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HIGHER ORDER COHOMOLOGY OPERATIONS AND MINIMAL
ATOMICITY

ROCHELLE PEREIRA
(communicated by Jesper Grodal)

Abstract

We prove that QSp,), Sm{2}, and QQS&) are minimal
atomic spaces for appropriate values of n. We do this by using
secondary and tertiary cohomology operations to prove that,
above the Hurewicz dimension, no elements in the mod 2
homology of the cited spaces are in the image of the Hurewicz
homomorphism. In the case of 228", we construct and exploit
an appropriate filtration to facilitate the use of higher order
cohomology operations. An appendix consisting of an exami-
nation of the coefficients in Adams’ factorization is included.

1. Introduction

In this document, we study minimal atomic spaces, defined here in Section 2, at
the prime 2. Introduced in [HKM] by Hu, Kriz, and May, minimal atomicity is a
natural derivative of the atomicity concept which has been pervasive in the litera-
ture [AK], [BM], [CMN], [HKM], [X]. Baker and May studied minimal atomicity
more extensively in [BM] with an appendix by the author. The authors restricted
themselves to Hurewicz complexes, p-local CW spaces whose first non-trivial homo-
topy group is a cyclic module over Z,). The main result we use from that paper is
its characterization of minimal atomic spaces as those Hurewicz complexes which
have no homotopy detected by mod 2 homology. This criterion is verified by show-
ing that the primitive elements of mod 2 homology fail to be in the image of the
Hurewicz homomorphism.

Baker and May show that minimal atomic spaces are common; they provide a
method for constructing a minimal atomic space from any atomic space. Yet, explicit
examples of minimal atomic spaces are few. (Baker and May do provide explicit
examples of minimal atomic spectra.) We show that the techniques of higher order
cohomology operations can be applied to prove that a space is minimal atomic. This
technique has unearthed a new minimal atomic space, S™{2"}, and reestablished
minimal atomicity of QSE‘Q) and QZS(”2) for certain values of n and 7.

Main Theorem. Let n be a positive integer greater than 1. Higher order cohomology
operations can be defined on the following spaces and used to show that they are
manimal atomic:
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(i) QS("Z), forn #£2,4,8.
(i) S™{2"}, for r > 1 and n # 2° for any s.
(iii) QzSZ’z), form #£2,3,4,5,8,9.

After isolating those primitive elements which could be spherical, we show that
the dual indecomposable elements are in the target of a higher order operation.
Thus, none of these primitive elements are spherical. In most cases, secondary
cohomology operations will suffice, but occasionally we must appeal to tertiary
cohomology operations to do the job.

The organization of this document is as follows. In Section 2, after reviewing some
definitions, we give a proof using Hopf Invariant One of the minimal atomicity of
QS™ for n #1,2,4,8 and outline the essence of the higher cohomology operation
argument. Section 3 lays out the background of the higher order cohomology oper-
ations we use: the Brown-Peterson secondary cohomology operations, Adams’ Hopf
Invariant One secondary cohomology operations, and a tertiary cohomology oper-
ation which is defined using Adams’ factorization of SqQHI. These operations are
used to establish QS(”2 is minimal atomic when n # 1,2,4,8 in Section 4. These
higher order cohomology operation proofs pave the way for an analogous proof that
S™{2"} is minimal atomic in Section 5 as well as an examination of why these meth-
ods seem unable to show that S™{2"} is minimal atomic when n is a power of 2.
In Section 6 a filtration of (225”2 is developed based on the James construction
filtration of QS&). This filtration, along with secondary and tertiary cohomology

operation arguments, shows that QQSZ‘Q) is minimal atomic in Section 7. The docu-
ment ends with an appendix which discusses one computer program to obtain the
aforementioned factorization of S¢2 .

Beginning with Section 2.2, spaces will be localized at the prime 2 unless other-
wise specified, and all homology and cohomology will be taken with Fy coefficients;
n will always denote a positive integer with n £ 1,2, 4, 8 unless otherwise specified.
The notation K (m, m) denotes an Eilenberg-MacLane space, and K (m) denotes the
Eilenberg-MacLane space K(Z/2Z,m).

2. Strategies for proving minimal atomicity

In this section, we review the definitions related to the study of minimal atomicity.
The section which follows covers the main ideas used in employing a higher order
cohomology operations proof of minimal atomicity. The underpinning for all of these
arguments is found in Theorem 2.6, which allows us to assess if a space is minimal
atomic given information about which elements of its homology are spherical.

2.1. Definitions

We recall those definitions which were specified in [BM] that are relevant to this
document. For a fixed prime p, minimal atomic spaces, X, must be p-local CW
spaces in which the attaching maps are based maps whose domains are spheres
localized at the prime p. All spaces X we consider must be simply-connected and
localized at this prime p. The definitions below assume X satisfies these conditions.
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Definition 2.1. Suppose X has the property that X is (ng — 1)-connected, but X
is not ng-connected. The Hurewicz dimension of X is ng. If m,,(X) is a cyclic
module over Z,), X is a Hurewicz complex.

Definition 2.2. Suppose X and Y are Hurewicz complexes with Hurewicz dimen-
sion ng. Let f: Y — X be such that f: m,,(Y) @ Fp, — 7y (X) ® Fp, is an isomor-
phism and all f,: m,(Y) — 7,(X) are monomorphisms. Then f is a monomor-
phism of Hurewicz complexes.

Definition 2.3. Suppose X is a Hurewicz complex with Hurewicz dimension ng.
Further, assume any self-map f: X — X which induces an isomorphism on m,, (X)
is an equivalence. Then X is atomic.

Definition 2.4. Suppose X is atomic. Then X is minimal atomic if any monomor-
phism f:Y — X, with Y an atomic complex, is an equivalence.

Definition 2.5. Suppose X is a Hurewicz complex and the mod p Hurewicz homor-
phism h: m,(X) — H,(X;F,) is zero for all n > ng. Then X has no homotopy
detected by mod p homology.

The main result we use from [BM] is:

Theorem 2.6. X is a minimal atomic space if and only if it is has no homotopy
detected by mod p homology.

2.2. James maps

Before we begin to use higher order cohomology operations, for completeness
we recollect a proof that 5™ is minimal atomic which does not use higher order
cohomology operations. The author is grateful to Fred Cohen for making her aware
of this proof.

We have already alluded to the James construction on X denoted J(X) which
is equivalent to QX X. We label the kth filtration of the James construction by
Jp(X) = X*/ ~ where

(@1, Tt * Tty e, T) ~ (T4, L1, Tty oy Th)-
We utilize the James maps,
hy: J(X) — J(X(@)

where

XD —XxXA---AX.
—_—
q

Fred Cohen has pointed out that manipulating the James-Hopf map hy gives us one
way to finish proving 05" is minimal atomic. Let us denote the primitive elements

q—1

of H,(QS™) by (2,-1)*". Now, hg: Q5™ — Q52" I maps (x,_1)*" to (r2,_2)?" in
homology. If (x,_1)%" is spherical, then so is (I’Qn_Q)QQ71. It follows that x%qfl(nq)
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is spherical. We shall show (x,,)? is not spherical for m # 1,3,7. Then, Theorem
2.6 allows us to conclude that .S™ is minimal atomic for n # 2,4, 8.

For any m, let S -5 QS™+! be the unit of the (%,9Q) adjunction. Then 4, €
H,,(S™) maps to z,, under 7,. Suppose (,,)? is spherical. Then, there exists a non-
trivial map S?™ — Q8™+ such that (z,,)? lies in the image of the map induced by
homology. We may take the adjoint of this map to yield $2™+! — §™+! and we
may loop this map to obtain Q5?™*+! — Q8™+! By taking the cartesian product
of this map with n we obtain

Sm x Q§FmHL  qgmtl x Qg B ggmtl (2.1)

where  is the multiplication map. Then under the composition of maps in (2.1) we
have,

im ® (-7;2771)1 — Tm X (mm)m i (-rm)%—‘rl

and

1® (Tom)" — 1 X (220)% — ()%
We thus have an isomorphism in homology, and the composite of maps in (2.1) is
an equivalence. In particular, S™ is a retract of Q2S™*!. However, a retract X of
an H-space Y is an H-space via the following commutative diagram:

Xx X2 yxy L sy —>x

L

XVX Lsyvy 4>y "= X

N

Thus S must be an H-space and so m = 1,3, 7. Recall that if (z,,_1)?" is spherical,
(qu—l(nfl))2 is spherical. Thus, from above, 297 (n — 1) = 1,3, 7. If ¢ > 2 we obtain
a contradiction, so it must be the case that ¢ =1 and n —1 =1,3,7. Thus the only
possible spherical elements which exist above the Hurewicz dimension for 25™ are
the classes (11)? € Ho(25?), (23)% € Hg(Q25%), and (27)? € H14(Q25%). Looping the
Hopf maps 7: S% — 2, v: ST — 8% and o: S — S7 shows that these elements
are spherical. Thus, 25" is minimal atomic if and only if n # 2,4, 8.

2.3. The higher order cohomology argument

Theorem 2.6 verifies that a space X is minimal atomic if no spherical elements
of H,(X) exist above the Hurewicz dimension. Thus, the first step in the higher
order cohomology argument is to calculate which primitive elements of H,(X) with
dimension above the Hurewicz dimension are annihilated by the Steenrod algebra;
all spherical elements we are interested in must satisfy these properties. We show
that each of these candidates cannot be in the image of the Hurewicz homomorphism
by using higher order cohomology operations and a naturality argument as follows.
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Let a € H;(X) be a spherical candidate with dual indecomposable element
a € HY(X). To show a is not spherical, we will prove there exists 8 € H’(X), with
j # 1, and a higher order cohomology operation ®: H’(X) — H*(X)/Q%(X) such
that

®(B) =a+y#0.

Here v € H*(X) is a decomposable element which is possibly zero, and sz(x) is a

submodule of H*(X) which is possibly zero, in which case ® is defined “with zero
indeterminacy”. Some arguments will attest to the fact that ® is defined on 3 and
X.

For dimensional reasons, ® will be defined on all spheres and will evaluate to zero
with “zero indeterminacy”; in particular, ® will be defined on S?. Now, suppose that
a is spherical. Then, there must exist a non-trivial map

f:8 =X

such that f* maps a to the non-zero element of H*(S%). Since our higher order
cohomology operations are natural with respect to maps, we have the following
commutative diagram:

We see that (f* o ®)(5) = a (modulo zero) while (® o f*)(5) = 0 (modulo zero).
We have a contradiction, and we may conclude that a is not spherical. This basic
argument will appear throughout the document.

3. Three kinds of higher order cohomology operations

We examine the secondary and tertiary cohomology operations which we will uti-
lize. We recall the construction of the Brown-Peterson secondary cohomology oper-
ation which is based on a relation in the Steenrod algebra and prove such an oper-
ation has stable properties. We review Adams’ secondary cohomology operations
®;;, pointing out similarities and differences with the Brown-Peterson operations.
Finally, we construct a tertiary cohomology operation in the manner suggested by
[BP] using Adams’ factorization of S¢g*> ' into secondary cohomology operations.

3.1. Brown-Peterson secondary cohomology operations

Each secondary cohomology operation stems from a relation in the Steenrod
algebra. We recall a particular secondary cohomology operation defined by Brown
and Peterson in [BP].
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Suppose for some fixed m we have a factorization of Steenrod operations

Sq™ = ZSq‘“qui (3.1)

where each Sq%,Sq" has degree greater than 0. Let &, be the fundamental class
of K(m). For each Steenrod operation Sq%, let Sq® : K(m) — K(m + b;) represent

the element Sq% (k,,). Then, define fi: K(m) — HK(m + b;) such that f7 takes

the fundamental classes of [], K(m + b;) to the elements Sq% (k,,). Denote the
homotopy fiber of f; by A;, and let the fibration Ay — K(m) be g;. Let

he [[Em+bi—1) — A

be the map of the fiber of g; into A;. Note that the fundamental classes Ky,4p,—1
transgress to Sq% (k,,) in the Serre spectral sequence of the fibration given by h o g;.
Then, > Sq% (Km4b,—1) transgresses to

2284 Sq" (km) = Sq"™ (km) = K, # 0.
If we loop our fibration, we obtain the new fibration
[]K(m+b; —2) 2 Qa, 2% Kim-1).

The fundamental class K, 1p, 2 transgresses to Sq% (k,,_1) in the Serre spectral
sequence for this fibration. By (3.1), Z Sq% (Kb, +m—2) transgresses to

K2

Z Sq*Sq" (Km—1) = Sq¢™(Km-1) = 0.

