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Abstract
Locally partial-ordered spaces (local po-spaces) have been

used to model concurrent systems. We provide equivalences
for these spaces by constructing a model category containing
the category of local po-spaces. We show that the category of
simplicial presheaves on local po-spaces can be given Jardine’s
model structure, in which we identify the weak equivalences
between local po-spaces. In the process, we give an equivalence
between the category of sheaves on a local po-space and the cat-
egory of étale bundles over a local po-space. Finally, we describe
a localization that should provide a good framework for study-
ing concurrent systems.

1. Introduction

The motivation for this paper stems from the study of concurrent processes access-
ing shared resources. Such systems were originally described by discrete models
based on graphs, possibly equipped with some additional information [Mil80]. The
precision of these models suffers, however, from an inaccuracy in distinguishing
between concurrent and non-deterministic executions. It turned out that a satisfac-
tory way to organize this information can be based on cubical sets, giving rise to the
notion of Higher-Dimensional Automata or HDA’s [Gou96, Gou02]. HDA’s live in
slice categories of cSet, the category of cubical sets and their morphisms.

A different view, which has its origins in Dijkstra’s notion of progress graphs
[Dij68], takes the flow of time into account. The difficulty here is to adequately
model the fact that time is irreversible as far as computation is concerned. On the
other hand, one would like to identify execution paths corresponding to (at least)
the same sequence of acquisitions of shared resources. However, in order not to lose
precision, this notion of homotopy is also subject to the constraint above of the
irreversibility of time. There are two distinct approaches, both based on topological
spaces.

One approach, advocated by Gaucher, is to topologize the sets of paths between
the states of an automaton, which technically amounts to an enrichment with no
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units [Gau03]. The intuition behind the setup is to distinguish between spatial and
temporal deformations of computational paths. The related framework of Flows has
clear technical advantages from a (model-)categorical point of view.

The other approach, advocated by Fajstrup, Goubault, Raussen and others, is to
topologize partially ordered states of automata. Such objects are called partially-
ordered spaces or po-spaces (also pospaces)1. The advantage of using po-spaces is
that there is a very simple and intuitive way to express directed homotopy or diho-
motopy [Gou03, FGR99].

However, the price paid is that po-spaces cannot model executions of (concurrent)
programs with loops. The solution is to order the underlying topological space only
locally. Such objects are called local po-spaces and the notion of dihomotopy becomes
more intricate in this context. Nevertheless, practical reasons like tractability call
for a good notion of equivalence in the category of local po-spaces. Put differently, it
would be useful to be able to replace a given local po-space model with a simpler local
po-space which nevertheless preserves the relevant computer-scientific properties.

In this paper, we study these questions in the framework of Quillen’s (closed)
model categories [Qui67, Hov99, Hir03]. Briefly, a model category is a category
with all small limits and colimits and three distinguished classes of morphisms called
weak equivalences, cofibrations and fibrations. Weak equivalences that are also cofi-
brations or fibrations are called trivial cofibrations and trivial fibrations, respec-
tively. These morphisms satisfy four axioms that allow one to apply the machinery
of homotopy theory to the category. This machinery allows a rigorous study of
equivalences. We remark that there are other frameworks for studying equivalence.
However, model categories have the most developed theory, and have succeeded in
illuminating many diverse subjects.

Our aim is to construct a model category of locally partial-ordered spaces as a
foundation for the study of concurrent systems. This is technically difficult because
locally partial-ordered spaces are not known to be closed under taking colimits.
We will define a category LPS of local po-spaces, which embeds into the category
sPre(LPS) of simplicial presheaves on local po-spaces. The objects of sPre(LPS)
are contravariant functors from LPS to the category of simplicial sets and the mor-
phisms are the natural transformations. This embedding is given by a Yoneda embed-
ding (see Definition 2.17),

ȳ : LPS→ sPre(LPS).

We now briefly describe some technical conditions on model categories which
strengthen our theorems. For more details, see Definitions 8.2 and 8.4 and [Hov99,
Hir03]. A model category is proper if the weak equivalences are closed under both
pushouts with cofibrations and pullbacks with fibrations. It is left proper if the first
condition holds. A model category is cofibrantly generated if the model category
structure is induced by a set of generating cofibrations and a set of generating trivial
cofibrations, both of which permit the small object argument. A cellular model
category is a cofibrantly generated model category in which the cell complexes are

1Grandis uses a related approach [Gra03] in which the underlying topological space comes with
a class of directed paths. However, these spaces are not partially-ordered, even locally.
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well behaved. A simplicial model category M is a model category enriched over
simplicial sets, which for any X ∈M and any simplicial set K has objects X ⊗K
and XK which satisfy various compatibility conditions.

Theorem 1.1. The category sPre(LPS) has a proper, cellular, simplicial model
structure in which

• the cofibrations are the monomorphisms,

• the weak equivalences are the stalkwise equivalences, and

• the fibrations are the morphisms which have the right lifting property with
respect to all trivial cofibrations.

Furthermore among morphisms coming from LPS (using the Yoneda embedding
LPS ↪→ sPre(LPS)), the weak equivalences are precisely the isomorphisms.

The model structure on sPre(LPS) is Jardine’s model structure [Jar87, Jar96]
on the category of simplicial presheaves on a small Grothendieck site. We show that
Shv(LPS) is a Grothendieck topos which has enough points. Under this condition,
Jardine showed that the weak equivalences are the stalkwise equivalences.

This model category can be thought of as a localization of the universal injective
model category of local po-spaces [Joy84, Dug01, DHI04]. While, in general,
the weak equivalences are interesting and non-trivial [Jar87], this is not true for
those coming from LPS. To obtain a more interesting category from the point
of view of concurrency, we would like to localize with respect to directed homotopy
equivalences. In [Bub04], it is argued that the relevant equivalences are the directed
homotopy equivalences relative to some context. The context is a local po-space A
and the directed homotopy equivalences rel A are a set of morphisms in A ↓ LPS.

We combine this approach with Theorem 1.1 as follows. First, we remark that A
embeds in sPre(LPS) as ȳ(A). Next, the model structure on sPre(LPS) induces
a model structure on the coslice category ȳ(A) ↓ sPre(LPS). Finally, one can take
the left Bousfield localization of this model category with respect to the directed
homotopy equivalences rel A.

Theorem 1.2. Let I = {ȳ(f) | f be a directed homotopy equivalence rel A}. Then
the category ȳ(A) ↓ sPre(LPS) has a left proper, cellular model structure in which

• the cofibrations are the monomorphisms,

• the weak equivalences are the I-local equivalences, and

• the fibrations are those morphisms which have the right lifting property with
respect to monomorphisms which are I-local equivalences.

Recall that, given a topological space Z, étale bundles over Z are maps W → Z
which are local homeomorphisms. Let O(Z) be Z’s locale of open subsets and recall
that sheaves over Z are functors O(Z)op → Set that enjoy a good gluing property.
There is a well-known correspondence between étale bundles and sheaves. We estab-
lish a directed version of this correspondence, which may be of independent interest.
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Theorem 1.3. Let Z ∈ LPS. Let Etale(Z) be the category of di-étale bundles over
Z, i.e. the category of bundles which are local dihomeomorphisms. Let O(Z) be the
category of open subobjects of Z. There is an equivalence of categories:

Γ: Etale(Z) ¿ Shv(O(Z)) : Λ.
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2. Background

This section contains some known definitions and facts we build on. We start
by stating the definition of a model category in Section 2.1. Next, we review the
basics on presheaves in Section 2.2 and on sheaves in Section 2.3. We then recall the
notions of topoi and geometric morphisms in Section 2.4 and of stalks in Section 2.5.
Our main reference for this material is [MLM92]. Section 2.6 is devoted to some
important model structures on sSetC

op

, the category of simplicial presheaves over a
category C. The material is drawn from [Jar87, Jar96, DHI04].

2.1. Model categories
Recall that a morphism i : A→ B has the left lifting property with respect to a

morphism p : X → Y if in every commutative diagram
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A //

i

²²

X

p

²²
B // Y

there is a morphism h : B → X making the diagram commute. Also, f is a retract
of g if there is a commutative diagram:

A

f

²²

ÃÃA
AA

A

f

²²
X
g

²²

>>}}}

B
ÃÃA

AA
B

Y

>>}}}

Definition 2.1. A model category is a category with all small limits and colimits
that has three distinguished classes of morphisms: W, called the weak equivalences;
C, called the cofibrations; and F , called the fibrations, which together satisfy the
axioms below. We remark that morphisms in W ∩ C, and W ∩ F , are called trivial
cofibrations and trivial fibrations, respectively.

