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A CLASS OF LEFT IDEALS OF THE STEENROD ALGEBRA
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Abstract
We study the nested collection of left ideals of A, the mod 2

Steenrod algebra, L(k) := A{Sq20
,Sq21

,Sq22
, . . . ,Sq2k

}. We
determine the smallest k such that Sqn ∈ L(k).

We discuss an application which improves upon the results
of F. R. Cohen and the first author in their paper comparing
the loop of the degree 2 map on a sphere and the H-space
squaring map on the loop of a sphere.

1. Introduction and statement of result

The Steenrod algebra, first constructed by N. Steenrod [10], is an algebra of
stable cohomology operations which acts on the Z/2-cohomology groups of topo-
logical spaces. The Steenrod algebra is widely studied by mathematicians whose
interests range from algebraic topology and homotopy theory to manifold theory,
combinatorics, representation theory, and more. For more details and applications
see [5, 7], and for a history of the study of the Steenrod algebra see [11], all three
of which include extensive lists of additional references. In the study of self maps
of loop spaces of spheres, F. Cohen and the first author encountered the algebraic
question which is solved in Theorem 1.1. Its solution leads to more general and
stronger results in [2] as stated in Theorem 1.2.

To formally define the Steenrod algebra, let M be the graded Z/2-module such
that Mi = Z/2 is generated by the symbol Sq i for i > 0. Let T (M) be the tensor
algebra of M . The mod 2 Steenrod algebra, A, is defined as the quotient of the tensor
algebra T (M) by the two sided ideal generated by the Adem relations R(a, b), and
Sq0 + 1, where for 0 < a < 2b,

R(a, b) := Sqa ⊗ Sqb +
∑

c

(
b−c−1
a−2c

)
Sqa+b−c ⊗ Sqc

and the binomial coefficient is evaluated mod 2.
In this paper we look at a question regarding the following nested collection of
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left ideals of the Steenrod algebra,

L(k) := A{Sq20
,Sq21

,Sq22
, . . . ,Sq2k

}.

Given an integer n, we are interested in finding the smallest k such that Sqn ∈ L(k).
It is well known that Sq2i

, i > 0, are indecomposable elements and {Sq2i

| i > 0}
generates A as an algebra [7]. Hence the nested left ideals L(k) limit to A, so a
smallest such k will always exist. The complexity of the Adem relations make the
smallest k difficult to find. For example, Sq10 can be factored in the following two
ways

Sq10 = Sq4Sq2Sq4 + Sq8Sq2 + Sq4Sq5Sq1, and Sq10 = Sq2Sq8 + Sq9Sq1.

The first factorization shows Sq10 ∈ L(2), while this fact is not clear from the second
factorization. One can easily check in this example that k = 2 is the smallest k such
that Sq10 ∈ L(k). The principal result of this paper is the following theorem, the
proof of which appears in Section 2.

Theorem 1.1. For n > 1, the smallest k such that Sqn ∈ L(k) is k = f(n), where
the function f is defined below.

The following notation is used to define f . For a positive integer n, let [n] denote
the dyadic expansion of n viewed as a string of zeros and ones. This string is
unique up to leading zeros. For example, [13] can be viewed as 1101 or 0001101.
Given a binary string α let |α| denote the integer with dyadic expansion α, and
let len(α) denote the length of the string α. For example, |0001101| = |1101| = 13,
len(1101) = 4, and len(0001101) = 7. Of course expressions such as len([n]) are not
well-defined and will not be used. Given a string β we define z(β) to be the number
of non-trailing zeros in β; for example z(000110010000) = 5. Given strings α and
β let αβ denote their concatenation. With this notation f is defined as follows.
Writing [n] = αβ such that |α| < z(β) with len(β) minimal,

f(n) := len(β)− 2.

As an example calculation consider n = 13. We write [13] as 01101; with α = 0
and β = 1101 the condition |α| < z(β) is satisfied and with α = 01 and β = 101
this condition is not satisfied. Thus the β with minimal length such that the con-
dition |α| < z(β) is satisfied is β = 1101. As len(1101) = 4 we have f(13) = 2. This
corresponds to the factorization

Sq13 = Sq2Sq5Sq2Sq4 + Sq2Sq5Sq5Sq1 + Sq2Sq9Sq2 + Sq12Sq1 ∈ L(2).

This algebraic question arose from study of a topological question by F. Cohen
and the first author in [2] regarding two natural self maps of ΩkS2n+1; the k-fold
looping of the degree two map on an odd sphere

Ωk[2] : ΩkS2n+1 → ΩkS2n+1,

and for k > 1, the H-space squaring map,

Ψk(2) : ΩkS2n+1 → ΩkS2n+1.
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The degree two map induces multiplication by 2 on cohomology groups and the H-
space squaring map induces multiplication by two on homotopy groups. The maps
Ω[2] and Ψ1(2) are not homotopic for arbitrary 2n + 1, but these maps are stably
homotopic. A natural question to ask is whether or not the maps Ω[2] and Ψ1(2)
become homotopic after looping a sufficient number of times. Some of the history
regarding this question along with partial answers can be found in [1, 3, 4].

