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TRANSFERRING TTP -STRUCTURES VIA CONTRACTION
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Abstract
Let A⊗t C be a twisted tensor product of an algebra A and a

coalgebra C, along a twisting cochain t : C → A. By means of
what is called the tensor trick and under some nice conditions,
Gugenheim, Lambe and Stasheff proved in the early 90s that
A ⊗t C is homology equivalent to the objects M ⊗t′ C and
A⊗t′′ N , where M and N are strong deformation retracts of A
and C, respectively. In this paper, we attack this problem from
the point of view of contractions. We find explicit contractions
from A ⊗t C to M ⊗t′ C and A ⊗t′′ N . Applications to the
comparison of resolutions which split off of the bar resolution,
as well as to some homological models for central extensions
are given.

1. Introduction

An A∞-algebra (resp. A∞-coalgebra) means a connected module M along with a
differential ∂ which is a coderivation (resp. derivation) of the tensor coalgebra T csM̄
(resp. algebra T as−1M̄) and a perturbation of the tensor product differential where
M̄ denotes the submodule of elements in positive degrees, and s denotes suspension.
The usual notation for this module is the tilde construction B̃(M) (resp. Ω̃(M)) [23].

The induced maps mj : M⊗j → M such that mj = π1 ◦ ∂ ◦ ij (resp. ∆j : M →
M⊗j such that ∆j = πj ◦ ∂ ◦ i1) where ij : M⊗j ↪→ B̃(M) and π1 : B̃(M) → M

(resp. i1 : M ↪→ Ω̃(M) and πj : Ω̃(M) → M⊗j ) satisfy the relations

i∑
n=1

i−n∑

k=0

(−1)n+k+nkmi−n+1(1k ⊗mn ⊗ 1i−n−k) = 0

(resp.
i∑

n=1

i−n∑

k=0

(−1)n+k+nk(1i−n−k ⊗∆n ⊗ 1k)∆i−n+1 = 0).
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This is, an A∞-algebra (resp. A∞-coalgebra) is a DG-module M endowed with
morphisms mn : M⊗n → M (resp. ∆n : M → M⊗n) of degree n − 2 satisfying the
relations above.

Throughout this paper we follow the notation given in [20]. A contraction from N
to M is a data set c : {N, M, f, g, φ} where N and M are DG-modules, f : N → M
and g : M → N are morphisms of DG-modules, φ : N → N is a homotopy, satisfying
fg = 1 , φd + d φ + g f = 1 , φ g = 0 , f φ = 0 , φφ = 0.

Given a contraction from a DG-algebra (A,µ) (resp. DG-coalgebra (C, ∆)) to
a DG-module, there are several apparently distinct ways of constructing an A∞-
algebra, (resp. A∞-coalgebra) on M . For example, the obstruction method [7, 8],
and the method based on the so-called tensor trick [6, 10, 9]: let c : {A, M, f, g, φ}
be a contraction from a DG-algebra A to a DG-module M , so that the perturbation
process towards B̃(c) : {B̄(A), B̃(M), f∞, g∞, φ∞} is convergent (usually under
the assumption of connection). In this way M is endowed with a natural A∞-
algebra structure from A. There is a similar diagram in the coalgebra case. However,
the convergence in the dual situation involving the “coalgebra part” of the cobar
construction is much more subtle. Johansson and Lambe proved in [13] that these
methods for constructing an A∞-structure on M are equivalent. Moreover, in [12]
is shown that any A∞-algebra (resp. A∞-coalgebra) may be described as the image
of a DG-algebra (resp. DG-coalgebra) through a contraction.

In this transfer of information some natural twisting cochains and twisted tensor
products arise, which are canonically related to the universal twisting cochains of
bar and cobar constructions.

More concretely, a classical result of E. Brown states the following [4]: let
t : C → A be a twisting cochain and L be an A-module; there is a twisting cochain
t∗ : C → End (H∗(L)) such that the twisted tensor product complexes C ⊗t L and
C ⊗t∗ H∗(L) are homology equivalent.