1. Given composable morphisms f and g if any of the two morphisms f , g, and
g ◦ f are in W, then so is the third.

2. If f is a retract of g and g is in W, C or F , then so is f .

3. Cofibrations have the left-lifting property with respect to trivial fibrations, and
trivial cofibrations have the left-lifting property with respect to fibrations.

4. Every morphism can be factored as a cofibration followed by a trivial fibration,
and as a trivial cofibration followed by a fibration. These factorizations are
functorial.

2.2. Presheaves
Recall that a presheaf P on C is just a functor P ∈ SetC

op

. In particular, “hom-
ing”

C( , C) : Cop → Set
X 7→ C(X,C)

gives rise to a presheaf and further to the Yoneda embedding

y : C ½ SetC
op

C 7→ C( , C).

This embedding is dense, i.e.

P ∼= colim(y ◦ π),

canonically for any presheaf P , where π : (y ↓ P )→ C is the projection from the
comma-category y ↓ P . Recall that a presheaf in the image of the Yoneda-embedding
(up to equivalence) is called representable.
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2.3. Sheaves
Definition 2.2. A sieve on M ∈ C is a subfunctor S ⊆ C( ,M). A Grothendieck
topology J on C assigns to each M ∈ C a collection J(M) of sieves on M such that

(i) (maximal sieve) C( ,M) ∈ J(M) for all M ∈ C;

(ii) (stability under pullback) if g : M → N and S ∈ J(N), then (g ◦ )∗(S) ∈ J(M)
as given by

(g ◦ )∗(S) //
²²

²²

S
²²

²²
C( ,M)

(g◦ )
// C( , N)

(iii) (transitivity) if S ∈ J(M) and R is a sieve on M such that (f ◦ )∗(R) ∈ J(U)
for all f : U →M in the image of S, then R ∈ J(M);

We say that a sieve S on M is a covering sieve or a cover of M whenever
S ∈ J(M).

Remark 2.3. Unwinding Definition 2.2 pinpoints a sieve as a right ideal, i.e. a set of
arrows S with codomain M such that f ∈ S =⇒ f ◦ h ∈ S whenever the codomain
of h, cod(h) = dom(f), the domain of f . From this point of view, pulling back a

sieve S on M by an arrow N
f−→M amounts to building the set

f∗(S)
def
= {h| cod(h) = N, f ◦ h ∈ S}.

It is then immediate how to rephrase a Grothendieck topology in terms of right
ideals.

Definition 2.4. Let J be a Grothendieck topology on C. A presheaf P ∈ SetC
op

is
a sheaf with respect to J provided any natural transformation θ : S ⇒ P uniquely
extends through y(M) as in

S
θ //

²²

²²

P

y(M)

<<

for all S ∈ J(M) and all M ∈ C. J is subcanonical if the representable presheaves
are sheaves.

Remark 2.5. Let θ : S → P be a natural transformation from a sieve S to a presheaf
P . If one sees S as a right ideal S = {uj : Mj →M}, then θ amounts to a function
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that assigns to every uj : Mj →M ∈ S an element aj ∈ P (Mj) such that

P (v)(aj) = ak

for all v : Mk →Mj and for all uk = uj ◦ v ∈ S. Such a function is called a matching
family for S of elements of P . A matching family aj ∈ P (Mj) admits an amalgama-
tion a ∈ P (M) if

P (uj)(a) = aj

for all uj : Mj →M ∈ S. From this point of view, the Yoneda Lemma characterizes
a sheaf as a presheaf such that every matching family has a unique amalgamation
for all S ∈ J(M) and all M ∈ C.

A Grothendieck topology is a huge object. In practice, a generating device is used.

Definition 2.6. A basis K for a Grothendieck topology assigns to each object M
a collection K(M) of families of morphisms with codomain M such that

(i) all isomorphisms f : U →M are contained in K(M),

(ii) given a morphism g : N →M ∈ C and {fi : Ui →M} ∈ K(M), then the family
of pullbacks {π2 : Ui ×M N → N} ∈ K(N), and

(iii) given {fi : Ui →M} ∈ K(M) and for each i, {hij : Aij → Ui} ∈ K(Uj), then
the family of composites {fi ◦ hij : Aij →M} ∈ K(M).

Remark 2.7. Given a basis K for a Grothendieck topology, one generates the corre-
sponding Grothendieck topology J by defining

V ∈ J(M) ⇐⇒ there is U ∈ K(M) such that U ⊂ V.
As expected, the sheaf condition can be rephrased in terms of a basis.

As an example, consider the case C = O(X) with X a topological space and
O(X) its locale of opens. The basis of the open-cover (Grothendieck) topology is,
as expected, given by open coverings of the opens.

Theorem 2.8. Let Shv(C, J) be the full subcategory of SetC
op

whose objects are
sheaves for J . The inclusion functor i : Shv(C, J)→ SetC

op
has a left adjoint a

called the associated sheaf functor or sheafification. This left adjoint preserves finite
limits.

Theorem 2.8 is listed as Theorem III.5.1 in [MLM92]. There are several equiva-
lent ways to construct the associated sheaf functor, the most classical one being the
“plus-construction” applied twice.

Remark 2.9. A cover on M amounts to a cocone in C with vertex M . The associated
sheaf functor maps these cocones onto colimiting ones. Moreover, it is universal with
respect to this property.
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2.4. Topoi
Definition 2.10. A category E has exponentials provided that for all X ∈ E , the
functor ×X : E → E has a right adjoint denoted ( )X , so that

E(Y ×X,Z) ∼= E(Y, ZX).

Suppose now E has a terminal object 1, and has finite limits. A subobject classifier is
a monomorphism true: 1 ½ Ω such that for every monomorphism s : S ½ X, there
is a unique morphism φS such that pullback of true along φS yields s:

S //
²²

s

²²

1
²²
true

²²
X

φS

// Ω

The category E is a topos if it has exponentials and a subobject classifier.

A subobject classifier is obviously unique (up to isomorphism). Furthermore, a
topos has all finite colimits, though this is not easy to prove. It would take pages to
enumerate all the remarkable features of a topos, see [Joh77] for an introduction to
the lore of the material. Let us just say that topoi as introduced by Grothendieck
and his collaborators had a very strong algebro-geometrical flavor [AGV72], yet
the rich structure is relevant not only for algebraic geometers, but for logicians as
well [Law63, Law64, Law73].

Definition 2.11. A site (C, J) is a small category C equipped with a Grothendieck
topology J . A Grothendieck topos is a category equivalent to the category Shv(C, J)
of sheaves on (C, J).

The following are well known.

Proposition 2.12. 1. A Grothendieck topos is a topos;

2. Set is a topos;

3. SetC
op

is a topos for any C.

Definition 2.13. Let E and F be topoi. A geometric morphism g : F → E is a pair
of adjoint functors

E
g∗ // F
g∗
⊥oo

such that the left adjoint g∗ is left-exact (that is, it preserves finite limits). The right
adjoint is called direct image and the left one inverse image.

As an example, i : Shv(C, J) ↪→ SetC
op

is the direct image part of a geometric
morphism. Notice that the convention for a geometric morphism is to have the
direction of its direct image part.
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Definition 2.14. A (geometric) point in a topos E is a geometric morphism

p : Set→ E
(we write p ∈ E by abuse of notation). A topos E has enough points if given f 6=
g : P → Q ∈ E , there is a point p ∈ E such that p∗f 6= p∗g ∈ Set.

2.5. Stalks and Germs
Definition 2.15. Let (C, J) be a site, a : SetC

op → Shv(C, J) the associated sheaf
functor and x ∈ Shv(C, J) a point. The stalk functor at x is given by

stalkx
def
= x∗ ◦ a : SetC

op → Set.

Given a presheaf F , we say that stalkx(F ) is the stalk of F at x. As an exam-
ple, consider again the case C = O(X) with X a (this time) Hausdorff topological
space and O(X) its locale of opens equipped with the open-cover topology. Let
Shv(X) be the corresponding topos of sheaves. It can be shown that any geomet-
ric point x : Set→ Shv(X) corresponds to a “physical” point x′ ∈ X. The stalk of
F ∈ SetO(X)op at x is then given by

stalkx(F ) := colim
U∈O(X),x′∈U

F (U).

