Omega^{\infty} \tilde{\mathcal{E}} \bar{M} \xrightarrow{\Phi_1 f} \Phi_1 \Omega^{\infty} \tilde{\mathcal{E}} \bar{\rho} \bar{M}$$

for some companion map f of M. We then deduce that $\Phi_1 f$ corresponds to a map $\mathcal{E}\bar{M} \to \mathcal{E}\bar{\rho}\bar{M}$ having the desired properties by Lemmas 9.8 and 5.4.

Proof of Theorem 9.7. The results on $K^*(\Phi_1X; \hat{\mathbb{Z}}_2)$ and $K_{\Delta}^{-1}(\Phi_1X; \hat{\mathbb{Z}}_2)$ follow from Theorem 9.5. Since $K^*(X; \hat{\mathbb{Z}}_2) \cong \hat{\Lambda}M_C$ by Lemma 4.6, we obtain isomorphisms $\hat{Q}K^0(X; \hat{\mathbb{Z}}_2)/\theta = 0$ and $\hat{Q}K^{-1}(X; \hat{\mathbb{Z}}_2)/\theta \cong M_C/\theta$, and we deduce that $\Phi_1: \hat{Q}K^n(X; \hat{\mathbb{Z}}_2)/\theta \cong K^n(\Phi_1X; \hat{\mathbb{Z}}_2)$ for n = -1, 0 by Lemma 9.8 and naturality.

10. Applications to simply-connected compact Lie groups

We now apply the preceding results to a simply-connected compact Lie group G. We first use the representation theory of G to functorially determine the united 2-adic K-cohomology ring $K_{CR}^*(G; \hat{\mathbb{Z}}_2) = \{K^*(G; \hat{\mathbb{Z}}_2), KO^*(G; \hat{\mathbb{Z}}_2)\}$ in Theorem 10.3. Then, with slight restrictions on the group, we use the representation theory of G to give expressions for the $K/2_*$ -localization $G_{K/2}$, for the v_1 -stabilization Φ_1G , and for the cohomology $KO^*(\Phi_1G; \hat{\mathbb{Z}}_2)$, and we also show that G is $\widehat{K}\Phi_1$ -good. Our results are summarized in Theorem 10.6 and permit calculations of the 2-primary v_1 -periodic homotopy groups $v_1^{-1}\pi_*G$ using Theorem 9.2, as accomplished very successfully by Davis [14]. In this section, we assume some general familiarity with the representation rings of our Lie groups as described in [12, Sections II.6 and VI.4] and [14, Theorem 2.3].

Definition 10.1 (The representation ring $R_{\Delta}G$). For a simply-connected compact Lie group G, we let RG be the complex representation ring and let $R_RG, R_HG \subset RG$ be the real and quaternionic parts of RG with the usual λ -ring structures on RG and $R_RG \oplus R_HG$. We also let $t = \psi^{-1} : RG \cong RG$, $c : R_RG \subset RG$, $r : RG \to R_RG$, $c' : R_HG \subset RG$, and $q : RG \to R_HG$ be the usual operations satisfying the Δ -module relations of Definition 4.1. These structures are compatible in the expected ways and combine to give a $\Delta\lambda$ -ring $R_{\Delta}G = \{RG, R_RG, R_HG\}$ in the sense of [10, 6.2]. We let $\tilde{R}_{\Delta}G = \{\tilde{R}G, \tilde{R}_RG, \tilde{R}_HG\}$ be the augmentation ideal of $R_{\Delta}G$ given by the kernel $\tilde{R}G$ of the complex augmentation dim: $RG \to \mathbb{Z}$, where $\tilde{R}_RG = R_RG \cap \tilde{R}G$ and $\tilde{R}_HG = R_HG \cap \tilde{R}G$. We also let $QR_{\Delta}G = \{QRG, QR_RG, QR_HG\}$ be the indecomposables of $R_{\Delta}G$ given by

$$QRG = \tilde{R}G/(\tilde{R}G)^{2},$$

$$QR_{R}G = \tilde{R}_{R}G/((\tilde{R}_{R}G)^{2} + (\tilde{R}_{H}G)^{2} + r(\tilde{R}G)^{2}),$$

$$QR_{H}G = \tilde{R}_{H}G/((\tilde{R}_{R}G)(\tilde{R}_{H}G) + q(\tilde{R}G)^{2}).$$

It is straightforward to show that $\tilde{R}_{\Delta}G$ and $QR_{\Delta}G$ inherit $\Delta\lambda$ -ring structures (without identities) from $R_{\Delta}G$. Since $QR_{\Delta}G$ is a $\Delta\lambda$ -ring with trivial multiplication, it is equipped with additive operations $t\colon QRG\cong QRG$, $c\colon QR_RG\to QRG$, $r\colon QRG\to QR_RG$, $c'\colon QR_HG\to QRG$, $q\colon QRG\to QR_HG$, $\theta=-\lambda^2\colon QRG\to QRG$, $\theta=-\lambda^2\colon QR_RG\to QR_RG$ for the odd $\theta\in Z$. We now let $QR_RG\to QR_RG\to QR_RG\to QR_RG$ with the induced additive operations on the components $QRG=\mathbb{Z}_2\otimes QRG$, $QR_RG=\mathbb{Z}_2\otimes QR_RG$, and $QR_RG=\mathbb{Z}_2\otimes QR_RG$.

Lemma 10.2. For a simply-connected compact Lie group G, $\hat{Q}R_{\Delta}G$ is a robust 2-adic Adams Δ -module.

This will be proved below. To determine the cohomology ring $K_{CR}^*(G; \hat{\mathbb{Z}}_2) = \{K^*(G; \hat{\mathbb{Z}}_2), KO^*(G; \hat{\mathbb{Z}}_2)\}$ from the representation theory of G, we now let $\beta \colon \hat{Q}R_{\Delta}G \to \widetilde{K}_{\Delta}^{-1}(G; \hat{\mathbb{Z}}_2)$ be the 2-adic Adams Δ -module homomorphism induced by the composition of the canonical homomorphisms $\tilde{R}_{\Delta}G \to \widetilde{K}_{\Delta}^0(BG; \hat{\mathbb{Z}}_2) \to \widetilde{K}_{\Delta}^{-1}(G; \hat{\mathbb{Z}}_2)$.

Theorem 10.3. For a simply-connected compact Lie group G, there is a natural strict isomorphism $\bar{\beta}$: $\hat{L}(\hat{Q}R_{\Delta}G) \cong K_{CR}^*(G; \hat{\mathbb{Z}}_2)$.

Proof. This follows by Lemma 10.2 and Theorem 4.9 since $\beta \colon \hat{Q}RG \to K^{-1}(G; \hat{\mathbb{Z}}_2)$ induces an isomorphism $\hat{\Lambda}(\hat{Q}RG) \cong K^*(G; \hat{\mathbb{Z}}_2)$ by [17].

We note that $K_{CR}^*(G; \hat{\mathbb{Z}}_2)$ has a simple system of generators (see Definition 3.3) consisting of the $\beta \tilde{z}_{\gamma} \in K^{-1}(G; \hat{\mathbb{Z}}_2)$, the $\beta \tilde{x}_{\alpha} \in KO^{-1}(G; \hat{\mathbb{Z}}_2)$, and the $\beta \tilde{y}_{\beta} \in KO^{-5}(G; \hat{\mathbb{Z}}_2)$ obtained from the analysis of $\hat{Q}R_{\Delta}G$ below in Remark 10.7. Thus, by Proposition 3.4, $K_{CR}^*(G; \hat{\mathbb{Z}}_2)$ is a free 2-adic CR-module on the associated products. However, our description of $K_{CR}^*(G; \hat{\mathbb{Z}}_2)$ as $\hat{L}(\hat{Q}R_{\Delta}G)$ is more natural and includes the full multiplicative structure. Moreover, it will let us apply our main results to G.