From other hand, Kadeishvili proves in [14] that every algebra A induces an
A∞-structure on H∗(A) and a twisting cochain t : B̃(H∗(A)) → A. Moreover, given
a twisting cochain s : C → A there is an A∞-twisting cochain s̃ : C → H∗(A), such
that s is homotopic to ts̃ and A⊗s C is homology equivalent to H(A)⊗s̃ C.

Indeed an A∞-twisting cochain is a linear map of degree −1, t : C → A, for C
being a DGA-coalgebra and A an A∞-algebra (resp. A being a DGA-algebra and
C an A∞-coalgebra), such that

td +
∞∑

i=1

mit
⊗i∆(i) = 0

(resp., dt +
∞∑

i=1

µ(i)t⊗i∆i = 0),

where ∆(1) = 1, µ(1) = 1, ∆(2) = ∆, µ(2) = µ and generally ∆(k) = (1⊗∆(k−1))∆
and µ(k) = µ(1⊗ µ(k−1)).

From another point of view, t : C → A is an A∞-twisting cochain if and only if
there is an elevation t̂ : C → B̃(A) (resp. t̂ : Ω̃(C) → A) which is a morphism of
DGA-coalgebras (resp. DGA-algebras), with t = θt̂ (resp. t = t̂θ) θ being the uni-
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versal cochain in Ω̄(C) (resp. in B̄(A)). An analogous condition for proper twisting
cochains holds.

Let us recall that every A∞-twisting cochain t : C → A gives rise to the A∞-
twisted tensor product A⊗t C endowed with the differential

dt = 1⊗ d +
∞∑

i=1

(mi ⊗ 1)(1⊗ t⊗i−1 ⊗ 1)(1⊗∆(i))

(resp. dt = d⊗ 1 +
∞∑

i=1

(µ(i) ⊗ 1)(1⊗ t⊗i−1 ⊗ 1)(1⊗∆i)).

References on A∞-twisted tensor product are [15, 16].

In [9] Gugenheim, Lambe and Stasheff explain the relationship between above
Brown and Kadeishvili’s results and the tensor trick. Let us briefly recall this.
Given an algebra M , the map ρ : M → End (M) defined as ρ(a)(b) = ab becomes
a morphism of algebras, since the product in M is associative. In case that M is
an A∞-algebra, ρ may no longer be a morphism of algebra because of the lack of
associativity. However, it extends to a DG-coalgebra map ρ̃ : B̃(M) → B̄(End(M)),
such that ρ̃ = ρθ̃, θ̃ being the universal cochain in B̃(M). This way every A∞-
twisting cochain t : C → M lifts to a proper twisting cochain t̄ = ρt : C → End(M).

In these circumstances, the last theorem in [9] states that given a twisting cochain
t : C → A and a contraction (f, g, φ) : A → M , there is an A∞-structure on M
(which comes from the tensor trick), an A∞-twisting cochain t̃ : C → M , a proper
twisting cochain t∗ : C → End(M) and a DG-coalgebra morphism t̂ : C → B̄(A)
(the elevation of t) such that t̃ = θ̃f∞t̂ and t∗ = ρt̃. Futhermore, f∞ : B̄(A) → B̃(M)
is a coalgebra homology equivalence, and therefore f∞ t̂ : C → B̃(M) is a DG-
coalgebra morphism (the elevation of t̃). Moreover the twisted tensor products C⊗tA
and C ⊗t∗ M and the A∞-twisted tensor product C ⊗t̃ M are homology equivalent.

We are concerned here with the problem of establishing a contraction from the
twisted tensor products C ⊗t A to the A∞-twisted tensor product C ⊗t̃ M .

We organize the paper as follows. The main theorems of the paper are stated and
proved in Section 2. Applications to the comparison of resolutions which split off of
the bar construction, so as to the study of the structure of homological models for
central extensions of abelian groups are included in Section 3. The last section is
devoted to related questions and future work.

Acknowledgments. The authors are grateful to T. Kadeishvili for his careful read-
ing of an earlier version of this paper and his comments which have resulted in a
major restructuring of the exposition.
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2. Main theorems

Let (C, ∆) be a DG-coalgebra, C ′ be a DG-module and

c : {C, C ′, f, g, φ}
be a contraction of DG-modules. Let us recall that the tensor trick induces on C ′ a
structure of A∞-coalgebra (C ′, {∆i}) and a contraction of DG-algebras

cT T : {Ω̄(C), Ω̃(C ′), f∞, g∞, φ∞}.
Also, suppose that a twisting cochain t : C → A is given so that we have a twisted
tensor product A ⊗t C. There are two ways for constructing a differential on the
tensor product A⊗ C ′.