Write germx,U : F (U)→ stalkx(F ) for the canonical map at U (germx when U is
clear from the context). We call the equivalence class germx,U (s) of s in stalkx(F )
the germ of s at x. Obviously,

stalkx(F ) = {germx,U (s) | U ∈ O(X), x′ ∈ U, s ∈ F (U)}.

2.6. Simplicial Presheaves
For the rest of this section, let C be a small category with a Grothendieck topology

J such that Shv(C, J) has enough points.
Let ∆ be the simplicial category which has objects [n] = {0, 1, . . . , n} for n > 0,

and whose morphisms are the maps such that x 6 y implies that f(x) 6 f(y). Then
sSet is the category Set∆op

. This category has a well-known model structure (e.g.
see [Hov99]) whereWsSet are the morphisms whose geometric realization is a weak
homotopy equivalence and CsSet are the monomorphisms.

Objects of sSetC
op

are called simplicial presheaves on C since

sSetC
op

=
(
Set∆op

)Cop

∼= Set∆op×Cop ∼=
(
SetC

op
)∆op

.

There is an embedding

κ : SetC
op → sSetC

op

F 7→ κF ,

where κF is constant levelwise i.e. (κF ) (C)n
def
= F (C) for all n ∈ N, and all the face

and degeneracy maps are the identity. There is a further embedding

γ : sSet → sSetC
op

K 7→ γK ,
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where γK is constant objectwise i.e. γK (C)
def
= K for all C ∈ C.

Recall that for C ∈ C and F ∈ SetC
op

, the Yoneda Lemma gives the isomorphism
SetC

op
(y(C), F ) ∼= F (C), where y is the Yoneda embedding (see Section 2.2). In the

simplicial case, we have the following variation, which can be proved using the same
idea used in the proof of the Yoneda Lemma.

Proposition 2.16. (Bi–Yoneda) Let C ∈ C and F ∈ sSetC
op

. There is an isomor-
phism

sSetC
op (

κy(C) × γ∆[n], F
) ∼= F (C)n ,

natural in all variables.

Definition 2.17. Using the Yoneda embedding y : C→ SetC
op

for presheaves one
can define an embedding

ȳ : C y−→ SetC
op κ−→ sSetC

op

for simplicial presheaves. The functor ȳ is also called a Yoneda embedding.

There are two Quillen equivalent model structures on sSetC
op

which are in a
certain sense objectwise:

• the projective model structure sSetC
op

prj where Wprj and Fprj are objectwise
(that is, f : P → Q ∈ Wprj(Fprj) if and only if for all C ∈ C, f(C) : P (C)→
Q(C) ∈ WsSet(FsSet) ), and

• the injective model structure sSetC
op

inj where Winj and Cinj are objectwise.

These were studied by Bousfield and Kan [BK72] and Joyal [Joy84], respectively.

Proposition 2.18. Both sSetC
op

prj and sSetC
op

inj are proper, simplicial, cellular model
categories. All objects are cofibrant in the latter. The identity functor is a left Quillen
equivalence from the projective model structure to the injective model structure.

The injective one is more handy when it comes down to calculating homotopical
localizations, yet the fibrant objects are easier to grasp in the projective one2.

Using the stalk functor for presheaves, one can define a simplicial stalk functor
for simplicial presheaves.

Definition 2.19. The simplicial stalk functor at a point p in Shv(C) is given by

( )p : sSetC
op → sSet

P 7→ {stalkp(Pn)}n>0.

A morphism f : P → Q ∈ sSetC
op

is a stalkwise equivalence if fp : Pp → Qp ∈ sSet
is a weak equivalence for all points p in Shv(C).

Jardine [Jar87] proved the existence of a local version of Joyal’s injective model
structure. Since we will only be interested in the special case where Shv(C) has
enough points, we will not recall the definition of local weak equivalences.

2They are objectwise Kan.
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Theorem 2.20 ([Jar87, Jar96]). Let C be a small category with a Grothendieck
topology. Then sSetC

op
the category of simplicial presheaves on C has a proper, sim-

plicial, cellular model structure in which

• the cofibrations are the monomorphisms, i.e. the levelwise monomorphisms of
presheaves,

• the weak equivalences are the local weak equivalences, and

• the fibrations are the morphisms which have the right lifting property with
respect to all trivial cofibrations.

Furthermore, if the Grothendieck topos Shv(C) has enough points, then the local
weak equivalences are the stalkwise equivalences.

Jardine’s model structure can be seen to be cellular since it can also be constructed
as a left Bousfield localization of the injective model structure [DHI04].

3. Local po-spaces

The focus of this section is to provide the reader with the main definitions and
constructions. We define a small category of local po-spaces LPS and state some
of the properties, most of which are proved in the later sections. We show that
Theorem 1.1 follows from these properties and a theorem of Jardine.

To simplify the analysis, we will only work with topological spaces which are
subspaces of Rn for some n, since this provides more than enough generality for
studying concurrent systems. The main technical advantage of this setting is that
we obtain small categories.

Definition 3.1. (i) Let Spaces be the category whose objects are subspaces of
Rn for some n, and whose morphisms are continuous maps.

(ii) Let PoSpaces be the category whose objects are po-spaces: that is U ∈ Spaces
together with a partial order (a reflexive, transitive, anti-symmetric relation)
6 such that 6 is a closed subset of U × U in the product topology.

(iii) For anyM ∈ Spaces define an order-atlas onM to be an open cover3 U = {Ui}
of M indexed by a set I, where Ui ∈ PoSpaces. These partial orders are
compatible: 6i agrees with 6j on Ui ∩ Uj for all i, j ∈ I. We will usually omit
the index set from the notation.

(iv) Let U and U ′ be two order atlases on M . Say that U ′ is a refinement of U if
for all Ui ∈ U , and for all x ∈ Ui, there exists a U ′j ∈ U ′ such that x ∈ U ′j ⊆ Ui
and for all a, b ∈ U ′j , a 6j′ b if and only if a 6i b.

(v) Say that two order atlases are equivalent if they have a common refinement.
This is an equivalence relation: reflexivity and symmetry follow from the def-
inition. For transitivity, if U and U ′ have a refinement V = {Vi} and U ′ and
U ′′ have a refinement W = {Wj}, let T = {Vi ∩Wj}. One can check that T is
an order atlas of M and that is a refinement of U ′ and U ′′.

3That is, for all i, Ui is open as a subspace of M and M = ∪iUi.
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Any po-space (U,6) is a local po-space with the equivalence class of order atlases
generated by the order atlas {U}. As a further example, we remark that any discrete
space has a unique equivalence class of order-atlases.

Definition 3.2. Let LPS be the category of local po-spaces described as follows.
The objects, called local po-spaces, are all pairs (M,U) where M is an object
in Spaces and U is an equivalence class of order-atlases of M . The morphisms,
called dimaps are described as follows. f ∈ LPS((M,U), (N,V)) if and only if
f ∈ Spaces(M,N) and for all V = {Vj}j∈J ∈ V, there is a U = {Ui}i∈I ∈ U such
that for all i ∈ I, j ∈ J , for all x, y ∈ Ui ∩ f−1(Vj),

x 6Ui y =⇒ f(x) 6Vj f(y).

Remark 3.3. This condition is not necessarily true for arbitrary U ∈ U . For example,
take M = {−1, 1} with U the unique equivalence class of order atlases generated by
the order atlas U = {{−1}, {1}}. Let f = IdM : (M,U)→ (M,U). Now let M+ be
the po-space on M with the ordering −1 6 1 and let M− be the po-space on M with
the ordering 1 6 −1. Then {M+} ∈ U and {M−} ∈ U (both have U as a common
refinement). However, even though −1, 1 ∈M+ ∩ f−1(M−),

−1 6M+ 1, but f(−1) �M− f(1).

Remark 3.4. It is easy to check that a dimap of po-spaces is also a dimap of local
po-spaces. Thus PoSpaces the category of po-spaces is a subcategory of LPS.

Remark 3.5. Subobjects in LPS.
If (M,U) ∈ LPS, then a subspace L ⊆M ∈ Spaces inherits local po-space struc-

ture as follows. Let U = {Ui} ∈ U and let W = {Wi} where Wi = L ∩ Ui and Wi has
the partial order inherited from Ui. Then W is an open cover of L and the partial
orders are compatible. That is, W is an order atlas. Let W be the equivalence class
of W .

We claim that W does not depend on the choice of U . Let Ũ = {Ũi} ∈ U , let
W̃i = L ∩ Ũi, and let W̃ = {W̃i}. U and Ũ have a common refinement Û = {Ûi}.
Let Ŵi = L ∩ Ûi and let Ŵ = {Ŵi}. Then one can check that Ŵ is a common
refinement of W and W̃ . So the equivalence class of W̃ is also W.