Thus, the class Z Sq% (Km+b;—2) survives in the spectral sequence and pulls back

i
to an element of H?>™~2(A;) which we shall call ¢s.
Now, consider the diagram below:

04, — 2 L K(m—2)

lﬂgl
K(m—1) L L K (m + b — 1)

This gives rise to a secondary cohomology operation ® which is defined on
those elements of H™~!(X) which are annihilated by the Sq’. Given such an ele-
ment 7, we abuse notation, thinking of 7 as a map 7: X — K(m — 1) such that
Qf1 o 7 is null-homotopic. We may then choose a lifting 7: X — QA;. Then &(7) is
defined to be the cohomology class represented by ¢o o 7, which is independent of
the lifting when viewed as an element of H*™"2(X)/ @; Sq® (H*™ 2% (X)). Here
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®;Sq% (H*m=27% (X)) is the module of indeterminacy, a sum in a graded vector
space; any two lifts

77177'72: X — QAl
will differ by a composite
X oL Em+b—2) — QA 2 Koy
which represents elements of the aforementioned module of indeterminacy.
Observe the following properties of ®.
(i) @ is natural with respect to maps of spaces.

(ii) For any sphere S!, ®(S!) is zero modulo zero.

(iii) If @ is defined on XX, there is a secondary cohomology operation defined on
X which we denote by c®. The values of ® and o® are related by the evident
commutative diagram via the cohomology suspension.

(iv) @ satisfies the additivity formula, (7 4+ ) = (1) + D(v) + 7.

Remarks 3.1. We shall prove (iii), but first we offer some remarks on the other
observations.

(i) Given f:Y — X such that ® is defined on Y, we see naturality satisfied in
the following diagram, where 7 o f provides the desired lift.

@2

QA

s

v o x T K- 1) e L K (m b — 1)

K(2m —2)

(ii) This follows because of dimensional reasons and the fact that the Steenrod
algebra acts trivially on S’.

(iv) This is proven in [BP] using the observation that ¢o is not primitive.

Now, for any space K, let o;: H'(K) — H*(2K) denote the cohomology sus-
pension, a map which commutes with the Steenrod algebra action. We shall use o;
to help us prove a notion of stability (iii) for these secondary cohomology operations.
In the Serre spectral sequence for the fibration

2
[1 0K +b; —2) 2 024, 22 QR (m - 1),

the element

> 84" (Gitm—3 (Kb, +m—2))
i
transgresses to

> Sq" S (Km—2) = Sq™ (Km—2) = 0.
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Then, ZSq‘” (0itm—3(Kb,+m—2)) survives in the Serre spectral sequence for the

looped fibration. This element pulls back to o, 3(¢2) € H*(2?A;). Observe that
Q¢o: Q%A1 — K(2m — 3) represents this element.

Then, looping the diagram above gives rise to another secondary cohomology
operation, which we shall denote c®,

024, L K(2m —3)
lﬂgl
Q*f

K(m —2) L K (m + b — 2)

We observe that o® is defined for all 7 € H™~2(X) such that S¢% annihilates
7; o® takes values in H*™3(X)/ @; Sq* (H*™ 3% (X)).

Now, suppose ® is defined on an element 7 € H™~1(XX). As above, we abuse
notation and think of 7 as a map 7: ¥X — K(m — 1). So, we have the following
diagram where ¢5 o T represents ®(7),

¢2

QA

]

X — = K(m—1) —[[, K(m+b; — 1)

K(2m —2)

Let n: X — QXX be the canonical map. Then o®, defined on 7 o Q7, is Q¢ 0 QT o
7, as in the diagram below.

024, — 22 QK (@2m—2)

or l

X 1= 0vX — 2% QK (m —1) — [[, QK (m + b, — 1)

Yet ¢o o7 and Q¢y 0 Q07 oy are adjoints of each other. For any space X, let s;:
H*Y(XX) — H'(X) be the suspension homomorphism. Then, modulo indetermi-
nacy, the following diagram commutes.

Sm—2

H™1(SX) 22> gm—2(X)

H2m_2(2X) 5"“3; H2m_3(X)

We shall use this notion of stability. Notice that if ® is defined on H™ 1 (XX),
then o® is defined on H™ 2(X).
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3.2. Adams’ secondary cohomology operations ®;;

In [A], Adams constructs secondary cohomology operations ®;; using minimal
resolutions of Z/27Z over the Steenrod algebra. We briefly look at these operations
using the ideas of Brown and Peterson.

Instead of using an equation of the type of (3.1), ®;; is based on the relation,
discussed in the appendix,

quiSqu + kaSqQQk =0 (3.2)

where i, j are non-negative integers with ¢ < j and 7 4+ 1 # j, fx is a Steenrod oper-
ation, and g < j. As in Section 3.1, we may create a Postnikov system. Given any
m, we let

fre K(m) — [ K (m+2%) x K(m +27)

be such that the fundamental classes on the right are mapped under f; to the
corresponding Steenrod operation

Sq2* (km) or Sq% (Km)-
We let A; be the homotopy fiber, denoting the fibration 4; — K(m) by g1. Let
h: [, K(m+29% —1) x K(m+2/ —1) — A;
be the map of the fiber of g; into A;. We notice that the element

3 fi(Fma2o—1) + 5S¢ (Kppoi 1)
transgresses to 0, and thus must pull back to an element ¢;; of H*(A;) in the Serre
spectral sequence for g;. Hence, we obtain the following diagram without looping:

Pij . .
Al ——————= K(m+2+2 - 1)

lgl

K(m) —2= [ K (m +29%) x K (m + 2/)

As in Section 3.1, this diagram gives rise to a secondary cohomology operation
which we denote ®;;. The fact that we need not loop the diagram gives rise to a
stability property of ®;;. This also gives rise to the result that ¢;; is primitive,
yielding a nice additivity formula for ®;;. We summarize some properties of this
operation:

(i) @;; is natural with respect to maps of spaces.
(ii) For any sphere S', ®;;(S") is zero modulo zero.
(iii) ®,; is a stable operation: ®;; is defined on X if and only if ®;; is defined
on XX, and the results are related in the obvious way via the cohomology
suspension.

(iv) ®,; satisfies the additivity formula, ®;;(7 4+ 7) = ®;;(7) + P4;(7)-
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3.3. Constructing a tertiary cohomology operation
This tertiary operation is based on a relation between the stable secondary coho-
mology operations ®;; that Adams develops in [A]. There, he proves the relation,

S ()= Y ai®i(r) (3.3)
i< it14]
for 7 such that S¢" (1) = 0 for 0 < s < r where a;; are elements of the mod 2 Steen-
rod algebra. Let S¢*: K(27T1) — K (27! + i) represent the element, Sq*(gr+1). To
create ¥, we look at the map

A K@) - [ K@ +29)

o<s<r

such that

(fl)*("f27‘+1+28) = Sq2s(’€27*+1)-

Denote the homotopy fiber of f; by A; and the map A; — K(2"+!) by g;. Applying
the Serre spectral sequence in cohomology to the fibration,

II K@ +2°—1)— A, - K@)

0<s<r

yields that the fundamental classes of the fiber, Kor+149s_1, transgress to Sq* (kori1)
where Kor1 is the fundamental class of the base. Examining the spectral sequence
shows that kgr+1 survives to Fo, and corresponds to the element (g1)*(f£2-+1). Fur-
thermore, there are no elements of H*(A;) with dimension between 2"+ and 272,
For 0 < s < 7, it must be the case that Sq¢? ((g1)* (kgr+1)) = 0 in H*(A;). This con-
dition allows us to define ®;;((g1)*(ka+1) with zero indeterminacy. Representing
these elements is a map fo: A; — H K(2' +27 —1+2""1) as the degree of
1<, i+1#]

(I)ij is Qi +2j — 1.

We define the homotopy fiber of fa to be As where Ay — A; is denoted gs.
Examining the cohomology Serre spectral sequence of

H K242 —1+4+2H —1) = 4, — 4
1,14
shows that v;; transgresses to ®;;((g1)*(kar+1)), where v;; is the fundamental class
of K(2¢ +27 —1+ 27Tt —1). Inspired by (3.1) we compute Z a;;(vi;) which
i<y, i4+1#£5

transgresses to Sq2 ((g1)* (kar+1)) = ((g1)* (Kgr+1))2 # 0.

We loop the maps f1, f2, g1, g2 which provides us with a new set of fibrations, in
particular,

[ K@ +2 —142" —2) - Q4, — QA;.
i<, i#]
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We use v;; to denote the fundamental classes in the fiber. Similar to above, we com-
pute Z a;;(7;;) which transgresses to S ((g1)* (Kgr+1 — 1)) = 0 for dimen-
i< it 175
sional reasons. Thus, Z a;;(7;;) must pull back to an element of H 2T+2_2(QA2)
i<g,i+1#]
which we denote 3. We consider the following diagram to better understand how
to construct our tertiary operation:

®3

QA K(2r+2 — 2) (3.4)
Qg2
oA, [I Eet+2+2 -2
i<git1#£]
Qg1
g o2 [ K@ 2o

o<s<r

This 1diagram defines the tertiary operation W, which is defined on elements of

H? "' =1(X) with a trivial action under ;.

We list the properties of ¥ followed by an in-depth discussion of the last two
properties.
(i) W is natural with respect to maps of spaces.

(ii) For any sphere S!, ¥(S') is zero modulo zero.

(iii) If W is defined on XX, there is a tertiary cohomology operation defined on X
which we denote by oW. The values of ¥ and oW are related by the evident
commutative diagram via the cohomology suspension.

(iv) U satisfies the additivity formula, U(7 4+ ) = U(7) + U(y) + 7.

3.3.1. Stability of ¥
Similar to our previously developed oc®, we can construct cW¥ with the property
that for spaces XX in which oW is defined, we have, modulo indeterminacy,

Sor+1_o

H>"HEX) — HY (X)) (3.5)

l@ lz@
Y2 (mx) TS s (x)
In (3.4), the bottom square corresponds to the construction for ®;;, which Adams
has already proved is a stable operation. Thus, if we loop (3.4) the bottom square

still corresponds to the construction of ®;;. In the Serre spectral sequence of the
fibration

] ar@ +2 —1+27" —2) - Q%4, - 04y,
i<jiti
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the element Z a;j(0T;;) transgresses to Sq2 " ((g1)*(0kgrer — 1)) = 0. Thus,
i< i1

Z a;;(0v;7) must pull back to o3 € H2""=3(QA,,F,), which is represented
i< it 14
by Q3: QA; — K (2772 — 3). The resulting diagram results in a tertiary operation
which we denote oW.

Suppose V¥ is defined on an element 7: ¥X — K (2" — 1) so that lifts 7: X —
QA; and 7: X — QA exist. Then o¥ is defined on the element Q7 on, where
n: X — QXX is the canonical map. The relevant lifts Q7 o 5 and Q7 o n exist, and
in particular, Q7 o7 is the adjoint of 7. It follows that our desired diagram (3.5)
exists.

3.3.2.  An additivity formula for ¥
Similar to the proof of the additivity formula of ® in [BP], we must show that ¢
is not primitive; we use the following result from [W, p. 383],

Lemma 3.2. IfQK is (n — 1)-connected, then the module of primitives of H* (QK)
contained in H'(QK) is equal to the image of oy as long as | < 3n — 1.

