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Abstract
Over an associative ring we consider a class X of left mod-

ules which is closed under set-indexed coproducts and direct
summands. We investigate when the triangulated homotopy
category K(X) is compactly generated, and give a number of
examples.

1. Introduction

Let X be a class of left R-modules which is closed under set-indexed coproducts
and direct summands. When the (triangulated) homotopy category K(X) associated
to X is compactly generated, it can be a powerful tool. Let us mention two recent
examples from the literature to illustrate this point.

In [23, Thm. 2.4] it is proved that the homotopy category K(ProjR) is compactly
generated provided that R is coherent from either side, and that every flat left R-
module has finite projective dimension.

The result above is the cornerstone in proving that the class of Gorenstein pro-
jective modules is precovering (also called contravariantly finite) when R is commu-
tative and noetherian with a dualizing complex ([22, Cor. 2.13]). The question of
whether the Gorenstein projective modules really do constitute a precovering class
has been studied by many people; see, for example, [5, 11, 13, 18, 32].

In [25, Prop. 2.3] it is shown that K(InjR) is compactly generated when R is left
noetherian, and in [19, Cor. 5.5] this result is applied to give a new and interest-
ing characterization of Gorenstein rings in terms of (totally) acyclic complexes of
injective modules.

In this paper we study the general question: When is K(X) compactly generated?
More precisely, we give a number of sufficient conditions on R and X which ensure
that K(X) is compactly generated, and our results generalize those of [23, 25]. At
this point it is worth mentioning that the innocent-looking K(ModZ) is known not
to be compactly generated ([29, Lem. E.3.2]).

Our main result is Theorem 3.1, given in Section 3. Sections 4 and 5 develop
the necessary machinery to provide us with examples where Theorem 3.1 can be
applied. In the final Section 6 we use the previous results to list a number of concrete
classes X for which K(X) is compactly generated.
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2. Preliminaries

The assumptions, the notation, and the definitions from this section will be used
throughout the paper.

Definition 2.1 (Setup). Throughout, R is a ring, and all modules are left R-mod-
ules unless otherwise specified. We use Rop to denote the opposite ring of R, and a
left Rop-module is naturally identified with a right R-module.

The symbol X always denotes a class of modules with AddX = X (Definition 2.2
below). For an arbitrary class of modules we write A.

Definition 2.2 (Notation). We shall frequently use the following categories:
• ModR is the category of all R-modules, and modR is the category of all finitely

presented R-modules.
• ProjR, InjR, and FlatR are the categories of projective, injective, and flat
R-modules respectively.

• PureProjR and PureInjR are the categories of pure projective and pure injec-
tive R-modules respectively ([21, App. A]).

• For a class of modules A, we write addA for the category of modules which
are isomorphic to a direct summand of a module of the form

∐
i∈I Ai, where

Ai ∈ A and I is a finite set. Allowing arbitrary index sets I, in this construction
we get AddA.

The homotopy category. Let A be a class of modules with A = addA. The
objects of the homotopy category K(A) are chain complexes of modules from A.
Even though A is not abelian, the notion of complexes is still well-defined since
the condition ∂2 = 0 makes sense. The morphisms of K(A) are chain maps modulo
homotopy equivalence. By, for example [33, Chap. 10], K(A) carries the structure
of a triangulated category with finite coproducts. If A has arbitrary set-indexed
coproducts, then so has K(A).

Definition 2.3. Let T be a triangulated category ([29]), closed under set-indexed
coproducts. An object C ∈ T is compact if the natural map

∐
i∈I HomT(C,Xi) −→ HomT(C,

∐
i∈IXi)

is an isomorphism for any family {Xi}i∈I of objects in T. A set of objects G ⊆ T is
called a generating set if the implication

HomT(G,X) = 0 for all G ∈ G =⇒ X ∼= 0

holds for all X ∈ T. If T has a generating set consisting of compact objects, then T
is called compactly generated.

Example 2.4. The derived category D(ModR) of the abelian category ModR is
always compactly generated by the set

G = {ΣnR |n ∈ Z}.
Here R is considered as a complex concentrated in degree zero with zero differentials,
and Σn : D(ModR) −→ D(ModR) denotes the n-th shift “to the left”, that is, for a
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complex

X = · · · −→ Xs+1

∂X
s+1−→ Xs

∂X
s−→ Xs−1 −→ · · · ,

the complex ΣnX has the module Xt−n in degree t and (−1)n∂Xt−n as its t’th
differential.