Next, we claim that there is a dimap ι : (L,W)→ (M,U) given by the inclusion
ι : L ↪→M . Let U = {Uk} ∈ U , let Wk = L ∩ Uk, and let W = {Wk}. Then W ∈ W.
Let x, y ∈Wj ∩ ι−1(Uk) = Wj ∩ L ∩ Uk = Wj ∩Wk. Note that ι(x) = x and ι(y) =
y. Then

x 6Wj y ⇐⇒ x 6Wk
y ⇐⇒ x 6Uk

y.

Therefore, when L ⊆M ∈ Spaces, then there is an induced inclusion (L,W) ⊆
(M,U) ∈ LPS.

The remark above will be used implicitly and without reference in Section 6.

Definition 3.6. A collection of dimaps {φj : (Mj ,Uj)→ (M,U)} LPS is an open
dicover if
(i) {φj : Mj →M} is an open cover, and
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(ii) for each j, U j is the local po-space structure inherited from (M,U).

Remark 3.7. The local po-space structures inherited by the subspaces of (M,U) are
compatible. So if {φj : (Mj ,Uj)→ (M,U)} is an open cover, then for each j, there
is a U j = {U jk} ∈ U j such that U ′ = {U jk}j,k is an order atlas for M and U ′ ∈ U .

The following is easy to check.

Lemma 3.8. Spaces and LPS are small categories.

Define U : LPS→ Spaces to be the forgetful functor defined on objects and
morphisms as follows (M,U) 7→M and ϕ 7→ ϕ.

Define F : Spaces→ LPS as follows. If M is an object in Spaces, then let
F (M) = (M, M̄φ), where M̄φ is the equivalence class of Mφ = {M} with x 6M

y ⇐⇒ x = y. If f : M → N ∈ Spaces, then F (f) = f : (M, M̄φ)→ (N, N̄φ). This
is a dimap since for any V = {Vj} ∈ N̄φ with x, y ∈ f−1Vj , x 6M y =⇒ x = y =⇒
f(x) = f(y) =⇒ f(x) 6Vj f(y).

Remark 3.9. Note that U is faithful and F includes Spaces as a full subcategory of
LPS.

Proposition 3.10. F : Spaces À LPS : U is an adjunction.

Proof. Let M be an object in Spaces and (N, V̄ ) ∈ LPS. We claim that there is a
natural bijection

LPS(F (M), (N, V̄ )) ∼= Spaces(M,U(N, V̄ )).

We need to show that there is a natural bijection

θ : Spaces(M,N)
∼=−→ LPS((M, M̄φ), (N, V̄ )).

If f ∈ LPS((M, M̄φ), (N, V̄ )), then f ∈ Spaces(M,N) such that for any V =
{Vj} ∈ V̄ , for all j, f |f−1(Vj) satisfies x 6M y =⇒ f(x) 6Vj f(y). Since x 6M y
if and only if x = y, this last condition is vacuous. Thus, the bijection is simply
θ : f 7→ f .

To show naturality, let α : (N, V̄ )→ (N ′, V̄ ′) ∈ LPS and ξ : M ′ →M ∈ Spaces.
Then

θ(U(α) ◦ f ◦ ξ) = α ◦ f ◦ ξ = α ◦ θ(f) ◦ ξ.

4. The open-dicover topology

We define the open cover Grothendieck topology for Spaces and the open dicover
Grothendieck topology for LPS in the following lemma. The proof of the lemma
follows directly from the definition of a basis for a Grothendieck topology.

Lemma 4.1. 1. Spaces has a Grothendieck topology whose basis is given by the
open covers. For M ∈ Spaces, let K(M) = {open covers of M}. Let J be the
Grothendieck topology generated by K. Call J the open cover topology.
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2. Analogously, LPS has a Grothendieck topology whose basis is given by the
open dicovers in LPS. Let K((M,U)) = {open dicovers of (M,U)}. Call the
Grothendieck topology generated by K the open-dicover topology.

In Section 3, we defined a Grothendieck topology to be subcanonical if every
representable presheaf is a sheaf. In this section, we will prove that the open-dicover
topology is subcanonical.

The following proposition shows that if a Grothendieck topology is generated by
a basis K, then to see if a presheaf is a sheaf, it suffices to check the basis. For the
definition of matching families and amalgamations, see Remark 2.5.

Proposition 4.2 ([MLM92, Proposition III.4.1]). Let C be a small category with
a Grothendieck topology J generated by a basis K. Then a presheaf P ∈ SetC

op
is a

sheaf for J if and only if for every M ∈ C and every cover {φj : Mj →M} ∈ K(M),
every matching family for {φj} of elements of P has a unique amalgamation.

Example 4.3. Let N ∈ Spaces and y(N) = Spaces(−, N) ∈ SetSpacesop. Suppose
φj : Mj →M is an open cover, and let αj : Mj → N be a matching family. Then
φj has a unique amalgamation φ : M → N . Therefore, y(N) is a sheaf for the open
cover topology, and hence the open cover topology is subcanonical.

Proposition 4.4. In the open-dicover topology J for local po-spaces, every repre-
sentable presheaf is a sheaf. That is, J is subcanonical.

Proof. Consider the representable presheaf

y((N, V̄ )) = LPS(−, (N, V̄ )) ∈ SetLPSop
.

By Proposition 4.2, y((N, V̄ )) is a sheaf if and only if for all open dicovers {φj} ∈
K((M, Ū)), any matching family

{αj : (Mj , Ūj)→ (N, V̄ )}
has a unique amalgamation α : (M, Ū)→ (N, V̄ ). That is, there is a map α such
that the diagrams

(Mj , Ūj)
φj //

αj

²²

(M, Ū)

α
yyttt

ttt
ttt

t

(N, V̄ )

commute in LPS for all j.
Let {αj} be such a matching family for an open dicover {φj}. Since {φj} is an

open dicover, then by Remark 3.7, for each j there is a U j = {U jk} ∈ Ūj such that
U ′ = {U jk}j,k is an order atlas and U ′ ∈ Ū .

By definition, {φj : Mj →M} is a cover in Spaces and {αj : Mj → N} is a match-
ing family. Therefore, there is a unique amalgamation α : M → N ∈ Spaces. That
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is, there is a map α such that

Mj
φj //

αj

²²

M

α
}}||

||
||

||

N

commutes in Spaces for all j. It remains to show that α is a dimap. Let V = {Vl} ∈
V̄ . Since αj : (Mj , Ūj)→ (N, V̄ ) ∈ LPS, there is a Ũ j = {Ũ jk}k ∈ Ū j such that for
all k, l,

for all x, y ∈ Ũ jk ∩ α−1
j (Vl), x 6Ũj

k
y =⇒ αj(x) 6Vl

αj(y).

Now, for each j, let Û j = {Û jk}k ∈ Ūj be a common refinement of Ũ j and U j . Then
since Û j is a refinement of Ũ j ,

for all x, y ∈ Û jk ∩ α−1
j (Vl), x 6Ûj

k
y =⇒ αj(x) 6Vl

αj(y), (1)

and since Û j is a refinement of U j , if we define U = {Û jk}j,k, then U ∈ Ū .
Since α is an amalgamation of {αj} in Spaces if x ∈ Û jk ⊂M , then α(x) = αj(x)

and for all l, Û jk ∩ α−1
j (Vl) = Û jk ∩ α−1(Vl). Therefore, using (1) for all k, l,

for all x, y ∈ Û jk ∩ α−1(Vl), x 6Ûj
k
y =⇒ α(x) 6Vl

α(y).

That is, α is a dimap. Therefore, α : (M, Ū)→ (N, V̄ ) is a unique amalgamation of
{αj}.

5. Equivalence of sheaves and di-étale bundles

In this section, C is either Spaces or LPS with the Grothendieck topology gen-
erated by open (di)covers.

Notation 5.1. We will use A ⊂
open B to denote that A is an open subset of B.

Notation 5.2. Let Z ∈ C and let F ∈ SetC
op

. Choose x ∈ U ⊂
open Z and s ∈ F (U).

Then for open subobjects of U , L
i
↪→ U , we have F (i) : F (U)→ F (L) and we will

use the notation

s|L : = F (i)(s).

Recall that stalkx(F ) = colim
x∈L ⊂

openU
F (L) and germx(s) is the equivalence class

represented by s in stalkx(F ).