1. The method described in [9], where t : C → A is transported across the con-
traction c in order to obtain an A∞-twisting cochain t̄ : C ′ → A,

t̄ = t̂ g∞ θ̃ (1)

where θ̃ : C ′ → Ω̃(C ′) is the universal twisting cochain and t̂ : Ω̄(C) → A is a
DG-algebra morphism. This way a twisted tensor product A⊗t̄C

′ is obtained
which is homological equivalent to A⊗t C.

2. The second way is to establish the contraction 1⊗ c

(1⊗ f, 1⊗ g, 1⊗ φ) : A⊗ C ⇒ A⊗ C ′

and to use the Basic Perturbation Lemma [5, 22] with t∩ = (µ ⊗ 1)(1 ⊗ t ⊗
1)(1⊗∆) as perturbation datum. As a result, the following contraction arises

A⊗t C ⇒ (A⊗ C ′, d∞)

It is not clear whether (A⊗ C ′, d∞) is a twisted tensor product.

In the theorem below we prove that both ways coincide.

Theorem 2.1. Let t : C → A be a twisting cochain and c(f, g, φ) : C ⇒ C ′ be
a contraction such that c induces on C ′ an A∞-coalgebra structure. Additionally,
assume that tφ = 0 and (1⊗ φ)t∩ is pointwise nilpotent. There is a contraction

A⊗t C ⇒ A⊗t̄ C ′,

where t̄ = tg is an A∞-twisting cochain and A⊗t̄C
′ is an A∞-twisted tensor product.

Proof. Since (1⊗ φ)t∩ is pointwise nilpotent, the perturbation of

A⊗ C ⇒ A⊗ C ′

by means of t∩ converges to give

A⊗t C ⇒ (A⊗ C ′, 1⊗ dC′ + dA ⊗ 1 + dt∩),

with

dt∩ = (1⊗f)
∑

n>0

(−1)n[(µ⊗1)(1⊗ t⊗1)(1⊗∆C)(1⊗φ)]n(µ⊗1)(1⊗ t⊗1)(1⊗∆Cg).
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From other hand, taking into account the formula (1) of the A∞-twisting cochain
t̄ and the hypothesis tφ = 0, it is straightforward to verify that t̄ = tg.

Our aim is to prove that, under the assumption tφ = 0, the differential 1⊗ dC +
dA ⊗ 1 + dt∩ equals to the differential dt̄ which t̄ induces on the A∞-twisted tensor
product A⊗t̄ C ′,

dt̄ = dA ⊗ 1 +
∞∑

i=1

(µ(i) ⊗ 1)(1⊗ t̄i−1 ⊗ 1)(1⊗∆i),

with µ(1) = 1, µ(2) = µ, µ(i) = µ(1⊗µ(i−1)), ∆1 = π1Θ and ∆i : C ′ → C ′⊗ i· · · ⊗C ′,
i > 2 defined as −πiΘ, Θ: C ′ → T (C ′) such that

dΩ̃ = (−s−1dC′s)[ ] + d∂alg
= −(T (s−1)Θs)[ ],

d∂alg
= T (s−1fs)∂alg(

∑

i>0

(−1)i(T (s−1φs)∂alg)i)T (s−1gs)

and

∂alg|| |s=n =
n∑

k=1

1k−1 ⊗ (s−1 ⊗ s−1)∆Cs⊗ 1n−k.

This way, for i > 2,

∆i = (−1)
i(i−1)

2 πiT (s)dΩ̃s−1.

Well now, among the morphisms in which dΩ̃ = (−s−1dC′s)[ ]+d∂alg
decomposes,

the first of them respects the number of factors on the input element, whereas the
second one increases it at least by one. Since the input data on ∆i is an element
of C ′ in T (C ′), it follows that (−s−1dC′s)[ ] is the only term that involved in the
calculation of ∆1, whereas d∂alg

is the only one involved in the computation of ∆i,
for i > 2.

