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Abstract
We prove that ΩSn

(2), S
n{2r}, and Ω2Sn

(2) are minimal
atomic spaces for appropriate values of n. We do this by using
secondary and tertiary cohomology operations to prove that,
above the Hurewicz dimension, no elements in the mod 2
homology of the cited spaces are in the image of the Hurewicz
homomorphism. In the case of Ω2Sn, we construct and exploit
an appropriate filtration to facilitate the use of higher order
cohomology operations. An appendix consisting of an exami-
nation of the coefficients in Adams’ factorization is included.

1. Introduction

In this document, we study minimal atomic spaces, defined here in Section 2, at
the prime 2. Introduced in [HKM] by Hu, Kriz, and May, minimal atomicity is a
natural derivative of the atomicity concept which has been pervasive in the litera-
ture [AK], [BM], [CMN], [HKM], [X]. Baker and May studied minimal atomicity
more extensively in [BM] with an appendix by the author. The authors restricted
themselves to Hurewicz complexes, p-local CW spaces whose first non-trivial homo-
topy group is a cyclic module over Z(p). The main result we use from that paper is
its characterization of minimal atomic spaces as those Hurewicz complexes which
have no homotopy detected by mod 2 homology. This criterion is verified by show-
ing that the primitive elements of mod 2 homology fail to be in the image of the
Hurewicz homomorphism.

Baker and May show that minimal atomic spaces are common; they provide a
method for constructing a minimal atomic space from any atomic space. Yet, explicit
examples of minimal atomic spaces are few. (Baker and May do provide explicit
examples of minimal atomic spectra.) We show that the techniques of higher order
cohomology operations can be applied to prove that a space is minimal atomic. This
technique has unearthed a new minimal atomic space, Sn{2r}, and reestablished
minimal atomicity of ΩSn

(2) and Ω2Sn
(2) for certain values of n and r.

Main Theorem. Let n be a positive integer greater than 1. Higher order cohomology
operations can be defined on the following spaces and used to show that they are
minimal atomic:
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(i) ΩSn
(2), for n 6= 2, 4, 8.

(ii) Sn{2r}, for r > 1 and n 6= 2s for any s.

(iii) Ω2Sn
(2), for n 6= 2, 3, 4, 5, 8, 9.

After isolating those primitive elements which could be spherical, we show that
the dual indecomposable elements are in the target of a higher order operation.
Thus, none of these primitive elements are spherical. In most cases, secondary
cohomology operations will suffice, but occasionally we must appeal to tertiary
cohomology operations to do the job.

The organization of this document is as follows. In Section 2, after reviewing some
definitions, we give a proof using Hopf Invariant One of the minimal atomicity of
ΩSn for n 6= 1, 2, 4, 8 and outline the essence of the higher cohomology operation
argument. Section 3 lays out the background of the higher order cohomology oper-
ations we use: the Brown-Peterson secondary cohomology operations, Adams’ Hopf
Invariant One secondary cohomology operations, and a tertiary cohomology oper-
ation which is defined using Adams’ factorization of Sq2

r+1
. These operations are

used to establish ΩSn
(2) is minimal atomic when n 6= 1, 2, 4, 8 in Section 4. These

higher order cohomology operation proofs pave the way for an analogous proof that
Sn{2r} is minimal atomic in Section 5 as well as an examination of why these meth-
ods seem unable to show that Sn{2r} is minimal atomic when n is a power of 2.
In Section 6 a filtration of Ω2Sn

(2) is developed based on the James construction
filtration of ΩSn

(2). This filtration, along with secondary and tertiary cohomology
operation arguments, shows that Ω2Sn

(2) is minimal atomic in Section 7. The docu-
ment ends with an appendix which discusses one computer program to obtain the
aforementioned factorization of Sq2

r+1
.

Beginning with Section 2.2, spaces will be localized at the prime 2 unless other-
wise specified, and all homology and cohomology will be taken with F2 coefficients;
n will always denote a positive integer with n 6= 1, 2, 4, 8 unless otherwise specified.
The notation K(π,m) denotes an Eilenberg-MacLane space, and K(m) denotes the
Eilenberg-MacLane space K(Z/2Z,m).

2. Strategies for proving minimal atomicity

In this section, we review the definitions related to the study of minimal atomicity.
The section which follows covers the main ideas used in employing a higher order
cohomology operations proof of minimal atomicity. The underpinning for all of these
arguments is found in Theorem 2.6, which allows us to assess if a space is minimal
atomic given information about which elements of its homology are spherical.

2.1. Definitions
We recall those definitions which were specified in [BM] that are relevant to this

document. For a fixed prime p, minimal atomic spaces, X, must be p-local CW
spaces in which the attaching maps are based maps whose domains are spheres
localized at the prime p. All spaces X we consider must be simply-connected and
localized at this prime p. The definitions below assume X satisfies these conditions.



Homology, Homotopy and Applications, vol. 9(1), 2007 3

Definition 2.1. Suppose X has the property that X is (n0 − 1)-connected, but X
is not n0-connected. The Hurewicz dimension of X is n0. If πn0(X) is a cyclic
module over Z(p), X is a Hurewicz complex.

Definition 2.2. Suppose X and Y are Hurewicz complexes with Hurewicz dimen-
sion n0. Let f : Y → X be such that f∗ : πn0(Y )⊗ Fp → πn0(X)⊗ Fp is an isomor-
phism and all f∗ : πn(Y ) → πn(X) are monomorphisms. Then f is a monomor-
phism of Hurewicz complexes.

Definition 2.3. Suppose X is a Hurewicz complex with Hurewicz dimension n0.
Further, assume any self-map f : X → X which induces an isomorphism on πn0(X)
is an equivalence. Then X is atomic.

Definition 2.4. SupposeX is atomic. ThenX is minimal atomic if any monomor-
phism f : Y → X, with Y an atomic complex, is an equivalence.

Definition 2.5. Suppose X is a Hurewicz complex and the mod p Hurewicz homor-
phism h : πn(X) → Hn(X;Fp) is zero for all n > n0. Then X has no homotopy
detected by mod p homology.

The main result we use from [BM] is:

Theorem 2.6. X is a minimal atomic space if and only if it is has no homotopy
detected by mod p homology.

2.2. James maps
Before we begin to use higher order cohomology operations, for completeness

we recollect a proof that ΩSn is minimal atomic which does not use higher order
cohomology operations. The author is grateful to Fred Cohen for making her aware
of this proof.

We have already alluded to the James construction on X denoted J(X) which
is equivalent to ΩΣX. We label the kth filtration of the James construction by
Jk(X) = Xk/ ∼ where

(x1, . . . , xj−1, ∗, xj+1, . . . , xk) ∼ (x1, . . . , xj−1, xj+1, . . . , xk).

We utilize the James maps,

hq : J(X) → J(X(q))

where

X(q) = X ∧ · · · ∧X︸ ︷︷ ︸
q

.

Fred Cohen has pointed out that manipulating the James-Hopf map h2 gives us one
way to finish proving ΩSn is minimal atomic. Let us denote the primitive elements
of H∗(ΩSn) by (xn−1)2

q

. Now, h2 : ΩSn → ΩS2n−1 maps (xn−1)2
q

to (x2n−2)2
q−1

in
homology. If (xn−1)2

q

is spherical, then so is (x2n−2)2
q−1

. It follows that x2
2q−1(n−1)
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is spherical. We shall show (xm)2 is not spherical for m 6= 1, 3, 7. Then, Theorem
2.6 allows us to conclude that ΩSn is minimal atomic for n 6= 2, 4, 8.

For any m, let Sm η→ ΩSm+1 be the unit of the (Σ,Ω) adjunction. Then im ∈
Hm(Sm) maps to xm under η∗. Suppose (xm)2 is spherical. Then, there exists a non-
trivial map S2m → ΩSm+1 such that (xm)2 lies in the image of the map induced by
homology. We may take the adjoint of this map to yield S2m+1 → Sm+1, and we
may loop this map to obtain ΩS2m+1 → ΩSm+1. By taking the cartesian product
of this map with η we obtain

Sm × ΩS2m+1 → ΩSm+1 × ΩSm+1 µ→ ΩSm+1 (2.1)

where µ is the multiplication map. Then under the composition of maps in (2.1) we
have,

im ⊗ (x2m)i → xm × (xm)2i → (xm)2i+1

and

1⊗ (x2m)i → 1× (x2m)2i → (xm)2i.

We thus have an isomorphism in homology, and the composite of maps in (2.1) is
an equivalence. In particular, Sm is a retract of ΩSm+1. However, a retract X of
an H-space Y is an H-space via the following commutative diagram:

X ×X
i×i // Y × Y

φ // Y // X

X ∨X

OO

i∨i //

O

%%KKKKKKKKKK Y ∨ Y

OO

O // Y
r // X

X

i

;;wwwwwwwww

mmmmmmmmmmmmmmmm

mmmmmmmmmmmmmmmm

Thus Sm must be an H-space and so m = 1, 3, 7. Recall that if (xn−1)2
q

is spherical,
(x2q−1(n−1))2 is spherical. Thus, from above, 2q−1(n− 1) = 1, 3, 7. If q > 2 we obtain
a contradiction, so it must be the case that q = 1 and n− 1 = 1, 3, 7. Thus the only
possible spherical elements which exist above the Hurewicz dimension for ΩSn are
the classes (x1)2 ∈ H2(ΩS2), (x3)2 ∈ H6(ΩS4), and (x7)2 ∈ H14(ΩS8). Looping the
Hopf maps η : S3 → S2, ν : S7 → S4, and σ : S15 → S7 shows that these elements
are spherical. Thus, ΩSn is minimal atomic if and only if n 6= 2, 4, 8.

2.3. The higher order cohomology argument
Theorem 2.6 verifies that a space X is minimal atomic if no spherical elements

of H∗(X) exist above the Hurewicz dimension. Thus, the first step in the higher
order cohomology argument is to calculate which primitive elements of H∗(X) with
dimension above the Hurewicz dimension are annihilated by the Steenrod algebra;
all spherical elements we are interested in must satisfy these properties. We show
that each of these candidates cannot be in the image of the Hurewicz homomorphism
by using higher order cohomology operations and a naturality argument as follows.
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Let a ∈ Hi(X) be a spherical candidate with dual indecomposable element
α ∈ Hi(X). To show a is not spherical, we will prove there exists β ∈ Hj(X), with
j 6= i, and a higher order cohomology operation Φ: Hj(X) → Hi(X)/Qi

Φ(X) such
that

Φ(β) = α+ γ 6= 0.

Here γ ∈ Hi(X) is a decomposable element which is possibly zero, and Qi
Φ(X) is a

submodule of Hi(X) which is possibly zero, in which case Φ is defined “with zero
indeterminacy”. Some arguments will attest to the fact that Φ is defined on β and
X.

For dimensional reasons, Φ will be defined on all spheres and will evaluate to zero
with “zero indeterminacy”; in particular, Φ will be defined on Si. Now, suppose that
a is spherical. Then, there must exist a non-trivial map

f : Si → X

such that f∗ maps α to the non-zero element of Hi(Si). Since our higher order
cohomology operations are natural with respect to maps, we have the following
commutative diagram:

Hj(X)
f∗ //

Φ

²²

Hj(Si)

Φ

²²
Hi(X)

f∗ // Hi(Si)

We see that (f∗ ◦ Φ)(β) = α (modulo zero) while (Φ ◦ f∗)(β) = 0 (modulo zero).
We have a contradiction, and we may conclude that a is not spherical. This basic
argument will appear throughout the document.

3. Three kinds of higher order cohomology operations

We examine the secondary and tertiary cohomology operations which we will uti-
lize. We recall the construction of the Brown-Peterson secondary cohomology oper-
ation which is based on a relation in the Steenrod algebra and prove such an oper-
ation has stable properties. We review Adams’ secondary cohomology operations
Φij , pointing out similarities and differences with the Brown-Peterson operations.
Finally, we construct a tertiary cohomology operation in the manner suggested by
[BP] using Adams’ factorization of Sq2

r+1
into secondary cohomology operations.

3.1. Brown-Peterson secondary cohomology operations
Each secondary cohomology operation stems from a relation in the Steenrod

algebra. We recall a particular secondary cohomology operation defined by Brown
and Peterson in [BP].
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Suppose for some fixed m we have a factorization of Steenrod operations

Sqm =
∑

i

SqaiSqbi (3.1)

where each Sqai , Sqbi has degree greater than 0. Let κm be the fundamental class
of K(m). For each Steenrod operation Sqbi , let Sqbi : K(m) → K(m+ bi) represent
the element Sqbi(κm). Then, define f1 : K(m) →

∏

i

K(m+ bi) such that f∗1 takes

the fundamental classes of
∏

iK(m+ bi) to the elements Sqbi(κm). Denote the
homotopy fiber of f1 by A1, and let the fibration A1 → K(m) be g1. Let

h :
∏

i

K(m+ bi − 1) → A1

be the map of the fiber of g1 into A1. Note that the fundamental classes κm+bi−1

transgress to Sqbi(κm) in the Serre spectral sequence of the fibration given by h ◦ g1.
Then,

∑
Sqai(κm+bi−1) transgresses to

∑
SqaiSqbi(κm) = Sqm(κm) = κ2

m 6= 0.

If we loop our fibration, we obtain the new fibration
∏

i

K(m+ bi − 2) Ωh→ ΩA1
Ωg1→ K(m− 1).

The fundamental class κm+bi−2 transgresses to Sqbi(κm−1) in the Serre spectral
sequence for this fibration. By (3.1),

∑

i

Sqai(κbi+m−2) transgresses to

∑

i

SqaiSqbi(κm−1) = Sqm(κm−1) = 0.

