#### FIBRATIONS OVER ASPHERICAL MANIFOLDS

# DACIBERG GONÇALVES AND PETER WONG

(communicated by James Stasheff)

#### Abstract

Let  $f\colon E\to B$  be a map between closed connected orientable manifolds. In this note, we give a necessary condition for f to be a manifold fibration. In particular, we show that if  $F\hookrightarrow E\xrightarrow{f} B$  is a fibration where  $F=f^{-1}(b), E$  and B are closed connected triangulated orientable manifolds and B is aspherical, then  $f|_{E^{(n)}}\colon E^{(n)}\to B$  is surjective, where  $E^{(n)}$  denotes the n-th skeleton of E and  $n=\dim B$ .

Dedicated to Professor Ed Fadell

Fibrations are fundamental objects of study in topology and in other areas of mathematics. Given a surjective map  $f \colon E \to B$ , it is natural to ask if the homotopy class [f] contains a representative f' that is a fibration. Farrell in [4], upon improving his previous results, gave an obstruction for a smooth map  $f \colon M \to S^1$  to be a fiber bundle over the circle  $S^1$ . Our objective here is to consider this problem from the point of view of coincidence theory involving aspherical manifolds as the target space.

Let  $f, g \colon M \to N$  be maps between two closed connected manifolds. Coincidence theory is concerned with the study of the coincidence set  $C(f,g) = \{x \in M \mid f(x) = g(x)\}$ . When  $g = \bar{b}$  is the constant map at a point  $b \in N$ , the coincidence problem becomes the study of preimages of a point under f. In [5], the primary obstruction to deforming f and g to be coincidence free on the n-th skeleton of M,  $n = \dim N$ , was defined and studied. In this note, we study the preimage problem, i.e., when  $g = \bar{b}$ . In particular, we show that this primary obstruction is non-trivial when f is a fibration and B = N is aspherical. This implies that a typical fiber must intersect the n-th skeleton of the total space E, regardless of the cellular decomposition of E. This provides more information about (the fiber of) such fibrations.

## 1. Primary obstruction to deformation

Let  $f,g \colon M \to N$  be maps between two closed connected orientable manifolds with dim  $M \geqslant \dim N = n$ . We write  $\pi_M = \pi_1(M)$ ,  $\pi_N = \pi_1(N)$ . Then,  $[\pi_n(N^\times)]_{ab}$  is a local system on  $N \times N$ , where  $N^\times$  denotes the pair  $(N \times N, N \times N - \Delta_N)$  and

Received December 13, 2005, revised January 3, 2006; published on February 1, 2006. 2000 Mathematics Subject Classification: Primary: 55M20, 55R20, 55T10; Secondary: 55S35. Key words and phrases: Obstruction theory, fibrations, local coefficients, Shapiro's Lemma. Copyright © 2006, International Press. Permission to copy for private use granted.

 $[G]_{ab}$  denotes the abelianization of a group G. Similar to the definition in [5], we define the twisted Thom class  $\tilde{\tau}_N \in H^n(N^\times; [\pi_n(N^\times)]_{ab})$  to be the cohomology class of the cocycle  $u_N \in C^n(N^\times; [\pi_n(N^\times)]_{ab})$  given by  $\langle u_N, \sigma \rangle = [\sigma] \in \pi_n(N^\times; \sigma(v_0))$  for  $\sigma \colon (\Delta_n, \partial \Delta_n) \to N^\times$ , where  $v_0$  is the leading vertex of the standard n-simplex  $\Delta_n$ . Denote by  $\tau_N$  the ordinary Thom class of the normal bundle of the diagonal  $\Delta_N$  in  $N \times N$  using  $\mathbb{Z}$  coefficients. If  $n \geqslant 3$ , then  $[\pi_n(N^\times)]_{ab} \cong \pi_n(N^\times) \cong \mathbb{Z}\pi_N$ . When n = 2, N is an orientable surface of genus  $g \geqslant 0$ . Note that  $[\pi_n(N^\times)]_{ab} \cong [\pi_n(N, N - b)]_{ab}$ , where  $b \in N$ . Using the universal covering space of N and the same argument as in [2], one can show that  $[\pi_2(N, N - b)]_{ab} \cong \mathbb{Z}\pi_N$ . Then the augmentation map  $\mathbb{Z}\pi_N \to \mathbb{Z}$  induces  $\epsilon^* \colon H^n(N^\times; \mathbb{Z}\pi_N) \to H^n(N^\times; \mathbb{Z})$  such that  $\epsilon^*(\tilde{\tau}_N) = \tau_N$ .

