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ON LOW-DIMENSIONAL HOMOLOGY IN CATEGORIES

TOMAS EVERAERT and MARINO GRAN

(communicated by George Janelidze)

Abstract
The classical Stallings-Stammbach five-term exact sequence

associated with a short exact sequence of groups is shown to
exist in a general categorical context. This makes it possible
to establish a new result relating low-dimensional homology
and central series, which extends a well known result from the
theory of groups.

1. Introduction

As remarked by Stallings in his article [30], the homology of a group is related
to the lower central series of the group. The observation we would like to make in
this article is that this fact essentially depends on some categorical properties of
the category of groups, so that this relation still exists in any category having these
specific properties.

The Fröhlich school developed a homology theory for varieties of Ω-groups, allow-
ing one to obtain, for instance, the invariance of the Hopf formula and the exactness
of the Stallings-Stammbach sequence. Recall that a variety of Ω-groups [19] is a
variety whose theory contains the operations and identities of the theory of groups
and each of whose n-ary operations ω ∈ Ω satisfies the identity ω(e, e, . . . , e) = e,
where e is the unit of the group structure. Examples of Ω-groups include varieties
of groups, abelian groups, rings, commutative rings, associative algebras and Lie
algebras. It is in this context that Fröhlich [14], Lue [27] and Furtado-Coelho [16]
extended the following important results from the theory of groups.

Given a group A, and two free presentations F
R and F ′

R′ of A, there is an isomor-
phism

R ∧ [F, F ]
[R, F ]

∼= R′ ∧ [F ′, F ′]
[R′, F ′]

. (A)

In fact, this is a consequence of Hopf’s well known characterization of the second
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integral homology group

H2(G) ∼= R ∧ [F, F ]
[R, F ]

,

which is valid for any free presentation A ∼= F
R .

A second result, due to Stallings [30] and Stammbach [31], states that any short
exact sequence of groups

0 // K // A // B // 0

yields a five-term exact sequence

H2(A) // H2(B) // K
[K,A]

// H1(A) // H1(B) // 0, (B)

where 0 is the trivial group {e}.
Moreover, it was observed that all this remains valid when the subvariety sub-

functor Gp → Gp sending a group A to its derived subgroup [A,A] is replaced by
any term of the central series

A > [A,A] > [[A,A], A] > [[[A,A], A], A] > · · · .

In [11], Everaert and Van der Linden extended these results from Ω-groups to
any semi-abelian category [24] with enough projectives.

Conduché and Ellis proved that (A) and (B) also hold in the category B −
PrCM of precrossed modules over a fixed group B, where the group commutator
is now replaced by the Peiffer commutator [8]. It is noted that B − PrCM is not a
semi-abelian category, simply because it is not pointed. These authors also proved
a natural generalization of the following theorem from Stallings’s article [30] for
precrossed B-modules, which reveals a link between homology and central series.

Let f : A → B be a homomorphism of groups and assume that
1. the homomorphism H1(f) : H1(A) → H1(B) is an isomorphism;
2. the homomorphism H2(f) : H2(A) → H2(B) is surjective.

Then for any n > 1, the induced homomorphism A
An → B

Bn is an isomorphism, where
An (resp. Bn) is the n-th term in the lower central series of A (resp. B).

In this article, we shall adopt an axiomatic approach, described in the first sec-
tion, that enables all the above results to be unified. At the time when the Fröhlich
school was investigating this subject, the categorical properties of groups that are
essential in order to develop this theory had not all been discovered. Recent advances
in categorical algebra [3, 4, 5, 7, 21, 22, 24, 28] now make it possible to build a
more general theory based on simpler arguments.

2. The setting

In this section we recall some basic definitions and some useful properties of the
categories we shall consider in the present article.

In this section we shall always assume that the category A is
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• finitely complete
• quasi-pointed
• regular
• protomodular.

Recall that a category A is quasi-pointed if it has an initial object 0 and a final
object 1, and the unique arrow 0 → 1 is a monomorphism. This implies that there is
at most one arrow from an object A to 0; when this is the case, it is necessarily a split
epimorphism. A category A is regular if 1) any arrow has a (unique) factorization
as a regular epimorphism followed by a monomorphism; 2) these factorizations are
stable under pullbacks. In the regular epi-mono factorization i ◦ p : A → I → B of
an arrow f : A → B, the subobject i : I → B is called the regular “image” of the
arrow f .

By kernel (respectively cokernel) of an arrow f : A → B, we mean the pullback
(respectively pushout) of that arrow along the initial arrow 0 → B (along the arrow
A → 0, when this latter arrow exists). We write

Ker (f)
ker(f) // A

for the kernel of f and

A
coker(f)// Coker (f)

for the cokernel of f . We say that a monomorphism k : K → A is normal, if k is the
kernel of some arrow.