Definition 5.3. Given Z ∈ C, a bundle over Z is just a morphism p : W → Z ∈ C.
An (di)étale bundle is a bundle which is a local (di)homeomorphism. That is, given
y ∈W , there is some open set V ⊂W such that p(V ) is open in Z and p|V is an
isomorphism in C.
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A morphism of (étale) bundles p : W → Z and p : W ′ → Z is a morphism θ : W →
W ′ ∈ C such that the following diagram commutes:

W
θ //

p
ÃÃA

AA
AA

AA
A W ′

p′~~||
||

||
||

Z

Let Etale(Z) denote the category of (di)étale bundles over Z. In addition, let
O(Z) denote the category of open subobjects of Z, where the objects are open
subobjects of Z and the morphisms are the inclusions.

Theorem 5.4 (Theorem 1.3). Let Z ∈ C. Then there is an equivalence of categories

Γ: Etale(Z) ¿ Shv(O(Z)) : Λ.

Proof. It is well known that the statement of Theorem 1.3 is true when C = Spaces
(see e.g. [MLM92, Corollary II.6.3]). We will show that this equivalence between
étale bundles on topological spaces and sheaves on topological spaces extends to
local po-spaces.

First, we describe the functors Γ and Λ in the case where C = Spaces. The
functor Γ assigns to each bundle W

p−→ Z the presheaf of cross-sections:

P : O(Z)op → Set

U 7→ {s : U →W ∈ C | p ◦ s = IdU}
U

θ
↪→ V 7→ θ∗ (θ∗(t) = t ◦ θ).

One can check that if p is étale, then P is in fact a sheaf [MLM92, p. 79]. Thus, Γ
restricts to a functor Γ: Etale(Z)→ Shv(O(Z)).

Given a presheaf P : O(Z)op → Set, Λ(P ) is the bundle W
p−→ Z where

W = {germx s | x ∈ U ⊂
open Z, s ∈ P (U)} and p : germx s 7→ x.

A basis for the topology on W is given by the sets ṡ(U), where U is an open set in
Z, s ∈ P (U) and

ṡ : U → Λ(P )
x 7→ germx s.

Using this topology, p : W → Z is a continuous map. Again, one can check that if P
is a sheaf, then W

p−→ Z is in fact an étale bundle [MLM92, p. 85]. So, Λ restricts
to a functor Λ: Shv(O(Z))→ Etale(Z).

Now, we will show that Γ and Λ can be similarly defined in the case where C =
LPS. Let p : (W, T̄ )→ (Z, Ū) be an étale bundle of local po-spaces. The definition
of Γ is exactly the same: Γ((W, T̄ )

p−→ (Z, Ū)) is the sheaf of cross-sections.
Given a sheaf P on a local po-space (Z, Ū), Λ(P ) = (W

p−→ Z) is an étale bundle
of topological spaces. To extend Λ to local po-spaces, it remains to define a local
order on W and show that this makes p a dimap.

Lemma 5.5. W has a canonical local po-space structure such that p is a dimap.
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Proof. Recall that the sets ṡ(U) defined above form a basis for the topology of W .
Choose an order atlas {(Ui,6i)} ∈ Ū for Z. For each open sub-po-space V ⊂ Ui and
each s ∈ P (V ), ṡ(V ) ⊂W is a po-space under the relation

germx s 6ṡ(V ) germy s if and only x 6i y.

This is well-defined since {Ui} is an order-atlas, and it makes ṡ(V ) a po-space since
ṡ : Ui → ṡ(Ui) is a homeomorphism.

We claim that

T : = {ṡ(V ) | V ⊂
open Ui, s ∈ P (V )}

is an order atlas on W . First, we need to show that it is an open cover. Each of
the sets is open by construction. If U ∈ O(Z) and s ∈ P (U), consider germx s. Since
{Ui} is an open cover of Z, for some i, x ∈ Ui. Let V = U ∩ Ui. Then germx s =
germx s|V ∈ ˙(s|V )(V ). Therefore, T is an open cover of W .

Finally, we need to show that the orders are compatible. For k = 1, 2, let Vk ⊂
open

Uik
⊂

open Z, and sk ∈ P (Vk). Assume g1, g2 ∈ ṡ1(V1) ∩ ṡ(V2). That is, g1 = germx1
s1

= germx1
s2 and g2 = germx2

s1 = germx2
s2. For k = 1, 2,

g1 6ṡk(Vk) g2 ⇐⇒ x1 6ik x2.

Since {Ui} is an order-atlas, the order 6i1 and 6i2 are compatible. Therefore, the
orders 6ṡ1(V1) and 6ṡ1(V1) are compatible, and T is an order-atlas on W .

Let T̄ be the equivalence class of order atlases of T . We claim that T̄ does not
depend on the choice of U ∈ Ū .

Let U,U ′ ∈ Ū , then U and U ′ have a common refinement U ′′. Let T, T ′, T ′′ be
the corresponding order-atlases for W constructed as above. We will show that T ′′

is a refinement of T .
Let A ⊂

open Uj ∈ U , s ∈ P (A) and germx s ∈ ṡ(A). Then there is some U ′′k ∈ U ′′
such that x ∈ U ′′k and U ′′k is a sub-po-space of Uj . Let A′′ = A ∩ U ′′k . It follows
that ˙(s|A′′)(A′′) ⊂ ṡ(A), and germx s = germx(s|A′′) ∈ ˙(s|A′′)(A′′) ∈ T ′′. Since U ′′k is
a sub-po-space of Uj , it follows that ˙(s|A′′)(A′′) is a sub-po-space of ṡ(A). Thus, T ′′

is a refinement of T .
Similarly, T ′′ is a refinement of T ′ and is hence a common refinement of T and

T ′. Therefore, T̄ does not depend on the choice of U ∈ Ū .
Finally, we will show that the projection p : W → Z given by germx s 7→ x is a

dimap. Let U ∈ Ū be an order-atlas on Z. Let T be the order-atlas on W constructed
above from U . Observe that T ∈ T̄ , since T̄ does not depend on the choice of U ∈ Ū .
Let Uj ∈ U , let A ⊂

open Ui ∈ U , and let s ∈ P (A). Assume that

germx1
s, germx2

s ∈ ṡ(A) ∩ p−1(Uj).

Then x1, x2 ∈ Ui ∩ Uj . By the construction of T and since U is an order atlas,

germx1
s 6ṡ(A) germx2

s ⇐⇒ x1 6Ui x2 ⇐⇒ x1 6Uj x2.

Therefore, Λ can be extended to local po-spaces.
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Thus, we have maps

Γ: Etale(Z) ¿ Shv(O(Z)) : Λ.

To show that they give an equivalence of categories, we will show that for a sheaf P
and an étale space W

p−→ Z, there are natural isomorphisms

εW : ΛΓW →W and ηP : P → ΓΛP.

Recall that elements of ΛΓW are of the form ṡ(x) = germx s, where s : U →W
satisfies p ◦ s = IdU and x ∈ U . Define εW to be the map ṡx 7→ sx. We will show
that this is an isomorphism by constructing an inverse θW . Let y ∈W and let
x = py. Since W is étale, there exists y ∈ V ⊂

open W such that p|V : V
∼=−→ p(V ). Let

q = (p|V )−1. Then define θW (y) = germx q = q̇x. Then we claim θW is an inverse for
εW . Indeed

εW θW y = εW q̇x = qx = y.

Also for all ṡx ∈ ΛΓW , θW εW ṡx = θW sx = germx t, where t is a restriction of s. So
germx t = germx s = ṡx.

Finally, we claim that εW and θW are dimaps. First, choose T = {Tk} ∈ T̄ and
U = {Ui} ∈ Ū such that p satisfies the dimap condition. From T , construct the
canonical order atlas of the form {ṡV } for ΛΓW as in the proof of Lemma 5.5. Now,
let ṡx1, ṡx2 ∈ ṡV ∩ ε−1

W (Tk). Then by construction,

ṡx1 6ṡV ṡx2 ⇐⇒ x1 6Ui x2.

Since s satisfies the dimap condition, this implies that sx1 6Tk
sx2 which is the

same as εW ṡx1 6Tk
εW ṡx2. Thus, εW is a dimap. Next, let y1, y2 ∈ Tk ∩ θ−1

W (ṡV ) =
Tk ∩ εW (ṡV ) = Tk ∩ sV . Then there are x1, x2 ∈ V such that y1 = sx1 and y2 = sx2.
Since p satisfies the dimap condition

y1 6Tk
y2 =⇒ py1 6Ui py2.