The primary obstruction to deforming f and g to be coincidence free on the n-th skeleton is given by

$$o_n(f,g) := [j(f \times g)d]^*(\tilde{\tau}_N) \in H^n(M; \mathbb{Z}\pi_N^*),$$

where d is the diagonal map  $M \to M \times M$  and j is the inclusion of pairs  $(N \times N, \emptyset) \to N^{\times}$ . Here,  $\mathbb{Z}\pi_N^*$  denotes the local system over M induced by pulling back the local system  $\mathbb{Z}\pi_N$  along the map  $j(f \times g)d$ . Thus, for  $n \geq 3$ ,  $o_n(f,g)$  coincides with the primary obstruction defined in [5] whereas for n = 2,  $o_2(f,g)$  is the abelianized obstruction which coincides with that in [3] when g is the identity and M = N. Note that if  $M^{(n)}$  denotes the n-th skeleton of M and  $o_n(f,g) \neq 0$ , then for any  $f' \sim f$ ,  $g' \sim g$  we have  $M^{(n)} \cap C(f',g') \neq \emptyset$ .

## 2. Main results

Let  $p: E \to B$  be a fibration and let  $F = p^{-1}(b)$ ,  $b \in B$  be a typical fiber. Suppose that F, E, and B are 0-connected closed triangulated orientable manifolds. We call such a fibration a manifold fibration.

**Theorem 2.1.** Let  $p: E \to B$  be a manifold fibration with dim E = n + k and dim B = n. Suppose that  $\pi_q(B) = 0$  for  $2 \le q \le k + 1$ . Then for any  $b \in B$ ,  $p^{-1}(b) \cap E^{(n)} \neq \emptyset$ . In other words,  $p|_{E^{(n)}}: E^{(n)} \to B$  is surjective. For  $n \ge 2$ , the primary obstruction  $o_n(p, \overline{b})$  is a non-zero integer.

Proof. Case 1: n = 1.

Here,  $B=S^1$ , the unit circle. If p were deformable to a map p' such that p' does not have preimages in the 1-skeleton of E, then p', which we may assume is cellular, has the property that  $p'|E^{(1)}$  factors through  $S^1-b$ . Now,  $(p'|E^{(1)})_\#:\pi_1(E^{(1)})\to\pi_1(S^1)$  is surjective. This is because the fiber is path connected so that  $p'_\#:\pi_1(E)\to\pi_1(S^1)$  is surjective, and  $(p'|E^{(1)})_\#:\pi_1(E^{(1)})\to\pi_1(E)$  is also surjective. However, the factoring of p' through the contractible subspace  $S^1-b$  yields a contradiction to the surjectivity of  $(p'|E^{(1)})_\#$ . Hence, the assertion follows.

Case 2: n > 1.

Since  $\pi_2(B) = 0$ , from the long exact sequence of homotopy groups of the

fibration, we have a short exact sequence

$$0 \to \pi_1(F) \xrightarrow{i_\#} \pi_1(E) \xrightarrow{p_\#} \pi_1(B) \to 1,$$

where  $i \colon F \hookrightarrow E$  is the inclusion.