To apply Lemma 3.2, we compute the connectivity of QAs. First, by looking at
the long exact sequence of homotopy groups derived from

I[I K@ +2 —1) - 4 — K2,

0<k<Lr

we see the connectivity of A; is 2"+! — 1. Examining the long exact sequence

of homotopy groups for H K@ 420 +27 —1) — Ay — A; gives that the
i< it1#]

connectivity of A, is also 2"T! — 1; thus, the connectivity of QA, is 27! — 2. Since

r > 3,

2rt2 —2 < 3(27 ) — 1.

By Lemma 3.2 it follows that ¢3 is primitive if and only if ¢3 = oar+2_5 (1)) for some
P E H2¢+2_1(A2). We assume v exists and show that

h*(w) = Z Aj5Vi5.

i<gyit1#]

Then, h*(¢) transgresses to zero in the spectral sequence induced by the fibration

H K@ 420 427 — 1) A As — Aq. However, we have seen Z @i Vij
i< it 1] i< it 1%
transgresses to Sq2 " ((g1)* (kar+1)) = ((g1)* (kgr+1))2 # 0. This gives us the desired
contradiction, and hence, ¢3 is not primitive.
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We assume 9 exists. Then,

oar2_o[(R)"(¥)] = ()" (02r+2-1(¥))
= (Qh)"(¢3)
= Y ai(my)
i<G it 1%

= Ogr+2_9] Z aij (vig)]-

i< it 12

We show Z a;;(T;;) is the only pre-image of ogrt2_of Z a;j(vi;)] under
i< it 1] i< it 1#]
ooriaor HY TN [ K@ 427 4274 —2) —
1<j,i4+1#£7
H2T+272( H K(zi + 2j + 2r+1 _ 3))
<Gt

The Hurewicz dimension of the Eilenberg MacLane spaces in the product,

[T E@+2 42t -2
i< it 1]
. . . r+2_ . .
is at least 2", when i = j = 0. Then, H* " 1([,¢; ;112; K (2" +27 + 271! - 2))
contains no decomposables, and S0 0gr+2_5 is a monomorphism. It must be the case

that h*(y)) = Z a;;v;j, and we obtain the desired contradiction. We have
i< it 14]
established that QA5 is (27! — 2)-connected. By the Kiinneth Theorem,
H? 7 72(QA; x QA,) =
H?72(QA) @ HY 7' ~1(QA,) @ H¥ ' ~1(QAs) & H2 7 —2(QA,).
. . 2
Recall that we have a fibration, H K2 420 + 27 - 3) L QA g2 QA;.

i<, i#]
Examining the Serre spectral sequence applied to this fibration, we see that

(€2g2)" (291)" (kr+1-1) @ (292)"(Q291)" (K2r+1-1)

is the only non-trivial element of H2T+1’1(QA2) ® H2T+1*1(QA2). Define v: QA5 x
QAy — QA5 to be the loop multiplication map. Thus, since ¢3 is not primitive,

v*(¢3) = ¢3 @ 14 (Q92)*(291)* (Rar+1-1) @ (292)*(291)* (kar+1-1) + 1 ® ¢3.

Let X be a space such that there exist 7,7 € ngﬂ_l(X, Fy) such that U is defined
for 7 and . Consider the maps that represent these elements

i X - K2t —1)

and
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v: X — K2t —1).

By assumption, it must be the case that Sq2’c acts trivally on 7 and v for 0 < k < r,
so we may find lifts 7,7: X — QA;. Again, by assumption, Adams’ ®;; are defined
and zero on these elements, so we have lifts 7,7: X — QAs. Let A: X — X x X be
the diagonal map, and p: QK (2"t — 1) x QK (2" — 1) — QK (2" — 1) be the
multiplication map. Now,

Qg1 0Qga0vo (FxF) oA =po(rxq)ol
=7+7.

So, vo (T x7)oA is a lift of 7+~ under the map Qg; o Qgo as well as a lift of
vo (T+7) oA through Qgs. The map v o (T4 7) o A, itself, is a lift of 7 + + under
Qg1. So modulo the indeterminacy of ¥, we have

U(T+7) = (vo (T x7) o) ps
=TxFoA)(p3R01+ERE+1® ¢3)
= U(r) +¥(y) + 77,

where § = (Q2g2)"(Qg1)" (K2r+1-1).

4. Showing (15" is minimal atomic

We show for positive integers n > 1 that Q5™ is minimal atomic for n # 2,4, 8
by means of secondary and tertiary cohomology operations. These arguments will
show in detail how certain cohomology classes are tied together. We first determine
the spherical candidates of 2.5™ and show that above the Hurewicz dimension, these
candidates are in the target of a higher order cohomology operation.

4.1. Spherical candidates of Q25"

To determine which elements of H,(£25™) are primitive and annihilated by the
Steenrod algebra, we note that the Steenrod operations on QS™ are trivial. Dis-
cussed in [S, p. 85], the James construction applied to S?~1, J(S"~1), is homotopy
equivalent to QXS ! = QS™. Using the splitting property of the suspension of the

o0

James construction, we have XQXS" ! = \/ £5%(=1) "Since the Steenrod oper-
k=1

ations on £S%(™=1) are trivial, we deduce that the Steenrod operations are trivial

on XS™ and thus, on 25™. So, all of the primitive elements above the Hurewicz

homomorphism could conceivably lie in the image of the mod 2 Hurewicz homo-

morphism.

Computations with the Serre spectral sequence on the path fibration Q5™ —
PS™ — S™ allow us to conclude that H*(25™) = I'|a,—1] as a Hopf algebra. Alter-
natively, as an algebra, H*(Q25") = ®P[’yzk (an—1)]/(72x (@n_1))?%; the binomial

k>0
coefficients appearing in the multiplication of the divided polynomial algebra reduce
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to give Ta,—1] = ®P[’72k (n—1)]/(yar (an_1))?. Also, observe that only one ele-
k>0

ment exists in dimension 2¥(n — 1), namely 7k (o, _1). If there were another element

of dimension 2¥(n — 1), such an element would be a product of distinct generators

~oi (1) with ¢ < k. However, the largest degree achieved by elements of this form
k—1

H Yoi (@t —1)
i=0
the dual element to yor (@wn—1).

is28(n—1) - 1= . We will use this fact later. Let ax € H.(Q2S™) be

4.2. n#£2H!

When n # 271, Sq¢™ has a factorization in the Steenrod algebra. This factoriza-
tion, along with factorizations of SqQk("_l) for k > 1, will be utilized to construct
Brown-Peterson secondary cohomology operations necessary to show S™ is mini-
mal atomic. Now, to apply these operations to (25" we must specify examples of our
secondary cohomology operations ®. Set n = 2" + a where 2" is the largest power
of 2 which appears in the binary representation of n. For now, we suppose that n is
not a power of 2 so that 0 < a < 2". By taking the binary representations of 2" — 1

- 1) = 1 mod 2: Recall the calculation

()-0)=

where iy is the kth term in the binary representation of ¢ and similarly for j,. The
binary representation of 2" — 1 consists of r uninterrupted 1’s; the binary represen-

2
and a, we see that <
a

2m —1
tation of a is at most r digits long. Applying the result above yields ( > =1.
a

Using the Adem relations, where the binomial coefficients are taken mod 2, gives

. 2 —c—1
Sq"Sq® = Sq"+ Y < ‘ >Sq"CSqC.

= a—2c
Then,
Sq" = Sq*Sq* + Z 2 el Sq"Sq¢° (4.1)
ceS a—2c ’

2" —c—1
@ %0 )#Omon}.

As we have seen, this relation gives rise to a secondary cohomology operation
®, which acts on elements of H"~1(QS5™) that vanish under Sq¢™ and Sq¢ for c € S
above, and takes values in H*"~2(QS™)/Sq"H*"~?~*(QS™) @ @ H*"727¢(Q8™).

ceS
Furthermore, we know that ®o(7 +v) = ®o(7) + Po(y) + 7y where Pq is defined
on 7 and 7.

We have the loop multiplication map w: Q5™ x Q5™ — QS5™. We note that since

the Steenrod operations on H*(Q2S™) are trivial, ®o(v1(an—1)) is defined with zero

WhereS:{c2c<aand<
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indeterminacy. Then the Steenrod operations on H*(QS5™ x .5™) are trivial, so ®
is defined on H*(25™ x QS™) with zero indeterminacy. Then,

WP (v1(an_1)) = Po(w* (11 (an_1)))
= ®o(vi(an_1) @1+ 1@y (ap-1))
= Qo(71(n-1)) ® 1+ 1@ Po(71(n-1)) +
Y1(n-1) ® y1(n-1).

Since v1(an—1) ® 11(n—1) # 0, we have that w*(Po(v1(an—1)) is non-zero. Then,
®o(y1(an_1)) is non-zero on H™~1)(QS"). For dimensional reasons, it must then
be the case that

Do(v1(an-1)) = v2(an-1).

Following Section 2.3, it must be the case that a; is not spherical.

We offer here a proof strictly using secondary cohomology operations to show
that the remaining ag41 (with k& > 0) are also not spherical. In addition to showing
that some elements of H*(Q2S™) are related by secondary cohomology operations
the results of this argument will be useful when we look at 2S™.

Consider the Adem relation, where k > 1:

2%(n—1)—1

Sq'Sg¥ (1 = < :

)quk(n1)+1 _ ngk(n71)+1.

This yields,

SqQk(n—1)+1 _ S(]lSQQk(n_l). (42)
Let us call the secondary cohomology operations which stem from this relation ®.
So, @, will act on elements of H2 (=1 (X) which vanish under S (=1, and will
take values in H2k+1(”_1)(X)/Sql(H2k+1("_1)(X)). Since the Steenrod operations

act trivially on QS™ | @, is defined on H2" ("=1)(Q$") with no indeterminacy. To
show that @ is non-zero, we use the following result from [Z].

Lemma 4.1. Let X and Y be CW complexes. Suppose z =, 7, ®v; € H™(X x
Y') is in the domain of @) with ||, |v:| > 0. Let p(T) and p(7y) be the algebras over
the Steenrod algebra generated by the 7;’s and ~y;’s respectively. Then,

Bi(2) N [p(7) @ H*(Y) + H*(X) @ p(7)] # 0.

In order to apply this result, we study the action of ®; on Q5™ x QS™. Again,
the Steenrod operations act trivially on QS™ x QS™; so, @ is defined with zero
indeterminacy on H2" =1 (QS™ x QS™). Recall that

w(vor(an—1)) = [1 ® Yar (an—1)] + [var (@n—1) @ 1] + [>2; 7 @ 4]

where 2(n — 1) > |7, || > 0. Let z, p(7), p(y) be as in the statement of Lemma
4.1. We observe that vyor (an—1) € p(7), p(7y) since Yok (a—1) is an indecomposable
element of H*(25™). Then,
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Yar(@n—1) @ Yor (an-1) & [p(7) © H*(QS™) + H*(25™) © p(7)]-

Certainly z lies in the domain of ®j. Because there is no indeterminacy, ®(z) is a
singleton set, rather than a coset. So, applying Lemma 4.1, we have

Dx(2) € [p(7) ® H*(Q5™) + H*(25") ® p(v)]-
S0, Yor (n—1) @ Yar (n—1) is not a summand of ®(z). Further,

Yor (On—1) @ yor (an—1)
is not a summand of
(yor(an—1) ® 1+ 1® yor(an-1))2
since Yor (v, —1) is indecomposable and z = Y. 7; ® y; with |7, [v;| > 0. We evaluate

w* g (yar (an-1)) = Pr(w”(Y2r (n-1)))
= Py (y2r (n-1) ® 1 + 1 ® Yor (1) + 2).