Thus, the class
∑

i

Sqai(κm+bi−2) survives in the spectral sequence and pulls back

to an element of H2m−2(A1) which we shall call φ2.

Now, consider the diagram below:

ΩA1
φ2 //

Ωg1

²²

K(2m− 2)

K(m− 1)
Ωf1 // ∏

iK(m+ bi − 1)

This gives rise to a secondary cohomology operation Φ which is defined on
those elements of Hm−1(X) which are annihilated by the Sqbi . Given such an ele-
ment τ , we abuse notation, thinking of τ as a map τ : X → K(m− 1) such that
Ωf1 ◦ τ is null-homotopic. We may then choose a lifting τ : X → ΩA1. Then Φ(τ) is
defined to be the cohomology class represented by φ2 ◦ τ , which is independent of
the lifting when viewed as an element of H2m−2(X)/⊕i Sq

ai(H2m−2−ai(X)). Here
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⊕iSq
ai(H2m−2−ai(X)) is the module of indeterminacy, a sum in a graded vector

space; any two lifts
τ1, τ2 : X → ΩA1

will differ by a composite

X → ∏
iK(m+ bi − 2) → ΩA1

φ2→ K2m−2

which represents elements of the aforementioned module of indeterminacy.
Observe the following properties of Φ.

(i) Φ is natural with respect to maps of spaces.
(ii) For any sphere Sl, Φ(Sl) is zero modulo zero.
(iii) If Φ is defined on ΣX, there is a secondary cohomology operation defined on

X which we denote by σΦ. The values of Φ and σΦ are related by the evident
commutative diagram via the cohomology suspension.

(iv) Φ satisfies the additivity formula, Φ(τ + γ) = Φ(τ) + Φ(γ) + τγ.

Remarks 3.1. We shall prove (iii), but first we offer some remarks on the other
observations.

(i) Given f : Y → X such that Φ is defined on Y , we see naturality satisfied in
the following diagram, where τ ◦ f provides the desired lift.

ΩA1
φ2 //

Ωg1

²²

K(2m− 2)

Y
f // X

τ //

τ

;;vvvvvvvvvv
K(m− 1)

Ωf1 // ∏
iK(m+ bi − 1)

(ii) This follows because of dimensional reasons and the fact that the Steenrod
algebra acts trivially on Sl.

(iv) This is proven in [BP] using the observation that φ2 is not primitive.

Now, for any space K, let σi : Hi+1(K) → Hi(ΩK) denote the cohomology sus-
pension, a map which commutes with the Steenrod algebra action. We shall use σi

to help us prove a notion of stability (iii) for these secondary cohomology operations.
In the Serre spectral sequence for the fibration

∏

i

ΩK(m+ bi − 2) Ω2h→ Ω2A1
Ω2g1→ ΩK(m− 1),

the element
∑

i

Sqai(σi+m−3(κbi+m−2))

transgresses to
∑

i

SqaiSqbi(κm−2) = Sqm(κm−2) = 0.
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Then,
∑

i

Sqai(σi+m−3(κbi+m−2)) survives in the Serre spectral sequence for the

looped fibration. This element pulls back to σ2m−3(φ2) ∈ H∗(Ω2A1). Observe that
Ωφ2 : Ω2A1 → K(2m− 3) represents this element.

Then, looping the diagram above gives rise to another secondary cohomology
operation, which we shall denote σΦ,

Ω2A1

Ωφ2 //

Ωg1

²²

K(2m− 3)

K(m− 2)
Ω2f1 // ∏

iK(m+ bi − 2)

We observe that σΦ is defined for all τ ∈ Hm−2(X) such that Sqai annihilates
τ ; σΦ takes values in H2m−3(X)/⊕i Sq

ai(H2m−3−ai(X)).
Now, suppose Φ is defined on an element τ ∈ Hm−1(ΣX). As above, we abuse

notation and think of τ as a map τ : ΣX → K(m− 1). So, we have the following
diagram where φ2 ◦ τ represents Φ(τ),

ΩA1
φ2 //

²²

K(2m− 2)

ΣX

τ

::uuuuuuuuuu τ // K(m− 1) // ∏
iK(m+ bi − 1)

Let η : X → ΩΣX be the canonical map. Then σΦ, defined on η ◦ Ωτ , is Ωφ2 ◦ Ωτ ◦
η, as in the diagram below.

Ω2A1

Ωφ2 //

²²

ΩK(2m− 2)

X
η // ΩΣX

Ωτ

99rrrrrrrrrrr Ωτ // ΩK(m− 1) // ∏
i ΩK(m+ bi − 1)

Yet φ2 ◦ τ and Ωφ2 ◦ Ωτ ◦ η are adjoints of each other. For any space X, let si :
Hi+1(ΣX) → Hi(X) be the suspension homomorphism. Then, modulo indetermi-
nacy, the following diagram commutes.

Hm−1(ΣX)
sm−2 //

Φ

²²

Hm−2(X)

ΣΦ

²²
H2m−2(ΣX)

sm−3 // H2m−3(X)

We shall use this notion of stability. Notice that if Φ is defined on Hm−1(ΣX),
then σΦ is defined on Hm−2(X).
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3.2. Adams’ secondary cohomology operations Φij

In [A], Adams constructs secondary cohomology operations Φij using minimal
resolutions of Z/2Z over the Steenrod algebra. We briefly look at these operations
using the ideas of Brown and Peterson.

Instead of using an equation of the type of (3.1), Φij is based on the relation,
discussed in the appendix,

Sq2
i

Sq2
j

+
∑

fkSq
2gk = 0 (3.2)

where i, j are non-negative integers with i 6 j and i+ 1 6= j, fk is a Steenrod oper-
ation, and gk < j. As in Section 3.1, we may create a Postnikov system. Given any
m, we let

f1 : K(m) →
∏

K(m+ 2gk)×K(m+ 2j)

be such that the fundamental classes on the right are mapped under f∗1 to the
corresponding Steenrod operation

Sq2
gk (κm) or Sq2

j

(κm).

We let A1 be the homotopy fiber, denoting the fibration A1 → K(m) by g1. Let

h :
∏

iK(m+ 2gk − 1)×K(m+ 2j − 1) → A1

be the map of the fiber of g1 into A1. We notice that the element
∑
fk(κm+2gk−1) + Sq2

i

(κm+2j−1)

transgresses to 0, and thus must pull back to an element φij of H∗(A1) in the Serre
spectral sequence for g1. Hence, we obtain the following diagram without looping:

A1

φij //

g1

²²

K(m+ 2i + 2j − 1)

K(m)
f1 // ∏K(m+ 2gk)×K(m+ 2j)

As in Section 3.1, this diagram gives rise to a secondary cohomology operation
which we denote Φij . The fact that we need not loop the diagram gives rise to a
stability property of Φij . This also gives rise to the result that φij is primitive,
yielding a nice additivity formula for Φij . We summarize some properties of this
operation:

(i) Φij is natural with respect to maps of spaces.
(ii) For any sphere Sl, Φij(Sl) is zero modulo zero.
(iii) Φij is a stable operation: Φij is defined on X if and only if Φij is defined

on ΣX, and the results are related in the obvious way via the cohomology
suspension.

(iv) Φij satisfies the additivity formula, Φij(τ + γ) = Φij(τ) + Φij(γ).
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3.3. Constructing a tertiary cohomology operation
This tertiary operation is based on a relation between the stable secondary coho-

mology operations Φij that Adams develops in [A]. There, he proves the relation,

Sq2
r+1

(τ) =
∑

i6j,i+16=j

aijΦij(τ) (3.3)

for τ such that Sq2
s

(τ) = 0 for 0 6 s 6 r where aij are elements of the mod 2 Steen-
rod algebra. Let Sqi : K(2r+1) → K(2r+1 + i) represent the element, Sqi(κ2r+1). To
create Ψ, we look at the map

f1 : K(2r+1) →
∏

06s6r

K(2r+1 + 2s)

such that

(f1)∗(κ2r+1+2s) = Sq2
s

(κ2r+1).

Denote the homotopy fiber of f1 by A1 and the map A1 → K(2r+1) by g1. Applying
the Serre spectral sequence in cohomology to the fibration,

∏

06s6r

K(2r+1 + 2s − 1) → A1 → K(2r+1)

yields that the fundamental classes of the fiber, κ2r+1+2s−1, transgress to Sq2
s

(κ2r+1)
where κ2r+1 is the fundamental class of the base. Examining the spectral sequence
shows that κ2r+1 survives to E∞ and corresponds to the element (g1)∗(κ2r+1). Fur-
thermore, there are no elements of H∗(A1) with dimension between 2r+1 and 2r+2.
For 0 6 s 6 r, it must be the case that Sq2

s

((g1)∗(κ2r+1)) = 0 in H∗(A1). This con-
dition allows us to define Φij((g1)∗(κ2r+1) with zero indeterminacy. Representing
these elements is a map f2 : A1 →

∏

i6j,i+1 6=j

K(2i + 2j − 1 + 2r+1) as the degree of

Φij is 2i + 2j − 1.
We define the homotopy fiber of f2 to be A2 where A2 → A1 is denoted g2.

Examining the cohomology Serre spectral sequence of
∏

i6j,i 6=j

K(2i + 2j − 1 + 2r+1 − 1) → A2 → A1

shows that vij transgresses to Φij((g1)∗(κ2r+1)), where vij is the fundamental class
of K(2i + 2j − 1 + 2r+1 − 1). Inspired by (3.1) we compute

∑

i6j,i+1 6=j

aij(vij) which

transgresses to Sq2
r+1

((g1)∗(κ2r+1)) = ((g1)∗(κ2r+1))2 6= 0.
We loop the maps f1, f2, g1, g2 which provides us with a new set of fibrations, in

particular,
∏

i6j,i6=j

K(2i + 2j − 1 + 2r+1 − 2) → ΩA2 → ΩA1.
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We use vij to denote the fundamental classes in the fiber. Similar to above, we com-
pute

∑

i6j,i+16=j

aij(vij) which transgresses to Sq2
r+1

((g1)∗(κ2r+1 − 1)) = 0 for dimen-

sional reasons. Thus,
∑

i6j,i+16=j

aij(vij) must pull back to an element ofH2r+2−2(ΩA2)

which we denote ψ3. We consider the following diagram to better understand how
to construct our tertiary operation:

ΩA2
φ3 //

Ωg2

²²

K(2r+2 − 2)

ΩA1
Ωf2 //

Ωg1

²²

∏

i6j,i+16=j

K(2r+1 + 2i + 2j − 2)

K(2r+1 − 1)
Ωf1 //

∏

06s6r

K(2s + 2r+1 − 1)

(3.4)

This diagram defines the tertiary operation Ψ, which is defined on elements of
H2r+1−1(X) with a trivial action under Φij .

We list the properties of Ψ followed by an in-depth discussion of the last two
properties.

(i) Ψ is natural with respect to maps of spaces.
(ii) For any sphere Sl, Ψ(Sl) is zero modulo zero.
(iii) If Ψ is defined on ΣX, there is a tertiary cohomology operation defined on X

which we denote by σΨ. The values of Ψ and σΨ are related by the evident
commutative diagram via the cohomology suspension.

(iv) Ψ satisfies the additivity formula, Ψ(τ + γ) = Ψ(τ) + Ψ(γ) + τγ.

3.3.1. Stability of Ψ
Similar to our previously developed σΦ, we can construct σΨ with the property
that for spaces ΣX in which σΨ is defined, we have, modulo indeterminacy,

H2r+1−1(ΣX)
s2r+1−2//

Φ

²²

H2r+1−2(X)

ΣΦ

²²
H2r+2−2(ΣX)

s2r+2−3// H2r+2−3(X)

(3.5)

In (3.4), the bottom square corresponds to the construction for Φij , which Adams
has already proved is a stable operation. Thus, if we loop (3.4) the bottom square
still corresponds to the construction of Φij . In the Serre spectral sequence of the
fibration ∏

i6j,i 6=j

ΩK(2i + 2j − 1 + 2r+1 − 2) → Ω2A2 → Ω2A1,
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the element
∑

i6j,i+16=j

aij(σvij) transgresses to Sq2
r+1

((g1)∗(σκ2r+1 − 1)) = 0. Thus,

∑

i6j,i+1 6=j

aij(σvij) must pull back to σψ3 ∈ H2r+2−3(ΩA2,F2), which is represented

by Ωψ3 : ΩA2 → K(2r+2 − 3). The resulting diagram results in a tertiary operation
which we denote σΨ.

Suppose Ψ is defined on an element τ : ΣX → K(2r+1 − 1) so that lifts τ : X →
ΩA1 and τ : X → ΩA2 exist. Then σΨ is defined on the element Ωτ ◦ η, where
η : X → ΩΣX is the canonical map. The relevant lifts Ωτ ◦ η and Ωτ ◦ η exist, and
in particular, Ωτ ◦ η is the adjoint of τ . It follows that our desired diagram (3.5)
exists.

3.3.2. An additivity formula for Ψ
Similar to the proof of the additivity formula of Φ in [BP], we must show that φ3

is not primitive; we use the following result from [W, p. 383],

Lemma 3.2. If ΩK is (n− 1)-connected, then the module of primitives of H∗(ΩK)
contained in H l(ΩK) is equal to the image of σl as long as l 6 3n− 1.

To apply Lemma 3.2, we compute the connectivity of ΩA2. First, by looking at
the long exact sequence of homotopy groups derived from

∏

06k6r

K(2k + 2r+1 − 1) → A1 → K(2r+1),

we see the connectivity of A1 is 2r+1 − 1. Examining the long exact sequence
of homotopy groups for

∏

i6j,i+16=j

K(2r+1 + 2i + 2j − 1) → A2 → A1 gives that the

connectivity of A2 is also 2r+1 − 1; thus, the connectivity of ΩA2 is 2r+1 − 2. Since
r > 3,

2r+2 − 2 < 3(2r+1)− 1.