Surprisingly, the corresponding homotopy category K(ModR) is not even com-
pactly generated when R = Z; see [29, Lem. E.3.2]. The ring Z has pure global
dimension 1 (Example 5.7(1)). It is a consequence of the theory developed in this
paper (Section 6(3)) that K(ModR) is compactly generated when R has pure global
dimension 0.

Remark 2.5. For the notion of compact, that is, ℵ0-compact objects, the reader is
referred to Neeman [29, Chap. 4.1 and 4.2]. The definition of a generating set is
taken from [29, Def. 8.1.1]. Definition 2.3 only has interest for us in the case where
T = K(X) for some class of modules X (Definition 2.1).

3. A condition for compact generatedness

In this section we give conditions on the module category X (Definition 2.1)
which ensure that the associated homotopy category K(X) is compactly generated
(Definition 2.3). We begin by stating our main result, but we postpone the proof
until the end of the section where the necessary preparations have been made.

Theorem 3.1. Let X = AddX be a class of R-modules, and assume that every
finitely presented module M has a right X-resolution X(M). Then

GX =
{

ΣnX(M)
∣∣M ∈modR , n ∈ Z}

is a set of compact objects in K(X). Furthermore, GX generates K(X) if and only if
every pure exact sequence in ModR, consisting of modules from X, is split exact.

How to apply Theorem 3.1. In order to apply the theorem above we need
examples of classes X = AddX satisfying:

(a) Every finitely presented module has a right X-resolution.

(b) Every pure exact sequence in ModR, consisting of modules from X, is split
exact.

In Section 4 we give examples of classes satisfying condition (a), and in Section 5
we discuss how to check whether (b) holds. In the final Section 6 we use the results
from the previous sections to list a number of concrete classes X for which K(X) is
compactly generated.

Before proving Theorem 3.1 we need some preparation, in particular some re-
marks about right resolutions and pure exactness.
Right resolutions. Let A be a class of modules. An A-preenvelope of a module M
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is a homomorphism ϕ : M −→ A with A ∈ A, such that given any other homomor-
phism ϕ′ : M −→ A′ with A′ ∈ A there is a (not necessarily unique) factorization,

M
ϕ //

ϕ′

²²

A.

~~|
|

|
|

A′

Let M be a module which has an A-preenvelope, ϕ0 : M −→ A0. Suppose that the
cokernel of this map, Coker(ϕ0), also has an A-preenvelope, say, ϕ1 : Coker(ϕ0) −→
A1. If also Coker(ϕ1) has an A-preenvelope etc., we may construct an augmented
right A-resolution of M ,

0 −→M
ε−→ A0 ∂0

−→ A1 ∂1

−→ A2 ∂2

−→ · · · . (∗)
Here ε = ϕ0, and ∂n is the composition

An // // Coker(ϕn)
ϕn+1

// An+1.

The complex (∗) is not necessarily exact (as A-preenvelopes are not necessarily
injective), however HomR((∗), A′) is exact for every A′ ∈ A. There is a useful equiv-
alent way of stating this property of the complex (∗), namely if we consider the
chain map

M

ε

²²

= · · · // 0

0

²²

// 0

0

²²

// M

ε

²²

// 0

0

²²

// 0

0

²²

// · · ·

A(M) = · · · // 0 // 0 // A0 ∂0
// A1 ∂1

// A2 // · · ·

then HomR(ε,A′) is a quasi–isomorphism for all A′ ∈ A. In the given situation we
refer to

A(M) = 0 −→ A0 ∂0

−→ A1 ∂1

−→ A2 ∂2

−→ · · ·
as a (non-augmented) right A-resolution of M . Finally, the class A is called preen-
veloping (also known as covariantly finite) if every module has an A-preenvelope,
and thus a right A-resolution.

If a module M admits a right A-resolution, it is in general not unique. However,
by, for example [11, Ex. 8.1.3], all possible choices of right A-resolutions A(M) of M
are homotopy equivalent and thus isomorphic in K(A). Hence A(M) is a well-defined
object in the homotopy category of A. As the chain map ε : M −→ A(M) becomes
a quasi–isomorphism whenever the functor HomR(−, A′) is applied to it for A′ ∈ A,
and since both M and A(M) are left-bounded complexes, [8, Prop. (2.7)(b)] implies
that

HomR(A(M), A′)
HomR(ε,A′)

'
// HomR(M,A′)

is a quasi–isomorphism for every complex A′ consisting of modules from A. In
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particular we have an equivalence of functors K(A) −→ ModZ,

H0 HomR(A(M),−) ' H0 HomR(M,−). (†)
For the discussion above we do not assume that A has set-indexed coproducts,
however since we are interested in compact objects in the homotopy category, we
will focus on the case where A = X (Definition 2.1).