A diagram

A1
f1 // A2

f2 // A3

is called a short exact sequence if f1 = ker(f2) and f2 is a regular epimorphism. A
diagram

. . . // Ai−1
fi−1 // Ai

fi // Ai+1
// . . .

is called an exact sequence if, for all i,

I[fi−1] // Ai
// I[fi]

is a short exact sequence, where I[fi−1] and I[fi] are the regular images of the
arrows fi−1 and fi, respectively. Note that a short exact sequence is not the same
as an exact sequence

0 // A1
f1 // A2

f2 // A3
// 0 ,

simply because a morphism A3 → 0 need not always exist. For example, 0 → 1 → 1
is a short exact sequence, while a morphism 1 → 0 only exists if A is pointed.

When A is a quasi-pointed regular category, it is Bourn-protomodular [4] if and
only if the Short Five Lemma holds in A: given any commutative diagram of short
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exact sequences

K

u

²²

k // A

v

²²

f // B

w

²²
K ′

k′
// A′

f ′
// B′,

if u and w are isomorphisms, then v is an isomorphism as well.
In a category A satisfying the conditions above, a regular epimorphism p : A → B

is always the cokernel of its kernel and the notion of exact sequence defined above
is just the usual one. As a consequence, the regular epi-mono factorization of an
arrow f : A → B in A can be obtained in the following way: one first takes the kernel
ker(f) of f , and then the cokernel p : A → I of ker(f). The induced factorization
i : I → B is a monomorphism. The following property from [5] will be needed:

Proposition 2.1. Consider any commutative diagram of short exact sequences in
A:

K

u

²²

k // A

v

²²

f // B

w

²²
K ′

k′
// A′

f ′
// B′

The left-hand square is a pullback if and only if w is a monomorphism.

Proof. If w is a monomorphism, then the left-hand square is clearly a pullback
in any quasi-pointed category. On the other hand, when the left-hand square is a
pullback, k is the kernel of f ′ ◦ v = w ◦ f . Since in A the regular epimorphism f is
the cokernel of its kernel, it follows that w ◦ f is the regular epi-mono factorization
of f ′ ◦ v, and w is a monomorphism.

Many classical homological lemmas valid in an abelian category still hold in the
present more general context; this is the case for the 3× 3-Lemma and for the
Snake Lemma, as proved by Bourn in [5]. The following result is known as the First
Noether Isomorphism Theorem; it essentially follows from the 3× 3-Lemma (see
Theorem 4.3.10 in [3]):

Theorem 2.2. Let k : K → A and h : H → A be two normal monomorphisms of A,
with an arrow i : K → H such that h ◦ i = k. Then

1. the monomorphism i : K → H is normal;

2. there is an induced normal monomorphism H
K → A

K ; and

3. there is an isomorphism
A
K
H
K

∼= A
H .
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Proof. Consider the following diagram

K
i // H

α //

h

²²

Ker (r)

ker(r)

²²
K

k //

²²

A
cK //

cH

²²

A
K

r

²²
0 // A

H
A
H

where cH and cK are the canonical quotients, r is the regular epimorphism induced
by the inclusion i of K in H and α is the unique arrow such that ker(r) ◦ α = cK ◦ h.
Note that the (unique) arrow from K to 0 exists because k is a kernel by assumption,
and that this arrow is a split epimorphism. It follows that the three columns and
the two lower rows are short exact sequences, so that the first row is a short exact
sequence by the 3× 3-Lemma, and Ker (r) ∼= H

K , proving the theorem.

The following well known property of semi-abelian categories [24] still holds in
the present quasi-pointed context (see also [32]). From now on, we assume that A
also has the property that any equivalence relation is effective (the kernel pair of
a morphism in the category). A regular category which has this property is called
Barr-exact [2].

Lemma 2.3. Consider a commutative square in A with k : K → A a kernel and
q : A → B a regular epimorphism:

K

k

²²

q // I

i

²²
A q

// B

Then the regular image i : I → B of q ◦ k is a kernel.

Proof. Since by assumption k is a kernel and q is a regular epimorphism, it is easy
to see that there is also an arrow from I to 0. Let then f be the cokernel of k, and
g the pushout of f along q (it exists since the category is exact Mal’tsev [7]):

K
q //

k

ÄÄÄÄ
ÄÄ

²²

I

²²

iÄÄÄÄ
ÄÄ

Ä

A
q //

f
²²

B

g
²²

0

ÄÄÄÄÄ
ÄÄ

0

ÄÄÄÄ
ÄÄ

Q // Q′

It is easy to check that the right-hand square is a commutative square with the
property that the canonical arrow α : I → Ker (g) to the kernel of g is a regular
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epimorphism: this essentially follows from the fact that the front square in the cube
above has the property that the canonical arrow from A to the pullback Q×Q′ B is a
regular epimorphism (see Theorem 5.7 in [7]). Since α is trivially a monomorphism
(the arrow i being a monomorphism) it can be concluded that i is the kernel of
g.