By Lemma 3.2 it follows that φ3 is primitive if and only if φ3 = σ2r+2−2(ψ) for some
ψ ∈ H2r+2−1(A2). We assume ψ exists and show that

h∗(ψ) =
∑

i6j,i+16=j

aijvij .

Then, h∗(ψ) transgresses to zero in the spectral sequence induced by the fibration∏

i6j,i+1 6=j

K(2r+1 + 2i + 2j − 1) h→ A2 → A1. However, we have seen
∑

i6j,i+16=j

aijvij

transgresses to Sq2
r+1

((g1)∗(κ2r+1)) = ((g1)∗(κ2r+1))2 6= 0. This gives us the desired
contradiction, and hence, φ3 is not primitive.
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We assume ψ exists. Then,

σ2r+2−2[(h)∗(ψ)] = (Ωh)∗(σ2r+2−1(ψ))
= (Ωh)∗(φ3)

=
∑

i6j,i+16=j

aij(vij)

= σ2r+2−2[
∑

i6j,i+1 6=j

aij(vij)].

We show
∑

i6j,i+16=j

aij(vij) is the only pre-image of σ2r+2−2[
∑

i6j,i+16=j

aij(vij)] under

σ2r+2−2 : H2r+2−1(
∏

i6j,i+1 6=j

K(2i + 2j + 2r+1 − 2)) →

H2r+2−2(
∏

i6j,i+16=j

K(2i + 2j + 2r+1 − 3)).

The Hurewicz dimension of the Eilenberg MacLane spaces in the product,
∏

i6j,i+16=j

K(2i + 2j + 2r+1 − 2)

is at least 2r+1, when i = j = 0. Then, H2r+2−1(
∏

i6j,i+16=j K(2i + 2j + 2r+1 − 2))
contains no decomposables, and so σ2r+2−2 is a monomorphism. It must be the case
that h∗(ψ) =

∑

i6j,i+1 6=j

aijvij , and we obtain the desired contradiction. We have

established that ΩA2 is (2r+1 − 2)-connected. By the Künneth Theorem,

H2r+2−2(ΩA2 × ΩA2) =
H2r+2−2(ΩA2)⊕H2r+1−1(ΩA2)⊗H2r+1−1(ΩA2)⊕H2r+2−2(ΩA2).

Recall that we have a fibration,
∏

i6j,i6=j

K(2r+1 + 2i + 2j − 3)
Ω2f2→ ΩA2

Ωg2→ ΩA1.

Examining the Serre spectral sequence applied to this fibration, we see that

(Ωg2)∗(Ωg1)∗(κ2r+1−1)⊗ (Ωg2)∗(Ωg1)∗(κ2r+1−1)

is the only non-trivial element of H2r+1−1(ΩA2)⊗H2r+1−1(ΩA2). Define υ : ΩA2 ×
ΩA2 → ΩA2 to be the loop multiplication map. Thus, since φ3 is not primitive,

υ∗(φ3) = φ3 ⊗ 1 + (Ωg2)∗(Ωg1)∗(κ2r+1−1)⊗ (Ωg2)∗(Ωg1)∗(κ2r+1−1) + 1⊗ φ3.

Let X be a space such that there exist τ, γ ∈ H2r+1−1(X,F2) such that Ψ is defined
for τ and γ. Consider the maps that represent these elements

τ : X → K(2r+1 − 1)

and
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γ : X → K(2r+1 − 1).

By assumption, it must be the case that Sq2
k

acts trivally on τ and γ for 0 6 k 6 r,
so we may find lifts τ , γ : X → ΩA1. Again, by assumption, Adams’ Φij are defined
and zero on these elements, so we have lifts τ , γ : X → ΩA2. Let 4 : X → X ×X be
the diagonal map, and µ : ΩK(2r+1 − 1)× ΩK(2r+1 − 1) → ΩK(2r+1 − 1) be the
multiplication map. Now,

Ωg1 ◦ Ωg2 ◦ υ ◦ (τ × γ) ◦ 4 = µ ◦ (τ × γ) ◦ 4
= τ + γ.

So, υ ◦ (τ × γ) ◦ 4 is a lift of τ + γ under the map Ωg1 ◦ Ωg2 as well as a lift of
υ ◦ (τ + γ) ◦ 4 through Ωg2. The map υ ◦ (τ + γ) ◦ 4, itself, is a lift of τ + γ under
Ωg1. So modulo the indeterminacy of Ψ, we have

Ψ(τ + γ) = (υ ◦ (τ × γ) ◦ 4)∗φ3

= (τ × γ ◦ 4)∗(φ3 ⊗ 1 + ξ ⊗ ξ + 1⊗ φ3)
= Ψ(τ) + Ψ(γ) + τγ,

where ξ = (Ωg2)∗(Ωg1)∗(κ2r+1−1).

4. Showing ΩSn is minimal atomic

We show for positive integers n > 1 that ΩSn is minimal atomic for n 6= 2, 4, 8
by means of secondary and tertiary cohomology operations. These arguments will
show in detail how certain cohomology classes are tied together. We first determine
the spherical candidates of ΩSn and show that above the Hurewicz dimension, these
candidates are in the target of a higher order cohomology operation.

4.1. Spherical candidates of ΩSn

To determine which elements of H∗(ΩSn) are primitive and annihilated by the
Steenrod algebra, we note that the Steenrod operations on ΩSn are trivial. Dis-
cussed in [S, p. 85], the James construction applied to Sn−1, J(Sn−1), is homotopy
equivalent to ΩΣSn−1 = ΩSn. Using the splitting property of the suspension of the

James construction, we have ΣΩΣSn−1 =
∞∨

k=1

ΣSk(n−1). Since the Steenrod oper-

ations on ΣSk(n−1) are trivial, we deduce that the Steenrod operations are trivial
on ΣΩSn and thus, on ΩSn. So, all of the primitive elements above the Hurewicz
homomorphism could conceivably lie in the image of the mod 2 Hurewicz homo-
morphism.

Computations with the Serre spectral sequence on the path fibration ΩSn →
PSn → Sn allow us to conclude that H∗(ΩSn) = Γ[αn−1] as a Hopf algebra. Alter-
natively, as an algebra, H∗(ΩSn) =

⊗

k>0

P [γ2k(αn−1)]/(γ2k(αn−1))2; the binomial

coefficients appearing in the multiplication of the divided polynomial algebra reduce
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to give Γ[αn−1] =
⊗

k>0

P [γ2k(αn−1)]/(γ2k(αn−1))2. Also, observe that only one ele-

ment exists in dimension 2k(n− 1), namely γ2k(αn−1). If there were another element
of dimension 2k(n− 1), such an element would be a product of distinct generators
γ2i(αn−1) with i < k. However, the largest degree achieved by elements of this form

is 2k(n− 1)− 1 =

∣∣∣∣∣
k−1∏

i=0

γ2i(αn−1)

∣∣∣∣∣. We will use this fact later. Let ak ∈ H∗(ΩSn) be

the dual element to γ2k(αn−1).

4.2. n 6= 2r+1

When n 6= 2r+1, Sqn has a factorization in the Steenrod algebra. This factoriza-
tion, along with factorizations of Sq2

k(n−1) for k > 1, will be utilized to construct
Brown-Peterson secondary cohomology operations necessary to show ΩSn is mini-
mal atomic. Now, to apply these operations to ΩSn we must specify examples of our
secondary cohomology operations Φ. Set n = 2r + a where 2r is the largest power
of 2 which appears in the binary representation of n. For now, we suppose that n is
not a power of 2 so that 0 < a < 2r. By taking the binary representations of 2r − 1

and a, we see that
(

2r − 1
a

)
= 1 mod 2: Recall the calculation

(
i

j

)
=

∏(
ik
jk

)
mod 2

where ik is the kth term in the binary representation of i and similarly for jk. The
binary representation of 2r − 1 consists of r uninterrupted 1’s; the binary represen-

tation of a is at most r digits long. Applying the result above yields
(

2r − 1
a

)
= 1.

Using the Adem relations, where the binomial coefficients are taken mod 2, gives

SqaSq2
r

= Sqn +
∑
c>0

(
2r − c− 1
a− 2c

)
Sqn−cSqc.

Then,

Sqn = SqaSq2
r

+
∑

c∈S

(
2r − c− 1
a− 2c

)
Sqn−cSqc, (4.1)

where S = {c | 2c 6 a and
(

2r − c− 1
a− 2c

)
6= 0 mod 2 }.

As we have seen, this relation gives rise to a secondary cohomology operation
Φ0 which acts on elements of Hn−1(ΩSn) that vanish under Sqn and Sqc for c ∈ S
above, and takes values in H2n−2(ΩSn)/SqaH2n−2−a(ΩSn)⊕

⊕

c∈S

H2n−2−c(ΩSn).

Furthermore, we know that Φ0(τ + γ) = Φ0(τ) + Φ0(γ) + τγ where Φ0 is defined
on τ and γ.

We have the loop multiplication map ω : ΩSn × ΩSn → ΩSn. We note that since
the Steenrod operations on H∗(ΩSn) are trivial, Φ0(γ1(αn−1)) is defined with zero
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indeterminacy. Then the Steenrod operations on H∗(ΩSn × ΩSn) are trivial, so Φ0

is defined on H∗(ΩSn × ΩSn) with zero indeterminacy. Then,

ω∗Φ0(γ1(αn−1)) = Φ0(ω∗(γ1(αn−1)))
= Φ0(γ1(αn−1)⊗ 1 + 1⊗ γ1(αn−1))
= Φ0(γ1(αn−1))⊗ 1 + 1⊗ Φ0(γ1(αn−1)) +
γ1(αn−1)⊗ γ1(αn−1).

Since γ1(αn−1)⊗ γ1(αn−1) 6= 0, we have that ω∗(Φ0(γ1(αn−1)) is non-zero. Then,
Φ0(γ1(αn−1)) is non-zero on H(n−1)(ΩSn). For dimensional reasons, it must then
be the case that

Φ0(γ1(αn−1)) = γ2(αn−1).

Following Section 2.3, it must be the case that a1 is not spherical.
We offer here a proof strictly using secondary cohomology operations to show

that the remaining ak+1 (with k > 0) are also not spherical. In addition to showing
that some elements of H∗(ΩSn) are related by secondary cohomology operations
the results of this argument will be useful when we look at Ω2Sn.

Consider the Adem relation, where k > 1:

Sq1Sq2
k(n−1) =

(
2k(n− 1)− 1

1

)
Sq2

k(n−1)+1 = Sq2
k(n−1)+1.

This yields,

Sq2
k(n−1)+1 = Sq1Sq2

k(n−1). (4.2)

Let us call the secondary cohomology operations which stem from this relation Φk.
So, Φk will act on elements of H2k(n−1)(X) which vanish under Sq2

k(n−1), and will
take values in H2k+1(n−1)(X)/Sq1(H2k+1(n−1)(X)). Since the Steenrod operations
act trivially on ΩSn , Φk is defined on H2k(n−1)(ΩSn) with no indeterminacy. To
show that Φk is non-zero, we use the following result from [Z].

Lemma 4.1. Let X and Y be CW complexes. Suppose z =
∑

i τi ⊗ γi ∈ Hm(X ×
Y ) is in the domain of Φk with |τi|, |γi| > 0. Let ρ(τ) and ρ(γ) be the algebras over
the Steenrod algebra generated by the τi’s and γi’s respectively. Then,

Φk(z) ∩ [ρ(τ)⊗H∗(Y ) +H∗(X)⊗ ρ(γ)] 6= ∅.
In order to apply this result, we study the action of Φk on ΩSn × ΩSn. Again,

the Steenrod operations act trivially on ΩSn × ΩSn; so, Φk is defined with zero
indeterminacy on H2k(n−1)(ΩSn × ΩSn). Recall that

ω(γ2k(αn−1)) = [1⊗ γ2k(αn−1)] + [γ2k(αn−1)⊗ 1] + [
∑

i τi ⊗ γi]

where 2k(n− 1) > |τi|, |γi| > 0. Let z, ρ(τ), ρ(γ) be as in the statement of Lemma
4.1. We observe that γ2k(αn−1) /∈ ρ(τ), ρ(γ) since γ2k(αn−1) is an indecomposable
element of H∗(ΩSn). Then,
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γ2k(αn−1)⊗ γ2k(αn−1) /∈ [ρ(τ)⊗H∗(ΩSn) +H∗(ΩSn)⊗ ρ(γ)].

Certainly z lies in the domain of Φk. Because there is no indeterminacy, Φk(z) is a
singleton set, rather than a coset. So, applying Lemma 4.1, we have

Φk(z) ∈ [ρ(τ)⊗H∗(ΩSn) +H∗(ΩSn)⊗ ρ(γ)].

So, γ2k(αn−1)⊗ γ2k(αn−1) is not a summand of Φk(z). Further,

γ2k(αn−1)⊗ γ2k(αn−1)

is not a summand of

(γ2k(αn−1)⊗ 1 + 1⊗ γ2k(αn−1))z

since γ2k(αn−1) is indecomposable and z =
∑

i τi ⊗ γi with |τi|, |γi| > 0. We evaluate

ω∗Φk(γ2k(αn−1)) = Φk(ω∗(γ2k(αn−1)))
= Φk(γ2k(αn−1)⊗ 1 + 1⊗ γ2k(αn−1) + z).