Proposition 3.2. If a module M admits a right X-resolution X(M), then there is
an equivalence of functors K(X) −→ ModZ,

HomK(X)(X(M),−) ' H0 HomR(M,−).

In particular, if M is finitely generated and admits a right X-resolution, then X(M)
is a compact object in K(X).

Proof. We have natural equivalences of functors,

HomK(X)(X(M),−) ' H0 HomR(X(M),−)
' H0 HomR(M,−),

where the first isomorphism is standard, and the second is, by (†) above. For the last
claim in the proposition we use that H0 HomR(M,−) commutes with set-indexed
coproducts if M is finitely generated.

Definition 3.3 (Pure exact sequences). A (not necessarily short) sequence Y
in ModR is pure exact if and only if HomR(M,Y ) is exact for all finitely presented
modules M ([21, Thm. 6.4]).

Proof of Theorem 3.1. By Proposition 3.2, the set GX consists of compact objects.
Strictly speaking, GX is not a set, as modR is not. However, we may of course restrict
ourselves to just looking at isomorphism classes in modR, and they do constitute a
set.

Now let Y be an arbitrary object in K(X), that is, a chain complex of modules
from X. We claim that the following conditions are equivalent:

(i) HomK(X)(ΣnX(M), Y ) = 0 for all M ∈ modR and n ∈ Z;

(ii) Y is a pure exact sequence in ModR.

Having proved this, the last part of the theorem follows immediately, since an object
Y ∈ K(X) is isomorphic to zero if and only if Y splits ([33, Ex. 1.4.3]). The proof
of the equivalence of (i) and (ii) follows from Definition 3.3 compared with the
following calculation:

HomK(X)(ΣnX(M), Y ) ∼= HomK(X)(X(M),Σ−nY )
∼= H0 HomR(M,Σ−nY )
∼= Hn HomR(M,Y ),

where the second isomorphism is by Proposition 3.2.
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4. Existence of right resolutions

In this section we study constructions and examples of module classes X (Defi-
nition 2.1) for which every finitely presented module has a right X-resolution. This
is of interest when we want to apply our main Theorem 3.1. For reasons which
will become clear in Propositions 5.1 and 5.2, we will only focus on such classes
which have the additional property that they are contained in either PureInjR or
PureProjR (Definition 2.2).

We begin by stating all our constructions and examples 4.1–4.7, but we postpone
the arguments to the end of the section.

Example 4.1. The following two examples are classical:
(a) The class InjR is preenveloping by [31, Thm. 3.13 and 3.26]. However, in

order for InjR to be closed under coproducts, R must be left noetherian ([31,
Thm. 4.27]).

(b) The class PureInjR is preenveloping by [21, Prop. 7.6]. However, in order for
PureInjR to be closed under coproducts, R must be pure-semisimple, and in
this case we actually have PureInjR = ModR ([21, Thm. B.18]).

In fact, Example 4.1(a) admits the following generalization. In the result below,
Inj(M1, . . . ,Mn) is defined as in Definition 4.8.

Proposition 4.2. Assume that R is left noetherian and let M1, . . . ,Mn be R-
bimodules such that each Mj is finitely generated as a left R-module. Then every
module has a right Inj(M1, . . . ,Mn)-resolution.

Next we present examples which are contained in PureProjR.

Example 4.3. The following conclusions hold:
(a) Every finitely presented module has a right PureProjR-resolution.
(b) If R is right coherent, then every finitely presented module has a right resolu-

tion with respect to Add (RR) = ProjR.

Actually, Example 4.3(b) admits a generalization:

Proposition 4.4. Assume that R is right coherent, and let M be an R-bimodule
which is finitely presented from either side. Then every finitely presented module
has a right Add(RM)-resolution.

In the next result, GprojR denotes the class of finitely generated Gorenstein
projective modules ([2, 3]), and GFlatR is the class of Gorenstein flat modules
([12]). Furthermore, lim−→GprojR is the class of modules which can be written as a
colimit in ModR of some functor I −→ GprojR, where I is a small filtering category
(Definition 4.12).

Proposition 4.5. Assume that R is commutative and noetherian with a dualizing
complex. If lim−→GprojR = GFlatR (this happens, for example, if R also has finite
injective dimension over itself), then every finitely presented module has a right
Add(GprojR)-resolution.
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In the next result, subA is defined as in Lemma 4.14.

Proposition 4.6. Let A be a class of modules, and assume that every finitely pre-
sented module N has an A-preenvelope ϕ : N −→ A for which the image Im(ϕ)
is finitely presented. Then every finitely presented module has a right Add(subA)-
resolution.