3. Birkhoff subcategories

Recall from [22] that a Birkhoff subcategory of an exact category A is a full and
reflective subcategory B of A which is closed in A under subobjects and quotient
objects. Let us write I : A → B for the reflection and η for the unit of the adjunction.

Suppose, from now on, that A is a finitely complete, quasi-pointed, exact and
protomodular category and B a fixed Birkhoff subcategory of A.

The kernel of η (a subfunctor of 1A : A → A) will be denoted by [·]B : A → A,
or, when confusion is unlikely to occur, by [·]. We shall sometimes refer to it as
the subfunctor associated with B. Remark that, when A is a variety, the notion
of Birkhoff subcategory coincides with the one of subvariety. Consequently, in this
case, the associated subfunctor is a subvariety subfunctor.

It has been shown in [22] that for every regular epimorphism f : A → B in A the
induced commutative square

A
ηA //

f

²²

I(A)

I(f)

²²
B ηB

// I(B)

is a pushout. Since all of its arrows are regular epimorphisms, it then follows from
Lemma 1.1 of [6] that [f ] is a regular epimorphism. Consequently, [·] preserves
regular epimorphisms.

For each morphism f : A → B in A, we write R[f ] for the kernel pair of f . Clearly,
[R[f ]] is a reflexive relation on [A], hence [R[f ]] is an effective equivalence relation
on [A].

Definition 3.1. For any regular epimorphism f : A → B in A, we define
[Ker (f), A]B as the composite [π2] ◦ k, where k is the kernel of [π1]:

Ker ([π1])
k

// [R[f ]]
[π1] //

[π2]
// [A].

The arrow [π2] ◦ k is the normalization of the congruence [R[f ]].
We shall often write [Ker (f), A] instead of [Ker (f), A]B and we shall sometimes

refer to it as to the commutator associated with B. Also, if N is a normal subobject of
an object A ∈ A and cN : A → A

N is the canonical quotient, then we shall sometimes
write [N,A] instead of [Ker (cN ), A].

Remark that [Ker (f), A] is the kernel of the coequalizer of [π1] and [π2] (by [5]
Corollary 6), and it coincides with the definition of V1f by Everaert and Van der
Linden in the context of semi-abelian categories [11].
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One says that an extension (a regular epimorphism) f : A → B in A is a central
extension if [Ker (f), A] = 0. As shown in [6], this definition coincides with the
categorical notion of central extension in A with respect to the Birkhoff subcategory
B introduced by Janelidze and Kelly in [22].

By definition, the subobject [π2] ◦ k is normal in [A]. We are now going to
explain why ker(ηA) ◦ [π2] ◦ k is also a normal subobject of A. One can easily
check that [Ker (f), A] ∼= π2(Ker (π1) ∧ [R[f ]]) and that Ker (π1) ∧ [R[f ]] is a nor-
mal subobject of R[f ] as an intersection of two normal subobjects. Hence, by
Lemma 2.3, π2(Ker (π1) ∧ [R[f ]]) is a normal subobject of A. We could then finally
define [Ker (f), A] as the subobject of A, namely

[Ker (f), A] = (Ker (π1), ker(ηA) ◦ [π2] ◦ k).

Proposition 3.2. If a commutative square of regular epimorphisms in A

A
f //

p

²²

B

q

²²
C g

// D

is a pushout, then the induced arrow [Ker (f), A] → [Ker (g), C] is a regular epimor-
phism.

Proof. Since, by assumption, the above square is a pushout of regular epimorphisms,
the induced morphism R(p) : R[f ] → R[g] is a regular epimorphism (see [7], Theo-
rem 5.7). Since the functor [·] preserves regular epimorphisms, both commutative
squares in the following diagram are pushouts of regular epimorphisms:

[R[f ]] //
//

[R(p)]

²²

[A]

[p]

²²
[R[g]] //

// [C].

It then follows from Lemma 1.1 in [6] that [Ker (f), A] → [Ker (g), C] is a regular
epimorphism.

4. Hopf formula and Stallings-Stammbach sequence

In this section, we define a first and a second homology object by establishing
the invariance of the Hopf formula in our context. We then prove the existence of
the Stallings-Stammbach exact sequence associated with any short exact sequence.

By projective presentation of A we mean a (regular) projective object P and a
normal subobject R of P with

R // P // A

a short exact sequence such that A ∼= P
R .