By utilizing the the Additivity Formula, this expression evaluates to

Pr(y2r(n-1)) ® 1+ 1@ Pr(yar (n-1)) + Yor (@n—1) ® Yar (n—1) + Pr(2) +
(Yor(ap—1) @ 1 + 1 @ yor(ap—1))2

From our observations above, we note that ~or (a,—1) ® Yor (ap—1) does not cancel
out. Hence,

w* P (Yor (an-1)) # 0.
Then, @y (yor (n—1)) # 0 and for dimensional reasons, it must be the case that

Py (yar (n—1)) = Yar+1 (an—1). (4.3)

As demonstrated in Section 2.3, we may conclude that a1 is not spherical. Thus,
we have shown for all £ > 0, ag41 is not spherical. So, 5™ is minimal atomic for n
not a power of 2.

4.3. n=2""forr>3

Our method is similar to that above. To show a1 is not spherical for each
k > 0, we exhibit a cohomology operation whose image hits yor+1(,—1). Happily,
our previous argument goes through in the case k > 1. The previously established ®y,
have the property that @ (vor (ap—1)) = Yor+1(@n—1). So, we still must show that a;
is not spherical. To show that a; is not spherical, we show that the tertiary operation
U, constructed in Subsection 3.3 has the property that ¥(yi(an—1)) = Y2(n-1)-

Let us evaluate ¥ on the element, v;(a,—1) € H"1(QS™). To show that ¥
acts on 71 (a,—1), we first recall that the Steenrod operations act trivally on 25™.
Thus, if 71 (a,—1) is represented by a map 7: QS™ — K (277! — 1), we have a lift
7: Q8™ — QA;. The composite §2 f5 o T represents the product of cohomology classes

oo

H ®,;(7). Recall that £25™ is homotopy equivalent to \/ 5Hn=1 _We know
i<Gi+1#] =t
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that ®;; is trivial on Si =1 for § > 1, so ®;; is trivial on X€2S™. Because ®;; is
a stable cohomology operation, we have that ®;; is zero on QS™. Thus, ®;;(7) is
zero with zero indeterminacy, and we have the essential lift 7: QS™ — QA,. That
is, W(7) is defined.

Appealing to Section 4.2, with ¥ replaced by ®g, we see that ¥(vq(ay—1)) is
non-zero. For dimensional reasons, we have

U(y1(an-1)) = y2(an-1).

Thus, as outlined in Section 2.3, a1, the dual element of 2 (v, —1 ), cannot be spherical.

We have shown that no spherical elements of (25" exist above the Hurewicz
dimension. Thus, 2S™ is minimal atomic for n = 2"+! where r > 3. In summary,
we have shown that 5™ is minimal atomic for n where n # 2"+! for r < 3.

5. Showing S"{2"} for r > 1 is minimal atomic

We show that S™{2"} is minimal atomic when n is not a power of 2. When
n is a power of 2 with n # 1,2,4,8, we are not able to prove S™{2"} is minimal
atomic, but we carry out an examination using higher order cohomology operations
and illustrate what is lacking to carry out a complete proof. Here, our spaces are
automatically 2-local by inspection of homotopy groups.

Recall that S™{2"} is defined to be the homotopy fiber of the degree 2" map
f: 8™ — 8" A long exact sequence of homotopy groups arises:

o 1 (™) B g (S7) — M (S7{27)) — m(S™) B (S7) — -

By examining the cases when k < n — 1, we see that S™{2"} is (n — 2) connected
with 7(,,—1)(S"{2"}) = Z/2"7Z. This shows that S™{2"} is a Hurewicz complex. We
see that m,(S™{2"}) = mp4+1(S™) /2" w41 (S™) for k = n. Since m,41(S™) =Z/2Z,
we have that 7, (S"{2"}) = Z/2Z. Now 74, _1(S*") is a direct sum of Z and a finite
group. Otherwise, m,(S™) is finite if ¢ > n. These facts allow us to deduce that
7 (S™{2"}) is composed strictly of 2-groups.

5.1. Spherical candidates of S™{2"}
Computations with the Serre spectral sequence on the induced fibration Q5" —
S™{2"} — S™ allow us to conclude that

H*(8"{2"},F2) = Plyar (an-1)]/ (72+ (an-1))* @ E[B]

with trivial Steenrod operation action. So, the primitive elements of S™{2"} are
the duals of the elements vyr (a,—1) and G, which we shall label af and b,,. Since
the image of the Hurewicz homomorphism is contained in the primitive elements
of S™{2"}, we must show for k > 0 that ap41 and b,, are not spherical. First, we
examine b,,.

If b, is spherical, there exists a non-trivial map j: S™ — S™{2"} which induces
an isomorphism in mod 2 homology. By naturality, we have the following diagram:
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H,(S") —L> H,(57{27})

O 4

H, (S 1) == H,1(S™{2"})

where (3" is the rth Bockstein operator. Now, " o j, hits the element 7 (c,—1)
while j, o §7 is trivial. We have a contradiction, and so b,, cannot be spherical.

5.2. n#2"T!

Now, if n is not a power of 2, our proof of the minimal atomicity of 25" applies
exactly with QS™ replaced by S™{2"}. Since the Steenrod operations on S™{2"}
are trivial, we may use the same secondary cohomology operations, ®; for k > 0 to
show that the ag,1 are not spherical.

53. n=2"t!for r >3

If n = 2" for some r with n # 1,2, 4, 8 we will see that modelling the proof for Q5™
has a stumbling block. As before, for £ > 1, the secondary cohomology operations
®, show that agy1 is not spherical. So, we still have some work to do to show that
a1 is not spherical. Fred Cohen has also pointed out that an analogous James-Hopf
map S"{2"} — §2" 12"} exists which can be used inductively to show that the
minimal atomicity of S™{2"} reduces to the problem of whether a; is spherical.

If we try to apply our tertiary operation, ¥, to v1(,—1) we must check that the
®,; are zero on 7y, (a,—1). We observe that the ®,; are defined on S™{2"} since the
Steenrod operations act trivially on S™{2"}. Recall that 4, j < r — 1 and

1 (i (an_1))| =20 427 427 —2> 2" — 1.

The largest value for 2¢ + 27 4+ 2" — 2 is 2"+ — 2 = |y5(ay,_1)|- Based solely on
degree considerations, then, it is possible that ®,_1 ,_1(71(an—1)) is not zero since
it might take on the value v2(a,—1). Other potential values of ®;;(v1(c,—1)) are
On and By (an—1) . By evaluating degrees, we see that it is possible that

Bn = Po,0(71(an-1))-
On the other hand,
Bavi(an—1) # Pij(71(an-1)).
So, to apply the tertiary cohomology argument, we must show
D, _1,—1(m(an—1)) # v2(an-1)
and
Do0(71(n-1)) # Bn-

However, if it is the case that ®,_1,_1(y1(an-1)) = v2(@n—1), then we can show
S™{2"} is minimal atomic without resorting to tertiary cohomology operations
arguments. We simply apply the Section 2.3 argument using ®,_; ,_;. Hence, if
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D1 p—1(71(n—1)) = Y2(cp—1) we have shown that S™{2"} is minimal atomic.
Otherwise, if ®,_1,_1(71(an-1)) # V2(@n—1), it must be the case that
®,_1 r—1(71(an—1)) = 0. In this scenario, we are able to show that S™{2"} is mini-
mal atomic only if ®g o(71(n—1)) # Bn. Then @¢ o(y1(an-1)) =0, and we will be
able to use our previous tertiary operation argument.

6. A filtration of Q25"

The James construction provides a filtration of €25™. We shall use this to build
a filtration of Q2S™ with nice properties. Later, we will use this filtration to study
the minimal atomicity of Q2S™ when n is even.

6.1. The cohomology of F},

Recall that the James construction, J(S™~1), is the free monoid on S"~! with
basepoint the identity. Then, the kth-filtration, J;(S™ 1) is the subspace of words of
length at most k. Abbreviating Ji,(S"~!) by Fj, we have colim Fy, ~ J(S"1). We
recall since S"~! is a connected CW-complex that J(S" 1) ~ QXS Further-
more, Fy/Fp_1 ~ Gk(n=1) Now, the cofibration Fj — Fj+1 induces a long exact
sequence in homology,

s Ho(Fro1) = Ho(Fy) = Ho(SH07D) — -
Using the fact that F} ~ S™"~!, we may proceed inductively to show

~ 7./27, if x =i(n—1) for 1 <i<k;
H*(Fk):{/ (n—1)

0, otherwise

and
H,(Fy_1) — H,(Fy) is a monomorphism.

In this case, H,(Fj_1) — H.(QS™) is a monomorphism of coalgebras, and thus
H*(QS™) — H*(F},) is an epimorphism of algebras.

By taking the vector space dual of the computation of fL(Fk) above, we see
there is one generator of H*(Fyr_,) in dimensions i(n — 1) for 0 < i < 2% — 1. These
generators can be identified with v;(a,_1) € H"~D(QS™) for 0 < i < 2¥ — 1. Thus,

H*(Fye_y) = Elyi(an-1),72(an-1), -, Yar-1(n_1)].

We observe that H*(Fyx_;) inherits the Steenrod algebra structure of H*(25™)
via the map H*(QS™) — H*(Fyx_1). Thus, the Steenrod operations act trivially on
IT[”< (FQk_l).

6.2. The cohomology of Y
Let Y; be the homotopy fiber of For_; — Fort1_;.

Proposition 6.1. H*(Yy) = Llo72r(qa, )]
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We prove Proposition 6.1 using the Eilenberg—Moore spectral sequence.
y(H" (Fyr_y), Z/21)

= Tor By, (an 1)o7k (an )] (E[V1 (1), o, Yor—1 (an—1)], Z/2Z)
By the Change of Rings Theorem from [Mc], we have

E2 = TOI‘H*(

Fort1_4

Torrgs(R,Z/2Z) = Tors(Z/2Z,7./2Z).
Applied here, we have
TOr By, (an—1) -1t (@n—1)]@ Elrgi (1)) (B2 (A0 1), -+ y28-1 (an 1)), Z/2Z)
evaluates to
Torgls,, (an_1))(Z/2Z, Z/2Z) = Tloyar (an_1)]-

Inspection shows that there are no dimensional candidates for non-trivial differen-
tials on these generators, so Fs = Eoo.

We may conclude that modulo extensions, H* (Y} ) =T[oy2x (a—1)]. Let us denote
0ok (ap—1) by (. To show that as an algebra H*(Y}) = I'[(x], we examine the Serre
cohomology spectral sequence applied to Yy, — Fyx_; — For+1_1. Dimensionally, for
each 7;((x) there must be a differential d,. such that

dr (7i(Ck)) = Yi-1(Ck) @ Yar (1)
An inductive proof on m shows that
Yi(Ce) 75 (Ce) = () vis (G)
where i + j = m. We assume that for all i + j = m — 1,
Vi) -1 (Ce) = () vig5 (G-
Given 4, j such that ¢ + j = m, using the Leibniz rule, we have

dr (i (Cr) =75 (Ck)) = Yie1(Ck) - 75 (Ch) @ Yor(Qn—1) +
Yi(Cr) - Vi—1(Ck) © vor (A1)

= <mj 1) Ym—1(Ck) ® Yor (Qn—1) +

(?:f) Ym—1(Ck) ® Yor (n—1)
= (l —l— j) Yitj—1(Ck) ® Yok (n—1).
It must be the case that
Vi) i () = () vig5 (G
since d, takes the same value on both. Then, H*(Y},) is a divided polynomial algebra
on (k.
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6.3. The cohomology of Gy,
We denote G, = QF5_;.

k—1
Proposition 6.2. H*(Gy) = ®F[/\i] where |\;| = 2(n — 1) — 1.
=0

We show Proposition 6.2 by dualizing H,.(Gy) = Pllg,...,lx—1]. This homology
computation can be proved by induction by utilizing the following Proposition:

Proposition 6.3. In a spectral sequence of coalgebras, given the smallest r such that
d" # 0, it must be the case that for the smallest degree element x with d"(x) # 0,
d"(x) must be primitive.