By utilizing the the Additivity Formula, this expression evaluates to

Φk(γ2k(αn−1))⊗ 1 + 1⊗ Φk(γ2k(αn−1)) + γ2k(αn−1)⊗ γ2k(αn−1) + Φk(z) +
(γ2k(αn−1)⊗ 1 + 1⊗ γ2k(αn−1))z

From our observations above, we note that γ2k(αn−1)⊗ γ2k(αn−1) does not cancel
out. Hence,

ω∗Φk(γ2k(αn−1)) 6= 0.

Then, Φk(γ2k(αn−1)) 6= 0 and for dimensional reasons, it must be the case that

Φk(γ2k(αn−1)) = γ2k+1(αn−1). (4.3)

As demonstrated in Section 2.3, we may conclude that ak+1 is not spherical. Thus,
we have shown for all k > 0, ak+1 is not spherical. So, ΩSn is minimal atomic for n
not a power of 2.

4.3. n = 2r+1 for r > 3
Our method is similar to that above. To show ak+1 is not spherical for each

k > 0, we exhibit a cohomology operation whose image hits γ2k+1(αn−1). Happily,
our previous argument goes through in the case k > 1. The previously established Φk

have the property that Φk(γ2k(αn−1)) = γ2k+1(αn−1). So, we still must show that a1

is not spherical. To show that a1 is not spherical, we show that the tertiary operation
Ψ, constructed in Subsection 3.3 has the property that Ψ(γ1(αn−1)) = γ2(αn−1).

Let us evaluate Ψ on the element, γ1(αn−1) ∈ Hn−1(ΩSn). To show that Ψ
acts on γ1(αn−1), we first recall that the Steenrod operations act trivally on ΩSn.
Thus, if γ1(αn−1) is represented by a map τ : ΩSn → K(2r+1 − 1), we have a lift
τ : ΩSn→ ΩA1. The composite Ωf2 ◦ τ represents the product of cohomology classes

∏

i6j,i+1 6=j

Φij(τ). Recall that ΣΩSn is homotopy equivalent to
∞∨

i=1

Si(n−1). We know
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that Φij is trivial on Si(n−1) for i > 1, so Φij is trivial on ΣΩSn. Because Φij is
a stable cohomology operation, we have that Φij is zero on ΩSn. Thus, Φij(τ) is
zero with zero indeterminacy, and we have the essential lift τ : ΩSn → ΩA2. That
is, Ψ(τ) is defined.

Appealing to Section 4.2, with Ψ replaced by Φ0, we see that Ψ(γ1(αn−1)) is
non-zero. For dimensional reasons, we have

Ψ(γ1(αn−1)) = γ2(αn−1).

Thus, as outlined in Section 2.3, a1, the dual element of γ2(αn−1), cannot be spherical.
We have shown that no spherical elements of ΩSn exist above the Hurewicz

dimension. Thus, ΩSn is minimal atomic for n = 2r+1 where r > 3. In summary,
we have shown that ΩSn is minimal atomic for n where n 6= 2r+1 for r < 3.

5. Showing Sn{2r} for r > 1 is minimal atomic

We show that Sn{2r} is minimal atomic when n is not a power of 2. When
n is a power of 2 with n 6= 1, 2, 4, 8, we are not able to prove Sn{2r} is minimal
atomic, but we carry out an examination using higher order cohomology operations
and illustrate what is lacking to carry out a complete proof. Here, our spaces are
automatically 2-local by inspection of homotopy groups.

Recall that Sn{2r} is defined to be the homotopy fiber of the degree 2r map
f : Sn → Sn. A long exact sequence of homotopy groups arises:

· · · → πk+1(Sn) 2r

→ πk+1(Sn) → πk(Sn{2r}) → πk(Sn) 2r

→ πk(Sn) → · · ·

By examining the cases when k 6 n− 1, we see that Sn{2r} is (n− 2) connected
with π(n−1)(Sn{2r}) = Z/2rZ. This shows that Sn{2r} is a Hurewicz complex. We
see that πn(Sn{2r}) = πn+1(Sn)/2rπn+1(Sn) for k = n. Since πn+1(Sn) = Z/2Z,
we have that πn(Sn{2r}) = Z/2Z. Now π4n−1(S2n) is a direct sum of Z and a finite
group. Otherwise, πq(Sn) is finite if q > n. These facts allow us to deduce that
πk(Sn{2r}) is composed strictly of 2-groups.

5.1. Spherical candidates of Sn{2r}
Computations with the Serre spectral sequence on the induced fibration ΩSn →

Sn{2r} → Sn allow us to conclude that

H∗(Sn{2r},F2) = P [γ2k(αn−1)]/(γ2k(αn−1))2 ⊗ E[βn]

with trivial Steenrod operation action. So, the primitive elements of Sn{2r} are
the duals of the elements γ2k(αn−1) and βn which we shall label ak and bn. Since
the image of the Hurewicz homomorphism is contained in the primitive elements
of Sn{2r}, we must show for k > 0 that ak+1 and bn are not spherical. First, we
examine bn.

If bn is spherical, there exists a non-trivial map j : Sn → Sn{2r} which induces
an isomorphism in mod 2 homology. By naturality, we have the following diagram:
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Hn(Sn)
j∗ //

βr

²²

Hn(Sn{2r})
βr

²²
Hn(Sn−1)

j∗ // Hn−1(Sn{2r})

where βr is the rth Bockstein operator. Now, βr ◦ j∗ hits the element γ1(αn−1)
while j∗ ◦ βr is trivial. We have a contradiction, and so bn cannot be spherical.

5.2. n 6= 2r+1

Now, if n is not a power of 2, our proof of the minimal atomicity of ΩSn applies
exactly with ΩSn replaced by Sn{2r}. Since the Steenrod operations on Sn{2r}
are trivial, we may use the same secondary cohomology operations, Φk for k > 0 to
show that the ak+1 are not spherical.

5.3. n = 2r+1 for r > 3
If n = 2r for some r with n 6= 1, 2, 4, 8 we will see that modelling the proof for ΩSn

has a stumbling block. As before, for k > 1, the secondary cohomology operations
Φk show that ak+1 is not spherical. So, we still have some work to do to show that
a1 is not spherical. Fred Cohen has also pointed out that an analogous James-Hopf
map Sn{2r} → S2n+1{2r} exists which can be used inductively to show that the
minimal atomicity of Sn{2r} reduces to the problem of whether a1 is spherical.

If we try to apply our tertiary operation, Ψ, to γ1(αn−1) we must check that the
Φij are zero on γ1(αn−1). We observe that the Φij are defined on Sn{2r} since the
Steenrod operations act trivially on Sn{2r}. Recall that i, j 6 r − 1 and

|Φij(γ1(αn−1))| = 2i + 2j + 2r − 2 > 2r − 1.

The largest value for 2i + 2j + 2r − 2 is 2r+1 − 2 = |γ2(αn−1)|. Based solely on
degree considerations, then, it is possible that Φr−1,r−1(γ1(αn−1)) is not zero since
it might take on the value γ2(αn−1). Other potential values of Φij(γ1(αn−1)) are
βn and βnγ1(αn−1) . By evaluating degrees, we see that it is possible that

βn = Φ0,0(γ1(αn−1)).

On the other hand,

βnγ1(αn−1) 6= Φij(γ1(αn−1)).

So, to apply the tertiary cohomology argument, we must show

Φr−1,r−1(γ1(αn−1)) 6= γ2(αn−1)

and

Φ0,0(γ1(αn−1)) 6= βn.

However, if it is the case that Φr−1,r−1(γ1(αn−1)) = γ2(αn−1), then we can show
Sn{2r} is minimal atomic without resorting to tertiary cohomology operations
arguments. We simply apply the Section 2.3 argument using Φr−1,r−1. Hence, if
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Φr−1,r−1(γ1(αn−1)) = γ2(αn−1) we have shown that Sn{2r} is minimal atomic.
Otherwise, if Φr−1,r−1(γ1(αn−1)) 6= γ2(αn−1), it must be the case that
Φr−1,r−1(γ1(αn−1)) = 0. In this scenario, we are able to show that Sn{2r} is mini-
mal atomic only if Φ0,0(γ1(αn−1)) 6= βn. Then Φ0,0(γ1(αn−1)) = 0, and we will be
able to use our previous tertiary operation argument.

6. A filtration of Ω2Sn

The James construction provides a filtration of ΩSn. We shall use this to build
a filtration of Ω2Sn with nice properties. Later, we will use this filtration to study
the minimal atomicity of Ω2Sn when n is even.

6.1. The cohomology of Fk

Recall that the James construction, J(Sn−1), is the free monoid on Sn−1 with
basepoint the identity. Then, the kth-filtration, Jk(Sn−1) is the subspace of words of
length at most k. Abbreviating Jk(Sn−1) by Fk, we have colimFk ' J(Sn−1). We
recall since Sn−1 is a connected CW-complex that J(Sn−1) ' ΩΣSn−1. Further-
more, Fk/Fk−1 ' Sk(n−1). Now, the cofibration Fk → Fk+1 induces a long exact
sequence in homology,

· · · → H̃∗(Fk−1) → H̃∗(Fk) → H̃∗(Sk(n−1)) → · · ·

Using the fact that F1 ' Sn−1, we may proceed inductively to show

H̃∗(Fk) =

{
Z/2Z, if ∗ = i(n− 1) for 1 6 i 6 k;
0, otherwise

and

H̃∗(Fk−1) → H̃∗(Fk) is a monomorphism.

In this case, H̃∗(Fk−1) → H̃∗(ΩSn) is a monomorphism of coalgebras, and thus
H∗(ΩSn) → H∗(Fk) is an epimorphism of algebras.

By taking the vector space dual of the computation of H̃∗(Fk) above, we see
there is one generator of H∗(F2k−1) in dimensions i(n− 1) for 0 6 i 6 2k − 1. These
generators can be identified with γi(αn−1) ∈ Hi(n−1)(ΩSn) for 0 6 i 6 2k − 1. Thus,

H∗(F2k−1) = E[γ1(αn−1), γ2(αn−1), . . . , γ2k−1(αn−1)].

We observe that H∗(F2k−1) inherits the Steenrod algebra structure of H∗(ΩSn)
via the map H∗(ΩSn) → H∗(F2k−1). Thus, the Steenrod operations act trivially on
H∗(F2k−1).

6.2. The cohomology of Yk

Let Yk be the homotopy fiber of F2k−1 → F2k+1−1.

Proposition 6.1. H∗(Yk) = Γ[σγ2k(αn−1)].
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We prove Proposition 6.1 using the Eilenberg–Moore spectral sequence.

E2 = TorH∗(F2k+1−1)
(H∗(F2k−1),Z/2Z)

= TorE[γ1(αn−1),...,γ2k (αn−1)](E[γ1(αn−1), . . . , γ2k−1(αn−1)],Z/2Z)

By the Change of Rings Theorem from [Mc], we have

TorR⊗S(R,Z/2Z) = TorS(Z/2Z,Z/2Z).

Applied here, we have

TorE[γ1(αn−1),...,γ2k−1 (αn−1)]⊗E[γ2k (αn−1)](E[γ1(αn−1), . . . , γ2k−1(αn−1)],Z/2Z)

evaluates to

TorE[γ2k (αn−1)](Z/2Z,Z/2Z) = Γ[σγ2k(αn−1)].

Inspection shows that there are no dimensional candidates for non-trivial differen-
tials on these generators, so E2 = E∞.

We may conclude that modulo extensions,H∗(Yk)=Γ[σγ2k(αn−1)]. Let us denote
σγ2k(αn−1) by ζk. To show that as an algebra H∗(Yk) = Γ[ζk], we examine the Serre
cohomology spectral sequence applied to Yk → F2k−1 → F2k+1−1. Dimensionally, for
each γi(ζk) there must be a differential dr such that

dr(γi(ζk)) = γi−1(ζk)⊗ γ2k(αn−1).

An inductive proof on m shows that

γi(ζk) · γj(ζk) =
(
i+j

i

)
γi+j(ζk)

where i+ j = m. We assume that for all i+ j = m− 1,

γi(ζk) · γj(ζk) =
(
i+j

i

)
γi+j(ζk).

Given i, j such that i+ j = m, using the Leibniz rule, we have

dr(γi(ζk) · γj(ζk)) = γi−1(ζk) · γj(ζk)⊗ γ2k(αn−1) +
γi(ζk) · γj−1(ζk)⊗ γ2k(αn−1)

=
(
m− 1
j

)
γm−1(ζk)⊗ γ2k(αn−1) +

(
m− 1
j − 1

)
γm−1(ζk)⊗ γ2k(αn−1)

=
(
i+ j

i

)
γi+j−1(ζk)⊗ γ2k(αn−1).

It must be the case that

γi(ζk) · γj(ζk) =
(
i+j

i

)
γi+j(ζk)

since dr takes the same value on both. Then, H∗(Yk) is a divided polynomial algebra
on ζk.
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6.3. The cohomology of Gk

We denote Gk = ΩF2k−1.

Proposition 6.2. H∗(Gk) =
k−1⊗

i=0

Γ[λi] where |λi| = 2i(n− 1)− 1.

We show Proposition 6.2 by dualizing H∗(Gk) = P [l0, . . . , lk−1]. This homology
computation can be proved by induction by utilizing the following Proposition:

Proposition 6.3. In a spectral sequence of coalgebras, given the smallest r such that
dr 6= 0, it must be the case that for the smallest degree element x with dr(x) 6= 0,
dr(x) must be primitive.

Then, by dualizing, we have that as vector spaces H∗(Gk) = Γ[(l0)∗, (l1)∗, . . . ,
(lk−1)∗]. Consider the cohomology Serre spectral sequence applied to the fibration
Gk−1 → Gk → Yk−1. As vector spaces

E2 = H∗(Gk−1)⊗H∗(Yk−1)

=
k−2⊗

i=0

Γ[λi]⊗ Γ[ζk−1].