A category A has enough projectives if for every object A ∈ A there exist both
a projective object P and a regular epimorphism p : P → A.
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From now on, we shall always assume that the category A is

• finitely complete
• quasi-pointed
• exact
• protomodular

and furthermore, that

• A has enough projectives.

Let PrA denote the category of projective presentations of objects in A. An
arrow (r, p, f) in PrA between projective presentations A ∼= P

R and B ∼= Q
S is a

commutative diagram

R //

r

²²

P

p

²²

// A

f

²²
S // Q // B.

A functor F : PrA → A will be called a Baer invariant if f = f ′ implies F (r, p, f) =
F (r′, p′, f ′), for any two arrows (r, p, f) and (r′, p′, f ′) between projective presenta-
tions A ∼= P

R and B ∼= Q
S .

The following proposition establishes the invariance of the Hopf formula in our
categorical context.

Proposition 4.1. The functor that maps a projective presentation A ∼= P
R to the

quotient R∧[P ]
[R,P ] is a Baer invariant. In particular, the expression R∧[P ]

[R,P ] is indepen-
dent of the projective presentation A ∼= P

R .

Proof. It is easily verified that [R,P ] 6 R ∧ [P ], i.e. as a subobject of P , [R, P ]
factors through R ∧ [P ]. Moreover, since [R, P ] is defined as a kernel, its inclusion
in R ∧ [P ] is normal.

Suppose that (r, p, f) and (r′, p′, f) are arrows between projective presentations
A ∼= P

R and B ∼= Q
S . We are going to prove that (r, p, f) and (r′, p′, f) induce the

same arrow R∧[P ]
[R,P ] → S∧[Q]

[S,Q] . For this, consider the arrows [p] and [p′], the canonical

quotients c[P ] : [P ] → [P ]
[R,P ] and c[Q] : [Q] → [Q]

[S,Q] , and the induced arrows c([p]) and
c([p′]) making the obvious squares in the following diagram commute:

[P ]
c[P ] //

[p]

²²
[p′]

²²

[P ]
[R,P ]

c([p])

²²
c([p′])

²²
[Q]

c[Q]
// [Q]
[Q,S] .

Consider, furthermore, the canonical quotients cP : P → A and cQ : Q → B. Since

cQ ◦ p = cQ ◦ p′,
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also
c[Q] ◦ [p] = c[Q] ◦ [p′],

hence c([p]) = c([p′]).
Let us consider another commutative diagram in which the horizontal arrows are

induced by the inclusions [R, P ] 6 R ∧ [P ] and [S, Q] 6 S ∧ [Q], respectively, and
the left hand downward pointing arrows by p and p′.

R∧[P ]
[R,P ]

//

ċ([p])

²²
ċ([p′])

²²

[P ]
[R,P ]

c([p])

²²
c([p′])

²²
S∧[Q]
[S,Q]

// [Q]
[S,Q] .

By Proposition 2.1, the horizontal arrows are monomorphisms. Hence, c([p]) =
c([p′]) implies that ċ([p]) = ċ([p′]).

In order to see that the expression R∧[P ]
[R,P ] is independent of the projective presenta-

tion A ∼= P
R of A, consider another projective presentation A ∼= Q

S . Since P and Q are
projective, there exist arrows p : P → Q and q : Q → P such that cQ ◦ p = cP and
cP ◦ q = cQ. Consequently, there exists an endomorphism (r, q ◦ p, 1A) on A ∼= P

R .
Since also (1R, 1P , 1A) is an endomorphism on A ∼= P

R , we have

ċ([q ◦ p]) = ċ([1P ]) = 1R∧[P ]
[R,P ]

.

Similarly, ċ([p ◦ q]) = 1S∧[Q]
[S,Q]

, hence

R ∧ [P ]
[R, P ]

∼= S ∧ [Q]
[S, Q]

.

Let us consider a Birkhoff subcategory B of A, and let I be the reflection A → B.

Definition 4.2. 1. For any object A ∈ A we define H1(A) = I(A) = A
[A] the first

homology object of A;

2. for a projective presentation A ∼= P
R , the quotient R∧[P ]

[R,P ] will be denoted H2(A),
and it will be called the second homology object of A.

Remark 4.3. By Proposition 4.1, H2 defines, up to natural isomorphism, a functor
A → A. More precisely, each choice of projective presentations of the objects of A
yields a functor H2 : A → A, and any two such functors are naturally isomorphic.

Remark 4.4. Van der Linden recently proved that the above definition of the second
homology object coincides with the second cotriple homology object (in the sense
of Barr and Beck [1]) whenever A is monadic over Set ([32], Theorem 4.2.4).