So ∆1 = −T (s)π1(−s−1dC′s)s−1j = dC′ , for j : C ′ → T (C ′) being the natural
injection. Then

(µ(1) ⊗ 1)(1⊗ 1)(1⊗∆1) = 1⊗ dC′ ,

and proving that 1⊗ dC′ + dA ⊗ 1 + dt∩ equals to dt̄ reduces to prove that

dt∩ =
∞∑

i=2

(µ(i) ⊗ 1)(1⊗ t̄i−1 ⊗ 1)(1⊗∆i).

On the other hand, for i > 2,

∆i = (−1)
i(i−1)

2 πiT (s)d∂alg
s−1j.

Since fφ = 0, φg = 0 and fgf = f , it follows that

∆i = (−1)
(i−1)(i−2)

2 f⊗i




2∑

k2=1

k2+1∑

k3=1

· · ·
ki−2+1∑

ki−1=1

i−1∏

j=2

(−1)kj (1⊗kj−1 ⊗∆Cφ⊗ 1⊗j−kj )


 ∆Cg,
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where
i−1∏

j=2

hj represents the composition hi−1 ◦ · · · ◦ h2.

In short, we have to prove that dt∩ equals to
∞∑

i=2

(−1)
(i−1)(i−2)

2 (µ(i) ⊗ 1)(1⊗ (tg)⊗i−1 ⊗ 1)(1⊗ f⊗i)◦

◦



2∑

k2=1

k2+1∑

k3=1

· · ·
ki−2+1∑

ki−1=1

i−1∏

j=2

(−1)kj (1⊗kj ⊗∆Cφ⊗ 1⊗j−kj )


 (1⊗∆Cg). (2)

To this end, we will carry the general expression of dt∩,

dt∩ = (1⊗f)
∑

n>0

(−1)n[(µ⊗1)(1⊗ t⊗1)(1⊗∆C)(1⊗φ)]n(µ⊗1)(1⊗ t⊗1)(1⊗∆Cg),

(3)
into this form, taking into account the following identities:

1. Since t is a twisting cochain,

dAt + tdC − µ(t⊗ t)∆C = 0. (4)

2. Generalizing, it may be inductively proved that

(−1)nµ(n)t⊗nd
[n]
C = dAµ(n)t⊗n +µ(n+1)t⊗n+1

n∑

k=1

(−1)k(1⊗k−1⊗∆C ⊗ 1⊗n−k).

(5)
In fact, for n = 1 we meet (4) and for n = 2 we find that

µt⊗2d
[2]
C = µ(t⊗ tdC − tdC ⊗ t)

(4)
=

(4)
= µ(−t⊗ dAt + t⊗ µt⊗2∆C + dAt⊗ t− µt⊗2∆C ⊗ t) =

= µd
[2]
A t⊗2 + µ(3)t⊗3(−∆C ⊗ 1 + 1⊗∆C) =

= dAµt⊗2 + µ(3)t⊗3(−∆C ⊗ 1 + 1⊗∆C);

in general, assuming that the relation holds for n 6 m− 1, setting n = m we
have that

µ(m)t⊗md
[m]
C = µ(1⊗ µ(m−1))(t⊗ t⊗m−1)(1⊗ d

[m−1]
C + dC ⊗ 1⊗m−1) =

= µ(t⊗ µ(m−1)t⊗m−1d
[m−1]
C ) + (−1)m−1µ(tdC ⊗ µ(m−1)t⊗m−1) H.I.=

H.I.= (−1)m−1µ(t⊗ dAµ(m−1)t⊗m−1)+

+(−1)m−1µ(t⊗ µ(m)t⊗m
m−1∑

k=1

(−1)k(1⊗k−1 ⊗∆C ⊗ 1⊗m−k−1))+

+(−1)mµ(dAt⊗ µ(m−1)t⊗m−1) + (−1)m−1µ(µt⊗2∆C ⊗ µ(m−1)t⊗m−1) =
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= (−1)mdAµ(m)t⊗m + (−1)mµ(m+1)t⊗m+1
m∑

k=1

(−1)k(1⊗k−1 ⊗∆C ⊗ 1⊗m−k).