Let  $\eta: E_0 \to E$  be the covering space corresponding to the subgroup  $i_{\#}(\pi_1(F)) \lhd \pi_1(E)$ . It follows from the topological analog for homology of Shapiro's Lemma [6] (see also the cohomology version in [1]) that

$$H_*(E_0; \mathbb{Z}) \cong H_*(E; \mathbb{Z}[\pi_B^*]) = H_*(E; \mathbb{Z}[p^*\pi_B]),$$

where  $\pi_B \cong \pi_1(E)/i_\#(\pi_1(F))$  is the local coefficient system on B.

Now, the inclusion  $i \colon F \hookrightarrow E$  lifts to  $\tilde{i} \colon F \to E_0$  so that  $i = \eta \circ \tilde{i}$ . Since  $\pi_q(B) = 0$  for  $2 \leqslant q \leqslant k+1$ , it follows that  $\tilde{i} \colon F \to E_0$  induces isomorphisms on  $\pi_q$  for  $1 \leqslant q \leqslant k$  and an epimorphism on  $\pi_{k+1}$ . Hence,  $\tilde{i}_* \colon H_k(F; \mathbb{Z}) \to H_k(E_0; \mathbb{Z})$  is an isomorphism. Now,

$$H_k(E; \mathbb{Z}[p^*\pi_B]) \cong H_k(E_0; \mathbb{Z}) \stackrel{\tilde{\imath}_-^{-1}}{\longrightarrow} H_k(F; \mathbb{Z}) \cong \mathbb{Z}.$$
 (1)

By Poincaré duality (see [7]), we have

$$H^n(E; \mathbb{Z}[p^*\pi_B]) \cong H_k(E; \mathbb{Z}[p^*\pi_B]).$$

It has been shown in [5] that the primary obstruction  $o_n(f,g)$  is Poincaré dual to the twisted homology class corresponding to the coincidence submanifold of f and g (without loss of generality, we may assume that f and g are transverse). Although it was assumed in [5] that  $n \geq 3$ , the same argument there holds when n=2 provided the coefficients form a local system and thus we replace  $\pi_2(N^\times)$  with its abelianization  $[\pi_2(N^\times)]_{ab}$ . With f=p and  $g=\bar{b}$ , the primary obstruction  $o_n(p,\bar{b}) \in H^n(E;\mathbb{Z}[p^*\pi_B])$  is Poincaré dual to the class  $[z_i^{p^*\pi_B}] \in H_k(E;\mathbb{Z}[p^*\pi_B])$ , which, by (1), corresponds to  $[z_F^{i^*p^*\pi_B}]$ , the fundamental class  $[z_F]$  of F in  $H_k(F;\mathbb{Z})$ , since the coefficient system  $i^*p^*\pi_B$  is trivial. Hence,  $o_n(p,\bar{b})$  corresponds to  $[z_F] \in \mathbb{Z} - \{0\}$ .

Remark 2.2. Theorem 2.1 shows that  $p^{-1}(b)$  must intersect the *n*-th skeleton  $E^{(n)}$  of E, regardless of the cellular decomposition of E. In fact, any map homotopic to p has the same property, that is, the set of preimages of b must also intersect  $E^{(n)}$ . Furthermore, this result shows that the non-vanishing of the obstruction is a necessary condition for a map to be (homotopic to) a fibration.

Remark 2.3. In Theorem 2.1, the hypotheses on the higher homotopy groups of B cannot be relaxed. The Hopf bundles  $S^{2n+1} \to \mathbb{C}P^n$  and  $S^{4n+3} \to \mathbb{H}P^n$  are easy counter-examples.

The following is an equivalent formulation of Theorem 2.1 when B is aspherical.

**Theorem 2.4.** Given a map  $f: E \to B$  from a closed connected triangulable oriented manifold to a closed connected triangulable oriented aspherical manifold with  $n = \dim B \geqslant 2$ , if the primary obstruction  $o_n(f, \bar{b}) = 0$ , then f cannot be a manifold fibration.