Lemma 10.4. For a simply-connected compact Lie group G, the 2-adic Adams Δ -module $\hat{Q}R_{\Delta}G$ is regular with $\theta:\hat{Q}RG\to\hat{Q}RG$ monic.

Proof. This follows by Lemmas 7.9 and 7.10 since $\beta: \hat{Q}RG \to \widetilde{K}^{-1}(G; \hat{\mathbb{Z}}_2)$ is monic by Theorem 10.3.

Thus, $\hat{Q}R_{\Delta}G$ is strong (robust, ψ^3 -splittable, and regular) if and only if it is ψ^3 -splittable, and this is usually the case by:

Lemma 10.5. For a simply-connected compact simple Lie group G, the 2-adic Adams Δ -module $\hat{Q}R_{\Delta}G$ is ψ^3 -splittable (and hence strong) if and only if G is not E_6 or Spin(4k+2) with k not a 2-power.

This will be proved below using work of Davis [14]. For a simply-connected compact Lie group G, we now let $\hat{Q}_{\Delta} = \{\hat{Q}, \hat{Q}_R, \hat{Q}_H\}$ briefly denote the associated stable 2-adic Adams Δ -module $\overline{\hat{Q}_{\Delta}RG} = (\hat{Q}_{\Delta}RG)/\bar{\phi}$. This agrees with the notation of [10, 9.2] and [14], since our $\hat{Q}_{\Delta} = \{\hat{Q}, \hat{Q}_R, \hat{Q}_H\}$ is the 2-adic completion of their $Q_{\Delta} = \{Q, Q_R, Q_H\}$. Our main results now give the following omnibus theorem, whose four parts may be expanded in the obvious ways to match the cited theorems.

Theorem 10.6. Let G be a simply-connected compact Lie group such that the 2-adic Adams Δ -module $\hat{Q}_{\Delta}RG$ is ψ^3 -splittable (see Lemma 10.5), and let $\hat{Q}_{\Delta} = \{\hat{Q}, \hat{Q}_R, \hat{Q}_H\}$ be the associated stable 2-adic Adams Δ -module. Then:

- (i) the $K/2_*$ -localization $G_{K/2}$ is the homotopy fiber of a map $\Omega^{\infty} \tilde{\mathcal{E}} \hat{Q}_{\Delta} \to \Omega^{\infty} \tilde{\mathcal{E}} \bar{\rho} \hat{Q}_{\Delta}$ with low dimensional modifications as in Theorem 8.6;
- (ii) the 2-adic v_1 -stabilization $\Phi_1 G$ is the homotopy fiber of a map of spectra $\mathcal{E}\hat{Q}_{\Delta} \to \mathcal{E}\bar{\rho}\hat{Q}_{\Delta}$ as in Theorem 9.4;
- (iii) there is an exact sequence

$$0 \longrightarrow KO^{-8}(\Phi_1 G; \hat{\mathbb{Z}}_2) \longrightarrow \hat{Q}/(\hat{Q}_R + \hat{Q}_H) \xrightarrow{\theta} \hat{Q}/\hat{Q}_R \longrightarrow \cdots$$

continuing as in Theorem 9.5;

(iv) G is $\widehat{K}\Phi_1$ -good at the prime 2 as in Theorem 9.7.

The exact sequence in (iii) permits calculations of the 2-primary v_1 -periodic homotopy groups $v_1^{-1}\pi_*G$ using Theorem 9.2 as accomplished by Davis [14]. This exact sequence was previously obtained in [10, Theorem 9.3] using indirect algebraic methods under the hard-to-verify condition that G was $\widehat{K}\Phi_1$ -good. It is now obtained using the $KO^*(-; \hat{\mathbb{Z}}_2)$ cohomology exact sequence of the (co)fiber sequence in (ii) under an accessible algebraic condition that implies the $\widehat{K}\Phi_1$ -goodness of G by (iv).

We devote the rest of the section to proving Lemmas 10.2 and 10.5 using:

Remark 10.7 (Generators for representation rings). For a simply-connected compact Lie group G, standard results summarized in [14, Theorem 2.3] show that RG is a finitely generated polynomial ring $\mathbb{Z}[z_{\gamma}, z_{\gamma}^*, x_{\alpha}, y_{\beta}]_{\gamma,\alpha,\beta}$ on certain basic complex representations z_{γ} together with their conjugates $z_{\gamma}^* = tz_{\gamma}$, certain basic real representations x_{α} , and certain basic quaternionic representations y_{β} . Moreover, in terms of these generators, the $\mathbb{Z}/2$ -graded ring $\{R_RG, R_HG\}$ is characterized by the fact that its quotient $\{R_RG/rRG, R_HG/qRG\}$ is a $\mathbb{Z}/2$ -graded polynomial algebra $\mathbb{Z}/2[x_{\alpha}, \bar{\phi}z_{\gamma}, y_{\beta}]_{\alpha,\gamma,\beta}$ on the real generators x_{α} and $\bar{\phi}z_{\gamma}$ (with $c\bar{\phi}z_{\gamma} = z_{\gamma}^*z_{\gamma}$) and the quaternionic generators y_{β} . Consequently, the indecomposables $QR_{\Delta}G = \{QRG, QR_RG, QR_HG\}$ may be expressed as

$$QRG = \mathbb{Z}\{\tilde{z}_{\gamma}, \tilde{z}_{\gamma}^{*}, c\tilde{x}_{\alpha}, c'\tilde{y}_{\beta}\}_{\gamma,\alpha,\beta},$$

$$QR_{R}G = \mathbb{Z}\{r\tilde{z}_{\gamma}, \tilde{x}_{\alpha}, rc'\tilde{y}_{\beta}\}_{\gamma,\alpha,\beta} \oplus \mathbb{Z}/2\{\bar{\phi}\tilde{z}_{\gamma}\}_{\gamma},$$

$$QR_{H}G = \mathbb{Z}\{q\tilde{z}_{\gamma}, qc\tilde{x}_{\alpha}, \tilde{y}_{\beta}\}_{\gamma,\alpha,\beta}$$

where \tilde{w} denotes $w - \dim w$ for $w \in RG$. Thus, the 2-adic indecomposables $\hat{Q}R_{\Delta}G = \{\hat{Q}RG, \hat{Q}R_RG, \hat{Q}R_HG\}$ may be expressed similarly using $\hat{\mathbb{Z}}_2$ in place of \mathbb{Z} , and the stable 2-adic indecomposables $\hat{Q}_{\Delta} = \{\hat{Q}, \hat{Q}_R, \hat{Q}_H\}$ may be expressed as

$$\hat{Q} = \hat{\mathbb{Z}}_2 \{ \tilde{z}_{\gamma}, \tilde{z}_{\gamma}^*, c\tilde{x}_{\alpha}, c'\tilde{y}_{\beta} \}_{\gamma,\alpha,\beta},$$

$$\hat{Q}_R = \hat{\mathbb{Z}}_2 \{ r\tilde{z}_{\gamma}, \tilde{x}_{\alpha}, rc'\tilde{y}_{\beta} \}_{\gamma,\alpha,\beta},$$

$$\hat{Q}_H = \hat{\mathbb{Z}}_2 \{ q\tilde{z}_{\gamma}, qc\tilde{x}_{\alpha}, \tilde{y}_{\beta} \}_{\gamma,\alpha,\beta}.$$

Proof of Lemma 10.2. Since $QR_{\Delta}G$ is a $\Delta\lambda$ -ring with trivial multiplication, it is straightforward to check all of the required relations for operations (see Definitions 4.3 and 6.1) . In particular, we deduce $\theta\theta r = \theta r\theta$ from the relations $\lambda^4 r = r\lambda^4 + \bar{\phi}\lambda^2$, $\lambda^4 = -\lambda^2\lambda^2$, $\bar{\phi} = \lambda^2 r - r\lambda^2$, $2\bar{\phi} = 0$, and $\theta = -\lambda^2$, which hold generally in $\Delta\lambda$ -rings with trivial multiplication [10, 6.2]. We next observe that $\hat{Q}RG$, $\hat{Q}R_RG$, and $\hat{Q}R_RG$ are stable 2-adic Adams modules by [6, 6.2], since QRG and $QR_RG \oplus QR_RG$ are γ -nilpotent and finitely generated abelian (because they have trivial multiplications and have finite generating sets of elements \tilde{w} for representations w). Thus, $\hat{Q}R_{\Delta}G$ is a 2-adic Adams Δ -module, and it must be robust by the analysis of Remark 10.7.