3. Taking into account that tφ = 0, now

µ(n)t⊗nd
[n]
C φ[n] = µ(n+1)t⊗n+1

n∑

k=1

(−1)k+n(1⊗k−1 ⊗∆Cφ⊗ (gf)⊗n−k). (6)

4. From the morphisms of the contraction c⊗n and the relation tφ = 0, we may
deduce that

t⊗n = (tg)⊗nf⊗n + t⊗nd
[n]
C φ[n]. (7)

5. Finally, the identities (6) and (7) may be combined in order to get

µ(n)t⊗n = µ(n)(tg)⊗nf⊗n+

+t⊗nd
[n]
C φ[n]µ(n+1)t⊗n+1

n∑

k=1

(−1)k+n(1⊗k−1 ⊗∆Cφ⊗ (gf)⊗n−k). (8)

These relations affect (3) in the following way:

n = 0

(µ⊗ 1)(1⊗ t⊗ f)(1⊗∆C)(1⊗ g)
(7)
= (µ⊗ 1)(1⊗ tg ⊗ 1)(1⊗ f⊗2)(1⊗∆Cg)+

+(µ⊗ 1)(1⊗ tdCφ⊗ 1)(1⊗ 1⊗ f)(1⊗∆Cg)
(4)
=

(4)
= i = 2 + (µ⊗ 1)(1⊗ µt⊗2∆Cφ⊗ 1)(1⊗2 ⊗ f)(1⊗∆Cg) =

= i = 2 + (µ⊗ 1)(1⊗ µt⊗2 ⊗ 1)(1⊗3 ⊗ f)(1⊗∆Cφ⊗ 1)(1⊗∆Cg)
(8)
=

(8)
= i = 2 + (µ(3) ⊗ 1)(1⊗ (tg)⊗2 ⊗ 1)(1⊗ f⊗3)(1⊗∆Cφ⊗ 1)(1⊗∆Cg)+

+(µ⊗ 1)(1⊗ µ(3)t⊗3
2∑

k3=1

(−1)k3+2(1k3−1 ⊗∆Cφ⊗ (gf)⊗2−k3)⊗ 1)◦

◦(1⊗3 ⊗ f)(1⊗∆Cφ⊗ 1)(1⊗∆Cg)
(8)
= · · ·

∞∑

j=2

1∑

k2=1

k2+1∑

k3=1

· · ·
kj−2+1∑

kj−1=1

(µ(j) ⊗ 1)(1⊗ (tg)⊗j−1 ⊗ 1)(1⊗ f⊗j)

[
j−1∏

l=2

(−1)l+kl−1(1⊗kl ⊗∆C′φ⊗ 1⊗l−kl)

]
(1⊗∆C′g),

so that it gives raise, for j > 2, to the terms

i = j, k2 = 1, 1 6 k3 6 2, 1 6 k4 6 k3 + 1, . . . , 1 6 kj−1 6 kj−2 + 1.



Homology, Homotopy and Applications, vol. 7(2), 2005 48

n = m

(−1)m(1⊗ f) [(µ⊗ 1)(1⊗ t⊗ 1)(1⊗∆C′φ)]m (µ⊗ 1)(1⊗ t⊗ 1)(1⊗∆C′g) =

= (1⊗ f)(µ(m+2) ⊗ 1)(1⊗ t⊗m+1 ⊗ 1)(1⊗m+1 ⊗∆C′φ) · · ·

(1⊗2 ⊗∆C′φ)(1⊗∆C′g)
(8)
= · · ·

· · · (8)
=

∞∑

j=m+2

2∑

k2=2

· · ·
m+1∑

km+1=m+1

m+1∑

km+2=1

km+2+1∑

km+3=1

· · ·

kj−2+1∑

kj−1=1

(µ(j) ⊗ 1)(1⊗ (tg)⊗j−1 ⊗ 1)◦

(1⊗ f⊗j) ◦
[

j−1∏

l=2

(−1)l+kl−1(1⊗kl ⊗∆C′φ⊗ 1⊗l−kl)

]
(1⊗∆C′g),

so that it gives raise, for j > m + 2, to the terms

i = j, k2 = 2, . . . , km+1 = m + 1, 1 6 km+2 6 m + 1,

1 6 km+3 6 km+2 + 1, . . . , 1 6 kj−1 6 kj−2 + 1.