Lemma 4.5. For any projective presentation A ∼= P
R , the sequence

0 // H2(A) // [P ]
[R,P ]

// A // H1(A)

is an exact sequence; moreover, A → H1(A) is a regular epimorphism.
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Proof. From Theorem 2.2 it follows that

H2(A) // [P ]
[R,P ]

// [P ]
R∧[P ]

is a short exact sequence.
Now consider the following diagram:

R ∧ [P ] i //

²²

[P ]

²²

[p] // [A]

iA

²²
R // P p

// A.

The left hand square is a pullback, by construction. Since iA is a monomorphism
and the lower row is a short exact sequence, it follows that i = ker([p]). The arrow
[p] is a regular epimorphism, hence it is the cokernel of its kernel, thus [A] ∼= [P ]

R∧[P ] .
Consequently,

[P ]
R∧[P ]

// A // H1(A)

is a short exact sequence.
By pasting these two short exact sequences together, one gets the required exact

sequence. The second statement is obvious.

Theorem 4.6. Any short exact sequence

K
k // A

f // C

yields a five-term exact sequence

H2(A)
H2(f) // H2(C) // K

[K,A]
// H1(A)

H1(f) // H1(C),

with H1(f) a regular epimorphism. This exact sequence depends naturally on the
given short exact sequence.

Proof. We can choose projective presentations A ∼= P
R and C ∼= Q

S such that P = Q
and R 6 S. Then [R,P ] 6 [S, P ] and, by applying Theorem 2.2, we get the follow-
ing commutative diagram of short exact rows, where β and γ are induced by the
inclusion [P ] → P :

[S,P ]
[R,P ]

//

α

²²

[P ]
[R,P ]

β

²²

// [P ]
[S,P ]

γ

²²
K

k
// A

f
// C.

Note that α is induced by the universal property of the kernel k, but also by the
canonical quotient cR : P → P

R .
If we prove that [K, A] is the regular image of α, the theorem follows from the

Snake Lemma ([5], Proposition 14) and Lemma 4.5.



Homology, Homotopy and Applications, vol. 9(1), 2007 285

Clearly, cR(S) = K. From Proposition 3.2 it then follows that cR([S, P ]) = [K, A]
and the image of α is [K, A], as desired. The naturality of the five-term sequence is
easy to check, and we leave the proof to the reader.

5. Central series

In this section we define the lower central series with respect to a Birkhoff subcat-
egory B and we extend a classical group theoretic result due to Stallings [30]. Our
general assumptions allow one to include also a more recent result due to Conduché
and Ellis in the context of precrossed modules [8].

As before, we suppose thatA is a quasi-pointed, exact and protomodular category
with enough projectives and B is a fixed Birkhoff subcategory of A.

Definition 5.1. The lower central series of an object A ∈ A is the descending
sequence

A0 > A1 > · · · > An > · · ·
defined by putting A0 = A, A1 = [A] and, for any integer n > 1, An+1 = [An, A].

Note that we could not define A1 as [A,A] because 1A is not necessarily a kernel,
e.g. 1 → 1 can only be a kernel if A is pointed. However whenever 1A is a kernel,
we have [A,A] = [A]:

Lemma 5.2. Suppose A ∈ A is such that an arrow A → 0 exists; then [A,A] = [A].

Proof. Of course, the composite

[A]
[i2] // [A×A]

[π1] // [A]

factors through 0 (where i2 = (0A, 1A)); hence [i2] factors through ker([π1]) =
[A,A]. Consequently [π2] ◦ ker([π1]) is a split epimorphism:

[A,A]

ker([π1])

²²

[A]
joo

[i2]{{ww
ww

ww
ww

w

[A×A]
[π2]

// [A].

Moreover, since it is the normalization of an equivalence relation, it is also a
monomorphism; hence, it is an isomorphism. Consequently j is an isomorphism
as well.

Theorem 5.3. Let f : A → B be a morphism in A. If

1. the morphism H1(A) → H1(B) is an isomorphism;

2. the morphism H2(A) → H2(B) is a regular epimorphism.

then, for any n > 1, the induced morphism A
An → B

Bn is an isomorphism.
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Proof. We prove the theorem by induction. The case n = 1 is the first assumption.
Let us then assume that the property holds for n, and we shall prove that it also
holds for n + 1. By assumption, there is a commutative diagram with short exact
rows in A:

An //

²²

A

²²

// A
An

²²
Bn // B // B

Bn .

By applying Theorem 4.6 (with K = An and C = A/An), one can show that the
left hand vertical arrow in the following diagram with short exact rows is an iso-
morphism:

An

An+1
//

²²

A
An+1

²²

// A
An

²²
Bn

Bn+1
// B
Bn+1

// B
Bn .

Since the right hand vertical arrow is an isomorphism by the inductive assumption,
we can apply the Short Five Lemma and conclude that the central vertical arrow is
also an isomorphism.