To check the ψ^3 -splittability of $\hat{Q}R_{\Delta}G$, we let $hG = \ker(1-t)/\operatorname{im}(1+t)$ be the augmented algebra over $\mathbb{Z}/2$ obtained from RG using the involution $t = \psi^{-1} : RG \cong$

RG. This is a polynomial algebra $hG \cong \mathbb{Z}/2[c\tilde{x}_{\alpha}, \tilde{z}_{\gamma}^*\tilde{z}_{\gamma}, c'\tilde{y}_{\beta}]_{\alpha,\gamma,\beta}$ which is $\mathbb{Z}/2$ -graded, since there is an isomorphism

$$c + c' : R_R G / rRG \oplus R_H G / qRG \cong hG$$
,

and we let $Q_R hG \cong \mathbb{Z}/2\{c\tilde{x}_{\alpha}, \tilde{z}_{\gamma}^*\tilde{z}_{\gamma}\}_{\alpha,\gamma}$ denote the real (degree 0) indecomposables. We define a homomorphism $s\colon QRG \to Q_R hG$ by $s[u] = [u^*u]$ for $u \in \tilde{R}G$ and note that $sQRG = \mathbb{Z}/2\{\tilde{z}_{\gamma}^*\tilde{z}_{\gamma}\}_{\gamma}$. We view s as a homomorphism of ψ^3 -modules (abelian groups with endomorphisms ψ^3) as in [14, 2.4].

Lemma 10.8. For a simply-connected compact Lie group G, $\hat{Q}R_{\Delta}G$ is ψ^3 -splittable if and only if the ψ^3 -submodule $sQRG \subset Q_RhG$ is a direct summand.

Proof. By Definition 7.2 and the proof of Lemma 7.3, $\hat{Q}R_{\Delta}G$ is ψ^3 -splittable if and only if the ψ^3 -submodule $\bar{\phi}\hat{Q}RG \subset \hat{Q}R_RG/r\hat{Q}RG$ (or equivalently $\bar{\phi}QRG \subset QR_RG/rQRG$) is a direct summand. The lemma now follows since $\bar{\phi}QRG$ corresponds to sQRG under the isomorphism $c: QR_RG/rQRG \cong Q_RhG$.

Proof of Lemma 10.5. By Lemma 10.8 and Davis [14, Theorem 1.3], the following conditions are successively equivalent: $\hat{Q}R_{\Delta}G$ is ψ^3 -splittable; the ψ^3 -submodule $sQRG \subset Q_RhG$ is a direct summand; G satisfies the Technical Condition of [14, Definition 2.4]; G is not E_6 or Spin(4k+2) with k not a 2-power.

11. Proofs of basic lemmas for \hat{L}

We shall prove Lemmas 4.5, 4.6, and 4.11 showing the basic properties of the functor \hat{L} : $\theta\Delta\hat{\mathcal{M}}od\to\phi\mathcal{C}\mathcal{R}\hat{\mathcal{A}}lg$, where $\theta\Delta\hat{\mathcal{M}}od$ is the category of 2-adic $\theta\Delta$ -modules and $\phi\mathcal{C}\mathcal{R}\hat{\mathcal{A}}lg$ is that of special 2-adic $\phi\mathcal{C}\mathcal{R}$ -algebras (see Definitions 4.3 and 3.2). We first introduce an intermediate category of modules.

Definition 11.1 (The 2-adic $\eta\Delta$ -modules). By a 2-adic $\eta\Delta$ -module $N = \{N_C, N_R, N_H, N_S\}$, we mean a 2-adic Δ -module $\{N_C, N_R, N_H\}$, with operations t, c, r, c', and q as in Definition 4.1, together with a 2-profinite abelian group N_S and continuous additive operations $\bar{\phi} \colon N_C \to N_R, \ \eta \colon N_R \to N_S, \ ()^{[2]} \colon N_R \to N_S, \ \text{and} \ ()^{[2]} \colon N_H \to N_S$ satisfying the following relations for elements $z \in N_C, x \in N_R, \ \text{and} \ y \in N_H$:

$$\begin{split} \bar{\phi}cx &= 0, & \bar{\phi}c'y = 0, & \bar{\phi}tz = \bar{\phi}z, & 2\bar{\phi}z = 0, & c\bar{\phi}z = 0, \\ (\bar{\phi}z)^{[2]} &= 0, & 2\eta x = 0, & \eta rz = 0, & (qz)^{[2]} = (rz)^{[2]} = \eta\bar{\phi}z. \end{split}$$

We let $\eta \Delta \hat{\mathcal{M}} od$ denote the category of 2-adic $\eta \Delta$ -modules.

Remark 11.2 (A functorial interpretation of admissible maps). Let $J \colon \theta \Delta \hat{\mathcal{M}} od \to \eta \Delta \hat{\mathcal{M}} od$ be the functor carrying a 2-adic $\theta \Delta$ -module M to the 2-adic $\eta \Delta$ -module $JM = \{M_C, M_R, M_H, M_R/rM_C\}$ having the original operations t, c, r, c', q, and $\bar{\phi}$ together with operations $\eta \colon M_R \to M_R/rM_C$, ()^[2]: $M_R \to M_R/rM_C$, and ()^[2]: $M_H \to M_R/rM_C$ given by $\eta x = [x]$, $x^{[2]} = [\theta x]$, and $y^{[2]} = [\theta y]$ for $x \in M_R$ and $y \in M_H$. Let $I \colon \phi \mathcal{C} \mathcal{R} \hat{\mathcal{A}} lg \to \eta \Delta \hat{\mathcal{M}} od$ be the functor carrying a special 2-adic ϕCR -algebra A to the 2-adic $\eta \Delta$ -module $IA = \{\tilde{A}_C^{-1}, \tilde{A}_R^{-1}, \tilde{A}_R^{-5}, \tilde{A}_R^{-2}\}$ having the

operations $t,\ c,\ r,\ c',\$ and q of $\Delta^{-1}\tilde{A}$ (see Definition 4.1) together with operations $\bar{\phi}\colon \tilde{A}_C^{-1}\to \tilde{A}_R^{-1},\ \eta\colon \tilde{A}_R^{-1}\to \tilde{A}_R^{-2},\ ()^{[2]}\colon \tilde{A}_R^{-1}\to \tilde{A}_R^{-2},\$ and $()^{[2]}\colon \tilde{A}_R^{-5}\to \tilde{A}_R^{-2}$ given by $\bar{\phi}z=\eta\phi z,\ \eta x=\eta x,\ x^{[2]}=x^2,\$ and $y^{[2]}=B_R^{-1}y^2$ for $z\in A_C^{-1},\ x\in A_R^{-1},\$ and $y\in A_R^{-5}.$ We now easily see:

Lemma 11.3. For $M \in \theta \Delta \hat{\mathcal{M}}od$ and $A \in \phi CR \hat{\mathcal{A}}lg$, an admissible map $f \colon M \to A$ is equivalent to a map $f \colon JM \to IA$ in $\eta \Delta \hat{\mathcal{M}}od$.