For  $n \ge 3$ ,  $o_n(f,g) = 0$  iff  $\exists f' \sim f$ ,  $g' \sim g$  such that  $C(f',g') \cap E^{(n)} = \emptyset$ . For n = 2,  $o_2(f,g)$  is just the abelianized obstruction so that  $o_2(f,g) = 0$  does not guarantee that f and g are deformable to be coincidence free on the n-th skeleton. Therefore, as already pointed out in Remark 2.2, the following result is a consequence of and not equivalent to Theorem 2.4. We present a simpler and direct proof of this result, as suggested by the generous anonymous referee.

**Corollary 2.5.** Given a manifold fibration  $f: E \to B$  where B is aspherical with  $n = \dim B \geqslant 2$ ,  $f|_{E^{(n)}}: E^{(n)} \to B$  is surjective.

Proof. Let  $\eta\colon B'\to B$  be the universal cover and  $f'\colon E'\to B'$  be the pull-back of  $f\colon E\to B$  by  $\eta$ . Since B is aspherical, B' is contractible and hence E' is equivalent to the trivial fibration  $B'\times F$ . By duality,  $H^n_c(B')\cong \mathbb{Z}$  and  $f'^*\colon H^n_c(B')\to H^n_c(E')$  is injective, where  $H^*_c$  denotes integral cohomology with compact support. If K' denotes the n-th skeleton of E' then the inclusion  $i'\colon K'\to E'$  induces an injective homomorphism  $H^n_c(E')\to H^n_c(K')$ . It follows that  $f'\circ i'$  induces a non-zero homomorphism on  $H^n_c$ . On the other hand, if  $f\circ i\colon K\to B$  is not surjective, where i is the inclusion of the n-th skeleton K of B, then  $\eta\circ f'\circ i'$  is not onto which in turn implies that  $f\circ i$  must factor through some subspace B'' of B' with  $B'\setminus B''\cong int(D^n)$ . By duality, it is easy to see that  $H^n_c(B'')\cong 0$ . It follows that  $(f'\circ i')^*\colon H^n_c(B')\to H^n_c(K')$  is zero, a contradiction.

# Acknowledgements

This work was conducted during the second author's visits to São Paulo, October 14–21, 2002, May 12–22, 2003, and April 27–May 4, 2004. The visits were partially supported by a grant from Bates College, the "Projeto temático Topologia Algébrica e Geométrica-FAPESP," the "Projeto 1-Pró-Reitoria de Pesquisa-USP," and the N.S.F.

We would like to thank the referee for useful remarks and for providing the short proof of Corollary 2.5.

### References

- [1] B. Eckmann, On complexes with operators. *Proc. Natl. Acad. Sci. USA*, **39** (1953), pp. 35–42.
- [2] E. Fadell and S. Husseini, Fixed point theory for non simply connected manifolds. *Topology*, **20** (1981), pp. 53–92.
- [3] E. Fadell and S. Husseini, The Nielsen numbers on surfaces. Contemp. Math.,
  21 (1983), pp. 59–98.
- [4] F. T. Farrell, The obstruction to fibering a manifold over a circle, Actes du Congrés International des Mathématiciens (Nice 1970) Tome 2, Gauthier-Villars, Paris, (1971), pp. 69–72.
- [5] D. Gonçalves, J. Jezierski and P. Wong, Obstruction theory and coincidences in positive codimension. *Acta Math. Sinica*, to appear.

- [6] D. Gonçalves and P. Wong, Twisted Serre's spectral sequence and Shapiro's lemma. JP J. Geom. Topol., 5 (2005), pp. 97–101.
- [7] E. Spanier, Duality in topological manifolds. Colloque de Topologie Tenu à Bruxelles (Centre Belge de Recherche Mathématiques), (1966), pp. 91–111.
- [8] G. Whitehead, Elements of Homotopy Theory, Springer-Verlag, New York, 1978.

Daciberg Gonçalves dlgoncal@ime.usp.br

Departamento de Matemática IME-USP Caixa Postal 66.281 CEP 05311-970 São Paulo – SP, Brazil

Peter Wong pwong@bates.edu

Department of Mathematics Bates College Lewiston, ME 04240 USA

This article is available at http://intlpress.com/HHA/v8/n1/a9