This way it is proved that both the differential expressions are the same, and the
result follows.

Remark 2.2. The hypothesis of the theorem above are satisfied whenever C is
simply connected. For instance, this is the case of the bar construction of a connected
DG-algebra.

It is straightforward to prove a dual statement for A∞-algebras.

Theorem 2.3. Let t : C → A be a twisting cochain and c(f, g, φ) : A ⇒ A′ be a
contraction such that c induces on A′ an A∞-algebra structure. Additionally, assume
that φt = 0 and (φ⊗ 1)t∩ is pointwise nilpotent. There is a contraction

A⊗t C ⇒ A′ ⊗t̄ C,

where t̄ = ft is an A∞-twisting cochain and A′⊗t̄C is an A∞-twisted tensor product.

Furthermore, the theorems above may be combined to analyze the translation of
a principal twisted tensor structure A⊗t C through the product of two contractions
A ⇒ A′ and C ⇒ M .

Theorem 2.4. Let A be a DG-algebra, C be a DG-coalgebra and A⊗t C be a prin-
cipal twisted tensor product. Let cA : {A,A′, fA, gA, φA} and cC : {C, M, fC , gC, φC}
be contractions to a DG-algebra A′ and a DG-module M , respectively, such that
fA is a morphism of algebras, fAtφC = 0 and furthermore c′ induces on M an
A∞-coalgebra structure. Then A′ ⊗fAtgC

M becomes an A∞-twisted tensor product.
Moreover there is a contraction from A⊗t C to A′ ⊗fAtgC

M .
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Proof. From one hand, since fA is a morphism of algebras, A′ ⊗fAt C acquires the
structure of principal twisted tensor product. Moreover, from the proof of Theorem
2.3 a contraction A ⊗t C ⇒ A′ ⊗fAt C may be constructed in a straightforward
manner, without the need of the assumption φAt = 0.

From another hand, since fAtφC = 0, Theorem 2.1 states that A′ ⊗fAtgC
M

is an A∞-twisted tensor product. Furthermore, there is a contraction A ⊗t C ⇒
A′ ⊗fAtgC

M .

Next, our interest focus on non principal twisted tensor products. The problem
is determining assumptions under which a non principal twisted tensor product
M ⊗t C degenerates to a non principal A∞-twisted tensor product N ⊗t̄ C ′, by
means of contractions M ⇒ N and C ⇒ C ′.

Theorem 2.5. Let M ⊗t C be a non principal twisted tensor product, related to
the twisting cochain t : C → A and the action µ : M ⊗ A → M . Let us consider
a contraction c(f, g, φ) : C ⇒ C ′ which inherits on C ′ an A∞-coalgebra structure.
Additionally assume that tφ = 0 and (1 ⊗ φ)t∩ is pointwise nilpotent. There is a
contraction

M ⊗t C ⇒ M ⊗t̄ C ′,

where t̄ = tg is an A∞-twisting cochain and M ⊗t̄ C ′ is a non principal A∞-twisted
tensor product.

Proof. The proof of Theorem 2.1 may be reproduced here, taking into account that
now the maps µ(i) represent the action on M of the product of i− 1 elements of A,
µ(i) = µ(1⊗ ∗(i−1)

A ).

We need to know how to translate an action through a contraction.
Let M be a DG-module on the left of a DG-algebra A, by means of a product

∗M , and c : {M, N, f, g, φ} be a contraction. There is a natural candidate to be an
action on N , which is ∗N , with m ∗N a = f(g(m) ∗M a).

Lemma 2.6. The map ∗N becomes an action of A on N if and only if

f((dφ + φd)(g(m) ∗M a) ∗M b) = 0, ∀ a, b ∈ A.

Proof. Since 1− gf = dφ + φd, it is easy to check that

f(gf(g(m) ∗M a) ∗M b) = f(g(m) ∗M ab),

is an equivalent relation for the associativity of ∗N .