To construct the functor \hat{L} , we need:

Lemma 11.4. The functor $I: \phi CR \hat{A}lg \rightarrow \eta \Delta \hat{M}od$ has a left adjoint $\hat{V}: \eta \Delta \hat{M}od \rightarrow \phi CR \hat{A}lg$.

Proof. This follows by the Special Adjoint Functor Theorem (see [19]) since I preserves small limits and since $\phi \mathcal{CRAlg}$ has a small cogenerating set by Lemma 11.5 below.

A special 2-adic ϕ CR-algebra A will be called *finite* when the groups \tilde{A}_C^m and \tilde{A}_R^m are finite for all m.

Lemma 11.5. Each special 2-adic ϕ CR-algebra A is the inverse limit of its finite quotients in ϕ CRÂlg.

Proof. This is similar to the corresponding result for topological rings in [22, 5.1.2]. For a 2-adic CR-submodule $G \subset \tilde{A}$ with \tilde{A}/G finite, we must obtain a special 2-adic ϕCR -ideal H of A with $H \subset G$ and \tilde{A}/H finite. We first obtain an ideal M of A_R (closed under B_R , B_R^{-1} , η , and ξ) with $M \subset G_R$ and \tilde{A}_R/M finite as in [22]. We next obtain an ideal N of A_C (closed under B, B^{-1} , and t) with $N \subset G_C \cap r^{-1}M \cap \phi^{-1}M^0$ and \tilde{A}_C/N finite as in [22]. The desired ideal H is now given by $H_C = N$ and $H_R = M \cap c^{-1}N$.

Proof of Lemma 4.5. Using Lemmas 11.3 and 11.4, we obtain the desired universal algebra $\hat{L}M$ from the functor $\hat{L} = \hat{V}J : \theta \Delta \hat{\mathcal{M}}od \to \phi \mathcal{C}\mathcal{R}\hat{\mathcal{M}}od$.

A 2-adic $\eta\Delta$ -module N is called sharp when $\eta\colon N_R/rN_C\to N_S$ is an isomorphism, and we may now derive the properties of \hat{L} from the corresponding properties of \hat{V} on such sharp modules.

Lemma 11.6. For a sharp 2-adic $\eta\Delta$ -module N, the canonical map $\hat{\Lambda}N_C \rightarrow (\hat{V}N)_C$ is an algebra isomorphism.

Proof. Let $W: \phi \mathcal{CRAlg} \to \mathcal{CAlg}$ be the forgetful functor carrying each $A \in \phi \mathcal{CRAlg}$ to its complex part $A_C \in \mathcal{CAlg}$ where \mathcal{CAlg} is the category of special 2-adic C-algebras, which are defined similarly to special 2-adic ϕ CR-algebras (see Definition 3.2) but using only complex terms and their operations. The functor W has a right adjoint $H: \mathcal{CAlg} \to \phi \mathcal{CRAlg}$ where $(HX)_C = X$ and $(HX)_R = \{x \in X | tx = x\}$ with $c = 1, \ r = 1 + t, \ \eta = 0, \ \phi z = z^*z \ \text{for} \ z \in X^0, \ \text{and} \ \phi w = B^{-1}w^*w \ \text{for} \ w \in X^{-1}$. For each $N \in \eta \Delta \hat{\mathcal{M}}od$ and each $X \in \mathcal{CAlg}$, a map $N \to IHX$ in $\eta \Delta \hat{\mathcal{M}}od$ corresponds to a map $N_C \to \tilde{X}^{-1}$ respecting t, which in turn corresponds to a map $\hat{\Lambda}N_C \to X$ in \mathcal{CAlg} . Hence, since $W\hat{V}$ is left adjoint to IH, the canonical map $\hat{\Lambda}N_C \to W\hat{V}N$ is an isomorphism.

Proof of Lemma 4.6. For a 2-adic $\theta\Delta$ -module M, the canonical map $\hat{\Lambda}M_C \to (\hat{L}M)_C$ is an isomorphism by Lemma 11.6 and by the above proof of Lemma 4.5. \square

Let $\hat{Q}: \phi \mathcal{CR}\hat{\mathcal{A}}lg \to \phi \mathcal{CR}\hat{\mathcal{M}}od$ be the functor carrying each $A \in \phi \mathcal{CR}\hat{\mathcal{A}}lg$ to its indecomposables $\hat{Q}A \in \phi \mathcal{CR}\hat{\mathcal{M}}od$ where $\phi \mathcal{CR}\hat{\mathcal{M}}od$ is the category of special 2-adic $\phi \mathcal{CR}$ -modules, which may be defined as the augmentation ideals of the special 2-adic $\phi \mathcal{CR}$ -algebras having trivial multiplication.

Lemma 11.7. For a sharp 2-adic $\eta\Delta$ -module N, the canonical map $\{N_C, N_R, N_H\}$ $\to \Delta^{-1}\hat{Q}\hat{V}N$ is an isomorphism.

Proof. The functor \hat{Q} has a right adjoint $E: \phi \mathcal{C}\mathcal{R}\hat{\mathcal{M}}od \to \phi \mathcal{C}\mathcal{R}\hat{\mathcal{A}}lg$ where $EX = \underline{e} \oplus X$. Since $\hat{Q}\hat{V}: \eta\Delta\hat{\mathcal{M}}od \to \phi\mathcal{C}\mathcal{R}\hat{\mathcal{M}}od$ is left adjoint to IE, a detailed analysis shows that $\hat{Q}\hat{V}N$ is a special 2-adic ϕCR -module with $(\hat{Q}\hat{V}N)_C^{-1} = N_C$, $(\hat{Q}\hat{V}N)_R^{-1} = N_R$, and $(\hat{Q}\hat{V}N)_R^{-5} = N_H$.

Proof of Lemma 4.11. For a 2-adic $\theta\Delta$ -module M, the canonical map $M \to \Delta^{-1}\hat{Q}\hat{L}M$ is an isomorphism by Lemma 11.7 and the above proof of Lemma 4.5. \square

12. Proof of the Bott exactness lemma for \hat{L}

We must now prove Lemma 4.8 showing the Bott exactness of $\hat{L}M$ for a robust 2-adic $\theta\Delta$ -module M. This lemma will follow easily from the corresponding result for $\eta\Delta$ -modules (Lemma 12.1), whose proof will extend through most of this section. We say that a 2-adic $\eta\Delta$ -module N is profinitely sharp when it is the inverse limit of an inverse system of finite sharp 2-adic $\eta\Delta$ -modules. This obviously implies that N is sharp. We call N robust when:

- (i) N is profinitely sharp;
- (ii) the 2-adic Δ -module $\{N_C, N_R/\bar{\phi}N_C, N_H\}$ is torsion-free and exact;
- (iii) $\ker \bar{\phi} = cN_R + c'N_H + 2N_C$.

Lemma 12.1. If N is a robust 2-adic $\eta\Delta$ -module, then the special 2-adic ϕ CR-algebra $\hat{V}N$ is Bott exact; in fact, $\hat{V}N$ is the inverse limit of an inverse system of finitely generated free 2-adic CR-modules.

This will be proved at the end of the section.

Proof of Lemma 4.8. For a robust 2-adic $\theta\Delta$ -module M, the 2-adic $\eta\Delta$ -module JM is also robust, and hence $\hat{L}M$ has the required properties by Lemma 12.1 and the proof of Lemma 4.5 in Section 11.