Example 4.7. To apply Proposition 4.6 above, we first need a class A such that
every finitely presented module has an A-preenvelope. For instance, A could be any
of the following preenveloping classes:

(a) PureInjR ∩ FlatR if R is right coherent ([11, Prop. 6.6.6]).

(b) FlatR if R is right coherent ([11, Prop. 6.5.1]).

(c) The class of S-torsion free modules, when R is commutative and S ⊆ R is a
multiplicative subset (see below).

But other choices of A are also possible; for example from the proof of Proposi-
tion 4.4 it will follow that:

(d) If R is right coherent, and M is an R-bimodule which is finitely presented from
either side, then every finitely presented module has an add(RM)-preenvelope
(note add, not Add).

However, A must have the additional property that among all the preenvelopes of a
given finitely presented module N , there should exist one with a finitely presented
image. We note that

(1) If R is left noetherian, then the image of every A-preenvelope of N is finitely
presented.

(2) If A ⊆ modR (this is the case in (d) above) and R is left coherent, then the
image of every preenvelope of N is finitely presented by [11, Thm. 3.2.24].

Before proving 4.2—4.6 we will get 4.7(c) out of the way:

Torsion-free modules. Let R be commutative and let S ⊆ R be a multiplicative
subset. For any module M , its S-torsion submodule is defined as

ΓSM =
{
x ∈M ∣∣ sx = 0 for some s ∈ S}

.

We say that M is S-torsion-free if ΓSM = 0. It is easy to see that the class of S-
torsion-free modules is preenveloping, as M −→M/ΓSM is an S-torsion-free pre-
envelope of M .

In the rest of the section we prove Propositions 4.2—4.6. We begin with a defini-
tion.

Definition 4.8. Assume that R is left noetherian and let M1, . . . ,Mn be R-bimod-
ules such that each Mj is finitely generated as a left R-module. A module J belongs
to Inj(M1, . . . ,Mn) if and only if there exist injective modules I1, . . . , In such that
J is a direct summand of

HomR(M1, I1)⊕ · · · ⊕HomR(Mn, In).
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Proof of Proposition 4.2. As R is left noetherian, there is, by [11, Proof of
Thm. 5.4.1], a set of injective modules E such that InjR = AddE. Using that
HomR(Mj ,−) commutes with set-indexed coproducts, we see that Inj(M1, . . . ,Mn)
has the form AddA, where

A =
{

HomR(Mj , E)
∣∣ j ∈ {1, . . . , n} , E ∈ E}

.

From the description in Definition 4.8 it is clear that Inj(M1, . . . ,Mn) is closed under
products, and hence it follows easily from [11, Prop. 6.2.1] that Inj(M1, . . . ,Mn) is
preenveloping.

Remark 4.9. Note that Inj(M1, . . . ,Mn) is contained in PureInjR.

Proof of Example 4.3. Part (a) is clear, as PureProjR contains every finitely pre-
sented module. Part (b) follows from [10, Ex. 3.4].

Before we go on, we need a few facts about finitely presented modules.

Lemma 4.10. The following conclusions hold:
(a) If M is a finitely presented module and S ⊆M a finitely generated submodule,

then the quotient M/S is finitely presented.
(b) If M is finitely generated and S ⊆M is a submodule such that M/S is finitely

presented, then S is finitely generated.
(c) Assume that R is left coherent, M is finitely generated, and N is finitely pre-

sented. If ϕ : M −→ N is a homomorphism, then Ker(ϕ) is finitely generated.

Proof. Part (a) is easy to prove, and part (b) can be found in, for example, [26,
Prop. (4.26)(b)]. Using (b), we can easily prove (c) as follows.

As M is finitely generated, then so is Im(ϕ). As R is coherent and Im(ϕ) is a
finitely generated submodule of the finitely presented module N , it follows by [26,
Def. (4.51) and Cor. (4.52)] that Im(ϕ) is even finitely presented. Applying (b) to
the inclusion Ker(ϕ) ⊆M , which has M/Ker(ϕ) ∼= Im(ϕ), we get that Ker(ϕ) is
finitely generated.

Lemma 4.11. Assume that A ⊆ modR, and that every finitely presented module
has an A-preenvelope. Then every finitely presented module has a right AddA-res-
olution.