6. Examples

6.1. Abelian objects
Recall that an object A in a category A is abelian if it can be endowed with

an internal group structure. In our context, if such a group structure exists, it is
necessarily unique. Moreover the subcategory Ab(A) of A of all abelian objects is a
Birkhoff subcategory.

Let us denote by ∇A and ∆A the largest and smallest equivalence relations on
an object A respectively. The central extensions in A with respect to Ab(A) have
been characterized in terms of Smith’s commutator of universal algebra [23][17]:
an extension f : A → B is central if and only if [R[f ],∇A] = ∆A. In particular, an
object A ∈ A is abelian if and only if [∇A,∇A] = ∆A.

It is well known that if A is the variety of groups, Smith’s commutator corre-
sponds to the classical group commutator in the following sense: suppose A is a
group and M and N are normal subgroups of A. Let us denote the group com-
mutator of M and N by [M, N ], and the equivalence relations associated with M
and N by R[cM ] and R[cN ], respectively. Then [M, N ] is the normalization of the
equivalence relation [R[cM ], R[cN ]] on A.

Let A satisfy the conditions of Section 4. The same proof as that of Theorem 4.4
in [9] shows that sending an extension f : A → B in A to the induced arrow I(f) =

A
[Ker (f),A] → B defines a reflection I : Ext(A)/B → CExt(A)/B, where Ext(A)/B is
the category of extensions of B, CExt(A)/B is its full subcategory, whose objects
are the extensions of B that are central with respect to the Birkhoff subcategory
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B of A, and [Ker (f), A] is the commutator associated with B. Furthermore, the
functor I ′ : Ext(A)/B → CExt(A)/B which sends an extension f : A → B in A to
the induced arrow I ′(f) : A

[R[f ],∇A] → B is a reflection as well. This is a consequence
of the aforementioned characterization of central extensions. Consequently, I = I ′

when B = Ab(A) and for any f : A → B in A, [Ker (f), A] is the normalization of
the equivalence relation [R[f ],∇A] on A. In particular, [A] is the normalization of
the equivalence relation [∇A,∇A] on A.

Suppose once more that A is the variety of groups. It is well known that in
this case Ab(A) is the subvariety of abelian groups. By the above, the associated
commutator is the classical commutator of groups. Consequently, in this situation,
the results in the present paper imply the classical results due to Stallings [30].

6.2. Nilpotent objects
Let us call an object A ∈ A nilpotent of class k with respect to a Birkhoff sub-

category B of A if in the lower central series, Ak = 0. It is readily seen that for
each k ∈ N∗, the full subcategory of A of nilpotent objects of class k is a Birkhoff
subcategory. Hence, for any Birkhoff subcategory B, this provides us with, among
other things, a whole new array of invariances (Proposition 4.1) and exact sequences
(Theorem 4.6).

We consider here only one application, choosing for A the variety CRng of com-
mutative rings (not necessarily with unit). If I and J are ideals of a commutative
ring R, then we denote the product

{
p∑

n=1

injn | p ∈ N, in ∈ I, jn ∈ J,∀n 6 p}

by IJ . Let us consider the subvariety 0− Rng ⊆ CRng of zero rings, i.e. those rings
R for which R2 = RR = 0. The reflection of CRng into 0− Rng sends a commu-
tative ring R to the quotient R

R2 ; consequently [R](= [R]0−Rng) = R2. Suppose I

is an ideal of a ring R ∈ CRng. Let us denote by cI the quotient R → R
I , and its

kernel congruence by R[cI ]. The commutator [I,R] = [I, R]0−Rng is defined as the
normalization of the congruence (R[cI ])2 on R2. Since

R[cI ]2 = {
p∑

n=1

(rn, rn + in)(r′n, r′n + i′n) | p ∈ N, rn, r′n ∈ R, in, i′n ∈ I, ∀n 6 p}

= {
p∑

n=1

(rnr′n, rnr′n + rni′n + inr′n + ini′n)| p ∈ N, rn, r′n ∈ R, in, i′n ∈ I, ∀n 6 p},

one has

[I, R] = {
p∑

n=1

(rni′n + inr′n + ini′n)| p ∈ N, rn, r′n ∈ R, in, i′n ∈ I,∀n 6 p} = IR.

Consequently for any commutative ring R, we find the lower central series

R > RR > RRR > · · · .

Let us now consider the subvariety of CRng given by the nilpotent rings of class 2.
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Denote by [·]2 the associated subfunctor and by [·, ·]2 the associated commutator. By
the above, [R]2 = R3, for any R ∈ CRng. Hence, for any ideal I of R ∈ CRng, [I,R]2
is defined as the normalization of the congruence (R[cI ])3 on R3. From calculations
similar to the ones above, it can be deduced that [I, R]2 = IR2.