Before proving Lemma 12.1, we must analyze the robust 2-adic $\eta\Delta$ -modules, and we start with:

Definition 12.2 (The complex 2-adic $\eta\Delta$ -modules). The functor $(-)_C: \eta\Delta\hat{\mathcal{M}}od \to \hat{\mathcal{A}}b$ from the 2-adic $\eta\Delta$ -modules to the 2-profinite abelian groups has a left adjoint $C: \hat{\mathcal{A}}b \to \eta\Delta\hat{\mathcal{M}}od$ with $C(G)_C = G \oplus G = G \oplus tG$, $C(G)_R = G \oplus G/2 = rG \oplus \bar{\phi}G$, $C(G)_H = G = qG$, and $C(G)_S = G/2 = (\bar{\phi}G)^{[2]}$ for $G \in \hat{\mathcal{A}}b$. A 2-adic $\eta\Delta$ -module

will be called *complex* when it is isomorphic to C(G) for some G. If G is torsion-free, then C(G) is obviously robust. For an arbitrary $N \in \eta \Delta \hat{\mathcal{M}}od$ and $G \in \hat{\mathcal{A}}b$, we may describe the possible maps $N \to C(G)$ as follows. Let $f: N_C \to G$ and $g: N_S \to G/2$ be maps such that the diagram

$$N_R \oplus N_H \xrightarrow{fc+fc'} G$$

$$\downarrow^{()^{[2]}} \qquad \qquad \downarrow^1$$
 $N_S \xrightarrow{g} G/2$

commutes. Then there is a map $F(f,g): N \to C(G)$ with components $(f,ft): N_C \to G \oplus G$, $(fc,g\eta): N_R \to G \oplus G/2$, $fc': N_H \to G$, and $g: N_S \to G/2$. Moreover, each map $N \to C(G)$ is of the above form for some f and g. When N is robust, the compatibility condition on $f: N_C \to G$ and $g: N_S \to G/2$ may be expressed by the commutativity of the diagram

$$\begin{array}{ccc}
N_C^+ & \stackrel{f}{\longrightarrow} & G \\
\downarrow^{\pi} & & \downarrow^1 \\
N_S & \stackrel{g}{\longrightarrow} & G/2
\end{array}$$

where $N_C^+ = \{z \in N_C | tz = z\}$ and π is the composition of (c,c'): $N_R/\bar{\phi}N_C \coprod_{N_C} N_H \cong N_C^+$ and $()^{[2]}$: $N_R/\bar{\phi}N_C \coprod_{N_C} N_H \to N_S$. Letting $N_C^- = \{z \in N_C | tz = -z\}$, we now have:

Lemma 12.3. If $\tilde{N} \subset N$ is an inclusion of robust 2-adic $\eta\Delta$ -modules such that N_C/\tilde{N}_C is torsion-free and $\tilde{N}_C^- = N_C^-$, then each map $\tilde{N} \to C(G)$ for $G \in \hat{\mathcal{A}}b$ may be extended to a map $N \to C(G)$ of 2-adic $\eta\Delta$ -modules.

Proof. For a given map $F(\tilde{f}, \tilde{g}) \colon \tilde{N} \to C(G)$, we first extend $\tilde{g} \colon \tilde{N}_S \to G/2$ to a map $g \colon N_S \to G/2$. Since $\tilde{N}_C/\tilde{N}_C^+ \cong \tilde{N}_C^-$, $N_C/N_C^+ \cong N_C^-$, and $\tilde{N}_C^- = N_C^-$, we see that N_C is the pushout of the inclusions $N_C^+ \leftarrow \tilde{N}_C^+ \to \tilde{N}_C$. Thus, the maps $g\pi \colon N_C^+ \to G/2$ and $[\tilde{f}] \colon \tilde{N}_C \to G/2$ induce a map $f' \colon N_C \to G/2$, and we obtain a commutative diagram

$$\begin{array}{ccc} \tilde{N}_C & \stackrel{\tilde{f}}{---} & G \\ & \downarrow^{\subset} & & \downarrow^1 \\ N_C & \stackrel{f'}{---} & G/2. \end{array}$$

Since N_C/\tilde{N}_C is projective in $\hat{\mathcal{A}}b$, we may now choose a lifting $f: N_C \to G$ in the diagram, and this gives the desired extension $F(f,g): N_C \to C(G)$ of $F(\tilde{f},\tilde{g})$.

Lemma 12.4. For a robust 2-adic $\eta\Delta$ -module N, there exists a decomposition $N \cong C(G) \oplus P$ where G is torsion-free and P is robust with t = 1 on P_C .

Proof. By the factorization of positively torsion-free groups in Definition 5.3, there exists a decomposition $N_C \cong (G \oplus tG) \oplus H$ with t = 1 on H, and we let $i: C(G) \to G$

N be the induced map. Then i is monic since $i: \{G \oplus tG, G, G\} \to \{N_C, N_R/\bar{\phi}N_C, N_H\}$ is monic by [10, Lemma 4.8], and since $i: G/2 \to \bar{\phi}N_C$ and $\eta: \bar{\phi}N_C \to N_S$ are monic by the proof of Lemma 7.3. Thus, $i: C(G) \to N$ has a left inverse by Lemma 12.3, and the result follows.

Definition 12.5 (The *t*-trivial 2-adic $\eta\Delta$ -modules). A 2-adic $\eta\Delta$ -module N will be called t-trivial when t=1 on N_C . When N is t-trivial and robust, it must have $\bar{\phi}=0\colon N_C\to N_R$ since $N_C=cN_R+c'N_H$ by the exactness of $\{N_C,N_R/\bar{\phi}N_C,N_H\}$. Moreover, it must also have $(rN_C)^{[2]}=0$, $(qN_C)^{[2]}=0$, and $c+c'\colon N_R/rN_C\oplus N_H/qN_C\cong N_C/2$ by [10, Lemma 4.7]. Hence, the operations ()^[2]: $N_R\to N_S$ and ()^[2]: $N_H\to N_S$ induce operations $\bar{\theta}\colon N_R/rN_C\to N_R/rN_C$ and $\bar{\theta}\colon N_H/qN_C\to N_R/rN_C$, where the $\bar{\theta}$ -module N_R/rN_C is profinite since N is profinitely sharp. In this way, a t-trivial robust 2-adic $\eta\Delta$ -module N corresponds to a torsion-free group $G\in \hat{\mathcal{A}}b$ together with a decomposition $(G/2)_R\oplus (G/2)_H=G/2$ equipped with operations $\bar{\theta}\colon (G/2)_R\to (G/2)_R$ and $\bar{\theta}\colon (G/2)_H\to (G/2)_R$ such that the $\bar{\theta}$ -module $(G/2)_R$ is profinite. We say that a 2-adic $\eta\Delta$ -module N is of finite type when N_C , N_R , N_H , and N_S are finitely generated over $\hat{\mathbb{Z}}_2$, and we now easily deduce:

Lemma 12.6. A t-trivial robust 2-adic $\eta\Delta$ -module may be expressed as the inverse limit of an inverse system of t-trivial robust quotient modules of finite type.

A similar result obviously holds for the robust 2-adic $\eta\Delta$ -modules C(G) with G torsion-free, and the following lemma will now let us restrict our study of \hat{V} to the robust modules of finite type.

Lemma 12.7. If a 2-adic $\eta\Delta$ -module N is the inverse limit of an inverse system $\{N_{\alpha}\}_{\alpha}$ of quotient modules, then $\hat{V}N \cong \lim_{\alpha} \hat{V}N_{\alpha}$.

Proof. For a finite special 2-adic ϕ CR-algebra F, there is a canonical isomorphism $\operatorname{Hom}(\lim_{\alpha} \hat{V} N_{\alpha}, F) \cong \operatorname{Hom}(\hat{V} N, F)$. Hence the map $\hat{V} N \to \lim_{\alpha} \hat{V} N_{\alpha}$ is an isomorphism by Lemma 11.5.