Proof. Let M be a finitely presented module, and let ϕ0 : M −→ A0 be an A-pre-
envelope. Since Im(ϕ0) is finitely generated and A0 is finitely presented, Lem-
ma 4.10(a) implies that Coker(ϕ0) is finitely presented, so it has an A-preenvelope,
ϕ1 : Coker(ϕ0) −→ A1. Continuing in this manner, we build an augmented right
A-resolution of M ,

A+(M) = 0 −→M −→ A0 −→ A1 −→ · · · .
To finish the proof, it suffices to see that HomR(A+(M), A′) is exact for every
A′ ∈ AddA. We may assume that A′ has the form

∐
i∈I Ai where Ai ∈ A. Finally,

we simply have to use that

HomR(A+(M),
∐
i∈IAi) ∼=

∐
i∈I HomR(A+(M), Ai)

as every module in A+(M) is, in particular, finitely generated.
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Definition 4.12 (Modules with support in a category). For a class A = addA
of finitely presented modules, Lenzing [27] introduces the class lim−→A of all colimits
in ModR of functors I −→ A, where I is a small filtering category ([28, Chap. IX]).
A module in lim−→A is said to have support in A.

In [27, Prop. 2.1] two alternative characterizations of the modules with support
in A are given. The following result can be found in, for example, [1, Thm. 3.2] or
[9, Sec. (4.2)].

Proposition 4.13. If A ⊆ modR with addA = A, then the following two conditions
are equivalent:

(i) Every finitely presented module has an A-preenvelope.

(ii) lim−→A is closed under products.

The following proof is a consequence of the above proposition:

Proof of Proposition 4.5. Since R is commutative and noetherian with a dualizing
complex, [8, Thm. 5.7] gives that GFlatR is closed under products. The assumption
lim−→(GprojR) = GFlatR, Proposition 4.13 and Lemma 4.11 applied to A = GprojR
give that every finitely presented module has a right resolution with respect to
Add(GprojR).

It remains to prove the claim in parentheses, namely that the equality

lim−→(GprojR) = GFlatR

holds when R is commutative and noetherian with finite injective dimension over
itself. The inclusion “⊇” follows from [11, Thm. 10.3.8]. The opposite inclusion “⊆”
follows from combining [8, Thm. (3.5)] and [33, Cor. 2.6.17] with the fact that every
module has finite Gorenstein flat dimension. For the latter claim, see for example
[8, (1.3) and Thm. (4.1)] or [7, Thm. (5.2.10)] in the local case.

Our next goal is to provide the proof of Proposition 4.4:

Proof of Proposition 4.4. As RM is finitely presented, it suffices by Lemma 4.11
to show that every finitely presented module N has an add(RM)-preenvelope. We
start by proving that the Rop-module HomR(N,M) is finitely generated: Since N
is finitely presented, there is an exact sequence,

F1 −→ F0 −→ N −→ 0,

where Fi ∼= (RR)bi is finitely generated and free. Applying the left exact functor
HomR(−,M) to this sequence, we get

0 −→ HomR(N,M) −→ HomR(F0,M) −→ HomR(F1,M). (∗)
Since HomR(Fi,M) ∼= (MR)bi , and since MR is finitely presented, we see that
HomR(Fi,M) is finitely presented. Applying Lemma 4.10(c) to (∗) we get that
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HomR(N,M) is finitely generated, and we write

HomR(N,M) = h1R+ · · ·+ htR. (∗∗)
We claim that the map ϕ : N −→M t defined by

z 7−→ (h1(z), . . . , ht(z))

is an add(RM)-preenvelope of N . To see this, it suffices to prove that any homo-
morphism ψ : N −→Mk from N to a finite power of RM lifts to M t,

N

ψ !!CCC
CC

ϕ // M t.

u{{x x x

Mk

Furthermore, without loss of generality we may assume that k = 1. To define u, use
(∗∗) to write ψ ∈ HomR(N,M) as

ψ = h1r1 + · · · + htrt

for suitable r1, . . . , rt ∈ R. We can then define u : M t −→M by

(x1, . . . , xt) 7−→ x1r1 + · · ·+ xtrt.

Now uϕ = ψ because for z ∈ N we have:

uϕ(z) = u(h1(z), . . . , ht(z))
= h1(z)r1 + · · · + ht(z)rt
= ψ(z).

Finally we need to show Proposition 4.6, but first a little preparation:

Lemma 4.14. Let A be any class of modules and define

subA = {S ∈ modR |S ⊆ A for some A ∈ A}.
Assume that M is a finitely presented module, and that M admits an A-preenvelope
ϕ : M −→ A such that Im(ϕ) is finitely presented. Then M has a right subA-pre-
envelope.

Proof. By assumption, M has an A-preenvelope ϕ : M −→ A such that Im(ϕ) is
finitely presented. Consider the obvious factorization

M

ϕ̃ ## ##HHH
HH

ϕ // A.

Im(ϕ)
- ° i

;;wwwww

By definition, the module Im(ϕ) belongs to subA, and it is easy to verify that
ϕ̃ : M −→ Im(ϕ) is indeed a subA-preenvelope of M .