But this is the same as x1 6Ui x2 which implies that ṡx1 6ṡV ṡx2. Therefore, θW is
a dimap.

The proof that the morphism ηP is a bijection is the same as the proof in the
case of topological spaces [MLM92, Theorem II.5.1].

6. Points

In this section, C is either Spaces or LPS with the Grothendieck topology gen-
erated by open (di)covers.

Let SetC
op

and Shv(C) be the topoi of presheaves and sheaves on C. Recall that
the inclusion functor i : Shv(C)→ SetC

op
has a right adjoint a called the associated

sheaf functor. Recall from Definition 2.15 that if p is a point in Shv(C) and α ∈
SetC

op
, then stalkp(F ) = p∗ ◦ a(α).
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Let Z ∈ C. Then Z is a topological space or a local po-space and we can choose
any point (in the usual sense) x ∈ Z. Define

p∗x : SetC
op → Set

F 7→ colim
x∈L ⊂

openZ

F (L),

where the colimit is taken over all open subsets of Z containing x. See Remark 3.5
for a discussion of subobjects in LPS.

Given a functor p∗ : SetC
op → Set, there is an induced functor

A : C y−→ SetC
op p∗−→ Set,

where y is the Yoneda embedding defined on objects and morphisms by Z 7→ C(−, Z)
and ϕ 7→ C(−, ϕ).

Given a functorA : C→ Set, one can define induced adjoint functors p∗ : SetC
op→

Set and p∗ : Set→ SetC
op

(p∗ = −⊗C A and p∗ = C(A,−), see [MLM92, Section
VII.2] ).

Definition 6.1. (i) The functor A : C→ Set is flat if the corresponding p∗ is left
exact.

(ii) A is continuous if A sends each covering sieve to an epimorphic family of func-
tions. That is, if S is a covering sieve, then the family of functions {A(ϕ)|ϕ ∈ S}
is jointly surjective.

Proposition 6.2 ([MLM92, Corollary VII.5.4]). Using the correspondence above,
p is a point in SetC

op
if and only if A is flat. Furthermore, p descends to a point in

Shv(C) if and only if A is flat and continuous.

Proposition 6.3. px defined above descends to a point in Shv(C) .

SetC
op p∗x //

a

²²

Set

Shv(C)

i

OO ;;v
v

v
v

v

(2)

Proof. Let Ax = p∗x ◦ y, where y is the Yoneda embedding.
First, we show that p∗x is left exact, that is, it preserves finite limits. Let F ×G H

be a pullback in SetC
op

.

p∗x(F ×G H) = colim
x∈L⊆Z

(F ×G H)(L)

= colim
x∈L⊆Z

F (L)×G(L) H(L)

= colimF (L)×colimG(L) colimH(L)
= p∗xF ×p∗xG p∗xH.

The third equality holds because colim commutes with pullbacks in Set, and the
others are by definition. Thus, A is flat and p∗x is a point in SetC

op
.



Homology, Homotopy and Applications, vol. 8(1), 2006 282

Next, we show that Ax is continuous. Let {Yi ϕi−→ N} be a covering sieve for N
in C. Recall that Ax = p∗x ◦ y. Let (ϕi)∗ denote composition with ϕi. For each arrow
in the covering sieve,

p∗x ◦ y(Yi
ϕi−→ N) = p∗x(C(−, Yi) (ϕi)∗−−−→ C(−, N))

= colim
x∈L⊆Z

(C(L, Yi)
(ϕi)∗−−−→ C(L,N))

= y(Yi)x
(ϕi)∗−−−→ y(N)x.

We claim that this is an epimorphic family of functions in Set. Let f ∈ y(N)x.
Then there is an open subspace L such that x ∈ L ⊆ Z and f is represented by a mor-
phism f ′ ∈ C(L,N). Since {Yi} coversN , f ′(x) ∈ Yk for some k. LetK = (f ′)−1(Yk).
Then K is open and x ∈ K ⊆ L ⊆ Z. Furthermore, f ′|K ∈ C(K,Yk) which repre-
sents an element f ′′ ∈ y(Yk)x, and (ϕk)∗f ′′ = f . Hence, we have an epimorphic
family as claimed. Thus, A is continuous and px descends to a point in Shv(C)
.

Abusing notation, we will also denote the induced functor in diagram (2) by p∗x.
With this abuse of notation, the stalk of F ∈ SetC

op
at x is given by stalkx(F ) =

p∗xa(F ) = p∗x(F ). Note that stalkx(F ) = {germx(s) | x ∈ U ⊂
open Z, s ∈ F (U)}.

Theorem 6.4. The points px defined above provide enough points for Shv(C). That
is, given f 6= g : P → Q ∈ Shv(C), there is a Z ∈ C and a x ∈ Z such that p∗xf 6=
p∗xg : p∗xP → p∗xQ ∈ Set.

Proof. Given Z ∈ C and either P ∈ Shv(C) or f ∈ MorShv(C), let PZ or fZ denote
the restriction to Shv(O(Z)).

Assume that f 6= g : P → Q ∈ Shv(C). Thus, there is some Z ∈ C such that fZ 6=
gZ : PZ → QZ ∈ Shv(O(Z)).

By Theorem 1.3, this is equivalent to saying that the corresponding maps between
étale spaces are not equal. That is,

ΛfZ 6= ΛgZ : ΛPZ → ΛQZ ∈ Etale(Z).

Thus, there is some point y ∈ ΛPZ such that ΛfZ(y) 6= ΛgZ(y).
By the definition of Λ, y = germx s for some x ∈ U ⊂

open Z and s ∈ PZ(U). That
is, y ∈ stalkx(P ) = p∗xP . Therefore, p∗xf 6= g∗xg : p∗xP → p∗xQ.

7. Stalkwise Equivalences

Let (C, τ) be a site with a subcanonical Grothendieck topology such that Shv(C)
has enough points and let ȳ : C→ sSetC

op
be the Yoneda embedding. Recall the

definition of stalkwise equivalence in Definition 2.19 which uses the simplicial stalk
functor (·)p. Also recall the Yoneda embedding ȳ : C→ sSetC

op
given in Defini-

tion 2.17. Let ϕ : X → Y ∈ C.

Lemma 7.1. ȳ(ϕ) is a stalkwise equivalence if and only if for all points p in Shv(C),
p∗ay(ϕ) ∈ Set is an isomorphism.



Homology, Homotopy and Applications, vol. 8(1), 2006 283

Proof. Let p be a point in Shv(C) . Recall that the simplicial stalk of ȳ(ϕ) at p is
given by

(ȳ(ϕ))p = {stalkp(ȳ(ϕ)n)}n>0 = {p∗ay(ϕ)}n>0,

which is simplicially constant. Thus, ȳ(ϕ)p ∈ sSet is an isomorphism if and only if
p∗ay(ϕ) ∈ Set is an isomorphism.

Lemma 7.2. If the Grothendieck topology τ is subcanonical, then the composite
functor C y−→ SetC

op a−→ Shv(C) is faithful.

Proof. By the Yoneda Lemma, y is full and faithful. Since τ is subcanonical im(y) ⊂
Shv(C). Furthermore, a ◦ i : Shv(C)→ Shv(C) is naturally isomorphic to the iden-
tity functor [MLM92, Corollary III.5.6]. Thus, ay is naturally isomorphic to y which
is faithful.

Theorem 7.3. Let ϕ : X → Y ∈ C and assume that ȳ(ϕ) is a stalkwise equivalence.
Then ϕ is bijective.

The proof of this theorem is split into the following two propositions.

Proposition 7.4. Let ϕ : X → Y ∈ C and assume that ȳ(ϕ) is a stalkwise equiva-
lence. Then ϕ is epi.

Proof. For i = 1, 2, let ψi : Y → Z ∈ C be a morphism such that ψ1 ◦ ϕ = ψ2 ◦
ϕ : X → Z. Then for all points p in Shv(C) , p∗ay(ψ1 ◦ ϕ) = p∗ay(ψ2 ◦ ϕ). From
this, it follows that

p∗ay(ψ1) ◦ p∗ay(ϕ) = p∗ay(ψ2) ◦ p∗ay(ϕ).

But by Lemma 7.1, p∗ay(ϕ) is a set isomorphism, so, in particular, it is epi. There-
fore, p∗ayψ1 = p∗ayψ2 for all points p in Shv(C). Since C has enough points,
ayψ1 = ayψ2. By Lemma 7.2, a ◦ y is faithful, and thus ψ1 = ψ2. Therefore, ϕ is
epi.