Proof of Lemma 12.1. It now suffices to show that $\hat{V}N$ is a free 2-adic CR-module when $N = C(G) \oplus P$ for a finitely generated free $\hat{\mathbb{Z}}_2$ -module G and a t-trivial robust 2-adic $\eta\Delta$ -module P of finite type. By Definition 7.1, we may choose finite ordered sets of elements $\{z_k\}_k$ in G, $\{x_i\}_i$ in P_R , and $\{y_j\}_j$ in P_H such that G is a free $\hat{\mathbb{Z}}_2$ -module on $\{z_k\}_k$ and $\{P_C, P_R, P_H\}$ is a free 2-adic Δ -module on $\{x_i\}_i$ and $\{y_j\}_j$. Since P_S is a free $\mathbb{Z}/2$ -module on the generators $\{\eta x_i\}_i$, there are expressions $x_i^{[2]} = r_i$ and $y_j^{[2]} = s_j$ for each i and j where the r_i and s_j are $\mathbb{Z}/2$ -linear combinations of these generators. We may now obtain $\hat{V}N$ as the free augmented 2-adic CR-algebra on the generators $x_i \in (\hat{V}N)_R^{-1}$, $y_j \in (\hat{V}N)_R^{-5}$, $z_k \in (\hat{V}N)_C^{-1}$, and $\phi z_k \in (\hat{V}N)_R^0$ subject to the relations $x_i^2 = r_i$, $y_j^2 = B_R s_j$, $z_k^2 = 0$, $z_k^* z_k = B c \phi z_k$, and $(\phi z_k)^2 = 0$ for each i, j, and k. It follows by a straightforward analysis that $\hat{V}N$ is a free 2-adic CR-module on the associated products (see Definition 3.3) of $\{x_i\}_i$, $\{y_j\}_j$, and $\{z_k\}_k$.

13. Proofs for regular modules

We first show that our strict nonlinearity condition (see Definition 7.7) for 2-adic Adams modules agrees with that of [7, 2.4], and we then prove Lemmas 7.9 and 7.10 for regular modules. For a 2-adic Adams module A, we let $TA \subset A$ be given by the pullback square

$$TA \longrightarrow (A/\psi^2 A) \backslash 2$$

$$\downarrow \subset \qquad \qquad \downarrow \subset$$

$$A \longrightarrow A/\psi^2 A$$

where $(A/\psi^2 A)\backslash 2$ is the kernel of 2: $A/\psi^2 A \to A/\psi^2 A$. Since the square is also a pushout, A is quasilinear if and only if TA = A. Now let $T^{\infty}A$ be the intersection of the submodules $T^i A \subset A$ for i > 0.

Lemma 13.1. $T^{\infty}A$ is the largest quasilinear submodule of A, and hence $A_{ql} = T^{\infty}A$.

Proof. Using the inverse limit of the pullback squares for T^iA with i > 0, we find that $T^{\infty}A$ contains each quasilinear submodule of A and that $T(T^{\infty}A) = T^{\infty}A$. \square

Remark 13.2 (Strict nonlinearity conditions). Our definition of strict nonlinearity in Section 7 is equivalent to our earlier definition in [7, 2.3 and 2.4]. In fact, for a 2-adic Adams module A, the largest quasilinear submodule A_{ql} remains unchanged in the earlier category of 2-adic ψ^2 -modules, since it is still given by $T^{\infty}A$. To prove Lemma 7.10, we need:

Lemma 13.3. For a strictly nonlinear 2-adic Adams module A, each submodule is strictly nonlinear. Moreover, when A is finitely generated over $\hat{\mathbb{Z}}_2$, each torsion-free quotient module is strictly nonlinear.

$$0 \longrightarrow \operatorname{Hom}_{\hat{\mathcal{N}}}(H,\tilde{A}) \longrightarrow \operatorname{Hom}_{\hat{\mathcal{A}}b}(H,\tilde{A}) \longrightarrow \operatorname{Hom}_{\hat{\mathcal{A}}b}(H,\tilde{A}) \longrightarrow \operatorname{Ext}^1_{\hat{\mathcal{N}}}(H,\tilde{A}) \longrightarrow 0$$

with $\operatorname{Hom}_{\hat{\mathcal{N}}}(H, \tilde{A}) = 0$ by strict nonlinearity, where $\hat{\mathcal{A}}b$ is the category of 2-profinite abelian groups.

Proof of Lemma 7.10. This result follows easily from Definition 7.8 and Lemma 13.3. \Box

Proof of Lemma 7.9. By [8, Lemma 5.5], there is an exact sequence

$$0 \longrightarrow \widetilde{K}^1(X/X^3; \hat{\mathbb{Z}}_2) \longrightarrow \widetilde{K}^1(X; \hat{\mathbb{Z}}_2) \longrightarrow H^3(X; \hat{\mathbb{Z}}_2)$$

of 2-adic Adams modules with $H^3(X; \hat{\mathbb{Z}}_2)$ linear and $\widetilde{K}^1(X/X^3; \hat{\mathbb{Z}}_2)$ torsion-free, where X^3 is the 3-skeleton of X. Hence, it suffices to show that $\widetilde{K}^1(X/X^3; \hat{\mathbb{Z}}_2)$ is strictly nonlinear with monic ψ^2 . Since $H^m(X; \hat{\mathbb{Z}}_2) = 0$ for sufficiently large m, the map $\widetilde{K}^1(X/X^3; \hat{\mathbb{Z}}_2) \to \widetilde{K}^1(X^m/X^3; \hat{\mathbb{Z}}_2)$ is monic for such m. Thus by skeletal induction, the operator ψ^2 on $Q \otimes \widetilde{K}^1(X/X^3; \hat{\mathbb{Z}}_2)$ is annihilated by the polynomial $f(x) = (x-2^2)(x-2^3)\dots(x-2^k)$ for sufficiently large k. It follows that $Q \otimes \widetilde{K}^1(X/X^3; \hat{\mathbb{Z}}_2)$ is the direct sum of the eigenspaces E_i of ψ^2 with eigenvalues 2^i for $2 \leqslant i \leqslant k$, and hence ψ^2 is monic on $\widetilde{K}(X/X^3; \hat{\mathbb{Z}}_2)$ as desired. Moreover, the projection to E_i is given by the operator $f_i(\psi^2)/f_i(2^i)$ on $Q \otimes \widetilde{K}^1(X/X^3; \hat{\mathbb{Z}}_2)$ where $f_i(x) = f(x)/(x-2^i)$. This implies that $2^v \widetilde{K}^1(X/X^3; \hat{\mathbb{Z}}_2)$ is contained in $\bigoplus_{i=2}^k E_i \cap \widetilde{K}^1(X/X^3; \hat{\mathbb{Z}}_2)$ where 2^v is the highest power of 2 dividing an integer $f_i(2^i)$ for some i. Since the above direct sum is strictly nonlinear, so is $2^v \widetilde{K}^1(X/X^3; \hat{\mathbb{Z}}_2)$ by Lemma 13.3, and hence so is $\widetilde{K}^1(X/X^3; \hat{\mathbb{Z}}_2)$.