Then, by dualizing, we have that as vector spaces H*(Gy) =T'[(lo)*, (I1)*, ...,
(lx—1)*]. Consider the cohomology Serre spectral sequence applied to the fibration
Gr_1 — Gy — Yi_1. As vector spaces

Ey = H*(Gr-1) @ H*(Yy—1)

= R T\i] ® T'[¢k-1]-

%

S
(V)

I
o

But, the spectral sequence converges to the cohomology of H*(Gy) and E5 agrees
with the cohomology of H*(G},) as a vector space. Then, Fy = Eo,. We may identify
Cr—1 with A1 under H,(Gy) — H.(Yr_1) and so, we have a splitting of algebras,

H*(Gr) = H(Gi—1) @ H* (Yy—1), (6.1)
that is,
k—1
H*(Gy) = Q) T[\].
=0

Now, A\;_1 is an indecomposable element. So, it is the dual of a primitive element of
H,.(G}). The only possibility is that (Ix—1)* = Ax—1, and so H,(G}y) is primitively
generated by the permanent cycles I;. We have the desired results. We see from
above that H,(Gj_1) — H.(Gy). Then,

H.(Gg) — H.(Q28") is a monomorphism of Hopf algebras
so that we may identify [; with r;. Then,

H*(9Q2S™) — H*(Gy) is an epimorphism of Hopf algebras.

We identify v, (p;) with v;(A;). Thus, H*(G},) inherits the Steenrod algebra structure
of H*(22S™) via the map H*(Q25") — H*(Gy).
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6.4. The equivalence of Y, with 052" (1)

Note that H*(Yy) ~ H*(QSzk(”’l)). In fact, we will show Y}, ~ Q52" (»=1)_ Our
first aim will be to show that a map between 052" (=1 and Y. exists. To accom-
plish this consider the diagram below where the top horizontal map is the defining
fibration for Yy, the bottom horizontal map is a standard path fibration, and the
middle vertical arrow is the constant map,

Y, ———— For_q —— For+1_q . (6.2)
| I
| i I
\ Y
QSzk(nq) * S2k(n71)

We show that the vertical right arrow exists, thereby giving the existence of a left
vertical arrow which makes the whole diagram commute up to homotopy.

Now, it is known that F} is a CW complex which is a subcomplex of Fj11. We
recall an explicit description of the cofibration Fy, — F, ;. Since S~ 1~ pn~1/gn=2,
we have the collapsing map, D"~! — S"~!. By taking Cartesian products, we have
(Dr=h)k+l 5 (§n=1)k+L Given x € (D" 1)**1 2 may be thought of as a word in
D"~1 with k + 1 letters, while the boundary of (D™"~1)*+1 consists of those words
in which at least one letter lies on the boundary of D" !. So, we have a map,
A(D" Nk — By But (D) ~ DD+ 56 we have S—DH+D-1 B
Then, Fj41 is the pushout of the following diagram,

S(n—l)(k+1)—1 - D(n—l)(k+1)

| |

Fyp ———————Fin

Suppose we have a map f: Fr — X. A sufficient condition for fj to extend to
fra1: Fep1 — X is that fi olp: S—DE+D=1 _ X is null-homotopic. If so, there
exists a homotopy H: S~D(k+D=1 w1 F from fj ol to the constant base-
point map. Then H induces a map, D"~ D*+1) _ X and by the pushout property,
a map fr41 exists with the desired properties. We apply this principle multiple
times to obtain the vertical map Forr1_; — S2° =1 in (6.2).

Observe that there exists a map For — 52" ("=1) which maps the word 2,2 - - - Tok
to 2y Ao A -+ A Zok, where z; € S, and we use (7 1)) ~ §7( =D Let for
denote this map, For — S2°("=1): the composite For_; — Fyr T2 62" (n=1) i trivial
(as Fye_q is mapped to the basepoint). We show that extensions for y1,..., for+1_1
exist as in the diagram below,

FQk,l FQI« F2k+1 —_— *zekJrl,l . (63)
J{O fok /fzkﬂ/ R PYE -
- _ -7

52 (n—1) =

Based on our study of extensions above, for 2¥ 41 <4 < 2¥*! — 1, to show the
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existence of f;, we must examine
fi-iolis1 € W(nfl)iq(SQk("_l))-
By the Freudenthal suspension theorem[M, p. 83], we know that when
(n—1)i—1<2(2%(n—-1)) -1,
we have an isomorphism
D 77(7171)1'71(52,6("_1)) - W(nfl)i(SZk(n_l)Jrl)-
Since n > 1,
(n—1)yi—-1<(n—1)- 2 -1)-1
=202"(n—-1) - (n—-1)-1
<2(2*(n—-1)) - 1.
So we are in the range where X: W(n_l)i_l(SQk("’l)) — W(n_l)i(SQk("’l)*l) is an

. . . . k —
isomorphism. Because we are interested in fri;0lgs; € W(n_l)i_l(SQ (n 1))7 we

may investigate the corresponding element in ﬂ(n,l)i(Sgk("_l)“‘l). To do this, we
look at what happens to our extension problem when we apply the suspension to
our spaces and maps. Consider the diagram,

2F2k—1 _— EFQK _— EF2k+1 e ﬁ- EF2k+1_1 .

— —

lo Sl Sfokiy _ShkrioT
P -

252k(n—1) =

However, for all positive j,

SF; ~ \]/ D (st mho),
=1

In particular ¥ for_;: SFye_; — §2" =D+ ig the identity on S2" ("~D+1 and maps
all other points in the domain to the basepoint. It is clear that the extensions 3 for 1 ;
exist. Similar to X for, X for . ; is the identity on 52" (n=1+1 and maps all other points
in the domain to the basepoint. So, we have

2k_1 2k ok+1_1

\/ Si(nfl)Jrl S \/ Si(n71)+1 - - \/ Si(n71)+1 . (64)
i=1 i=1 i=1

SZk(n—l)-‘rl

Recall that I, : S~DE+D)=1 _ [ g the attaching map for F41 in its CW decom-
position. Then, Xl is the attaching map for X Fj, 1. We consider the diagram below,
where the square is a pushout diagram,
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Gn—1)(k+1) — > p(n—1)(k+1)+1

-

YFp ————— YXF

b
l fr ST
X
Since the extension X fi 11 exists, we can show that the composite X f;, o 3l must be

null-homotopic. We have the composite a: D*=Dk+D . wpy gia X. But,

D=1+ -1 ig ygt 0§D+ This gives a homotopy from the constant map
to the restriction of « to the boundary. This restriction is the map X f, o Xlj. Thus,
Y fr 0 Xl € T(n—1)(k+1)(X) corresponds to the zero element.

Applying these ideas to the extensions that exist in (6.4) yields that for 2% 41 <
i < ok+1 _ 1,

Y 10%fi_1=0¢ ﬂ(n_l)i(SZk(nflm).

Yet because we are in the range where the Freudenthal suspension is an isomor-
phism, we have that

liciofica=0¢€ w(n,l)iﬂ(sﬂ(n—l)).
This shows that for 28 +1 < < 281 — 1, f; exists, and hence we have a map
forv1_1: Fopr1_ 4 — §2F(n—1)
Furthermore, by examination of (6.3), we see that the composite
Fyo g — For — -+ — Forp1_q — §2¥(n—1)

is null homotopic. So we have shown the existence of a square which commutes up
to homotopy, as in the rightmost square of (6.2). Thus, there must exist a map

Yr: Y — QSzk(nil)

such that (6.2) commutes up to homotopy.
Let E denote the cohomology Serre spectral sequence of the fibration

Yk- — sz — F2k+1_1.
Let \E denote the cohomology Serre spectral sequence of the fibration
Qs2k(n—1) ok — SQk(n—l).

We have the following commutative diagram.

\dy
\FO:p ——— \griptr—1

\L(yk)* \L(yk)*®(.f2k+1_1)*

EOp —— grptr—1
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Studying F, one can see that there are differentials d,. such that
dr(7i(Ck)) = Yi-1(Ck) ® Yor (n-1)-

As algebras, H*(QS* ("1} =(agk(,_1y_1) and H*(S* (n —1)) = Eligr(_1))-
Examining \FE we see there are differentials ‘\d,- such that

‘- (i(Qgk (n-1)-1)) = Vi—1(Q2k (n_1)—1) @ Lok (n_1)-

Using inductive reasoning, knowing that (for+1_1)"(72k(n—1)) = tok(n—1), yields
the following diagram of elements.

\dr
%‘(azk(n—l)—l) — %‘71(042k(n_1)—1) & Lok (n—1)
|
| (yr)™ l(yk)*®(f2k+11)*
v d
Yi(C) ———Yi—1(Ck) ® Yar (@—1)

As depicted, it must be the case that

()" (viagr (n—1y=1)) = Yi(Ck)-

It follows that (yg)* is an isomorphism in cohomology. Thus, since our spaces are
localized at the prime 2, we have that y; is an equivalence and

Vi Q8% (1),
In particular, the splitting of algebras in (6.1) (with k replaced by k + 1) becomes
H* (Gresa) = H*(Gy) © H*(257 "7Y) (6.5)
with H*(Q52" (=D = T[¢].

7. Showing Q?S" is minimal atomic

We prove the minimal atomicity of Q2S™ by breaking the argument into the
cases when n is odd and when n is even. The case where n is odd resembles the
proof that 5™ is minimal atomic. Yet, for n even, there are too many elements to
contend with to use previous arguments alone, and we instead combine the methods
of higher order cohomology operations with the filtration of Section 6 to obtain the
desired conclusion. Finally, we look at the cases when Q2S™ is not minimal atomic
and isolate the elements which are obstructions to minimal atomicity.

7.1. Spherical candidates of Q25"

From [KA], we see H,(Q?(S™)) is a polynomial ring having generators ro and
Q”(rp) where |rg| =n —2 and Q” are the Dyer-Lashof operations, where .J is an
admissible sequence such that e(J) >n —2 and I(J) < n. By an induction argu-
ment, we can show that any admissible J’s satisfying these constraints must be of
the form
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((n—1)2F (n— 12k (n—1)252 ... (n—1)).
We refer to the generator Q7 (rg) with
J=((n—-12 (n-1)2""1 (n—-1)282 ... (n—-1))

by ri+1. Using the Nishida relations, we can compute the action of the dual of the
Steenrod algebra on H,(Q2%S™) to obtain the result as in [C, p. 29]:

0 ifs#A#tork=0orif neven withs=tand k=1
Sqfs((rk)zt) = r,%il ifs=tandk>1fornevenorifs=tand k>1
for n odd
Now, H*(Q*(S™)) = (R) Plyai (p;)]/(72:(p;))? where the dual of (r;)%" is 72: (p;)-
20,520

Using this information, we can compute the action of the Steenrod operations on
H* (QZ S”)Z

0 if s+1#t, orifniseven with s + 1=t and k=0
Sq% (o (o)) =4 Yo (pry1) if s + 1=t with n odd, or s + 1 = ¢ with n even and
k>1

7.2. n odd

Now, in the case where n is odd, each (rk)Qt is not an A-annihilated primitive
when k > 1. Thus, these elements cannot be spherical. The only candidates for
spherical elements above the Hurewicz dimension are (TO)T for t > 1. We shall
refer to these elements as p,. We apply the techniques of higher order cohomology
operations to prove that p; is not spherical. For each ¢t > 0, we exhibit a higher
order cohomology operation whose image includes 7ot (po).

Let us establish how the Steenrod operations act on ~ya:(po) for ¢ > 0. First, for
t =0, we see from above that no Steenrod operation of the form Sq¢%" acts non-
trivally on 1 (pg). Since operations of the type S¢? generate the Steenrod algebra,
we conclude that all Steenrod operations annihilate 7 (pg).