Proposition 7.5. Let ϕ : X → Y ∈ C and assume that ȳ(ϕ) is a stalkwise equiva-
lence. Then ϕ is mono.

Proof. For i = 1, 2, let ψi : W → X ∈ C be a morphism such that ϕ ◦ ψ1 = ϕ ◦
ψ2 : W → Y . As in the proof of the previous proposition, for all points p in Shv(C),

p∗ay(ϕ) ◦ p∗ay(ψ1) = p∗ay(ϕ) ◦ p∗ay(ψ2).

Again by Lemma 7.1, p∗ay(ϕ) is mono. Therefore, p∗ayψ1 = p∗ayψ2 for all points p
in Shv(C). Since C has enough points, ayψ1 = ayψ2. By Lemma 7.2, a ◦ y is faithful,
thus ψ1 = ψ2. Therefore, ϕ is mono.

Let C = Spaces or LPS with the open cover topology. By Example 4.3 and
Proposition 4.4, this topology is subcanonical.
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Recall from Section 6 that if Z ∈ C and x ∈ Z, then

p∗x : SetC
op → Set

F 7→ colim
x∈L ⊂

openZ

F (L) (3)

descends to a point in Shv(C) (where the colimit is taken over open subspaces of Z
which contain x).

Theorem 7.6. Let ϕ : X → Y ∈ C. Then ȳ(ϕ) is a stalkwise equivalence if and only
if ϕ is an isomorphism in C.

Proof. (⇐) If ϕ is an isomorphism, then for all points p in Shv(C) p∗ay(ϕ) is an
isomorphism. Hence, by Lemma 7.1, ȳ(ϕ) is a stalkwise equivalence.
(⇒) Assume that ȳ(ϕ) is a stalkwise equivalence. Then by Theorem 7.3, ϕ is a
bijection.

Let x ∈ Y . Let px be the corresponding point defined in (3). Then

p∗xay(ϕ) : colim
x∈L⊆Y

C(L,X)
ϕ∗−−→ colim

x∈L⊆Y
C(L, Y ) ∈ Set

is a bijection. Let f : Y → Y be given by f = IdY . Let f̄ = [f ] ∈ colimx∈L⊆Y C(L, Y ).
Let ḡ = (ϕ∗)−1(f̄). Then there is some x ∈W ⊆ Y such that ḡ has a representative
g ∈ C(W,X).

Let f ′ = ϕ∗g = ϕ ◦ g. Then [f ′] = ϕ∗[g] = [f ]. Therefore, there exists x ∈ S ⊆ Y
such that S ⊂ Y ∩W and f ′|S = f |S = IdY |S .

Let ψ = g|S . Therefore, ϕψ = IdS . Let T = im(ψ). Then ϕ|T ◦ ψ = IdS and ϕ|T
is a bijection. Hence, ϕ|T : T → S is an isomorphism, where x ∈ S.

Finally, this construction can be repeated for all x ∈ Y . For each x ∈ Y , there is
a x ∈ Sx ⊆ Y and there is a map

ψx : Sx → X such that ψx = (ϕ|im(ψx))−1.

Since ϕ is a bijection, all local inverses must agree. That is, {ψx : Sx → X} is a
matching family on the open cover {Sx} of Y . Since the topology is subcanonical,
there is a unique amalgamation ψ : Y → X. It remains to be shown that ψ is an
inverse for ϕ.

For all Sx, ϕ ◦ ψ|Sx = ϕ ◦ ψx = IdSx .

Therefore, ϕ is an isomorphism in C .

8. Model Categories for Local Po-spaces

8.1. A model category for local po-spaces
Using our results on LPS, Theorem 1.1 will now follow directly from Jardine’s

model structure (Theorem 2.20).

Proof of Theorem 1.1. The open dicovers induce a Grothendieck topology on the
small category LPS. Applying Theorem 6.4, the Grothendieck topos Shv(LPS)
has enough points. So by Jardine’s Theorem (Theorem 2.20), sPre(LPS) has a
proper, simplicial, cellular model structure in which
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• the cofibrations are the monomorphisms, i.e. the levelwise monomorphisms of
presheaves,

• the weak equivalences are the stalkwise equivalences, and
• the fibrations are the morphisms which have the right lifting property with

respect to all trivial cofibrations.
Finally, by Theorem 7.6, the weak equivalences coming from LPS (via the Yoneda
embedding) are precisely the isomorphisms.

8.2. Localization
Our main motivation for constructing a model category for local po-spaces was

to model concurrent systems. In particular, we would like to be able to define and
understand equivalences of concurrent systems using such a model category. How-
ever, our model structure on sPre(LPS) does not have any non-trivial equivalences
among the morphisms coming from LPS. To obtain a model category more directly
useful for studying concurrency, we need to localize with respect to a set of mor-
phisms. In particular, we want morphisms which preserve certain computer-scientific
information.

How to best choose such morphisms is an important question and has been stud-
ied in [Bub04]. For the sake of simplicity, that paper studied only the category
PoSpaces of po-spaces (a subcategory of LPS). There it was shown that the set of
morphisms which should be equivalences depends on the context. That is, instead
of choosing equivalences for PoSpaces, one should be choosing equivalences for the
coslice category or undercategory A ↓ PoSpaces of po-spaces under a po-space A,
where A is called the context.

This result can be easily extended to our setting. First, we remark that if we
choose a local po-space A, then the undercategory A ↓ LPS is the category whose
objects are dimaps ιM : A→ (M, Ū) and whose morphisms are dimaps f : (M, Ū)→
(N, V̄ ) such that the following diagram commutes:

A
ιM

||xx
xx

xx
xx

x
ιN

""EE
EE

EE
EE

E

(M, Ū)
f // (N, V̄ )

Next, ȳ(A) ∈ sPre(LPS) and the undercategory ȳ(A) ↓ sPre(LPS) is the category
whose objects are morphisms of simplicial presheaves ια : ȳ(A)→ α and whose mor-
phisms are morphisms of simplicial presheaves f : α→ β such that the following
diagram commutes:

ȳ(A)
ια

~~||
||

||
|| ιβ

ÃÃB
BB

BB
BB

B

α
f // β

Since ȳ : LPS→ sPre(LPS) is a functor

ȳ(ιM ) : ȳ(A)→ ȳ(M, Ū) and ȳ(ιN ) = ȳ(f ◦ ιM ) = ȳ(f) ◦ ȳ(ιM ).
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Hence, A ↓ LPS embeds as a subcategory of ȳ(A) ↓ sPre(LPS).
Define morphisms in ȳ(A) ↓ sPre(LPS) to be weak equivalences, cofibrations

and fibrations if and only if they are weak equivalence, cofibrations and fibrations in
sPre(LPS). Then this makes ȳ(A) ↓ sPre(LPS) into a model category (see [Hir03,
Theorem 7.6.5]).

We will show that this model category is again proper and cellular. We will need
the following definitions and a theorem of Kan.

Definition 8.1. (i) Let C be a category and I be a set of maps in C. A relative
I-cell complex is a map that can be constructed by a transfinite composition
of pushouts of elements of I.

(ii) An object A ∈ C is small relative to a collection of morphisms D in C if there
exists a cardinal κ such that for all regular cardinals λ > κ and for all λ-
sequences

X0 → X1 → X2 → . . .→ Xβ → . . .

with Xβ → Xβ+1 in D for β + 1 < λ, the set map

colim
β<λ

C(A,Xβ)→ C(A, colim
β<λ

Xβ)

is an isomorphism.

Definition 8.2. A model category M is cofibrantly generated if there are sets I
and J such that
(i) the domains of I are small relative to the relative I-cell complexes,
(ii) the domains of J are small relative to the relative J-cell complexes,
(iii) the fibrations have the right lifting property with respect to J , and
(iv) the trivial fibrations have the right lifting property with respect to I.
We say that M is cofibrantly generated by I and J .

Definition 8.3. (i) Let M be a model category cofibrantly generated by I and
J . An object A ∈M is compact if there is a cardinal γ such that for all relative
I-cell complexes f : X → Y with a particular presentation, every map A→ Y
factors through a subcomplex of size at most γ.

(ii) f : A→ B is an effective monomorphism if f is the equalizer of the inclusions
B ⇒ B qA B.

Definition 8.4. A cellular model category is a model category cofibrantly generated
by I and J such that
(i) the domains and codomains of elements of I and J are compact,
(ii) the domains of elements of J are small relative to relative I-cell complexes,

and
(iii) the cofibrations are effective monomorphisms.