14. Proof of the realizability theorem for $\hat{L}M$

We shall prove Theorem 8.5, giving a strict isomorphism $\hat{L}M \cong K_{CR}^*(\widetilde{\operatorname{Fib}}f;\hat{\mathbb{Z}}_2)$ for a companion map $f \colon \Omega^{\infty} \tilde{\mathcal{E}} M \to \Omega^{\infty} \tilde{\mathcal{E}} \bar{\rho} M$ of a strong 2-adic Adams Δ -module M. For this, it will suffice by Theorem 4.9 to obtain an isomorphism $\hat{\Lambda}M_C \cong K^*(\widetilde{\operatorname{Fib}}f;\hat{\mathbb{Z}}_2)$ of the complex components. We do this by adapting our proof of the corresponding odd primary result (Theorem 4.7) in [8]. First, to determine the 2-adic K-cohomology of the loops on $\Omega^{\infty} \tilde{\mathcal{E}} \bar{M}$ or $\Omega^{\infty} \tilde{\mathcal{E}} \bar{\rho} \bar{M}$, we may replace Theorem 11.2 of [8] by the following two theorems.

Theorem 14.1. If $X = \Omega^{\infty}E$ for a 1-connected spectrum E with $H^2(E; \hat{\mathbb{Z}}_2) = 0$, with $K^0(E; \hat{\mathbb{Z}}_2) = 0$, and with $K^1(E; \hat{\mathbb{Z}}_2)$ torsion-free, then $K^1(\Omega X; \hat{\mathbb{Z}}_2) = 0$ and $K^0(\Omega X; \hat{\mathbb{Z}}_2)$ is torsion-free.

Proof. This follows from [6, Theorem 8.3].

Using notation and terminology of [7] for a 1-connected space X, we obtain an augmented 2-adic ψ^2 -module $\hat{Q}K^1(X;\hat{\mathbb{Z}}_2)\downarrow H^3(X;\hat{\mathbb{Z}}_2)$ representing the Atiyah-Hirzebruch map $K^1(X;\hat{\mathbb{Z}}_2)\to H^3(X;\hat{\mathbb{Z}}_2)$, and we have:

Theorem 14.2. If X is a 1-connected H-space with $K^1(\Omega X; \hat{\mathbb{Z}}_2) = 0$ and $K^0(\Omega X; \hat{\mathbb{Z}}_2)$ torsion-free, then $\sigma \colon U(\hat{Q}K^1(X; \hat{\mathbb{Z}}_2) \downarrow H^3(X; \hat{\mathbb{Z}}_2)) \cong K^0(\Omega X; \hat{\mathbb{Z}}_2)$.

Proof. This follows from [7, Theorem 10.2].

When X is $\Omega^{\infty} \widetilde{\mathcal{E}} \overline{M}$ or $\Omega^{\infty} \widetilde{\mathcal{E}} \overline{\rho} \overline{M}$, we shall determine $H^3(X; \hat{\mathbb{Z}}_2)$ from the united 2-adic K-cohomology of X. For any 1-connected space X, we let $\alpha_R : \widetilde{KO}^{-1}(X; \hat{\mathbb{Z}}_2) \to H^3(X; \hat{\mathbb{Z}}_2)$ be the homomorphism induced by the Postnikov section $KO\hat{\mathbb{Z}}_2 \to H^3(X; \hat{\mathbb{Z}}_2)$

 $P^4KO\hat{\mathbb{Z}}_2$. Using the indecomposables $\hat{Q}KO^*(X;\hat{\mathbb{Z}}_2)$ of Definition 2.7 and Remark 4.10, we have:

Lemma 14.3. If X is a 1-connected space with $H^2(X; \hat{\mathbb{Z}}_2) = 0$, then $\alpha_R : \widetilde{KO}^{-1}(X; \hat{\mathbb{Z}}_2) \to H^3(X; \hat{\mathbb{Z}}_2)$ factors through $\hat{Q}KO^{-1}(X; \hat{\mathbb{Z}}_2)$ and vanishes on the following subgroups: $\bar{\phi}\widetilde{K}^{-1}(X; \hat{\mathbb{Z}}_2)$, $(\theta - 2)\widetilde{KO}^{-1}(X; \hat{\mathbb{Z}}_2)$, $(\theta - rB^{-2}c)\widetilde{KO}^{-5}(X; \hat{\mathbb{Z}}_2)$, and $(\psi^3 - 9)\widetilde{KO}^{-1}(X; \hat{\mathbb{Z}}_2)$.

Proof. The map α_R factors through $\hat{Q}KO^{-1}(X;\hat{\mathbb{Z}}_2)$ by a suspension argument using the isomorphism $H^3(X;\hat{\mathbb{Z}}_2)\cong H^2(\Omega X;\hat{\mathbb{Z}}_2)$. Since X is 1-connected with $H^2(X;\hat{\mathbb{Z}}_2)=0$, there is a natural isomorphism $H^3(X;\hat{\mathbb{Z}}_2)\cong (\pi_2(\tau_2 X))^\#$ by [8, Lemma 11.4]. Thus, it suffices by naturality to prove the desired vanishing results when X is $S^2\cup_{2^k}e^3$ for $k\geqslant 1$, and these results now follow from the elementary case $X=S^3$ since the collapsing map $S^2\cup_{2^k}e^3\to S^3$ induces epimorphisms of the cohomologies $\widetilde{K}^{-1}(-;\hat{\mathbb{Z}}_2),\ \widetilde{KO}^{-1}(-;\hat{\mathbb{Z}}_2),\ \text{and}\ \widetilde{KO}^{-5}(-;\hat{\mathbb{Z}}_2).$

For a 1-connected space X with $H^2(X; \hat{\mathbb{Z}}_2) = 0$, the above α_R now induces a homomorphism $\bar{\alpha}_R \colon \operatorname{Lin}^{\Delta} \hat{Q} K_{\Delta}^{-1}(X; \hat{\mathbb{Z}}_2) \to H^3(X; \hat{\mathbb{Z}}_2)$ where $\hat{Q} K_{\Delta}^{-1}(X; \hat{\mathbb{Z}}_2)$ is the 2-adic Adams Δ -module of indecomposables given by Remark 4.10 and Definition 6.1, and where $\operatorname{Lin}^{\Delta}$ carries a 2-adic Adams Δ -module M to the group

$$\operatorname{Lin}^{\Delta} M = M_R/(\bar{\phi}M_C + (\theta - 2)M_R + (\theta - rc')M_H + (\psi^3 - 9)M_R).$$

To determine $H^3(X; \hat{\mathbb{Z}}_2)$ when X is $\Omega^{\infty} \tilde{\mathcal{E}} \bar{M}$ or $\Omega^{\infty} \tilde{\mathcal{E}} \bar{\rho} \bar{M}$, we may replace Proposition 11.3 of [8] by:

Proposition 14.4. If N is a torsion-free exact stable 2-adic Adams Δ -module, then $\bar{\alpha}_R \colon \operatorname{Lin}^{\Delta} \hat{Q} K_{\Delta}^{-1}(\Omega^{\infty} \tilde{\mathcal{E}} N; \hat{\mathbb{Z}}_2) \cong H^3(\Omega^{\infty} \tilde{\mathcal{E}} N; \hat{\mathbb{Z}}_2).$

Proof. Since there is a stable isomorphism $\bar{\alpha}_R \colon KO^{-1}(\tilde{\mathcal{E}}N; \hat{\mathbb{Z}}_2)/(\psi^3 - 9) \cong H^3(\tilde{\mathcal{E}}N; \hat{\mathbb{Z}}_2)$ by [10, Theorem 3.2] and [8, Lemma 11.4], the proposition follows using Theorem 6.7 and Lemma 4.11.

For any θ -pro-nilpotent 2-adic Adams Δ -module M, we obtain a homomorphism $r \colon M^C \to \operatorname{Lin}^\Delta M$ of 2-adic Adams modules with M^C as in Definition 7.6 and $\operatorname{Lin}^\Delta M$ linear. Such a homomorphism is called *properly torsion-free* [7, 4.5] when its source is torsion-free and its kernel is strictly nonlinear (see Definition 7.7). We shall need:

Lemma 14.5. If M is a strong 2-adic Adams Δ -module, then $r: M^C \to \operatorname{Lin}^{\Delta} M$ is properly torsion-free.