For t > 0, the only generator of the Steenrod algebra which acts non-trivially on
Yot (po) 18 5S¢ the result of this action is ~Yot—1(p1). If t — 1 > 0, again, we have
exactly one generator of the Steenrod algebra which acts non-trivially on y5:-1(p1),
Sq2t_2. Proceeding in this fashion, we see that the Steenrod operations which act
non-trivially on 72:(pg) are of the form Sq! where I = (2™,2m+1 . 2!=1) where
0 < m <t — 1. In particular, the highest dimensional Steenrod operation which can
act on vyt (pg) is of degree 1 +2 + ...+ 271 =2t — 1.

7.2.1. Showing p;41 is not spherical when ¢ > 0

Consider the relation Sg2 ("=2+! = §¢1 542 ("=2) which is similar to (4.2) with
n — 1 replaced by n — 2 when ¢ > 0. This relation gives rise to a secondary coho-
mology operation which we shall call ©;. Then, for appropriate 6 and -,

O4(T +7) = O4(7) + 6¢(y) + 17
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The defining cohomology class ¢ € H2t+1(”_2)(QEg) is primitive. ©; is defined
on elements 7 € H2 ("=2)(X) for which S¢2 ("2 has a trivial action, and the
image

O(r) € B2 (X) 5q! (H DTN (X),
In particular, we see that qut(”*Q) acts trivially on st (pg) since

[y2t (po)| = 28 (n — 2)

and

(Yot (Po))2 =0.

So, ©; is defined on ~s:(pg) for ¢ > 0. Then,
Vo1 (po) & Sqt (H-Qt'"1 (n—2)—1 (Q25m)).

For t > 0, y9:+1(pg) clearly is not in the image of Sq¢' and does not belong to the
indeterminacy of ©;.

Let f: Q5" 1 — Q25" be the result of looping the canonical map 1. Then, f
maps the indecomposable elements o: (pg) of 225™ to the indecomposable elements
Yot (Ctp—2) of 2S™~1. The following diagram commutes:

H(n—2)~2t (QQS") —f*> H(n—2)~2t (an—l)

b

=227 (Q2gn) L -2t (g gn-1y)

Now, O:(f*(v2t(po))="2t+1 (ap—2). By chasing the diagram, we see that modulo
Sq'(H2 (n=2)-1(Q289"))  we have ©;(yat(po)) = vaer1(po) + 7 where 7 is in the
kernel of H("=22""(Q2gm) — H=22"""(6n=1): 7 must be a decomposable ele-
ment since the only elements 7 of degree (n — 2)2¢*! besides voe41(pg) are decom-
posable elements of H(™=22""(028"). So 7 = Zaib,; where |a;], |b;| > 0. As we
have noted the module of indeterminacy Sq!(H™=12""=1(Q297)) does not con-
tain yae+1(pg), so it must contain only decomposables. Thus,

O4(72¢(po)) = Yar+1(po) + 7

where T € H™=22"(Q257) is a sum of decomposable elements (possibly zero).
Appealing to Section 2.3, we have for ¢t > 0, p;+1 is not spherical.

7.2.2. Showing p; is not spherical when n — 1 # 2"

We show that p; is not spherical. To accomplish this, we exhibit a higher order
cohomology operation which we evaluate on 71 (po) to yield v2(po). First, we take
the case that n — 1 is not a power of 2. Then, S¢"~! has a factorization as in (3.1),
with
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r 2" —c—1
Sq"71 _ SanqZ + Z < c >Sq(n1)csqc

a—2c
c>0

where 2" is the largest power of 2 which appears in the binomial expansion of n — 1
and (n — 1) = a + 2". Given this primary relation, we may consider the Brown and
Peterson secondary cohomology operation which stems from this, which we shall call
Op. Oy is defined on elements of H"~2(X) which are annihilated by the Sq¢ above,

and its image lies in H*"~2)(X) with indeterminacy ZSq("_l)_cH"_3+C(X)

n—1 r
where the sum runs over those ¢ such that 0 < ¢ < {2} with (2a:6221) £ 0.

If we set X = Q25" we see O is defined on 71 (pg) because 71 (pg) is annihilated
by all Steenrod operations. By considering the map, as above, QS"~! — Q25" we
may show that Og(v1(po)) = 72(po) + . a;b; for some a;, b; € H*(Q2S™) such that
a;b; € H*"=2)(Q25™), and |a;|, |b;] > 0. Thus, if we suppose p; is spherical, we must
get a contradiction as in Section 2.3.

7.2.3. Showing p; is not spherical when n — 1 = 2"+! for r > 3

Let us take the case when n — 1 is a power of two greater than 8. Then, n — 1 = 2"+!
for r > 3. As before, we provide a higher cohomology operation which acts on v, (po)
to yield v2(pp). We may apply our tertiary operation W to this situation. First, we
check that ¥ is defined on 71 (pg) by showing that

1. Sq¢?' annihilates vy (po) for i < r

2. ®,; annihilates v1(po) for 4,5 < r
We have already seen that (1) is true. This result enables us to define ®;;(v1(po));
now we try to compute it. We review the construction of Adams’ ®;;. Recall ®;;

is a secondary cohomology operation based on a primary relation of the form
Zogmgj b S¢®" =0 where b, is an element of the Steenrod algebra. To obtain

this relation, we apply the Adem relation to S¢? S¢* and express the right-hand
Steenrod operation of each summand in terms of the Steenrod operations, Sq2".
We note that each term of this summand has degree 2° + 27 and b; = Sq*.

For any I, let S¢*" : K(I) — K (I +2™) represent the element Sq®" (x;) where
%1 is the fundamental class of K'(I). Then, consider fi: K(I) — [[pcne; K (1 +27)

which is given by fi (r1om) = S¢*" (k;). Denote the homotopy fiber of f; by Aj.
We have the map g1: A1 — K(I) with fiber [, «; K (I +2™ —1). The elements

Kipom_1 transgress to Sq2" (r;). Then,
g bmKigam_1
0sm<j
transgresses to

Z bquTnm =0.

0<m<j

So, E bmkiyom—1 survives in the Serre spectral sequence of the fibration
0<m<y
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II xKa+2m-1)— 4 2 K@),

0sm<y

and there exists ¢;; € H 2iJrzj*l*l(Al). We may represent this cohomology class by
amap ¢;j: Ay — Kaijoi 1. If wereplace [ by n — 1, effectively, the diagram below
captures the action of ®;; on cohomology elements in degree n — 1.

¢
Ay -

Ky 14204211

g1

Kmn-1)-Ls [ Ko-14+27)

0sm<y

Observe that if we loop this diagram, we will obtain a diagram which represents
the action of ®;; on cohomology elements in degree n — 2 because ®;; is stable. We
have discussed that ®;; is defined on v (ay,—1) € H"~1(25™). By replacing [ above
by n — 1 and by representing ~y; («,—1) by the map f: QS™ — K(n — 1), we have
that ®;;(y1p1) corresponds to ¢;; o f

Pij

Ay
7
f//
Ve

Kn71+2’7+2j71

g1
s

an/*f>K(n—1)i> H K(n—1+2")

0<m<;j

We exhibited earlier that ®;;(y1(an,—1)) = 0 with zero indeterminacy. Thus, ¢;; o f
is null homotopic.
Now, looping this diagram enables us to study

B;;(m(po)) = Qepij o Q.
So

Qij
QA — QKn71+2'i+2171

Qg1

a2gn —L agm—1) M [ 9Km-1+2m)

osm<j

Since ¢;; o f is null homotopic, Q¢;; o Qf is null homotopic. Thus, ®;;(v1(po)) is
zero modulo indeterminacy. Via dimensional arguments, we show the indeterminacy
is zero. Now

ij(1(po)) € HY +2/~1n=2(Q25m),

By definition, the indeterminacy of the secondary cohomology operation ®;; is
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Z bmH2i+2ﬂ'—1+n—2—|bm| (QQSn)_

os<m<r
Yet, |by,| = 2¢ + 27 — 2™ so the indeterminacy lies in

ST b HTE Q28 = T b, HE 2028, (7.1)

os<m<r os<mgr

To understand indeterminacy, we consider H2yr+1+2m_2((225") for 0 < m < r. Now,
~1(po) belongs to HQHI_l(QQS"), but all other ~,(py), and thus products of the
generators of H*(0225™), have degree too large to be in H2 " +2"~2(Q25"). Since
~1(po) is annihilated by all Steenrod operations by, the indeterminacy must be zero.
Thus, ®;;(y1(p0)) is zero with zero indeterminacy for each 4,5 with 0 <i<j<r
and i # j + 1. Since Sq¢? annihilates v;(po) for i < r, we may proceed in applying
the tertiary operation ¥ to v1(pp).

Again, we use the map f: QS"~! — Q28" noting that f*(y2:(po)) = Y2t (tn—2).
The following diagram commutes:

I

an2(92sn) Hn72(an71)

| |

H2-(n72) (stn) f*; H2-(n72) (anfl))

Now, U(f*(v1(po))) = Y2(n—2) modulo zero indeterminacy. By chasing the dia-
gram, we see that modulo the indeterminacy of ¥, ¥(v1(pg)) = y2(po) + 7, where
7 € kernel of H("=2)2(Q25") — H(=2)2(Q8"~1). However, there are no elements
of degree (n —2)-2 in H*(Q2S™) besides v2(po). So 7 must be zero. Also, v2(po)
is not in the image of the Steenrod algebra action on H*(22S™) so v2(po) is not in
the indeterminacy of ¥. Hence for dimension reasons the indeterminacy module of
¥ must be zero, modulo zero,

Y (71(po)) = 12(po)-

Thus, following the ideas of Section 2.3, p;, the dual element of v2(pg), is not
spherical. Thus, we have shown that in the case when n is odd and n —1 # 2"
where r > 3, 925" is minimal atomic.

7.3. n even

To determine which elements of H,.(?S™) are spherical when n is even, we
determine which primitive elements are annihilated by the dual of the Steenrod
algebra. From our work above, we see that the only elements fitting this description
are (r0)2 and (r1)%" for ¢ > 0. Thus, we establish how the Steenrod operations act
on vzt (po) and 72t (p1) so we may use our higher order cohomology techniques.

We see from our previous work that Sg> (v2:(pg)) = 0 and so the entire Steenrod
algebra annihilates 7ot (po). Also, v1(p1) has a trivial action under the Steenrod
algebra.
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For ¢t > 0, the only generator of the Steenrod algebra which acts non-trivially on
Yot (p1) is Sq2t71 yielding vo:—1(p2). If t — 1 > 0, again, we have exactly one generator
of the Steenrod algebra which acts non-trivially on ~y:—1(p1), qutfz. Proceeding
in this fashion, we see that the Steenrod algebra elements that act non-trivially on
yat(p1) are of the form Sq! where I = (2m 2m+1 . 20=1) where 0 <m <t — 1.
In particular, the highest dimensional Steenrod operation which can act on ot (p1)
is of degree 1 +2 4 ...+ 271 =2t — 1.

As in Section 7.2, we use the same secondary cohomology operation O; defined
on elements, v € H2 (=2 (X) such that S¢2 =2 (y) = 0 with image contained in
H2 (=2 (X) /Sq  (H ("=2=1(X)). Then, as before, for ¢ > 0, O, is defined on
Yot (po) and yor+1 (po) & Sqt(H2 (m=2=1(Q28m)). That is, for t > 0, yar+1(pg) does
not belong to the indeterminacy of ©.

7.3.1. Showing (ro)2" is not spherical for ¢ > 0
Again, we use f: QS"~! — Q2S™ noting that f*(v2:(po)) = Yot (n_2). The follow-
ing diagram commutes:

(n—2)-2* (QQSn) I > [f(n—2)2" (an—1>

bk

H(n72)»2t+l(Q2Sn) L> H(n72)-2t+1(95n71)

As in the case when n is odd, chasing the diagram leads to the conclusion that
O (72:(p0)) = Yar+1(po) + 7 where 7 € H™=22" (0297} is a sum of decomposable
elements (possibly zero). Thus, using Section 2.3 for ¢ > 0, (r0)2t+1 is not spherical.