But, the spectral sequence converges to the cohomology of H∗(Gk) and E2 agrees
with the cohomology of H∗(Gk) as a vector space. Then, E2 = E∞. We may identify
ζk−1 with λk−1 under H∗(Gk) → H∗(Yk−1) and so, we have a splitting of algebras,

H∗(Gk) = H∗(Gk−1)⊗H∗(Yk−1), (6.1)

that is,

H∗(Gk) =
k−1⊗

i=0

Γ[λi].

Now, λk−1 is an indecomposable element. So, it is the dual of a primitive element of
H∗(Gk). The only possibility is that (lk−1)∗ = λk−1, and so H∗(Gk) is primitively
generated by the permanent cycles li. We have the desired results. We see from
above that H∗(Gk−1) ↪→ H∗(Gk). Then,

H∗(Gk) → H∗(Ω2Sn) is a monomorphism of Hopf algebras

so that we may identify li with ri. Then,

H∗(Ω2Sn) → H∗(Gk) is an epimorphism of Hopf algebras.

We identify γj(ρi) with γj(λi). Thus,H∗(Gk) inherits the Steenrod algebra structure
of H∗(Ω2Sn) via the map H∗(Ω2Sn) → H∗(Gk).
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6.4. The equivalence of Yk with ΩS2k(n−1)

Note that H∗(Yk) ' H∗(ΩS2k(n−1)). In fact, we will show Yk ' ΩS2k(n−1). Our
first aim will be to show that a map between ΩS2k(n−1) and Yk exists. To accom-
plish this consider the diagram below where the top horizontal map is the defining
fibration for Yk, the bottom horizontal map is a standard path fibration, and the
middle vertical arrow is the constant map,

Yk
//

²²Â
Â
Â F2k−1

//

²²

F2k+1−1

²²Â
Â
Â

ΩS2k(n−1) // * //
S2k(n−1)

. (6.2)

We show that the vertical right arrow exists, thereby giving the existence of a left
vertical arrow which makes the whole diagram commute up to homotopy.

Now, it is known that Fk is a CW complex which is a subcomplex of Fk+1. We
recall an explicit description of the cofibration Fk→Fk+1. Since Sn−1'Dn−1/Sn−2,
we have the collapsing map, Dn−1 → Sn−1. By taking Cartesian products, we have
(Dn−1)k+1 → (Sn−1)k+1. Given x ∈ (Dn−1)k+1, x may be thought of as a word in
Dn−1 with k + 1 letters, while the boundary of (Dn−1)k+1 consists of those words
in which at least one letter lies on the boundary of Dn−1. So, we have a map,
∂(Dn−1)k+1 → Fk. But (Dn−1)k+1 ' D(n−1)(k+1), so we have S(n−1)(k+1)−1 → Fk.
Then, Fk+1 is the pushout of the following diagram,

S(n−1)(k+1)−1 //

Ik

²²

D(n−1)(k+1)

²²
Fk

// Fk+1

Suppose we have a map fk : Fk → X. A sufficient condition for fk to extend to
fk+1 : Fk+1 → X is that fk ◦ lk : S(n−1)(k+1)−1 → X is null-homotopic. If so, there
exists a homotopy H : S(n−1)(k+1)−1 × I → Fk from fk ◦ lk to the constant base-
point map. Then H induces a map, D(n−1)(k+1) → X and by the pushout property,
a map fk+1 exists with the desired properties. We apply this principle multiple
times to obtain the vertical map F2k+1−1 → S2k(n−1) in (6.2).

Observe that there exists a map F2k → S2k(n−1) which maps the word x1x2 · · ·x2k

to x1 ∧ x2 ∧ · · · ∧ x2k , where xi ∈ Sn−1, and we use (Sn−1)(m) ' Sm(n−1). Let f2k

denote this map, F2k → S2k(n−1); the composite F2k−1 → F2k

f2k→ S2k(n−1) is trivial
(as F2k−1 is mapped to the basepoint). We show that extensions f2k+1, . . . , f2k+1−1

exist as in the diagram below,

F2k−1
//

0

²²

F2k //

f2k
vvv

v

zzvvv

F2k+1
//

f2k+1
k k k

uuk k k

. . . // F2k+1−1

f2k+1−1
e e e e e e e e

rre e e e e e e e

S2k(n−1)

. (6.3)

Based on our study of extensions above, for 2k + 1 6 i 6 2k+1 − 1, to show the
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existence of fi, we must examine

fi−1 ◦ li−1 ∈ π(n−1)i−1(S2k(n−1)).

By the Freudenthal suspension theorem[M, p. 83], we know that when

(n− 1)i− 1 < 2(2k(n− 1))− 1,

we have an isomorphism

Σ: π(n−1)i−1(S2k(n−1)) → π(n−1)i(S2k(n−1)+1).

Since n > 1,

(n− 1)i− 1 6 (n− 1) · (2k+1 − 1)− 1
= 2(2k(n− 1))− (n− 1)− 1
< 2(2k(n− 1))− 1.

So we are in the range where Σ: π(n−1)i−1(S2k(n−1)) → π(n−1)i(S2k(n−1)+1) is an
isomorphism. Because we are interested in fk+i ◦ lk+i ∈ π(n−1)i−1(S2k(n−1)), we
may investigate the corresponding element in π(n−1)i(S2k(n−1)+1). To do this, we
look at what happens to our extension problem when we apply the suspension to
our spaces and maps. Consider the diagram,

ΣF2k−1
//

0

²²

ΣF2k //

Σf2k
sss

s

yysss
s

ΣF2k+1
//

Σf2k+1
j j j j

ttj j j

. . . // ΣF2k+1−1

Σf2k+1−1
d d d d d d d d

rrd d d d d d d d

ΣS2k(n−1)

.

However, for all positive j,

ΣFj '
j∨

i=1

∑
(S(n−1))(j).

In particular Σf2k−1 : ΣF2k−1 → S2k(n−1)+1 is the identity on S2k(n−1)+1 and maps
all other points in the domain to the basepoint. It is clear that the extensions Σf2k+i

exist. Similar to Σf2k , Σf2k+i is the identity on S2k(n−1)+1 and maps all other points
in the domain to the basepoint. So, we have

2k−1∨

i=1

Si(n−1)+1 //

0

²²

2k∨

i=1

Si(n−1)+1 //

Σf2k

xxrrrrrrrrrrr

· · · //
2k+1−1∨

i=1

Si(n−1)+1

Σf2k+1−1
ffffffffffff

ssffffffffffffff

S2k(n−1)+1

. (6.4)

Recall that lk : S(n−1)(k+1)−1 → Fk is the attaching map for Fk+1 in its CW decom-
position. Then, Σlk is the attaching map for ΣFk+1. We consider the diagram below,
where the square is a pushout diagram,
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S(n−1)(k+1) //

Σlk

²²

D(n−1)(k+1)+1

²²
ΣFk

//

Σfk

²²

ΣFk+1

Σfk+1
vvmmmmmmmmmmmmmm

X

Since the extension Σfk+1 exists, we can show that the composite Σfk ◦ Σlk must be

null-homotopic. We have the composite α : D(n−1)(k+1) → ΣFk+1
Σfk+1−→ X. But,

D(n−1)(k+1)−1 is just CS(n−1)(k+1). This gives a homotopy from the constant map
to the restriction of α to the boundary. This restriction is the map Σfk ◦ Σlk. Thus,
Σfk ◦ Σlk ∈ π(n−1)(k+1)(X) corresponds to the zero element.

Applying these ideas to the extensions that exist in (6.4) yields that for 2k + 1 6
i 6 2k+1 − 1,

Σli−1 ◦ Σfi−1 = 0 ∈ π(n−1)i(S2k(n−1)+1).

Yet because we are in the range where the Freudenthal suspension is an isomor-
phism, we have that

li−1 ◦ fi−1 = 0 ∈ π(n−1)i−1(S2k(n−1)).

This shows that for 2k + 1 6 i 6 2k+1 − 1, fi exists, and hence we have a map

f2k+1−1 : F2k+1−1 → S2k(n−1).

Furthermore, by examination of (6.3), we see that the composite

F2k−1 → F2k → · · · → F2k+1−1 → S2k(n−1)

is null homotopic. So we have shown the existence of a square which commutes up
to homotopy, as in the rightmost square of (6.2). Thus, there must exist a map

yk : Yk → ΩS2k(n−1)

such that (6.2) commutes up to homotopy.
Let E denote the cohomology Serre spectral sequence of the fibration

Yk → F2k → F2k+1−1.

Let 8E denote the cohomology Serre spectral sequence of the fibration

ΩS2k(n−1) → ∗ → S2k(n−1).

We have the following commutative diagram.

8E0,p
8dr //

(yk)∗

²²

8Er,p+r−1

(yk)∗⊗(f2k+1−1)
∗

²²
E0,p

dr // Er,p+r−1
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Studying E, one can see that there are differentials dr such that

dr(γi(ζk)) = γi−1(ζk)⊗ γ2k(αn−1).

As algebras, H∗(ΩS2k(n−1)) = Γ(α2k(n−1)−1) and H∗(S2k

(n− 1)) = E[ι2k(n−1)].
Examining 8E we see there are differentials 8dr such that

8dr(γi(α2k(n−1)−1)) = γi−1(α2k(n−1)−1)⊗ ι2k(n−1).

Using inductive reasoning, knowing that (f2k+1−1)∗(γ2k(αn−1)) = ι2k(n−1), yields
the following diagram of elements.

γi(α2k(n−1)−1)
8dr //

(yk)∗

²²Â
Â
Â

γi−1(α2k(n−1)−1)⊗ ι2k(n−1)

(yk)∗⊗(f2k+1−1)
∗

²²
γi(ζk)

dr // γi−1(ζk)⊗ γ2k(αn−1)

As depicted, it must be the case that

(yk)∗(γi(α2k(n−1)−1)) = γi(ζk).

It follows that (yk)∗ is an isomorphism in cohomology. Thus, since our spaces are
localized at the prime 2, we have that yk is an equivalence and

Yk ' ΩS2k(n−1).

In particular, the splitting of algebras in (6.1) (with k replaced by k + 1) becomes

H∗(Gk+1) = H∗(Gk)⊗H∗(ΩS2k(n−1)) (6.5)

with H∗(ΩS2k(n−1)) = Γ[ζk].

7. Showing Ω2Sn is minimal atomic

We prove the minimal atomicity of Ω2Sn by breaking the argument into the
cases when n is odd and when n is even. The case where n is odd resembles the
proof that ΩSn is minimal atomic. Yet, for n even, there are too many elements to
contend with to use previous arguments alone, and we instead combine the methods
of higher order cohomology operations with the filtration of Section 6 to obtain the
desired conclusion. Finally, we look at the cases when Ω2Sn is not minimal atomic
and isolate the elements which are obstructions to minimal atomicity.

7.1. Spherical candidates of Ω2Sn

From [KA], we see H∗(Ω2(Sn)) is a polynomial ring having generators r0 and
QJ(r0) where |r0| = n− 2 and QJ are the Dyer–Lashof operations, where J is an
admissible sequence such that e(J) > n− 2 and l(J) < n. By an induction argu-
ment, we can show that any admissible J ’s satisfying these constraints must be of
the form
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((n− 1)2k, (n− 1)2k−1, (n− 1)2k−2, . . . , (n− 1)).

We refer to the generator QJ(r0) with

J = ((n− 1)2k, (n− 1)2k−1, (n− 1)2k−2, . . . , (n− 1))

by rk+1. Using the Nishida relations, we can compute the action of the dual of the
Steenrod algebra on H∗(Ω2Sn) to obtain the result as in [C, p. 29]:

Sq2
s

∗ ((rk)2
t

) =





0 if s 6= t or k = 0 or if n even with s = t and k = 1
r2

s+1

k−1 if s = t and k > 1 for n even or if s = t and k > 1
for n odd

Now, H∗(Ω2(Sn)) =
⊗

i>0,j>0

P [γ2i(ρj)]/(γ2i(ρj))2 where the dual of (rj)2
i

is γ2i(ρj).

Using this information, we can compute the action of the Steenrod operations on
H∗(Ω2Sn):

Sq2
s

(γ2t(ρk))=





0 if s+ 1 6= t, or if n is even with s+ 1= t and k=0
γ2s(ρk+1) if s+ 1= t with n odd, or s+ 1 = t with n even and

k > 1

7.2. n odd
Now, in the case where n is odd, each (rk)2

t

is not an A-annihilated primitive
when k > 1. Thus, these elements cannot be spherical. The only candidates for
spherical elements above the Hurewicz dimension are (r0)2

t

for t > 1. We shall
refer to these elements as pt. We apply the techniques of higher order cohomology
operations to prove that pt is not spherical. For each t > 0, we exhibit a higher
order cohomology operation whose image includes γ2t(ρ0).

Let us establish how the Steenrod operations act on γ2t(ρ0) for t > 0. First, for
t = 0, we see from above that no Steenrod operation of the form Sq2

i

acts non-
trivally on γ1(ρ0). Since operations of the type Sq2

i

generate the Steenrod algebra,
we conclude that all Steenrod operations annihilate γ1(ρ0).