Proof. Since M is strong, M^C is torsion-free and $\ker(M^C \to \operatorname{Lin} M^C)$ is strictly nonlinear. Using the maps $r \colon \operatorname{Lin} M^C \to \operatorname{Lin}^\Delta M$ and $c \colon \operatorname{Lin}^\Delta M \to \operatorname{Lin} M^C$ with cr = 2, we see that $2 \ker(M^C \to \operatorname{Lin}^\Delta M)$ is contained in $\ker(M^C \to \operatorname{Lin} M)$. Thus $\ker(M^C \to \operatorname{Lin}^\Delta M)$ is strictly nonlinear by Lemma 13.3.

As in [8, Section 11], for a strong 2-adic Adams Δ -module M and a companion map f, we obtain a ladder of p-complete fiber sequences

such that:

- (i) X and Y satisfy the hypotheses of Theorems 14.1 and 14.2;
- (ii) the vertical maps from X and Y are $K^*(-; \hat{\mathbb{Z}}_2)$ -equivalences;
- (iii) $H^3(Y; \hat{\mathbb{Z}}_2) = 0$ and the sequence $H^3(\Omega^{\infty} \tilde{\mathcal{E}} \bar{\rho} \bar{M}; \hat{\mathbb{Z}}_2) \to H^3(\Omega^{\infty} \tilde{\mathcal{E}} \bar{M}; \hat{\mathbb{Z}}_2) \to H^3(\Omega^{\infty} \tilde{\mathcal{E}} \bar{M}; \hat{\mathbb{Z}}_2) \to 0$ is exact.

Lemma 14.6. There is a canonical isomorphism $H^3(X; \hat{\mathbb{Z}}_2) \cong \operatorname{Lin}^{\Delta} M$.

Proof. Since $f^*: K_{CR}^*(\Omega^{\infty}\tilde{\mathcal{E}}\bar{\rho}\bar{M};\hat{\mathbb{Z}}_2) \to K_{CR}^*(\Omega^{\infty}\tilde{\mathcal{E}}\bar{M};\hat{\mathbb{Z}}_2)$ is equivalent to $\hat{L}\bar{d}$: $\hat{L}\tilde{F}\bar{\rho}\bar{M} \to \hat{L}\tilde{F}\bar{M}$ for the θ -resolution map \bar{d} , the homomorphism $f^*: H^3(\Omega^{\infty}\tilde{\mathcal{E}}\bar{\rho}\bar{M};\hat{\mathbb{Z}}_2) \to H^3(\Omega^{\infty}\tilde{\mathcal{E}}\bar{M};\hat{\mathbb{Z}}_2)$ is equivalent to $\text{Lin}^{\Delta}\bar{d}$: $\text{Lin}^{\Delta}\tilde{F}\bar{\rho}\bar{M} \to \text{Lin}^{\Delta}\tilde{F}\bar{M}$ by Proposition 14.4. Hence, there is an isomorphism of cokernels $H^3(X;\hat{\mathbb{Z}}_2) \cong \text{Lin}^{\Delta}M$. \square

Proof of Theorem 8.5. The proof of Theorem 4.7 in [8] is now easily adapted to give Theorem 8.5. In more detail, Propositions 11.5 and 11.6 of [8] remain valid in our setting using Lemmas 14.5 and 14.6 together with the short exact sequence

$$0 \longrightarrow (\tilde{F}M^C \downarrow 0) \longrightarrow (\tilde{F}M^C \downarrow \operatorname{Lin}^\Delta M) \longrightarrow (M^C \downarrow \operatorname{Lin}^\Delta M) \longrightarrow 0$$

induced by the θ -resolution. Propositions 11.7 and 11.8 likewise remain valid, and thus $\hat{\Lambda}M^C \cong K^*(\widetilde{\text{Fib}}f; \hat{\mathbb{Z}}_2)$, so that Theorem 8.5 follows by Theorem 4.9.

References

- [1] M. Bendersky, D.M. Davis and M. Mahowald, Stable geometric dimension of vector bundles over even-dimensional real projective spaces, *Trans. Amer. Math. Soc.* **358** (2006), 1585–1603.
- [2] A.K. Bousfield, The localization of spaces with respect to homology, *Topology* 14 (1975), 133–150.
- [3] A.K. Bousfield, The localization of spectra with respect to homology, Topology 18 (1979), 257–281.
- [4] A.K. Bousfield, Uniqueness of infinite deloopings of K-theoretic spaces, Pacific J. Math. 129 (1987), 1–31.
- [5] A.K. Bousfield, A classification of K-local spectra, J. Pure Appl. Algebra 66 (1990), 121–163.
- [6] A.K. Bousfield, On λ -rings and the K-theory of infinite loop spaces, K-Theory **10** (1996), 1–30.

- [7] A.K. Bousfield, On p-adic λ -rings and the K-theory of H-spaces, Mathematisches Zeitschrift 223 (1996), 483–519.
- [8] A.K. Bousfield, The K-theory localizations and v_1 -periodic homotopy groups of H-spaces, Topology 38 (1999), 1239–1264.
- [9] A.K. Bousfield, On the telescopic homotopy theory of spaces, Trans. Amer. Math. Soc. 353 (2000), 2391–2426.
- [10] A.K. Bousfield, On the 2-primary v_1 -periodic homotopy groups of spaces, Topology 44 (2005), 381–413.
- [11] A.K. Bousfield, Kunneth theorems and unstable operations in 2-adic KO-cohomology, K-Theory, to appear.
- [12] T. Bröcher and T. tom Dieck, Representations of Compact Lie Groups, Springer-Verlag, Berlin, 1985.
- [13] D.M. Davis, Computing v_1 -periodic homotopy groups of spheres and some compact Lie groups, Handbook of $Algebraic\ Topology$, I.M. James, ed., Elsevier, Amsterdam, 1995, pp. 93–1048.
- [14] D.M. Davis, Representation types and 2-primary homotopy groups of certain compact Lie groups, *Homology, Homotopy, and Applications* 5 (2003), 297–324.
- [15] D.M. Davis and M. Mahowald, Some remarks on v_1 -periodic homotopy groups, Adams Memorial Symposium on Algebraic Topology, London Mathematical Society Lecture Note Series, vol. 176, 1992, pp. 55–72.
- [16] D.M. Davis and M. Mahowald, v_1 -localizations of torsion spectra and spherically resolved spaces, *Topology* 32 (1993), 543–550.
- [17] L. Hodgkin, On the K-theory of Lie groups, Topology 6 (1967), 1–36.
- [18] N.J. Kuhn, Morava K-theories and infinite loop spaces, Lecture Notes in Mathematics, vol. 1370, Springer-Verlag, Berlin, 1989, pp. 243–257.
- [19] S. Mac Lane, Categories for the Working Mathematician, Graduate Texts in Mathematics, vol. 5, Springer-Verlag, Berlin, 1971.
- [20] M. Mahowald and R.D. Thompson, The K-theory localization of an unstable sphere, *Topology* 31 (1992), 133–141.
- [21] H. Minami, On the K-theory of SO(n), Osaka J. Math. 21 (1984), 789–808.
- [22] L. Ribes and P. Zalesskii, *Profinite Groups*, Springer-Verlag, Berlin, 2000.
- [23] R.M. Seymour, The real K-theory of Lie groups and homogeneous spaces, Quart. J. Math. Oxford 24 (1973), 7–30.

A.K. Bousfield bous@uic.edu

Department of Mathematics University of Illinois at Chicago Chicago, Illinois 60607

This article is available at http://intlpress.com/HHA/v9/n1/a14