To show (79)? is not spherical, we observe that in the case when n is even, we
can factor Sq" 1. Further, v2(po) is annihilated by the Steenrod algebra and is not
in the image of the Steenrod algebra. Thus, repeating the argument in Section 7.2.2
shows that y2(po) + >_ a;b; is in the image of ©g. Thus, (r9)? is not spherical and
for all £ > 0, (r)2" is not spherical.

7.3.2. Showing (r1)2t is not spherical when ¢ > 0
Consider the Steenrod algebra relation,

Sq2"(2(n71)71)+1 _ SqISth@(nfl)fl)'

Analogous to the results of Section 4.2, for each ¢ this relation gives rise to a
secondary cohomology operation, which we shall denote ®;. In particular, ®; is
defined on H*(QS%("~1) = H*(Y;) with zero indeterminacy and similar to (4.3)
we obtain

B1(2: (p1)) = 721 (p1)- (7.2)

Considering vo¢(p1) as an element of H*(Q%S™), we deduced in Section 7.3 that
the highest dimensional Steenrod operation which acts non-trivially on ~,¢(p1) has
degree 2! — 1. Then S¢% (=D must act trivially on 7o:(p1). Since H*(Gs)
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inherits its Steenrod algebra action from H*(Q2S™), Sq2t(2(”_1)_1) acts trivially
on 79t (p1) considered as an element of H*(G3). Thus ®:(vat(p1)) is defined on
H*(928™) and H*(G).

Let g1: Go — Y7 be the map which occurs in the fibration G; — G2 — Y7. In
our Serre spectral sequence analysis, we saw that (¢g1)*: H*(Y1) < H*(G2) and so
(91)*(72i (p1)) = ¥2i(p1). Then, by naturality, we have a diagram

X (90)" 1.
H*(Y;) —22> H*(Go)

l@, l@,

. (91)" .,
H*(Y;) —22> H*(Go)
Then, ®:((g1)*(v2: (1)) = (91)+(®¢(72:(p1)))- So, modulo indeterminacy in H*(Gs),

P (72 (p1)) = yar+1 (p1)-

Since H*(G3) inherits its Steenrod algebra structure from H*(Q2S™) we can see
that yg:41(p1) is not in the image of Sq'. Furthermore, there are no indecompos-
able elements of H*(Q25") with degree 2!71(2(n — 1) — 1) = |y5:41(p1)|. So, only
decomposables are in the indeterminacy of ®;, Sq!(H2' C(n=D=-D=1(G,)).

Using the map go: G — 925", we have following commutative diagram.

7 (025" 2 He(Gy)

oo
(92)"

H*(Q28") 215 H*(Gy)

Then, modulo the indeterminacy of Sq!(H2 (2(n=D=D=1(Q2gn)),
((92)") (@2t (p1))) = @e((92)" (2 (p1)))
= Pi(72:(p1)) = Y2es1(p1)-

As before, we observe that ~y5:+1(p1) does not belong to the indeterminacy for @,
defined on H*(Q2S™). Also, the only elements that belong to the indeterminacy
must be decomposables. The kernel of

(g2)* : H21’+1(2(n71)71)(925n) Hltlr2"+1(2(n*1)*1)(GQ)

consists of decomposable elements. Thus, it must be the case that for some decom-
posable element 7 € H*(Q25")

Dy(v2: (p1)) = 2041 (p1) + 7.

Using Section 2.3, we see that (7”1)21/+1 cannot be spherical.
To show that (r1)? is not spherical, we refer to Section 4.2 replacing n with
|r1] = 2(n — 1). We observe that since n is even, 2(n — 1) is not a power of 2, and
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a factorization of Sq¢?("~1) exists. Thinking of v1(p1),v2(p2) as elements of H*(Y7),
the argument of Section 4.2 shows that

Do(11(p1)) =y2(p1) + Y _ aibs. (7.3)

We would like a version of (7.3) to hold in H*(G3) and H*(Q2S™). Observe that
v (p1) € H*(G2) is annihilated by all the Steenrod operations, so @y can legiti-
mately be defined on ~v1(p1). Since v2(p1) € H*(G2) is not in the image of any
Steenrod operations, y2(p1) will not be cancelled out when taking into account
indeterminacy of ®( defined on H*(G2). Then using naturality of &y applied to g1,
we have that modulo the indeterminacy of H*(Gz), (7.3) holds. Applying naturality
of &y with respect to g2, we obtain (7.3) thinking of v1(p1), 72(p1) as elements of
H*(928™). Thus, it must be the case that (r1)? is not spherical, and thus for all
t>0, (r1)2 is not spherical.

7.3.3.  Showing 7 is not spherical when n is not a power of 2

We show that 71 (po) hits 71(p1) via a higher order cohomology operation. We
suppose that n is not a power of 2. For k > 2, let us take the adjoint of the identity
map on QF5,_q, f: XGx — For_q. Then,

[ (v2i(an-1)) = Evi(072: (n-1)) = Ev1(pi)-

We have shown that there exist secondary cohomology operations ®; such that
Do (y1(an—1)) = y2(an—1) on H*(2S™). Applying naturality of ®; to the map
Fyr_y — QS™ gives us the same result for H*(Fyx_;). Also, the Steenrod operations
annihilate 1 (p;), so Xv1(p;) is annilated by the Steenrod operations. In particular,
® is defined on 1 (p;). We have a commutative diagram.

*

H" N (Fye_4) —— H" 1 (SGy)

l% i%

B2 (Fpe_y) —> 20D (56

Thus, f*(Po(v1(@n-1))) = Po(f*(71(an-1))), and so modulo the indeterminacy
of &g on H*(XG}), we have

o(Z71(p0)) = Em1(p1)-

As y1(p1) is not in the image of the Steenrod algebra action on H*(Gy), Xv1(p1) is
not in the image of the Steenrod algebra action on H*(XGy). Recall the suspension
homomorphism s; has the property that sgi,,—1)—1(Xv1(p:)) = 71(pi). Following the
discussion of o® in Section 3.1, we have

H=Y(SGy) ——> H"2(G})

l% la%

S2n—3

H2n—2(EGk) S H2n—3(Gk)
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Then,
52n-3(0Po(E71(p0))) = Po(sn—2(X71(p0))-

So, modulo the indeterminacy of o®¢ on H*(Gy),

a®o(71(po)) = 11 (p1)-

Since 71 (p1) is not in the image of the Steenrod algebra action on H*(Gy), y1(p1)
is not in the indeterminacy module of c®g on H*(Gy).

We have the following naturality diagram for k = 2, observing that the Steenrod
algebra action on v;(pg) € H*(225™) enables 0®q(71(po)) to be defined:

7 (025m) s He(Gy)

lo’@o lo’@o

7 (025m) 2 Be(Gy)
Then, modulo the indeterminacy of o®y on H*(Q2S™),
((92))(a®0(71(p0))) = 0®0((g2)+(71(p0)))
= 0®o(71(po))
=7(p1).
Using the naturality argument from Section 2.3 gives the result that r; is not

spherical.

7.3.4. Showing 7 is not spherical when n is a power of 2
We take the case where n = 277! where r > 3. Then, in Section 4.3, we have shown
that a tertiary cohomology operation ¥ exists such that

(71 (an-1)) = y2(an-1)
with zero indeterminacy on H*(€2S™). By naturality, we have
Y(y1(om-1)) = y2(on-1)

on H*(Fyk_q) for k > 2 with zero indeterminacy.
We must check that Adams secondary cohomology operations ®;; with 4,j < r
evaluate to zero on ¥v;(pg) € H*(3G3). We have the commutative diagram,

H'  (Fpe 1) — = H"1(SG)

l@ij \Lq%j

Hn+2i+2j72(F22_1) L Hn+2i+2j72(ZG2)

Then, modulo the indeterminacy of ®,; on H*(XGs2), we have
®i; (f*(mlan-1))) = f*(Pij(11(an-1))) = 0.
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For each 1, j, the indeterminacy of ®;; takes the form
ZmbmHQiHLH"’l"bm'(ZGQ)
where b, are Steenrod operations of degree larger than 0. A lower bound for
20420 —14n—1—|by

ism — 1, and an upper bound is 2n — 3. By dimensional arguments, we see only two
elements of H*(XG2) have dimensions falling within these bounds, namely X+, (po)
and Yya(pg) with dimensions n — 1 and 2n — 3 respectively. However all Steenrod
operations annihilate these elements when n is even. Thus, it must be the case that
the module of indeterminacy is zero. So, with zero indeterminacy,

®;5(Xv1(po)) = 0.

Then, ¥ is defined on Xv;(pp). We have the commutative diagram

H (Fy ) —L = H"1(SGy)

| I
HQ(”—l)(F22_1)*>f H2(=D(5Gy)

Thus, V(f*(v1(an-1))) = f*(¥(y1(n-1))) = Ev1(p1). That is, modulo indeter-
minacy,

Y (Xv1(po)) = Evi(p1)-

We observe that Y4 (p1), with dimension 2n — 2, is not in the image of Steenrod
operations, so X1 (p1) is not in the indeterminacy for ¥. Using dimensional criteria,
the only other candidates in the indeterminacy are Steenrod operations applied
to X1 (po) and Xy2(pg). Since Steenrod operations annihilate these elements, the
indeterminacy is zero.

Since ®;; is stable, ®;;(y1(po)) =0 on H*(G2). Thus ¥ is defined on 71 (po).
Then, we have the commutative diagram

H=Y(SGs) 2 H"2(Gy)

l\ll J/O'\I/
H2n—2(EG2) S2n-3 H2n_3(G2)

So,

oW (71(po)) = 0¥ (sn—2(371(p0))) = s20n—-3(¥(X71(p0))) = 71(p1)- (7.4)

Now, 71(p1)) is not in the image of the Steenrod action on H*(02S™). Thus, using
naturality of o0 with respect to go yields the relation (7.4), considering 1 (po) and
v1(p1) as elements of H*(Q22S™). Section 2.3 shows that 71 is not spherical. Thus,
we have shown that 25" is minimal atomic for n > 6 unless n = 8, 9.
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7.4. The cases where Q225" is not minimal atomic
We show that 925" is not minimal atomic for n =2,3,4,5,8,9. Recall that
(.731)2 S HQ(QSQ), (1‘3)2 € H@(QS4), and (337)2 S H14(Q;5'8).

74.1. n=3,59

We take the case where n = 3,5,9. Here we will show there exists a spherical class
with degree above the Hurewicz dimension for 9253, 0255, and Q25°. Consider
the canonical map, S~ ! -5 QS". Here, i,_1 € H,_1(S™1) maps to a,_; where
H,(2S™) = Faa,,_1]. For each n we have shown there exists f: S?"~! — Q§n~!
such that is(,,_1) maps to a?_,. We hope to understand the map QS"! 2 26,
Recall that H,(Q2S™) = Fa[ro,71,72,...] where |r;| = 2¢(n — 1) — 1.

Let \E be the homology Serre spectral sequence for the fibration Q5" ! — % —
S"~1 and let E be the homology Serre spectral sequence for the fibration Q25" —
x — 5™, The canonical map 1 induces a map ‘E' — FE of spectral sequences.

Then, Q7 has the property that

(n)+(an—2) = 1o
and
(Qn)s(an—2)* = (ro)*.
Thus, in the composition
522 L, ggn-1 21 2 gn
we have
i) 5 (an-2)* " (r0)?.

It follows that (r()? is spherical and 9253, Q25% and Q59 are not minimal atomic.
Observe that in the cases where 9252°~! is minimal atomic, our proof in Section
7.2.3 focused on showing that the element (rg)? is not spherical.