Theorem 8.5 ([Hir03, Theorem 11.3.2]). Let M be a model category cofibrantly
generated by the sets I and J , and let N be a bicomplete category such that there
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exists a pair of adjoint functors F : M¿ N : U . Define FI = {Fu | u ∈ I} and
FJ = {Fv | v ∈ J}. If

1. the domains of FI and FJ are small relative to FI-cell and FJ-cell, respec-
tively, and

2. U maps relative FJ-cell complexes to weak equivalences,

then N has a model category structure cofibrantly generated by FI and FJ such that
f is a weak equivalence in N if and only if Uf is a weak equivalence in M, and
(F,U) is a Quillen pair.

Theorem 8.6. Let M be a model category and let A ∈M. Then A ↓ M has a
model structure where a morphism

A
~~~~~ ÃÃ@

@@

B
f // C

is a weak equivalence, cofibration or fibration in A ↓ M if and only if f is a weak
equivalence, cofibration or fibration, respectively, in M. If M is proper, cofibrantly
generated or cellular, then so is A ↓ M.

Remark 8.7. For a more detailed proof, we invite the reader to regard Hirschhorn’s
note [Hir05].

Proof. That A ↓ M has the stated model structure follows from the definitions (see
[Hir03, Theorem 7.6.5]).

Pushouts and pullbacks in A ↓ M can be formed by taking pushouts and pull-
backs of the underlying morphisms in M, and then taking the induced maps from
A. It thus follows that if M is proper, so is A ↓ M.

Assume M is cofibrantly generated by I and J . The method for showing that
A ↓ M is cofibrantly generated will be to apply Theorem 8.5 to the following adjoint
functors:

F : M¿ (A ↓ M) : U,

where for B ∈M and f : B → C ∈M,

F (B) =
A
i1²²

AqB
, F (f) =

A
i1

zzvvv
vvv i1

$$HHH
HHH

AqB Idqf // Aq C
and U is the forgetful functor

U




A
ιB²²

B


 = B, U




A
ιB

~~~~~
~~ ιC

ÂÂ@
@@

@@

B
f // C


 = B

f−→ C.

Define FI = {Fu | u ∈ I} and FJ = {Fv | v ∈ J}.
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The main observation for the proof is that for a morphism u in M, the pushout
of Fu is obtained from the pushout of u in M. That is,

A

))TTTTTTTTTTTTTTTTTT

##FF
FF

FF
FF

F

¼¼4
44

44
44

44
44

44
44

AqB
ιXqf

²²

Idqu
// Aq C

²²
X // P

where P is defined by

B
u //

f

²²

C

²²
X // P

.

From this, it follows that for a set of morphisms S inM, the underlying morphisms
of a relative FS-complex are a relative S-complex.

Hence, the conditions on A ↓ M in Theorem 8.5 and the definition of a cellular
model category (Definition 8.4) are all inherited from the corresponding conditions
in M.

Finally, one can check that the model category structure given by Theorem 8.5
coincides with the one in the statement of the theorem.

Let M denote the model structure above on ȳ(A) ↓ sPre(LPS). Since M is
cellular, we can apply left Bousfield localization [Hir03] to this model structure
M with respect to a set of morphisms which will preserve the computer-scientific
properties we are interested in. In [Bub04], one inverted the set of dihomotopy
equivalences in A ↓ PoSpaces. So, in our setting, we will let I be the set of dihomo-
topy equivalences in A ↓ LPS defined below. We will invert the set I = {ȳ(f) | f ∈
I} ⊂ ȳ(A) ↓ sPre(LPS).

Definition 8.8. (i) Let ~I be the po-space ([0, 1],6) where 6 is the usual total
order on [0, 1]. Given dimaps f, g : (M, Ū)→ (N, V̄ ) ∈ A ↓ LPS, φ is a dihomo-
topy from f to g if φ : (M, Ū)× ~I → (N, V̄ ), φ|(M,Ū)×{0} = f , φ|(M,Ū)×{1} = g,
and for all a ∈ A, φ(ιM (a), t) = ιN (a). In this case, write φ : f → g.

(ii) The symmetric, transitive closure of dihomotopy is an equivalence relation.
Write f ' g if there is a chain of dihomotopies f → f1 ← f2 → . . .← fn → g.

(iii) A dimap f : (M, Ū)→ (N, V̄ ) is a dihomotopy equivalence if there is a dimap
g : (N, V̄ )→ (M, Ū) such that g ◦ f ' IdM and f ◦ g ' IdN .

The left Bousfield localization ofM with respect to I provides a model structure
on ȳ(A) ↓ sPre(LPS) in which the weak equivalences are the I-local equivalences
(see [Hir03]), the cofibrations are the cofibrations in M and the fibrations are
morphisms which have the right lifting property with respect to morphisms which
are both cofibrations and I-local equivalences.

Theorem 8.9 (Theorem 1.2). Let I = {ȳ(f) | f is a directed homotopy equivalence
rel A}. The category ȳ(A) ↓ sPre(LPS) has a left proper, cellular model structure
in which
• the cofibrations are the monomorphisms,
• the weak equivalences are the I-local equivalences, and
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• the fibrations are those morphisms which have the right lifting property with
respect to monomorphisms which are I-local equivalences.

We claim that this model category provides a good model for studying concur-
rency. An analysis of this model category will be the subject of future research.

Appendix A. Hypercovers

Suppose now C is small and equipped with a Grothendieck topology, i.e. we have
a site (C, τ). The Čech structure sSetC

op

č(τ) is obtained from the projective structure
by homotopically localizing the comparison morphisms given by the Čech covers
with respect to τ or, up-to homotopy, from the injective structure by localizing at
the same set of morphisms.

Definition A.1. Let U =
{
Ui

ui−→ X
}
i∈I
∈ J (X) be a cover. Let ip ∈ I for each

0 6 p 6 n and Ui0...in be the wide pullback of the uip ’s, i.e. the limiting object of
the diagram

Ui0
ui0

((QQQQQQQQQQQQQQQ · · · Uip

uip

²²

· · · Uin
uin

vvmmmmmmmmmmmmmmm

X

The Čech nerve Ǔ of U is the simplicial presheaf given by

Ǔn
def
=

∐

i0,...,in∈I
y (Ui0...in)

Remark A.2. For any n ∈ N, X ∈ C and U ∈ J (X), there is a morphism

ui0···in : Ui0...in → X

and a diagram of presheaves

Ǔn
EU,X,n // y (X)

y (Ui0,...,in)

in
y(Ui0,...,in)

OO

y(ui0,...,in)

66llllllllllllll

where EU,X,n is given by universal property. The EU,X,n assemble to a morphism of
simplicial presheaves

EU,X : Ǔ → κy(X)

Remark A.3. Given U ∈ J (X) seen as a subcategory of the slice C/X, there is the
evident functor

δU : U → sSetC
op

ui 7→ κy(Ui)
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Proposition A.4. Localizing sSetC
op

inj at the sets
(i) {EU,X | X ∈ C, U ∈ J (X)} ;
(ii)

{
hocolim (δU )→ κy(X) | X ∈ C, U ∈ J (X)

}
;

(iii) {κ (ιU ) | X ∈ C, U ∈ J (X)}, where, given X ∈ C and R a sieve on X,
ιR : R ↪→ y (X) is the corresponding inclusion of presheaves;

(iv)
{
ηF : F → j (F ) | F ∈ sSetC

op
}
, where j : sSetC

op → sSetC
op

is the object-
wise sheafification functor;

yields the same model structure sSetC
op

č(τ). The same holds for the projective version.

Finally, there is a model structure sSetC
op

hyp(τ) obtained from the projective struc-
ture by homotopically localizing at the set of the comparison morphisms given by
hypercovers with respect to τ . This model structure is Quillen equivalent to Jar-
dine’s model structure (Theorem 2.20) on sSetC

op
[DHI04, Theorem 1.2]. As with

the Čech structure, there is also an injective version. Since Čech covers are particular
hypercovers, there is the series of inclusions

Wprj ⊆ Wč(τ) ⊆ Whyp(τ)

and a similar series for the injective version. It is in general the case that Wč(τ) $
Whyp(τ), yet equality holds in some important particular cases like the smooth Nis-
nevitch site (c.f. [DHI04, Example A10]). It is an interesting question whether or
not Wč(τ) =Whyp(τ) for local po-spaces.

References

[AGV72] M. Artin, A. Grothendieck, and J. L. Verdier. Théorie des Topos et
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