For t > 0, the only generator of the Steenrod algebra which acts non-trivially on
γ2t(ρ0) is Sq2

t−1
; the result of this action is γ2t−1(ρ1). If t− 1 > 0, again, we have

exactly one generator of the Steenrod algebra which acts non-trivially on γ2t−1(ρ1),
Sq2

t−2
. Proceeding in this fashion, we see that the Steenrod operations which act

non-trivially on γ2t(ρ0) are of the form SqI where I = (2m, 2m+1, . . . , 2t−1) where
0 6 m 6 t− 1. In particular, the highest dimensional Steenrod operation which can
act on γ2t(ρ0) is of degree 1 + 2 + . . .+ 2t−1 = 2t − 1.

7.2.1. Showing pt+1 is not spherical when t > 0
Consider the relation Sq2

t(n−2)+1 = Sq1Sq2
t(n−2) which is similar to (4.2) with

n− 1 replaced by n− 2 when t > 0. This relation gives rise to a secondary coho-
mology operation which we shall call Θt. Then, for appropriate θ and γ,

Θt(τ + γ) = Θt(τ) + Θt(γ) + τγ.
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The defining cohomology class φ2 ∈ H2t+1(n−2)(ΩE2) is primitive. Θt is defined
on elements τ ∈ H2t(n−2)(X) for which Sq2

t(n−2) has a trivial action, and the
image

Θt(τ) ∈ H2t+1(n−2)(X)/Sq1(H2t+1(n−2)−1(X).

In particular, we see that Sq2
t(n−2) acts trivially on γ2t(ρ0) since

|γ2t(ρ0)| = 2t(n− 2)

and

(γ2t(ρ0))2 = 0.

So, Θt is defined on γ2t(ρ0) for t > 0. Then,

γ2t+1(ρ0) /∈ Sq1(H2t+1(n−2)−1(Ω2Sn)).

For t > 0, γ2t+1(ρ0) clearly is not in the image of Sq1 and does not belong to the
indeterminacy of Θt.

Let f : ΩSn−1 → Ω2Sn be the result of looping the canonical map η. Then, f
maps the indecomposable elements γ2t(ρ0) of Ω2Sn to the indecomposable elements
γ2t(αn−2) of ΩSn−1. The following diagram commutes:

H(n−2)·2t

(Ω2Sn)
f∗ //

Θt

²²

H(n−2)·2t

(ΩSn−1)

Θt

²²
H(n−2)·2t+1

(Ω2Sn)
f∗ // H(n−2)·2t+1

(ΩSn−1))

Now, Θt(f∗(γ2t(ρ0))=γ2t+1(αn−2). By chasing the diagram, we see that modulo
Sq1(H2t+1(n−2)−1(Ω2Sn)), we have Θt(γ2t(ρ0)) = γ2t+1(ρ0) + τ where τ is in the
kernel of H(n−2)2t+1

(Ω2Sn) → H(n−2)2t+1
(ΩSn−1); τ must be a decomposable ele-

ment since the only elements τ of degree (n− 2)2t+1 besides γ2t+1(ρ0) are decom-
posable elements of H(n−2)2t+1

(Ω2Sn). So τ =
∑

aibi where |ai|, |bi| > 0. As we

have noted the module of indeterminacy Sq1(H(n−1)2t+1−1(Ω2Sn)) does not con-
tain γ2t+1(ρ0), so it must contain only decomposables. Thus,

Θt(γ2t(ρ0)) = γ2t+1(ρ0) + τ

where τ ∈ H(n−2)2t+1
(Ω2Sn) is a sum of decomposable elements (possibly zero).

Appealing to Section 2.3, we have for t > 0, pt+1 is not spherical.

7.2.2. Showing p1 is not spherical when n− 1 6= 2r

We show that p1 is not spherical. To accomplish this, we exhibit a higher order
cohomology operation which we evaluate on γ1(ρ0) to yield γ2(ρ0). First, we take
the case that n− 1 is not a power of 2. Then, Sqn−1 has a factorization as in (3.1),
with
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Sqn−1 = SqaSq2
r

+
∑
c>0

(
2r − c− 1
a− 2c

)
Sq(n−1)−cSqc

where 2r is the largest power of 2 which appears in the binomial expansion of n− 1
and (n− 1) = a+ 2r. Given this primary relation, we may consider the Brown and
Peterson secondary cohomology operation which stems from this, which we shall call
Θ0. Θ0 is defined on elements of Hn−2(X) which are annihilated by the Sqc above,
and its image lies in H2(n−2)(X) with indeterminacy

∑
Sq(n−1)−cHn−3+c(X)

where the sum runs over those c such that 0 6 c 6
[
n− 1

2

]
with

(
2r−c−1

a−2c

) 6= 0.

If we set X = Ω2Sn, we see Θ0 is defined on γ1(ρ0) because γ1(ρ0) is annihilated
by all Steenrod operations. By considering the map, as above, ΩSn−1 → Ω2Sn, we
may show that Θ0(γ1(ρ0)) = γ2(ρ0) +

∑
aibi for some ai, bi ∈ H∗(Ω2Sn) such that

aibi ∈ H2(n−2)(Ω2Sn), and |ai|, |bi| > 0. Thus, if we suppose p1 is spherical, we must
get a contradiction as in Section 2.3.

7.2.3. Showing p1 is not spherical when n− 1 = 2r+1 for r > 3
Let us take the case when n− 1 is a power of two greater than 8. Then, n− 1 = 2r+1

for r > 3. As before, we provide a higher cohomology operation which acts on γ1(ρ0)
to yield γ2(ρ0). We may apply our tertiary operation Ψ to this situation. First, we
check that Ψ is defined on γ1(ρ0) by showing that

1. Sq2
i

annihilates γ1(ρ0) for i 6 r

2. Φij annihilates γ1(ρ0) for i, j 6 r

We have already seen that (1) is true. This result enables us to define Φij(γ1(ρ0));
now we try to compute it. We review the construction of Adams’ Φij . Recall Φij

is a secondary cohomology operation based on a primary relation of the form∑
06m6j bmSq

2m

= 0 where bm is an element of the Steenrod algebra. To obtain

this relation, we apply the Adem relation to Sq2
i

Sq2
j

and express the right-hand
Steenrod operation of each summand in terms of the Steenrod operations, Sq2

m

.
We note that each term of this summand has degree 2i + 2j and bj = Sq2

i

.
For any l, let Sq2

m

: K(l) → K(l + 2m) represent the element Sq2
m

(κl) where
κl is the fundamental class of K(l). Then, consider f1 : K(l) → ∏

06m6j K(l + 2m)
which is given by f∗1 (κl+2m) = Sq2

m

(κl). Denote the homotopy fiber of f1 by A1.
We have the map g1 : A1 → K(l) with fiber

∏
06m6j K(l + 2m − 1). The elements

κl+2m−1 transgress to Sq2
m

(κl). Then,
∑

06m6j

bmκl+2m−1

transgresses to
∑

06m6j

bmSq
2m

κl = 0.

So,
∑

06m6j

bmκl+2m−1 survives in the Serre spectral sequence of the fibration
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∏

06m6j

K(l + 2m − 1) → A1
g1→ K(l),

and there exists φij ∈ H2i+2j+l−1(A1). We may represent this cohomology class by
a map φij : A1 → K2i+2j+l−1. If we replace l by n− 1, effectively, the diagram below
captures the action of Φij on cohomology elements in degree n− 1.

A1

φij //

g1

²²

Kn−1+2i+2j−1

K(n− 1)
f1 //

∏

06m6j

K(n− 1 + 2m)

Observe that if we loop this diagram, we will obtain a diagram which represents
the action of Φij on cohomology elements in degree n− 2 because Φij is stable. We
have discussed that Φij is defined on γ1(αn−1) ∈ Hn−1(ΩSn). By replacing l above
by n− 1 and by representing γ1(αn−1) by the map f : ΩSn → K(n− 1), we have
that Φij(γ1ρ1) corresponds to φij ◦ f̃ :

A1

φij //

g1

²²

Kn−1+2i+2j−1

ΩSn

ef
<<x

x
x

x
x

x f // K(n− 1)
f1 //

∏

06m6j

K(n− 1 + 2m)

We exhibited earlier that Φij(γ1(αn−1)) = 0 with zero indeterminacy. Thus, φij ◦ f̃
is null homotopic.

Now, looping this diagram enables us to study

Φij(γ1(ρ0)) = Ωφij ◦ Ωf̃ .

So

ΩA1

Ωφij //

Ωg1

²²

ΩKn−1+2i+2j−1

Ω2Sn

Ω ef
;;v

v
v

v
v

v Ωf // ΩK(n− 1)
Ωf1 //

∏

06m6j

ΩK(n− 1 + 2m)

Since φij ◦ f̃ is null homotopic, Ωφij ◦ Ωf̃ is null homotopic. Thus, Φij(γ1(ρ0)) is
zero modulo indeterminacy. Via dimensional arguments, we show the indeterminacy
is zero. Now

Φij(γ1(ρ0)) ∈ H2i+2j−1+n−2(Ω2Sn).

By definition, the indeterminacy of the secondary cohomology operation Φij is



Homology, Homotopy and Applications, vol. 9(1), 2007 31
∑

06m6r

bmH
2i+2j−1+n−2−|bm|(Ω2Sn).

Yet, |bm| = 2i + 2j − 2m, so the indeterminacy lies in
∑

06m6r

bmH
n−3+2m

(Ω2Sn) =
∑

06m6r

bmH
2r+1+2m−2(Ω2Sn). (7.1)

To understand indeterminacy, we consider H2r+1+2m−2(Ω2Sn) for 0 6 m 6 r. Now,
γ1(ρ0) belongs to H2r+1−1(Ω2Sn), but all other γa(ρb), and thus products of the
generators of H∗(Ω2Sn), have degree too large to be in H2r+1+2m−2(Ω2Sn). Since
γ1(ρ0) is annihilated by all Steenrod operations b0, the indeterminacy must be zero.
Thus, Φij(γ1(ρ0)) is zero with zero indeterminacy for each i, j with 0 6 i 6 j 6 r

and i 6= j + 1. Since Sq2
i

annihilates γ1(ρ0) for i 6 r, we may proceed in applying
the tertiary operation Ψ to γ1(ρ0).

Again, we use the map f : ΩSn−1 → Ω2Sn noting that f∗(γ2t(ρ0)) = γ2t(αn−2).
The following diagram commutes:

Hn−2(Ω2Sn)
f∗ //

Ψ

²²

Hn−2(ΩSn−1)

Ψ

²²
H2·(n−2)(Ω2Sn)

f∗ // H2·(n−2)(ΩSn−1))

Now, Ψ(f∗(γ1(ρ0))) = γ2(αn−2) modulo zero indeterminacy. By chasing the dia-
gram, we see that modulo the indeterminacy of Ψ, Ψ(γ1(ρ0)) = γ2(ρ0) + τ , where
τ ∈ kernel of H(n−2)·2(Ω2Sn) → H(n−2)·2(ΩSn−1). However, there are no elements
of degree (n− 2) · 2 in H∗(Ω2Sn) besides γ2(ρ0). So τ must be zero. Also, γ2(ρ0)
is not in the image of the Steenrod algebra action on H∗(Ω2Sn) so γ2(ρ0) is not in
the indeterminacy of Ψ. Hence for dimension reasons the indeterminacy module of
Ψ must be zero, modulo zero,

Ψ(γ1(ρ0)) = γ2(ρ0).

Thus, following the ideas of Section 2.3, p1, the dual element of γ2(ρ0), is not
spherical. Thus, we have shown that in the case when n is odd and n− 1 6= 2r

where r > 3, Ω2Sn is minimal atomic.

7.3. n even
To determine which elements of H∗(Ω2Sn) are spherical when n is even, we

determine which primitive elements are annihilated by the dual of the Steenrod
algebra. From our work above, we see that the only elements fitting this description
are (r0)2

t

and (r1)2
t

for t > 0. Thus, we establish how the Steenrod operations act
on γ2t(ρ0) and γ2t(ρ1) so we may use our higher order cohomology techniques.

We see from our previous work that Sq2
s

(γ2t(ρ0)) = 0 and so the entire Steenrod
algebra annihilates γ2t(ρ0). Also, γ1(ρ1) has a trivial action under the Steenrod
algebra.
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For t > 0, the only generator of the Steenrod algebra which acts non-trivially on
γ2t(ρ1) is Sq2

t−1
yielding γ2t−1(ρ2). If t− 1 > 0, again, we have exactly one generator

of the Steenrod algebra which acts non-trivially on γ2t−1(ρ1), Sq2
t−2
. Proceeding

in this fashion, we see that the Steenrod algebra elements that act non-trivially on
γ2t(ρ1) are of the form SqI where I = (2m, 2m+1, . . . , 2t−1) where 0 6 m 6 t− 1.
In particular, the highest dimensional Steenrod operation which can act on γ2t(ρ1)
is of degree 1 + 2 + . . .+ 2t−1 = 2t − 1.

As in Section 7.2, we use the same secondary cohomology operation Θt defined
on elements, γ ∈ H2t(n−2)(X) such that Sq2

t(n−2)(γ) = 0 with image contained in
H2t+1(n−2)(X)/Sq1(H2t+1(n−2)−1(X)). Then, as before, for t > 0, Θt is defined on
γ2t(ρ0) and γ2t+1(ρ0) /∈ Sq1(H2t+1(n−2)−1(Ω2Sn)). That is, for t > 0, γ2t+1(ρ0) does
not belong to the indeterminacy of Θt.

7.3.1. Showing (r0)2
t

is not spherical for t > 0
Again, we use f : ΩSn−1 → Ω2Sn noting that f∗(γ2t(ρ0)) = γ2t(αn−2). The follow-
ing diagram commutes:

H(n−2)·2t

(Ω2Sn)
f∗ //

Θt

²²

H(n−2)·2t

(ΩSn−1)

Θt

²²
H(n−2)·2t+1

(Ω2Sn)
f∗ // H(n−2)·2t+1

(ΩSn−1)

As in the case when n is odd, chasing the diagram leads to the conclusion that
Θt(γ2t(ρ0)) = γ2t+1(ρ0) + τ where τ ∈ H(n−2)2t+1

(Ω2Sn) is a sum of decomposable
elements (possibly zero). Thus, using Section 2.3 for t > 0, (r0)2

t+1
is not spherical.