Theorem 2.7. Let M ⊗t C be the twisted tensor product according to the twisting
cochain t : C → A. Let c : {M,N, fM , gM , φM} and c′ : {C, C ′, f, g, φ} be contrac-
tions, such that c induces on N an A-módulo structure on the left on N and c′

induces on C ′ an A∞-coalgebra structure. Additionally, let assume that tφ = 0 and
(1⊗ φ)t∩ is pointwise nilpotent. There is a contraction

M ⊗t C ⇒ N ⊗t̄ C ′,

where t̄ = tg is an A∞-twisting cochain and N ⊗t̄ C ′ is a non principal A∞-twisted
tensor product.
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Proof. The proof follows from Theorem 2.5 and Lemma 2.6.

3. Applications

In this section we apply the results above to the comparison of resolutions which
split off of the bar resolution [2], so as to some homological models for central
extensions described in [1, 3].

3.1. Comparison of resolutions
Let A be a connected DG-algebra and c : (f̄ , ḡ, φ̄) : (B̄(A), dB̄) ⇒ (X̄, d̄) be a

contraction. This contraction may be extended to give a comparison contraction
from the bar resolution B(A) = A⊗θ B̄(A) to a resolution X = A⊗̃X̄.

Resolutions which admit a comparison contraction with the bar resolution are
termed resolutions which split off of the bar resolution in [17, 18, 19]. This split
may be canonical under the assumptions of the comparison theorem for resolutions,
that is, the existence of an explicit homotopy for X being contractible to the ground
ring Λ. We may consider then canonical comparison contractions and non canonical
ones.

In [2] the authors analyze the multiplicative behaviour of the differential on X.
One of the main results is a straightforward consequence of the Theorem 2.1 above.

Theorem 3.1. [2] Let A be a connected DG-algebra, (X, d) be a resolution which
splits off of the bar resolution B(A), by means of the canonical comparison contrac-
tion (f, g, φ) : B(A) ⇒ (X, d). Then, there exists an A∞-twisting cochain γ = θg|X̄
which produces that (X, d) can be rewritten as the A∞-twisted tensor product A⊗γ X̄
given by the DG-algebra A, the A∞-coalgebra X̄ (inherited from the reduced bar con-
traction B̄(A)) and γ : X̄ → A.

Proof. The first step of the proof consists in to apply the functor Λ⊗A− and 1⊗A−
on the complexes and morphisms involved in the canonical comparison contraction
(f, g, φ) : B(A) ⇒ (X, d). Then we obtain a contraction between reduced complexes

(1⊗A f, 1⊗A g, 1⊗A φ) : B̄(A) ⇒ X̄

Let us emphasize that 1⊗A g = g|X̄ and 1⊗A φ = φ|B̄(A) since g and φ are A-lineal
and g(X̄) ⊆ B̄(A), φ(B̄(A)) ⊆ B̄(A). An explicit formula for φ is given in [18, 19]
which increases the simplicial degree in B̄(A) by one. Therefore, θ φ|B̄(A) = 0 since
θ : B̄(A) → A is the universal twisting cochain. Now, applying theorem 2.1, we have
the following A∞-twisting cochain

γ = θg|X̄ : X̄ → A

The second step is to construct the tensor product contraction

A⊗ B̄(A) ⇒ A⊗ X̄

and to use the Basic Perturbation Lemma with θ∩ as perturbation datum. Then,
it is straightforward to check that (1 ⊗ φ|B̄(A)) θ∩ is pointwise nilpotent. Then we
obtain,

A⊗θ B̄(A) ⇒ (A⊗ X̄, d∞)
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Now, using Theorem 2.1, we have that

(A⊗ X̄, d∞) = A⊗γ X̄

where A⊗γ X̄ is an A∞-twisted tensor product.
In the proof of this identity (A⊗X̄, d∞) = (A⊗X̄, d) we use the special properties

of the morphisms which take part in the canonical comparison contraction (see
[2]).

3.2. Homological models for central extensions
In [21], a homological model for the central extension of groups

1 → A → Af nG → G → 1

determined by a 2-cocycle f : G×G → A, is described in terms of the composition
of the contractions:

B̄(ZZ[Af nG]) ∼= C∗(W̄ (Af nG))
ϕ1∼= C∗(W̄ (A)×τ W̄ (G))

EZτ
W̄ (A),W̄ (G) +3

EZτ
W̄ (A),W̄ (G) +3 C∗(W̄ (A))⊗t C∗(W̄ (G))

Ct∩ +3 (hA⊗̃hG, d̃),

where ϕ1 is induced by a simplicial isomorphism and EZ refers to Eilenberg-Zilber’s
Theorem.