In [2], for 2n + 1 6= 2s − 1 for any integer s, lower bounds are given on the number
k of loops required for the maps Ωk[2] and Ψk(2) to be homotopic. Larger lower
bounds are obtained if Sq2n+2 ∈ L(m) for smaller m. Finding the smallest such m
gives best possible lower bounds for Ωk[2] and Ψk(2) to be homotopic when using
the techniques in [2].

Theorem 1.2. For k > 1, let Ωk[2] : ΩkS2n+1 → ΩkS2n+1 denote the k-fold loop of
the degree two map on S2n+1 and Ψk(2) : ΩkS2n+1 → ΩkS2n+1 denote the H-space
squaring map.

If Ωk[2] and Ψk(2) are homotopic, then k > F (2n + 2) where F is defined by

F (m) = m− 2f(m) + 1

and the function f is defined as above.

We refer the reader to [2] for the proof of Theorem 1.2 as it follows directly from
Theorem 1.1 and from the calculations in Section 2 of [2].

2. Proof of Theorem 1.1

We begin with the following definitions and two lemmas which reduce our prob-
lem about the aforementioned left ideals to a number theory problem.

Let χ denote the anti-automorphism of the Steenrod algebra defined recursively
by

χ(Sqk) =
∑

16i6k

Sq iχ(Sqk−i), and χ(Sq0) = 1.

Let χ∗ denote the dual automorphism on the dual to the Steenrod algebra, A∗,
defined recursively by

χ∗(ξk) =
k−1∑
i=0

χ∗(ξi)2
k−i

ξk−i, and χ∗(ξ0) = 1.

Additional information regarding the dual algebra, A∗, which is a polynomial ring
over Z/2 generated by {ξi}, i > 1, and computing χ(Sqk) and χ∗(ξk) via stripping
can be found in [6, 7, 11]. Last, let R(k) = {Sq20

,Sq21
, . . . ,Sq2k

}A, denote the
corresponding right ideal of the Steenrod algebra.

Lemma 2.1. For all k > 1, χ∗(ξk) = ξ2k−1
1 + other terms.
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Proof. We proceed by induction on k. χ∗(ξ1) = χ∗(ξ0)2ξ1 = ξ1. Assume χ∗(ξk) =
ξ2k−1
1 + o.t. (other terms), then

χ∗(ξk+1) =
k∑

i=0

χ∗(ξi)2
k+1−i

ξk+1−i

= χ∗(ξk)2
1
ξ1 +

(
k−1∑
i=0

χ∗(ξi)2
k+1−i

ξk+1−i

)

= (ξ2k−1
1 + o.t. )2ξ1 +

(
k−1∑
i=0

χ∗(ξi)2
k+1−i

ξk+1−i

)
= ξ2k+1−1

1 + o.t. +
(
o.t. not equal to ξ2k+1−1

1

)
,

= ξ2k+1−1
1 + other terms.

Lemma 2.2. Sqn ∈ L(k) if and only if n is not a non-negative linear combination
of the numbers {2k+1, 2k+1 + 2k, 2k+1 + 2k + 2k−1, . . . , 2k+2 − 1}.

Proof. A theorem of Negishi [8] states that the annihilator of R(k), denoted by
R(k)t, is given by

R(k)t = Z/2[ξ2k+1

1 , ξ2k

2 , ξ2k−1

3 , . . . , ξ2
k+1, ξk+2, ξk+3, . . . ].

Now Sqn ∈ L(k) if and only if χ(Sqn) ∈ R(k), if and only if 〈χ(Sqn), R(k)t〉 = 0, if
and only if 〈Sqn, χ∗(R(k)t)〉 = 0. By Lemma 2.1, χ∗(ξi) = ξ2i−1

1 + o.t. (other terms).
Thus

χ∗(R(k)t) = Z/2[ξ(2−1)2k+1

1 , ξ
(22−1)2k

1 + o.t., ξ
(23−1)2k−1

1 + o.t.,

. . . , ξ2k+2−2
1 + o.t., ξ2k+2−1

1 + o.t., ξ2k+3−1
1 + o.t., . . . ]

Consulting the incidence matrix for A⊗A∗ → Z/2, we see that 〈Sqn, α〉 6= 0 if
and only if α = ξn

1 + other terms [6]. Hence 〈Sqn, χ∗(R(k)t)〉 = 0 if and only if

〈Sqn, Z/2[ξ(2−1)2k+1

1 , ξ
(22−1)2k

1 , ξ
(23−1)2k−1

1 , . . . ξ2k+2−2
1 , ξ2k+2−1

1 , ξ2k+3−1
1 . . . ]〉 = 0.

The result then follows for dimensional reasons and the fact that 2k+3 − 1, 2k+4 −
1, . . . can all be expressed as sums of elements of the set {2k+1, 2k+1 + 2k, 2k+1 +
2k + 2k−1, . . . , 2k+2 − 1}.