To show (r0)2 is not spherical, we observe that in the case when n is even, we
can factor Sqn−1. Further, γ2(ρ0) is annihilated by the Steenrod algebra and is not
in the image of the Steenrod algebra. Thus, repeating the argument in Section 7.2.2
shows that γ2(ρ0) +

∑
aibi is in the image of Θ0. Thus, (r0)2 is not spherical and

for all t > 0, (r0)2
t

is not spherical.

7.3.2. Showing (r1)2
t

is not spherical when t > 0
Consider the Steenrod algebra relation,

Sq2
t(2(n−1)−1)+1 = Sq1Sq2

t(2(n−1)−1).

Analogous to the results of Section 4.2, for each t this relation gives rise to a
secondary cohomology operation, which we shall denote Φt. In particular, Φt is
defined on H∗(ΩS2(n−1)) = H∗(Y1) with zero indeterminacy and similar to (4.3)
we obtain

Φt(γ2t(ρ1)) = γ2t+1(ρ1). (7.2)

Considering γ2t(ρ1) as an element of H∗(Ω2Sn), we deduced in Section 7.3 that
the highest dimensional Steenrod operation which acts non-trivially on γ2t(ρ1) has
degree 2t − 1. Then Sq2

t(2(n−1)−1) must act trivially on γ2t(ρ1). Since H∗(G2)
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inherits its Steenrod algebra action from H∗(Ω2Sn), Sq2
t(2(n−1)−1) acts trivially

on γ2t(ρ1) considered as an element of H∗(G2). Thus Φt(γ2t(ρ1)) is defined on
H∗(Ω2Sn) and H∗(G2).

Let g1 : G2 → Y1 be the map which occurs in the fibration G1 → G2 → Y1. In
our Serre spectral sequence analysis, we saw that (g1)∗ : H∗(Y1) ↪→ H∗(G2) and so
(g1)∗(γ2i(ρ1)) = γ2i(ρ1). Then, by naturality, we have a diagram

H∗(Y1)
(g1)

∗
//

Φt

²²

H∗(G2)

Φt

²²
H∗(Y1)

(g1)
∗

// H∗(G2)

Then, Φt((g1)∗(γ2t(ρ1))) = (g1)∗(Φt(γ2t(ρ1))). So, modulo indeterminacy in H∗(G2),

Φ(γ2t(ρ1)) = γ2t+1(ρ1).

Since H∗(G2) inherits its Steenrod algebra structure from H∗(Ω2Sn) we can see
that γ2t+1(ρ1) is not in the image of Sq1. Furthermore, there are no indecompos-
able elements of H∗(Ω2Sn) with degree 2t+1(2(n− 1)− 1) = |γ2t+1(ρ1)|. So, only
decomposables are in the indeterminacy of Φt, Sq1(H2t+1(2(n−1)−1)−1(G2)).

Using the map g2 : G2 → Ω2Sn, we have following commutative diagram.

H∗(Ω2Sn)
(g2)

∗
//

Φt

²²

H∗(G2)

Φt

²²
H∗(Ω2Sn)

(g2)
∗

// H∗(G2)

Then, modulo the indeterminacy of Sq1(H2t+1(2(n−1)−1)−1(Ω2Sn)),

((g2)∗)(Φt(γ2t(ρ1))) = Φt((g2)∗(γ2t(ρ1)))
= Φt(γ2t(ρ1)) = γ2t+1(ρ1).

As before, we observe that γ2t+1(ρ1) does not belong to the indeterminacy for Φt

defined on H∗(Ω2Sn). Also, the only elements that belong to the indeterminacy
must be decomposables. The kernel of

(g2)∗ : H2t+1(2(n−1)−1)(Ω2Sn) → H2t+1(2(n−1)−1)(G2)

consists of decomposable elements. Thus, it must be the case that for some decom-
posable element τ ∈ H∗(Ω2Sn)

Φt(γ2t(ρ1)) = γ2t+1(ρ1) + τ.

Using Section 2.3, we see that (r1)2
t+1

cannot be spherical.
To show that (r1)2 is not spherical, we refer to Section 4.2 replacing n with

|r1| = 2(n− 1). We observe that since n is even, 2(n− 1) is not a power of 2, and
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a factorization of Sq2(n−1) exists. Thinking of γ1(ρ1), γ2(ρ2) as elements of H∗(Y1),
the argument of Section 4.2 shows that

Φ0(γ1(ρ1)) = γ2(ρ1) +
∑

aibi. (7.3)

We would like a version of (7.3) to hold in H∗(G2) and H∗(Ω2Sn). Observe that
γ1(ρ1) ∈ H∗(G2) is annihilated by all the Steenrod operations, so Φ0 can legiti-
mately be defined on γ1(ρ1). Since γ2(ρ1) ∈ H∗(G2) is not in the image of any
Steenrod operations, γ2(ρ1) will not be cancelled out when taking into account
indeterminacy of Φ0 defined on H∗(G2). Then using naturality of Φ0 applied to g1,
we have that modulo the indeterminacy of H∗(G2), (7.3) holds. Applying naturality
of Φ0 with respect to g2, we obtain (7.3) thinking of γ1(ρ1), γ2(ρ1) as elements of
H∗(Ω2Sn). Thus, it must be the case that (r1)2 is not spherical, and thus for all
t > 0, (r1)2

t

is not spherical.

7.3.3. Showing r1 is not spherical when n is not a power of 2
We show that γ1(ρ0) hits γ1(ρ1) via a higher order cohomology operation. We
suppose that n is not a power of 2. For k > 2, let us take the adjoint of the identity
map on ΩF2k−1, f : ΣGk → F2k−1. Then,

f∗(γ2i(αn−1)) = Σγ1(σγ2i(αn−1)) = Σγ1(ρi).

We have shown that there exist secondary cohomology operations Φi such that
Φ0(γ1(αn−1)) = γ2(αn−1) on H∗(ΩSn). Applying naturality of Φ0 to the map
F2k−1 → ΩSn gives us the same result for H∗(F2k−1). Also, the Steenrod operations
annihilate γ1(ρi), so Σγ1(ρi) is annilated by the Steenrod operations. In particular,
Φ0 is defined on γ1(ρi). We have a commutative diagram.

Hn−1(F2k−1)
f∗ //

Φ0

²²

Hn−1(ΣGk)

Φ0

²²
H2(n−1)(F2k−1)

f∗ // H2(n−1)(ΣGk)

Thus, f∗(Φ0(γ1(αn−1))) = Φ0(f∗(γ1(αn−1))), and so modulo the indeterminacy
of Φ0 on H∗(ΣGk), we have

Φ0(Σγ1(ρ0)) = Σγ1(ρ1).

As γ1(ρ1) is not in the image of the Steenrod algebra action on H∗(Gk), Σγ1(ρ1) is
not in the image of the Steenrod algebra action on H∗(ΣGk). Recall the suspension
homomorphism sl has the property that s2i(n−1)−1(Σγ1(ρi)) = γ1(ρi). Following the
discussion of σΦ in Section 3.1, we have

Hn−1(ΣGk)
sn−2 //

Φ0

²²

Hn−2(Gk)

σΦ0

²²
H2n−2(ΣGk)

s2n−3 // H2n−3(Gk)
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Then,

s2n−3(σΦ0(Σγ1(ρ0))) = Φ0(sn−2(Σγ1(ρ0)).

So, modulo the indeterminacy of σΦ0 on H∗(Gk),

σΦ0(γ1(ρ0)) = γ1(ρ1).

Since γ1(ρ1) is not in the image of the Steenrod algebra action on H∗(Gk), γ1(ρ1)
is not in the indeterminacy module of σΦ0 on H∗(Gk).

We have the following naturality diagram for k = 2, observing that the Steenrod
algebra action on γ1(ρ0) ∈ H∗(Ω2Sn) enables σΦ0(γ1(ρ0)) to be defined:

H∗(Ω2Sn)
(g2)

∗
//

σΦ0

²²

H∗(G2)

σΦ0

²²
H∗(Ω2Sn)

(g2)
∗

// H∗(G2)

Then, modulo the indeterminacy of σΦ0 on H∗(Ω2Sn),

((g2)∗)(σΦ0(γ1(ρ0))) = σΦ0((g2)∗(γ1(ρ0)))
= σΦ0(γ1(ρ0))
= γ1(ρ1).

Using the naturality argument from Section 2.3 gives the result that r1 is not
spherical.

7.3.4. Showing r1 is not spherical when n is a power of 2
We take the case where n = 2r+1 where r > 3. Then, in Section 4.3, we have shown
that a tertiary cohomology operation Ψ exists such that

Ψ(γ1(αn−1)) = γ2(αn−1)

with zero indeterminacy on H∗(ΩSn). By naturality, we have

Ψ(γ1(αn−1)) = γ2(αn−1)

on H∗(F2k−1) for k > 2 with zero indeterminacy.
We must check that Adams secondary cohomology operations Φij with i, j 6 r

evaluate to zero on Σγ1(ρ0) ∈ H∗(ΣG2). We have the commutative diagram,

Hn−1(F22−1)
f∗ //

Φij

²²

Hn−1(ΣG2)

Φij

²²
Hn+2i+2j−2(F22−1)

f∗ // Hn+2i+2j−2(ΣG2)

.

Then, modulo the indeterminacy of Φij on H∗(ΣG2), we have

Φij(f∗(γ1(αn−1))) = f∗(Φij(γ1(αn−1))) = 0.
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For each i, j, the indeterminacy of Φij takes the form

ΣmbmH
2i+2j−1+n−1−|bm|(ΣG2)

where bm are Steenrod operations of degree larger than 0. A lower bound for

2i + 2j − 1 + n− 1− |bm|
is n− 1, and an upper bound is 2n− 3. By dimensional arguments, we see only two
elements of H∗(ΣG2) have dimensions falling within these bounds, namely Σγ1(ρ0)
and Σγ2(ρ0) with dimensions n− 1 and 2n− 3 respectively. However all Steenrod
operations annihilate these elements when n is even. Thus, it must be the case that
the module of indeterminacy is zero. So, with zero indeterminacy,

Φij(Σγ1(ρ0)) = 0.

Then, Ψ is defined on Σγ1(ρ0). We have the commutative diagram

Hn−1(F22−1)
f∗ //

Ψ

²²

Hn−1(ΣG2)

Ψ

²²
H2(n−1)(F22−1)

f∗ // H2(n−1)(ΣG2)

Thus, Ψ(f∗(γ1(αn−1))) = f∗(Ψ(γ1(αn−1))) = Σγ1(ρ1). That is, modulo indeter-
minacy,

Ψ(Σγ1(ρ0)) = Σγ1(ρ1).

We observe that Σγ1(ρ1), with dimension 2n− 2, is not in the image of Steenrod
operations, so Σγ1(ρ1) is not in the indeterminacy for Ψ. Using dimensional criteria,
the only other candidates in the indeterminacy are Steenrod operations applied
to Σγ1(ρ0) and Σγ2(ρ0). Since Steenrod operations annihilate these elements, the
indeterminacy is zero.

Since Φij is stable, Φij(γ1(ρ0)) = 0 on H∗(G2). Thus Ψ is defined on γ1(ρ0).
Then, we have the commutative diagram

Hn−1(ΣG2)
sn−2 //

Ψ

²²

Hn−2(G2)

σΨ

²²
H2n−2(ΣG2)

s2n−3 // H2n−3(G2)

So,

σΨ(γ1(ρ0)) = σΨ(sn−2(Σγ1(ρ0))) = s2n−3(Ψ(Σγ1(ρ0))) = γ1(ρ1). (7.4)

Now, γ1(ρ1)) is not in the image of the Steenrod action onH∗(Ω2Sn). Thus, using
naturality of σΨ with respect to g2 yields the relation (7.4), considering γ1(ρ0) and
γ1(ρ1) as elements of H∗(Ω2Sn). Section 2.3 shows that r1 is not spherical. Thus,
we have shown that Ω2Sn is minimal atomic for n > 6 unless n = 8, 9.
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7.4. The cases where Ω2Sn is not minimal atomic
We show that Ω2Sn is not minimal atomic for n = 2, 3, 4, 5, 8, 9. Recall that

(x1)2 ∈ H2(ΩS2), (x3)2 ∈ H6(ΩS4), and (x7)2 ∈ H14(ΩS8).

7.4.1. n = 3, 5, 9
We take the case where n = 3, 5, 9. Here we will show there exists a spherical class
with degree above the Hurewicz dimension for Ω2S3,Ω2S5, and Ω2S9. Consider
the canonical map, Sn−1 η→ ΩSn. Here, in−1 ∈ Hn−1(Sn−1) maps to an−1 where
H∗(ΩSn) = F2[an−1]. For each n we have shown there exists f : S2n−1 → ΩSn−1

such that i2(n−1) maps to a2
n−2. We hope to understand the map ΩSn−1 Ωη→ Ω2Sn.

Recall that H∗(Ω2Sn) = F2[r0, r1, r2, . . .] where |ri| = 2i(n− 1)− 1.
Let 8E be the homology Serre spectral sequence for the fibration ΩSn−1 → ∗ →

Sn−1, and let E be the homology Serre spectral sequence for the fibration Ω2Sn →
∗ → ΩSn. The canonical map η induces a map 8E → E of spectral sequences.