Let us now denote, for any n > 1, the subfunctor and the commutator associated
with the subvariety of nilpotent objects of class n by [·]n and [·, ·]n, respectively.
For any commutative ring R and any ideal I of R, it is found that [R]n = Rn+1 and
[I, R]n = IRn.

Hence we obtain, for instance from Proposition 4.1, that for any ring R ∈ CRng
and each n > 1, the expression

I ∧ Pn+1

IPn

is independent of the projective presentation I → P → R. If, furthermore,
J → Q → S is a projective presentation of a commutative ring S, and

K → R → S

a short exact sequence, we obtain from Theorem 4.6 an exact sequence

I ∧ Pn+1

IPn
→ J ∧Qn+1

JQn
→ K

KRn
→ R

Rn+1
→ S

Sn+1
→ 0

for any n > 1.
In his thesis [15], Furtado-Coelho considered a similar situation to the one above,

by choosing for A the variety Gp of groups. For any k ∈ N∗, let us denote by Nilk the
subvariety of k-nilpotent groups in the variety Gp. Proposition 3.3.1 of [15] states,
in particular, the following (see also Corollary 3.5 in [10]): for any group A and any
normal subgroup N of A,

1. [N, A]Nil0 = N ;

2. [N, A]Nilk+1 = [[N, A]Nilk , A] for any k ∈ N∗,
where the last commutator is the ordinary commutator of groups. Hence, for in-
stance, Proposition 4.1 implies that, for any group A, the expression

R ∧ [[P, P ], P ]
[[R,P ], P ]

is independent of the projective presentation R → P → A.

6.3. Internal precrossed modules
An important class of examples of quasi-pointed, exact and protomodular cate-

gories is given by the categories RG(A)/B of reflexive graphs over a fixed object B
in an exact and protomodular category A. A reflexive graph (A, d, c, i) consists of
an object A, three arrows d, c : A → B and i : B → A, such that d ◦ i = 1B = c ◦ i.
A morphism f : (A, d, c, i) → (C, d′, c′, i′) of reflexive graphs over B is an arrow in
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A making the three obvious triangles commutative:

A

d ÂÂ@
@@

@@
@@ c

ÂÂ@
@@

@@
@@

f // C
d′

ÄÄ~~
~~

~~
~

c′ÄÄ~~
~~

~~
~

B

__@@@@@@@

??~~~~~~~

Since limits and colimits (of non-empty diagrams) in RG(A)/B are just limits and
colimits in A, it is readily seen that RG(A)/B is also exact and protomodular.
Moreover, since the unique morphism 0 = (B, 1B , 1B , 1B) → (B ×B, π1, π2, δ) = 1
is a monomorphism, RG(A)/B is quasi-pointed.

It is well known that the category RG(Gp)/B of reflexive graphs of groups over a
fixed group B is equivalent to B − PrCM/B, the category of precrossed B-modules.
Moreover, via this equivalence, the category Gpd(Gp)/B corresponds to the category
B − CM of crossed B-modules:

RG(Gp)/B ' B − PrCM

∪ ∪
Gpd(Gp)/B ' B − CM.

When B is a group, recall that a precrossed B-module (M, ∂) is a group homomor-
phism ∂ : M → B provided with a (left) action of B on M such that

∂(bm) = b∂(m)b−1,

for all b ∈ B and m ∈ M . (M, ∂) is a crossed B-module if, moreover, the Peiffer
condition

∂(m′)m = m′m(m′)−1

is satisfied for all m,m′ ∈ M . A morphism of (pre-)crossed B-modules f : (M,∂) →
(N, ε) is a group homomorphism f : M → N with ε ◦ f = ∂, which preserves the
action.

Similarly, the categories of precrossed B-rings and of crossed B-rings are equiv-
alent to the categories RG(Rng)/B of reflexive graphs in Rng and Gpd(Rng)/B of
groupoids in Rng (over a fixed ring B), respectively [26]. More generally, Janelidze
proved in [21] that these equivalences can be extended from groups and rings to any
semi-abelian category. Furthermore, in each of these cases Gpd(A)/B is a Birkhoff
subcategory of RG(A)/B, hence the results of the present paper can be applied to
these situations.

For any Mal’tsev variety A, we characterized in [9] the central extensions in
RG(A)/B with respect to Gpd(A)/B, in terms of the universal algebraic commutator
introduced by Smith [29]. More precisely, an extension f : (A, d, c, i) → (C, d′, c′, i′)
of reflexive graphs over B (as in the diagram above) is central if and only if

[R[d] ∨R[c], R[f ]] = ∆A,

where ∆A is the smallest congruence on A.
Let us now consider, in more detail, the case where A is the variety of groups.