Given a positive integer n, the previous lemma reduces the question of under-
standing Adem relations to a number theory question of finding the smallest k such
that n cannot be written as a linear combination of the numbers {2k+1, 2k+1 +
2k, . . . , 2k+2 − 2, 2k+2 − 1} with non-negative integer coefficients.
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We begin with the following notation. For each integer k > −1 let

G(k) := {2k+1, 2k+1 + 2k, 2k+1 + 2k + 2k−1, . . . , 2k+2 − 1},

and let

S(k) := {n ∈ N | n is not a sum of elements of G(k)}.

Note that G(−1) = {1} and S(−1) = ∅. For n ∈ N we define the function f(n) :=
min{k | n ∈ S(k)}.

The following lemma essentially gives a recursive description of the set S(k) in
terms of S(k − 1).

Lemma 2.3. Let n ∈ N.

1. If n is even, then n ∈ S(k) if and only if n
2 ∈ S(k − 1).

2. If n is odd, then n ∈ S(k) if and only if n < 2k+2 − 1 or n− (2k+2 − 1) ∈ S(k).

The proof of Lemma 2.3 is straightforward.
To determine whether or not a given integer n is in the set S(k) we use the

following theorem regarding binary strings α and β. For nonempty binary strings
α and β, we define the star notation,

α ∗ β ⇔ |α| < z(β),

where |α| is the integer with binary representation α and z(β) is the number of
non-trailing zeros in β. As an example of how the star notation is used, consider
the binary string 1000110100. Then 10 ∗ 00110100 is true, as 2 < 3; however, 100 ∗
0110100 is false since 4 6< 2.

Theorem 2.4. For nonempty strings α and β with |αβ| 6= 0,

α ∗ β ⇔ |αβ| ∈ S(len(β)− 2).

Proof. We proceed by induction on n := |αβ|. Set k := len(β)− 2, so the theorem
asserts α ∗ β ⇔ n ∈ S(k).

If n = 1, then |α| = 0 and z(β) = k + 1. So α ∗ β ⇔ k + 1 > 0 ⇔ k > 0 ⇔ 1 ∈
S(k), the last equivalence being easy to check.

Now assume n > 1 and the theorem holds for all smaller values.

(i) Suppose n is even.
The case β = 0 is handled easily, so assume len(β) > 1, write β = β′0, and
note len(β′) = k + 1, z(β) = z(β′). Then

α ∗ β ⇔ α ∗ β′ ⇔ n/2 = |αβ′| ∈ S(k − 1) ⇔ n ∈ S(k),

where the second equivalence follows by induction and the last follows from
Lemma 2.3.

(ii) Suppose n is odd. There are three cases:

(a) Suppose z(β) = 0. Then |β| = 2k+2 − 1 and n = |α| · 2k+2 + 2k+2 − 1 /∈
S(k) as n is visibly a sum of elements of G(k). So in this case, α ∗ β and
n ∈ S(k) are both false.
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(b) Suppose z(β) > 0 and |α| = 0. Then n = |β| < 2k+2 − 1 and n is odd, so
by Lemma 2.3, n ∈ S(k). So in this case, α ∗ β and n ∈ S(k) are both
true.

(c) Suppose z(β) > 0 and |α| > 0. Write β = β′0γ where β′ is possibly empty
and γ is a string of ones with len(γ) = m 6 k + 1. We can express n−
(2k+2 − 1) in binary notation as [|α| − 1]β′1ε, where ε is a string of m
zeros; note here that z(β′1ε) = z(β)− 1 and len(β′1ε) = len(β) = k + 2.
So

α ∗ β ⇔ [|α| − 1] ∗ β′1ε ⇔ n− (2k+2 − 1) ∈ S(k) ⇔ n ∈ S(k)

where the second equivalence follows from the inductive assumption and
the last follows from Lemma 2.3.

Theorem 1.1 follows immediately from Lemma 2.2 and Theorem 2.4.
Here are a few example calculations. Notice that to apply Theorem 1.1 it may

be necessary to write a binary string with as many as two leading zeros.
For n = 24 = |11000| = |0011000|: We have 0 ∗ 011000 but not 00 ∗ 11000, so

f(24) = 4. Hence Sq24 ∈ L(4) and Sq24 6∈ L(3). A factorization showing Sq24 ∈ L(4)
is Sq24 = Sq8Sq16 + Sq23Sq1 + Sq22Sq2 + Sq20Sq4.

For n = 50 = |110010|: We have 1 ∗ 10010 but not 11 ∗ 0010, so f(50) = 3. Hence
Sq50 ∈ L(3) and Sq50 6∈ L(2).

Returning to the example n = 10 from the introduction, 10 = |1010| = |01010|:
We have 0 ∗ 1010 but not 01 ∗ 010, thus f(10) = 2, which implies Sq10 ∈ L(2) and
Sq10 /∈ L(1).
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