74.2. n=2428

We show that for the cases n = 2,4,8, Q25™ is not minimal atomic. For each n we
have shown there exists f: $?"~1 — QS™ with ia(n—1) Mapping to (an_1)?. Looping
f, we obtain

Qs2n-1) & g2gn

Now, H, (QSQ(”_U) =Falas(n—1)—1]. Let \E be the homology Serre spectral sequence
for the fibration 252("~1) — x — §2("=1) "and let F be the homology Serre spectral
sequence for the fibration 225™ — x — QS™. The map f induces a map ‘\E — E of
spectral sequences, which allows us to see that (Qf).(az(—1)—1) = r1. Let

g: S2(n—1)—1 N Qs2(n—1)

be the non-trivial map such that iz;,—1)—1 € H.(S?™=D=1) maps to A2(n—1)—1
under g,. Then the composite,
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G2(n-1)-1 9, g2(n-1)-1 L 2gn

maps the fundamental class to 7. Thus, r; is spherical and Q252 Q2S* and Q25®
are not minimal atomic. Looking back on our proof in Section 7.3.4, observe that
we had to introduce a special argument to show that r; is not spherical in the cases
where n is a power of 2 greater than 8.

Appendix A. Factoring S¢2 "

Let 7 > 3. For any space X, let 7 € H*(X) be such that S¢> (1) = 0 for 0 < 5 <
r. Recall (3.3), which states that there exist Steenrod operations a;; such that

(M= > a;®y(n)

i<g,1+ 177

ort1

Sq

To obtain a specific factorization of S¢* we need to calculate the coefficients a;; that
satisfy (3.3). In [LW], one factorization of Sq*° is given, but it is worth noting that
there are several factorizations of Sq¢'® and one factorization might be preferable
to another depending on context. A computer program has been implemented in
Maple which builds upon [MIN]. This new program calculates all a;; which satisfy
(3.3). In this appendix, we examine the mathematics of these coefficients discussed
in [A]. This provides a constructive approach to finding a;; which forms the basis
of the aforementioned computer program. It should be noted that the program does
have flaws—it yields a;; for factorizations of Sq'%, but for values of r larger than
3, the program stalls ostensibly due to memory constraints. Perhaps this can be
improved in the future.

Let Cy be the free module over the Steenrod algebra with basis element ¢ of
degree 1, and let e: Cy — Z/27Z be the non-trivial map. Let C be the free module
over the Steenrod algebra with basis elements ¢; of degree 2¢. Define d;: C; — Cjy
by setting

di(c;) = Sq? (c).

We may construct a minimal resolution of Z/2Z over the Steenrod algebra with
these starting terms,

O o O, — 0 Oy -5 2)22 — 0,

Let I(A)=3_,.0Aq where A is the Steenrod algebra and A, consists of those
elements of A with degree q. Then,

Tor?,(Z/22,Z/2Z) = (Z/2Z ® 4 C)s
and
Ext%(Z/2Z,7,/27) = Hom',(Cs, Z/27).

Now for each Cs, let J(Cs) = I(A)-Cs and Z(s) = Ker(ds) N J(Cs). We observe
that for any partial minimal resolution,
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d

Cy 25O SOy — o — O -5 Oy -5 2/22 — 0

we may define a homomorphism
0: Z(s) — Tor1(2/22Z,7,/27).

by the following: Extend the partial minimal resolution to another partial mini-
mal resolution by adjoining an appropriate (Csi1,ds11). For any z € Z(s), given
w € Cysyq such that dgyq1(w) = 2,

0(z) = {1l ®4 w}.

Adams shows that we can choose a cycle z;; € C1 with ¢ < j and ¢ + 1 # j such
that
where h;, h; are the basis elements of Ext*(Z/27Z, Z/27) of degree 2 and 27 respec-

tively. Now, define Cy to be the free module over the Steenrod algebra on generators
¢;,; such that da(c;j) = 2;;. Adams shows that

Co 200 25 0y -5 2/2Z — 0

is a partial minimal resolution over Z/2Z over A. Adams continues to show that
there must exist z € Cy such that

hoh%(0z) = 1. (A.2)

We write z in the Cy basis, so that

z = Z aij cij~
The coefficients here are the desired a;;.

To obtain explicit coefficients a;;, we require explicit representations of z;; in the
(4 basis. Adams describes how to obtain such a representation in [A]. We review
the procedure, and check that the result satisfies (A.1) using Lemma A.1 below.
This lemma will also be helpful in trying to find an element z which satisfies (A.2).

Let ¢ be a positive integer, and suppose we are given a function a: A — Z/27Z
of degree —t’ such that a(ab) = 0 for a,b € I(A). Then the composite

Cy A 7)27

defines an element h, € Exti’t/ (Z/2Z,7/2Z). We have the following lemma from
[A].

Lemma A.1. Given any h € Ext'(Z/22,7,/27) and any x € Z(s) N Cy¢rv with
T =) ac

(hah)(0) = 3 (aai)(h{1 @4 cj})
where {c;} is the basis of Cs.
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We will show that for each ¢, j with ¢ < j and i + 1 # j, there exists an equation
of the type,

Sq* 8¢+ fuS¢*™" =0. (A.3)
Then, it must be the case that
dl(Sl]QiCj + > freg) =0.

We set z;; € C1 to be Squcj + > frcg, and show using Lemma A.1 that (A.1) is
satisfied.
To obtain (A.3), recall the following standard result.

Lemma A.2. Form > 1 with m not a power of 2, there exist finitely many Steenrod
algebra elements by, and non-negative integers cy such that

Sq™ = Y bk Sq*"

It is clear that such a decomposition exists since {Sq2k} comprises a set of gen-
erators for A, but the proof that follows reviews a method for obtaining the desired
decomposition, which can be easily translated into computer code.

Proof. Let 2% be the largest power of 2 which occurs in the binary representation
of m. Then 2¢ > m — 2%, In Section 4.2, we saw that an application of the Adem
relations to Sg™ 2" S¢2" yields

Sq™ = Sqm—2dsq2d + Z Sqlk Sq™*

where mj, < m — 2% < 2%, If we apply a similar factorization to those Sq™* for which
my, is not a power of 2, and iterate this process, we will obtain the desired result of
Lemma A.2. O

To obtain z;; for any 4, j with ¢ < j and ¢ + 1 # j, observe that the Adem relations
apply to give a factorization

Sq* S¢¥ =" Sq™ S, (A.4)

If i = j, then the binomial coefficient of Sq2i+2j is (2;71
above all my,n; # 0 and ny < 2%,27. o v
If i # j, then the binomial coefficient of Sq¢?'t2’ is (2Jf1) =1 by (4.1). If we

o A
2'=2" then S¢* %' appears in the

) = 0, so in the factorization

apply the Adem relations to factor Sq21+lSq
factorization because (23;?:1_1) = 1. The other summands in this factorization are
of the form Sq“*Sq¥* and wuy,vi # 0 with v < 271 < 27, Thus, if we add these
two factorizations together, the S¢? 2’ terms cancel each other out. Thus, we may
obtain (after relabelling the my and ny) (A.4) above such that my,ni; # 0 and
ny < 27. Thus, in each case we have the same kind of factorization of S¢* S¢?’. We
apply Lemma A.2 to each S¢"™ to rewrite Sq¢* Sq¢* as . frS¢*"" where f,, € A
and g < j is a non-negative integer. Thus, we have verified (A.3). Further, we can
replicate this process using a computer program because the processes are no more
difficult than applying the Adem relations multiple times.
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To show z;; satisfies (A.1), consider the Milnor basis element §%i of the dual of

A. We apply Lemma A.1 with « taken to be 5%1 observing that in the notation of
that lemma, h£2i = h;. Thus,

hihj(0zi7) = & (Sq* )h;({1® ¢;}) + & (fi)h ({1 ® ¢, })
Now, for dimensional reasons h;({1 ® ¢4, }) = 0. Also for dimensional reasons, {1 ®
¢;} is the single non-trivial element of Torfy (Z/2Z,7/2Z), and since h; is the single
non-trivial element of Ext? (Z/2Z, Z/27Z), it must be the case that h; ({1 ® ¢;}) =
1. Thus, h;h;(0z;;) =1 and (A.1) is satisfied.

Having shown that a computer program would be able to find explicit examples
of z;;, we turn to the more complicated issue of how to find z € Z(2) which satisfies
(A.2).

We observe that any z € Z(2) satisfies (A.2) if and only if & (a,..) = 1. Again, in
the notation of Lemma A.1, we see that he, is the basis element hg. Then,

(hoh?)(02) = 32, (§1a55) (hehe{1l ® 4 cij}).
For dimensional reasons,
hyh {1 ®a crr} =1
while for (i, ) # (r,7),
hehe {1 ®4 cij} = 0.
Thus, hohZ(0z) = 1 if and only if & (a,,) = 1. That is,
arr = Sq*. (A.5)

Hence, any z = Y a;jc;; with z € Z(2) such that a,, = S¢', has the property that
its coeflicents a;; give the desired factorization of qurﬂ.

Compared with the information we have regarding z;;, the data we have related
to z is quite meager. Adams does add to this small repository by observing that

our desired z must also satisfy

g%T (aor) = 1

Following Lemma A.1, we see that h 2 is the basis element h,. Since the group
Exta(Z/2Z,7/2Z) is commutative [MT, p. 193] we have

1= (hohi)(02) = (hy(hohy))(02) = 32;(€F aij) (hohi {1 ® 4 cij}).

As above, hoh,{1 ®4 ¢;;} is non-zero (and equal to 1) only when ¢ =0 and j =r.
Then we have that &7 (ao,) = 1 and so,

aor = S¢* + axr (A.6)

where asr € Ao and does not have S¢? as a summand.

Now, the computer program identifies valid z’s by trial and error. It picks different
choices of coeflicients a;; and tests whether or not the resulting z satisfies the con-
ditions that 2z € Z(2) and hoh?(6z) = 1. The mathematics that we have illustrated
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makes this job a bit easier. Since the degree of z is 2”1 + 1, and |¢;;| = 2/ + 27, it
must be that |a;;| = 27+l 41 — 29 — 27, we restrict the guesses for ai; to be Steen-
rod operations of the appropriate degree. Further, (A.5) and (A.6) put further con-
straints on the coefficients a.,., and aq, which allow us to proceed by an educated
version of trial and error. ‘

We may write z;; in the C; basis as before with z;; = Schj + > frcg, where
gr < j < r. In particular, each z;; is represented in the C basis using only the
basis elements cg, ¢y, ..., ¢, (and not necessarily all of these basis elements.) Each
of the r + 1 basis elements gives rise to an equation which must be zero: The fact
that > a;j2;; = d(z) = 0 is equivalent to stating that the coefficient of each basis
element in ) a;;2;; must sum to zero. This observation plays a role in the computer
code. Instead of looking for a whole system of coeflicients a;; which simultaneously
satisfies our conditions for z, the program looks for coefficients one basis element
at a time. First, it searches for which a;; actually even appear as coefficients of
¢r in Y a;j2;. Then, it uses the previously mentioned trial and error to look for
a combination of those a;; which force the sum of coefficients of ¢, to be zero.
Once the program has found coeflicients that work it fixes those values of a;; and
examines which remaining a;; appear as coeflicients of ¢,_;. Using trial and error,
the program picks choices for these new coefficients. If the program finds a set
of a;; that works for both ¢, and ¢,_; it proceeds in the same fashion to look for
coefficients of ¢, _o. If it is not able to find coefficients for ¢,_; which incorporate the
previous coeflicient settings of ¢, the program returns to examining c,. It looks for
a new set of a;; which ensure that the sum of coefficients of ¢, is zero and continues
again. The process eventually outputs a full set of a;; when it finds a complete set
of coefficients which has been tested against each basis element c¢,.. Then, it repeats
the process with untested settings of a;; in order to produce all combinations of a;;
which satisfy (3.3).
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