We will focus in the case that A and G are finite abelian groups. Thus the
homological model hA⊗̃hG is of the type ⊗̃i∈I(E(ui, 1)⊗̃Γ(wi, 2)) being E(ui, 1)
the exterior algebra in one generator ui of degree 1 and Γ(wi, 2) the polynomial
power algebra on one generator wi of degree 2. In [3] it is proved that the model
hA⊗̃hG is provided with a structure of A∞-coalgebra, naturally inherited from
B̄(ZZ[Af nG]). Furthemore, we have the following result:

Theorem 3.2. The model hA⊗̃hG is endowed with an A∞-twisted tensor prod-
uct structure, in terms of the DG-algebra hA and the A∞-coalgebra hG (naturally
inherited from B̄(ZZ[G])).

Proof. It suffices to prove that the hypothesis on Theorem 2.4 are satisfied. Since
A is abelian, the projection fA in B̄(ZZ[A]) ⇒ hA is a morphism of algebras. On
the other hand, B̄(ZZ[G]) ⇒ hG induces an A∞-coalgebra structure on hG [11].
Finally, it is easy to check that fAtφG = 0.

This Theorem can be extended for G being an iterated product of central exten-
sions and semidirect products of finite abelian groups.

4. Further work

We would like to state Theorems 1 through 3 under weaker assumptions than
tφ = 0 or φt = 0. The following approximation may provide a solution in a near
future.
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Let c(fA, gA, φA) : A ⇒ A′ and c(fC , gC , φC) : C ⇒ M be contractions such that
fA is a morphism of algebras and c′ induces on M an A∞-coalgebra structure. Let
t : C → A be a twisting cochain, consider the following diagram:

Ω̄(C)⊗ C
Ω̄(c′)⊗1+3

t̄⊗1

²²

Ω̃(M)⊗ C
1⊗c′ +3 Ω̃(M)⊗M

A⊗ C
c⊗1 +3 A′ ⊗ C

1⊗c′ +3 A′ ⊗M

Perturbing the top row by means of the universal twisting cochain θ : C → Ω̄(C),
c 7→ [c], we get

Ω̄(C)⊗θ C
(Ω̄(c′)⊗1)θ∩ +3 Ω̃(M)⊗Ω̄(f)θ C

(1⊗c′)Ω̄(f)θ∩ +3 Ω̃(M)⊗γ M,

where γ : M → Ω̃(M) is defined as m 7→ [m]. Although γ is not an A∞-twisting
cochain in general, but surprisingly the differential d̃ on Ω̃(M) ⊗γ M seems to be
the proper differential of an A∞-twisted tensor product,

d̃ = d⊗ 1 + 1⊗ d +
∑

i>2

(µ(i) ⊗ 1)(1⊗ γ⊗i−1 ⊗ 1)(1⊗∆′
i),

according to the maps ∆′
i : M → M⊗i,

∆′
i = f⊗i

C (1⊗i−2 ⊗∆CφC · · · (1⊗∆CφC)∆CgC .

Note that these ∆′
i are just one of the terms of the ∆i morphisms arising from the

tensor trick. From other hand the bottom row may be perturbed by means of t∩,
so that we get

A⊗t C
(c⊗1)t∩ +3 A′ ⊗fAt C,

fAt being a twisting cochain.

An interesting task to tackle in a future work is to complete the right lower corner
of the diagram

Ω̄(C)⊗θ C
(Ω̄(c′)⊗1)θ∩ +3

t̄⊗1

²²

Ω̃(M)⊗Ω̄(f)θ C
(1⊗c′)Ω̄(f)θ∩ +3 Ω̃(M)⊗γ M

??

²²
A⊗t C

(c⊗1)t∩ +3 A′ ⊗fAt C
?? +3 A′ ⊗M
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V. Álvarez valvarez@us.es

University of Seville
E.T.S.I.Informática
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