Proof of Proposition 4.6. The assumptions on A and Lemma 4.14 ensure that every
finitely presented module has a subA-preenvelope. Since subA is contained in modR
by definition, Lemma 4.11 finishes the proof.
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Remark 4.15. The class Add(subA) is contained in PureProjR, since subA is con-
tained in modR by definition.

5. When does a pure exact sequence split?

Given a class of modules A, we discuss in this section how to see whether every
pure exact sequence in ModR, consisting of modules from A, is split exact. This
question is of interest when we wish to apply our main theorem, Theorem 3.1. We
begin by outlining the idea of this section, but we postpone the arguments until
later.

For any class of modules, we consider two conditions (pp) and (pi); see Defini-
tion 5.4. These conditions can be checked, and are indeed fulfilled in many cases as
Proposition 5.2 below shows. The conditions (pp) and (pi) are the key ingredients
in the following proposition, which is the main result of this section:

Proposition 5.1. Let A be a class of modules satisfying at least one of the two
conditions (pp) or (pi). Then every pure exact sequence in ModR, consisting of
modules from A, is split exact.

Proposition 5.2. The conclusions below hold:
(a) If R has finite left pure global dimension (Example 5.7), then every subclass

of PureProjR satisfies (pp), and every subclass of PureInjR satisfies (pi).
(b) If every flat R-module has finite projective dimension, then every subclass of

ProjR satisfies (pp).
(c) If R is left noetherian, then every subclass of InjR satisfies (pi).

The rest of the section is devoted to proving Propositions 5.1 and 5.2. We begin
with the following:

Definition 5.3. For a class of modules A we define F(A) to be the class of modules
which are isomorphic to some kernel (equivalently, some image, or some cokernel)
in a pure exact sequence,

· · · −→ An+1 −→ An −→ An−1 −→ · · ·
where every An belongs to AddA.

The properties (pp) and (pi) for a class A, which occur in this section’s main
result 5.1, are defined in terms of F(A) from Definition 5.3:

Definition 5.4. For a class of modules A we consider the properties:
(pp) There exists a d > 0 such that for every M ∈ F(A) and every pure exact

sequence 0→ Kd → Ad−1 → · · · → A0 →M → 0 with A0, . . . , Ad−1 ∈ A,
the module Kd must be pure projective.

(pi) There exists a d > 0 such that for every M ∈ F(A) and every pure exact
sequence 0→M → A0 → · · · → Ad−1 → Cd → 0 with A0, . . . , Ad−1 ∈ A, the
module Cd must be pure injective.
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The purpose of the following Remark 5.5 and the subsequent Lemma 5.6 is to get
a better feeling for the construction F(−) from Definition 5.3.

Remark 5.5. Clearly, AddA ⊆ F(A). Furthermore, if A = addA consists of finitely
presented modules, then F(A) ⊆ lim−→A (Definition 4.12), since:

If M ∈ F(A), then in particular there exists a module A ∈ AddA and a pure
monomorphism 0→M → A. Since A ∈ lim−→A, and since lim−→A is closed under pure
submodules by [27, Prop. 2.2], it follows that M belongs to lim−→A.

Lemma 5.6. The following conclusions hold:

(a) F(ProjR) ⊆ FlatR. If R is a commutative integral domain which is not a field,
then the inclusion is strict.

(b) If R is left noetherian, then F(InjR) = InjR.

Proof. “(a)”: It follows immediately from Definition 5.3 of F(−) that F(ProjR) =
F(addR), and the latter is contained in lim−→(addR) = FlatR by Remark 5.5. If R is a
commutative integral domain with quotient field Q 6= R, then Q belongs to FlatR,
but Q /∈ F(ProjR), since Q cannot even be embedded into a free module.

“(b)”: Only the inclusion F(InjR) ⊆ InjR is non-trivial; thus we let M ∈ F(InjR)
and use Baer’s criterion to show that M is injective. The assumption on M implies,
in particular, the existence of a pure epimorphism f : I −→M , where I is injective.
Let a ⊆ R be an ideal, and let i : a −→ R be the inclusion. Given a homomorphism
u : a −→M , we must find v : R −→M with vi = u. Since R is left noetherian, the
ideal a is finitely presented, so by assumption on f we get g : a −→ I with fg = u,

a

g

ÃÃ

u

²²

Â Ä i // R

h

²²
M I.

f
oooo

Injectivity of I then gives h : R −→ I with hi = g. Consequently, the homomorphism
v = fh : R −→M is the desired one.