Recall that the Peiffer commutator of two sub-precrossed B-modules (subobjects
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in B − PrCM) S, T 6 M = (M,∂), denoted 〈S, T 〉Gp, is the normal subgroup of the
group M generated by the elements 〈s, t〉 = sts−1(∂st)−1 and 〈t, s〉 = tst−1(∂ts)−1

for all s ∈ S and t ∈ T .
Note that the reflection from B − PrCM to B − CM is defined by associating the

crossed B-module M
〈M,M〉 with a precrossed B-module (M,∂). Thus the associated

subfunctor sends (M, ∂) to (〈M, M〉, 0) (where 0 denotes the trivial homomorphism
〈M, M〉 → B).

We will now explain why the commutator [·, ·]B−CM associated with the subcat-
egory B − CM coincides with the Peiffer commutator. More precisely, if f : A → C
is a regular epimorphism in B − PrCM, then

[Ker (f), A]B−CM = (〈Ker (f), A〉, 0),

where 0 denotes the trivial homomorphism 〈Ker (f), A〉 → B. As mentioned above,
the category B − PrCM is equivalent to RG(Gp)/B. Let us denote by P : RG(Gp)/B
→ B − PrCM the corresponding functor.

Suppose f : (A, d, c, i) → (C, d′, c′, i′) is an extension of reflexive graphs in Gp.
Let us consider [R[d] ∨R[c], R[f ]] as a congruence on the reflexive graph (A, d, c, i)
in RG(Gp)/B. One can verify that via the equivalence P, the normalization of
[R[d] ∨R[c], R[f ]] corresponds to the Peiffer commutator 〈Ker (P(f)),P(A)〉. Fur-
thermore, in [9] we proved that the normalization of [R[d] ∨R[c], R[f ]] coincides
with the commutator [Ker (f), (A, d, c, i)]Gpd(Gp)/B . Since, of course, [·, ·]Gpd(Gp)/B

corresponds, via P, to [·, ·]B−CM, we find that [·, ·]B−CM coincides with the Peiffer
commutator.

Note that B − PrCM is easily seen to have enough projectives, since it is a many-
sorted variety (but it is not a one-sorted variety; see [9]). Since pullbacks (resp.
pushouts) in B − PrCM are obtained by taking pullbacks (resp. pushouts) in Gp,
and because the initial object of B − PrCM is (0, 0B) (where 0B is the unique homo-
morphism 0 → B), the kernels and cokernels in B − PrCM correspond to kernels and
cokernels in Gp; hence Definition 4.2 yields, in particular, homology groups

H1(M,∂) =
M

〈M, M〉 and H2(M,∂) =
Ker (p) ∧ 〈P, P 〉
〈Ker (p), P 〉

(where p : (P, ∂ ◦ p) → (M, ∂) is a projective presentation of (M, ∂)) and, for in-
stance, Theorem 4.6 particularizes to the following proposition from [8]:

Corollary 6.1. Any short exact sequence of precrossed B-modules

K // M // N

yields an exact sequence of groups

H2(M) // H2(N) // K
〈K,M〉 // H1(M) // H1(N) // 0.

This exact sequence depends naturally on the given short exact sequence.

Note that if we choose B = 0, the trivial group, then the Peiffer commutator is
just the commutator of groups, and the above exact sequence is nothing but the
classical Stallings-Stammbach sequence.
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We would also like to mention that other results similar to the ones above can
be obtained in the context of profinite (pre-)crossed modules as defined by Korkes
and Porter in [25].

Finally, suppose that B is a ring. Recall from [26] that a precrossed B-ring (R, ∂)
is a two sided B-module together with a B-module morphism ∂ : R → B (B acts
upon itself by left and right multiplication). (R, ∂) is a crossed B-ring if, moreover,

∂(r)r′ = rr′ = r∂(r′)

for all r, r′ ∈ R. A morphism of (pre-)crossed B-rings f : (R, ∂) → (S, ε) is a B-
module morphism f : R → S with ε ◦ f = ∂.

Suppose I and J are two sub-precrossed B-rings of a precrossed B-ring R. We
denote by 〈I, J〉Rng the ideal of R generated by the elements 〈i, j〉 = ∂(i)j − ij and
〈i, j〉′ = i∂(j)− ij, for all i ∈ I and j ∈ J , and call this ideal the Peiffer commutator
of I and J .

It is then easily verified that, similarly to the case of precrossed modules, Defi-
nition 4.2 yields, in particular, homology rings H1(R, ∂) and H2(R, ∂), defined in
terms of the Peiffer commutator of rings, for each precrossed B-ring (R, ∂). Hence,
as in the case of precrossed modules, we obtain, for instance, for any exact sequence
in B − PrCRng, an exact sequence of rings in terms of the Peiffer commutator.
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