Then, Ωη has the property that

(Ωη)∗(an−2) = r0

and

(Ωη)∗(an−2)2 = (r0)2.

Thus, in the composition

S2(n−2) f→ ΩSn−1 Ωη→ Ω2Sn

we have

i2(n−2)
f∗→ (an−2)2

(Ωη)∗→ (r0)2.

It follows that (r0)2 is spherical and Ω2S3,Ω2S5 and ΩS9 are not minimal atomic.
Observe that in the cases where Ω2S2q−1 is minimal atomic, our proof in Section
7.2.3 focused on showing that the element (r0)2 is not spherical.

7.4.2. n = 2, 4, 8
We show that for the cases n = 2, 4, 8, Ω2Sn is not minimal atomic. For each n we
have shown there exists f : S2n−1 → ΩSn with i2(n−1) mapping to (an−1)2. Looping
f , we obtain

ΩS2(n−1) Ωf→ Ω2Sn.

Now, H∗(ΩS2(n−1))=F2[a2(n−1)−1]. Let 8E be the homology Serre spectral sequence
for the fibration ΩS2(n−1) → ∗ → S2(n−1), and let E be the homology Serre spectral
sequence for the fibration Ω2Sn → ∗ → ΩSn. The map f induces a map 8E → E of
spectral sequences, which allows us to see that (Ωf)∗(a2(n−1)−1) = r1. Let

g : S2(n−1)−1 → ΩS2(n−1)

be the non-trivial map such that i2(n−1)−1 ∈ H∗(S2(n−1)−1) maps to a2(n−1)−1

under g∗. Then the composite,
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S2(n−1)−1 g→ ΩS2(n−1)−1 Ωf→ Ω2Sn

maps the fundamental class to r1. Thus, r1 is spherical and Ω2S2,Ω2S4 and Ω2S8

are not minimal atomic. Looking back on our proof in Section 7.3.4, observe that
we had to introduce a special argument to show that r1 is not spherical in the cases
where n is a power of 2 greater than 8.

Appendix A. Factoring Sq2r+1

Let r > 3. For any space X, let τ ∈ H∗(X) be such that Sq2
s

(τ) = 0 for 0 6 s 6
r. Recall (3.3), which states that there exist Steenrod operations aij such that

Sq2
r+1

(τ) =
∑

i6j,i+1 6=j

aijΦij(τ).

To obtain a specific factorization of Sq2
s

we need to calculate the coefficients aij that
satisfy (3.3). In [LW], one factorization of Sq16 is given, but it is worth noting that
there are several factorizations of Sq16 and one factorization might be preferable
to another depending on context. A computer program has been implemented in
Maple which builds upon [MN]. This new program calculates all aij which satisfy
(3.3). In this appendix, we examine the mathematics of these coefficients discussed
in [A]. This provides a constructive approach to finding aij which forms the basis
of the aforementioned computer program. It should be noted that the program does
have flaws—it yields aij for factorizations of Sq16, but for values of r larger than
3, the program stalls ostensibly due to memory constraints. Perhaps this can be
improved in the future.

Let C0 be the free module over the Steenrod algebra with basis element c of
degree 1, and let ε : C0 −→ Z/2Z be the non-trivial map. Let C1 be the free module
over the Steenrod algebra with basis elements ci of degree 2i. Define d1 : C1 → C0

by setting

d1(ci) = Sq2
i

(c).

We may construct a minimal resolution of Z/2Z over the Steenrod algebra with
these starting terms,

· · · −→ Cs
ds−→ Cs−1

ds−1−→ Cs−2 −→ · · · −→ C1
d1−→ C0

ε−→ Z/2Z −→ 0.

Let I(A) =
∑

q>0Aq where A is the Steenrod algebra and Aq consists of those
elements of A with degree q. Then,

TorA
s,t(Z/2Z,Z/2Z) ∼= (Z/2Z⊗A C)s,t

and

Exts,t
A (Z/2Z,Z/2Z) ∼= Homt

A(Cs,Z/2Z).

Now for each Cs, let J(Cs) = I(A) · Cs and Z(s) = Ker(ds) ∩ J(Cs). We observe
that for any partial minimal resolution,
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Cs
ds−→ Cs−1

ds−1−→ Cs−2 −→ · · · −→ C1
d1−→ C0

ε−→ Z/2Z −→ 0

we may define a homomorphism

θ : Z(s) → TorA
s+1(Z/2Z,Z/2Z).

by the following: Extend the partial minimal resolution to another partial mini-
mal resolution by adjoining an appropriate (Cs+1, ds+1). For any z ∈ Z(s), given
w ∈ Cs+1 such that ds+1(w) = z,

θ(z) = {1⊗A w}.
Adams shows that we can choose a cycle zij ∈ C1 with i 6 j and i+ 1 6= j such

that
hihj(θzij) = 1 (A.1)

where hi, hj are the basis elements of Ext1,t
A (Z/2Z,Z/2Z) of degree 2i and 2j respec-

tively. Now, define C2 to be the free module over the Steenrod algebra on generators
ci,j such that d2(cij) = zij . Adams shows that

C2
d2−→ C1

d1−→ C0
ε−→ Z/2Z −→ 0

is a partial minimal resolution over Z/2Z over A. Adams continues to show that
there must exist z ∈ C2 such that

h0h
2
r(θz) = 1. (A.2)

We write z in the C2 basis, so that

z =
∑

aijcij .

The coefficients here are the desired aij .
To obtain explicit coefficients aij , we require explicit representations of zij in the

C1 basis. Adams describes how to obtain such a representation in [A]. We review
the procedure, and check that the result satisfies (A.1) using Lemma A.1 below.
This lemma will also be helpful in trying to find an element z which satisfies (A.2).

Let t′ be a positive integer, and suppose we are given a function α : A→ Z/2Z
of degree −t′ such that α(ab) = 0 for a, b ∈ I(A). Then the composite

C1
d1−→ A

α−→ Z/2Z

defines an element hα ∈ Ext1,t′

A (Z/2Z,Z/2Z). We have the following lemma from
[A].

Lemma A.1. Given any h ∈ Exts,t
A (Z/2Z,Z/2Z) and any x ∈ Z(s) ∩ Cs,t+t′ with

x =
∑
aic

′
i

(hαh)(θx) =
∑

(αai)(h{1⊗A c′i})
where {c′i} is the basis of Cs.
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We will show that for each i, j with i 6 j and i+ 1 6= j, there exists an equation
of the type,

Sq2
i

Sq2
j

+
∑

fkSq
2gk = 0. (A.3)

Then, it must be the case that

d1(Sq2
i

cj +
∑
fkcgk

) = 0.

We set zij ∈ C1 to be Sq2
i

cj +
∑
fkcgk

and show using Lemma A.1 that (A.1) is
satisfied.

To obtain (A.3), recall the following standard result.

Lemma A.2. For m > 1 with m not a power of 2, there exist finitely many Steenrod
algebra elements bk and non-negative integers ck such that

Sqm =
∑
bkSq

2ck

It is clear that such a decomposition exists since {Sq2k} comprises a set of gen-
erators for A, but the proof that follows reviews a method for obtaining the desired
decomposition, which can be easily translated into computer code.

Proof. Let 2d be the largest power of 2 which occurs in the binary representation
of m. Then 2d > m− 2d. In Section 4.2, we saw that an application of the Adem
relations to Sqm−2d

Sq2
d

yields

Sqm = Sqm−2d

Sq2
d

+
∑

SqlkSqmk

wheremk 6 m− 2d < 2d. If we apply a similar factorization to those Sqmk for which
mk is not a power of 2, and iterate this process, we will obtain the desired result of
Lemma A.2.

To obtain zij for any i, j with i 6 j and i+ 1 6= j, observe that the Adem relations
apply to give a factorization

Sq2
i

Sq2
j

=
∑

SqmkSqnk . (A.4)

If i = j, then the binomial coefficient of Sq2
i+2j

is
(
2i−1
2i

)
= 0, so in the factorization

above all mk, nk 6= 0 and nk < 2i, 2j .
If i 6= j, then the binomial coefficient of Sq2

i+2j

is
(
2j−1

2i

)
= 1 by (4.1). If we

apply the Adem relations to factor Sq2
i+1
Sq2

j−2i

, then Sq2
i+2j

appears in the
factorization because

(
2j−2i−1

2i+1

)
= 1. The other summands in this factorization are

of the form SqukSqvk and uk, vk 6= 0 with vk < 2i+1 < 2j . Thus, if we add these
two factorizations together, the Sq2

i+2j

terms cancel each other out. Thus, we may
obtain (after relabelling the mk and nk) (A.4) above such that mk, nk 6= 0 and
nk < 2j . Thus, in each case we have the same kind of factorization of Sq2

i

Sq2
j

. We
apply Lemma A.2 to each Sqnk to rewrite Sq2

i

Sq2
j

as
∑
fkSq

2gk where fk ∈ A
and gk < j is a non-negative integer. Thus, we have verified (A.3). Further, we can
replicate this process using a computer program because the processes are no more
difficult than applying the Adem relations multiple times.
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To show zij satisfies (A.1), consider the Milnor basis element ξ2
i

1 of the dual of
A. We apply Lemma A.1 with α taken to be ξ2

i

1 observing that in the notation of
that lemma, h

ξ2i
1

= hi. Thus,

hihj(θzij) = ξ2
i

1 (Sq2
i

)hj({1⊗ cj}) +
∑
ξ2

i

1 (fk)hj({1⊗ cgk
})

Now, for dimensional reasons hj({1⊗ cgk
}) = 0. Also for dimensional reasons, {1⊗

cj} is the single non-trivial element of TorA
1,2j (Z/2Z,Z/2Z), and since hj is the single

non-trivial element of Ext1,2j

A (Z/2Z,Z/2Z), it must be the case that hj({1⊗ cj}) =
1. Thus, hihj(θzij) = 1 and (A.1) is satisfied.

Having shown that a computer program would be able to find explicit examples
of zij , we turn to the more complicated issue of how to find z ∈ Z(2) which satisfies
(A.2).

We observe that any z ∈ Z(2) satisfies (A.2) if and only if ξ1(arr) = 1. Again, in
the notation of Lemma A.1, we see that hξ1 is the basis element h0. Then,

(h0h
2
r)(θz) =

∑
i(ξ1aij)(hrhr{1⊗A cij}).

For dimensional reasons,

hrhr{1⊗A crr} = 1

while for (i, j) 6= (r, r),

hrhr{1⊗A cij} = 0.

Thus, h0h
2
r(θz) = 1 if and only if ξ1(ar,r) = 1. That is,

arr = Sq1. (A.5)

Hence, any z =
∑
aijcij with z ∈ Z(2) such that arr = Sq1, has the property that

its coefficents aij give the desired factorization of Sq2
r+1

.
Compared with the information we have regarding zij , the data we have related

to z is quite meager. Adams does add to this small repository by observing that
our desired z must also satisfy

ξ2
r

1 (a0r) = 1.

Following Lemma A.1, we see that hξ2r
1

is the basis element hr. Since the group
ExtA(Z/2Z,Z/2Z) is commutative [MT, p. 193] we have

1 = (h0h
2
r)(θz) = (hr(h0hr))(θz) =

∑
i(ξ

2r

1 aij)(h0hr{1⊗A cij}).
As above, h0hr{1⊗A cij} is non-zero (and equal to 1) only when i = 0 and j = r.
Then we have that ξ2

r

1 (a0r) = 1 and so,

a0r = Sq2
r

+ a2r (A.6)

where a2r ∈ A2r and does not have Sq2
r

as a summand.
Now, the computer program identifies valid z’s by trial and error. It picks different

choices of coefficients aij and tests whether or not the resulting z satisfies the con-
ditions that z ∈ Z(2) and h0h

2
r(θz) = 1. The mathematics that we have illustrated
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makes this job a bit easier. Since the degree of z is 2r+1 + 1, and |cij | = 2i + 2j , it
must be that |aij | = 2r+1 + 1− 2i − 2j ; we restrict the guesses for aij to be Steen-
rod operations of the appropriate degree. Further, (A.5) and (A.6) put further con-
straints on the coefficients arr and a0r which allow us to proceed by an educated
version of trial and error.

We may write zij in the C1 basis as before with zij = Sq2
i

cj +
∑
fkcgk

where
gk < j 6 r. In particular, each zij is represented in the C1 basis using only the
basis elements c0, c1, . . . , cr (and not necessarily all of these basis elements.) Each
of the r + 1 basis elements gives rise to an equation which must be zero: The fact
that

∑
aijzij = d(z) = 0 is equivalent to stating that the coefficient of each basis

element in
∑
aijzij must sum to zero. This observation plays a role in the computer

code. Instead of looking for a whole system of coefficients aij which simultaneously
satisfies our conditions for z, the program looks for coefficients one basis element
at a time. First, it searches for which aij actually even appear as coefficients of
cr in

∑
aijzij . Then, it uses the previously mentioned trial and error to look for

a combination of those aij which force the sum of coefficients of cr to be zero.
Once the program has found coefficients that work it fixes those values of aij and
examines which remaining aij appear as coefficients of cr−1. Using trial and error,
the program picks choices for these new coefficients. If the program finds a set
of aij that works for both cr and cr−1 it proceeds in the same fashion to look for
coefficients of cr−2. If it is not able to find coefficients for cr−1 which incorporate the
previous coefficient settings of cr, the program returns to examining cr. It looks for
a new set of aij which ensure that the sum of coefficients of cr is zero and continues
again. The process eventually outputs a full set of aij when it finds a complete set
of coefficients which has been tested against each basis element cr. Then, it repeats
the process with untested settings of aij in order to produce all combinations of aij

which satisfy (3.3).
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