Krull dimension of categories. Geigle [15, Def. 2.1] has introduced a Krull di-
mension for a small additive category C. By definition, the Krull–Geigle dimension
of C coincides with the Krull–Gabriel dimension (introduced in [14] using filtrations
of localizing subcategories) of

f.p.funct(Cop,Ab).

The latter is the category of all covariant, additive, and finitely presented functors
Cop −→ Ab, where Ab = ModZ.

For a ring R, Jensen–Lenzing [21, pp. 197–199] consider a Krull dimension for
mod(Rop); by definition it is the Krull–Gabriel dimension of the category

f.p.funct(mod(Rop),Ab).

For an Artin algebra Λ, there is by [4, Thm. 3.3] a duality, in other words a
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“contravariant equivalence”,

D : mod Λ −→ mod(Λop).

Consequently, there is also an equivalence of categories,

f.p.funct(mod(Λop),Ab) ∼ // f.p.funct((mod Λ)op,Ab)

F
Â // F ◦D.

In particular, the Krull–Jensen–Lenzing dimension of mod(Λop) agrees with the
Krull–Geigle dimension of mod Λ. By [15, Thm. 4.3], the latter is finite when Λ is
a tame hereditary Artin algebra.

Example 5.7 (Pure global dimension). The definition of the left pure global dimen-
sion for a ring R, denoted l.p.gl.dimR, may be found in, for example [21, Def. A.14].
Below we give examples of classes of rings with finite left pure global dimension.
(1) If max{ℵ0, |R|} = ℵt, then l.p.gl.dimR 6 t+ 1 by [17, Sec.2].
(2) If I ⊆ R is a two-sided ideal, then l.p.gl.dimR/I 6 l.p.gl.dimR. If R is commu-

tative and S ⊆ R is a multiplicative subset, then l.p.gl.dimS−1R 6
l.p.gl.dimR; see [24, Prop. 1.1].

(3) If (R,m, k) is a commutative local noetherian domain of Krull dimension 1,
and k is at most countable, then l.p.gl.dimR = 1 by [20, Prop. 4.7].

(4) If R is a finite dimensional k-algebra (k any field) of tame representation type,
which is either hereditary or a radical-squared zero algebra, then l.p.gl.dimR 6
2 by [6, Prop. 3.3].

(5) Some specific examples of four-dimensional k-algebras (which are neither he-
reditary nor radical-squared zero) with finite pure global dimension may be
found in [6, Prop. 5.1]. The reader might also want to consult [21, Cor. 11.33
and 11.34].

(6) If the category mod(Rop) has finite Krull dimension d according to Jensen–
Lenzing [21, pp. 197–199] (see remarks above), then l.p.gl.dimR 6 d by [21,
Thm. 11.31]. This applies to the rings R, for example, where:
• R is a Dedekind domain; [21, Thm. 8.55, Cor. 11.32].
• R is a tame hereditary Artin algebra (see remarks above).

(7) If R is von Neumann regular, then every exact sequence is pure exact, and
therefore l.p.gl.dimR equals the (ordinary) left global dimension of R. This
applies to the rings R, for example:
• If R has left global dimension zero, that is, R is left semi-simple, then

l.p.gl.dimR = 0.
• The ring R = {(xn)n∈N ∈ kN|xn constant for nÀ 0} (k any field), is von

Neumann regular with unit. Also, R has global dimension 1: As R is not
noetherian, its global dimension is >0. Since R is von Neumann regular,
every ideal is generated by idempotents1. Clearly, R has only ℵ0 many
idempotents, so [30, Cor. 2.47] implies the claim.

1This follows easily from the fact [16, Thm. p. 10] that every principal ideal is generated by an
idempotent.
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For later use, we note that a von Neumann regular ring is automatically coher-
ent from either side.

Proof of Proposition 5.2. “(a)”: In Definition 5.4 we may take d to be the left pure
global dimension d of R.

“(b)”: If every flat module has finite projective dimension, then there in fact
exists d such that pdRF 6 d for all F ∈ FlatR. If A ⊆ ProjR, we get F(A) ⊆ FlatR
by Lemma 5.6(a), and it follows immediately that the number d implements the
(pp) property for A.

“(c)”: If A ⊆ InjR, we get F(A) ⊆ InjR by Lemma 5.6(b), and it follows that the
number d = 0 implements the (pi) property for A.

Proof of Proposition 5.1. Let A = · · · → An+1 → An → An−1 → · · · be a pure ex-
act sequence with Ai ∈ A, and decompose A into short exact sequences

Sn = 0 −→ Ωn −→ An −→ Ωn−1 −→ 0.

It follows that every Sn is pure exact. We want to prove that Sn is split exact, so it
suffices to show that Ωn−1 is pure projective, or that Ωn is pure injective. We will
actually prove the following:

(a) If A has property (pp), then every Ωn is pure projective.

(b) If A has property (pi), then every Ωn is pure injective.

We will only prove (a), as the proof of (b) is similar. By Definition 5.3, every Ωm
belongs to F(A). To see that Ωn is pure projective, we consider the pure exact
sequence

0 −→ Ωn −→ An −→ · · · −→ An−d+1 −→ Ωn−d −→ 0,

where d is a number which implements the property (pp) for A. Since Ωn−d belongs
to F(A), and An−d+1, . . . , An belong to A, the property (pp) guarantees that Ωn is
pure projective.

6. Summary

Using the results from the previous sections we are now able to give a list of
examples of concrete module classes X = AddX (Definition 2.1) such that the trian-
gulated homotopy category K(X) is compactly generated. In most of our examples,
rings with finite pure global dimension play an important role (Example 5.7).

(1) Assume that R is right coherent with finite left pure global dimension, and
that M is an R-bimodule which is finitely presented from either side. Then
we may take

X = Add(RM).

If RM is projective, then Add(RM) ⊆ ProjR, and the condition “finite left pure
global dimension” may be replaced by “every flat module has finite projective
dimension”. Thus under this assumption, the special case M = R recovers
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[23, Thm. 2.4], namely we may take

X = ProjR.

References: 3.1, 4.4, 5.1, and 5.2(a)(b).
(2) Assume that R is left noetherian with finite left pure global dimension, and

that M1, . . . ,Mn are R-bimodules such that each Mj is finitely generated as
a left R-module. Then we may take

X = Inj(M1, . . . ,Mn).

If every (Mj)R is flat, then Inj(M1, . . . ,Mn) ⊆ InjR, and the condition “finite
left pure global dimension” is superfluous. In particular, the special case n = 1
and M1 = R recovers [25, Prop. 2.3], namely we may take

X = InjR.

References: 3.1, 4.2, 4.8, 5.1, and 5.2(a)(c).
(3) If R has finite left pure global dimension then we may take

X = PureProjR.

In particular, if R is left pure-semisimple then we can use

X = ModR.

References: 3.1, 4.3(a), 4.1(b), 5.1, and 5.2(a).
(4) Assume that R is commutative and noetherian with a dualizing complex, and

that R has finite pure global dimension. If lim−→GprojR = GFlatR (this happens
for example if R, in addition, has finite injective dimension over itself) then
we may take

X = Add(GprojR).

References: 3.1, 4.5, 5.1, and 5.2(a).
(5) If R is left noetherian and right coherent with finite left pure global dimension

then we may take, for example,

X = Add(sub(FlatR)).

References: 3.1, 4.6, 4.7(b), 4.7(1), 5.1, and 5.2(a).
(6) If R is commutative and noetherian with finite pure global dimension, and

S ⊆ R is a multiplicative subset then we may take

X = Add(sub{S-torsion free modules})
= Add{finitely generated S-torsion free modules}.

References: 3.1, 4.6, 4.7(c), 4.7(1), 5.1, and 5.2(a).
(7) Assume that R is coherent from either side with finite left pure global dimen-

sion, and that M is an R-bimodule which is finitely presented from either side.
Then we may take

X = Add(sub(add(RM))).

References: 3.1, 4.6, 4.7(d), 4.7(2), 5.1, and 5.2(a).
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Proposition 6.1. Assume that R is right coherent. Then FlatR is preenveloping,
so it makes sense to consider the set of compact objects

GFlatR ⊆ K(FlatR)

from Theorem 3.1. Then GFlatR generates K(FlatR) if and only if FlatR = ProjR.

Proof. That FlatR is preenveloping over right coherent rings follows from [11,
Prop. 6.5.1]. If FlatR = ProjR, then we know from Section 6(1) above that

K(FlatR) = K(ProjR)

is generated by GFlatR = GProjR. When FlatR 6= ProjR there exists a flat module F
which is not projective. Let

· · · −→ P2 −→ P1 −→ P0 −→ F −→ 0 (∗)
be an augmented projective resolution of F , and note that (∗) is pure exact but not
split. Therefore Theorem 3.1 implies that GFlatR does not generate K(FlatR).

Of course, Proposition 6.1 above does not rule out the possibility that K(FlatR)
could be generated by some larger set of compact objects than GFlatR. Hence we
pose the following:

Question. When is K(FlatR) compactly generated?

Acknowledgements

We sincerely thank Christian U. Jensen for his willingness to answer questions
about pure global dimension, and in particular for pointing out Example 5.7(7).

References
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