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Abstract
We use an interlaced inductive procedure reminiscent of the

integration process from traditional deformation theory to con-
struct a homotopy Lie-Rinehart resolution for the Lie-Rinehart
pair which arises as an exercise in Poisson reduction in the
context of the BFV construction of classical BRST cohomol-
ogy. We show that the associated homotopy Rinehart algebra
and the BRST algebra are isomorphic as graded commutative
algebras. In the irreducible case, the two have the same coho-
mology.

1. Introduction

In this paper, we utilize a strategy akin to the process of integration found in
traditional deformation theory (see, for example, [GS90]) to construct a homotopy
Lie-Rinehart resolution (KA/I , KI/I2) for the Lie-Rinehart pair (A

/
I, I

/
I2) that

appears in the BFV formulation of classical BRST cohomology. A Lie-Rinehart pair
is a couple (B, sg) which admits a structure analogous to that shared by the associa-
tive commutative algebra C∞(M) of smooth functions and the Lie algebra Γ(TM)
of smooth vector fields on a smooth manifold M . The term Lie-Rinehart pair is not
widely used. More often, sg has been called a (B, k)-Lie algebra, [Rin63] [Pal61]
and [Her72]. More recently, Lie-Rinehart pairs have appeared as Lie algebroids (see
[dSW]).

An associative algebra A is a Poisson algebra if it admits a Lie bracket { , }
such that for any a ∈ A, the map {a, } is a graded derivation with respect to
the multiplication, i.e., {a, bc} = {a, b}c ± b{a, c}. A multiplicative ideal I of a
Poisson algebra A is coisotropic if it is closed under the Poisson bracket on A.
Poisson reduction of a Poisson algebra A by a coisotropic ideal I is no more than
the observation that while the quotient A

/
I is not a Poisson algebra (unless I is a

Poisson ideal), the subset of I-invariant classes in A
/
I is again a Poisson algebra.

The I-invariant classes comprise the zeroth cohomology of the Rinehart complex R

for the Lie-Rinehart pair (A
/
I, I

/
I2).
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Mathematicians and physicists (see, for exammple [Sta88], [KS87], [FHST89],
[HT92], [Kim92a], [Kim92b], [Sta92], [Kim93] and [Sta96]) recognized the clas-
sical analogue of the Batalin, Fradkin and Vilkovisky (BFV) construction of the
quantum BRST complex ([BV77], [BF83], [BV83] and [BV85]) as something
new and interesting because BRST cohomology performs Poisson reduction with-
out passing first to the quotient A

/
I. The BFV construction of the classical BRST

algebra (see, for example, [Kim93]) begins by replacing A
/
I with the Koszul-Tate

resolution [Tat57] and adjoins formal (ghost) variables to the Koszul-Tate resolu-
tion. They then exploit a graded Poisson bracket to construct a differential. Under
certain conditions, the BRST algebra (A,D) is a cohomological model for the Rine-
hart complex of (A

/
I, I

/
I2).

In general, constructing cohomological models for the Rinehart complex (B, sg)
by the traditional homological means of replacing both B and sg with resolutions
fails unless the Lie-Rinehart structure of the pair (B, sg) is preserved. In [Kje01],
we defined homotopy Lie-Rinehart pairs and the associated homotopy Rinehart
algebra in the context of coalgebras. We defined homotopy Lie-Rinehart resolutions
and presented conditions under which the associated homotopy Rinehart algebra is
a cohomological model for the Rinehart algebra of the resolved Lie-Rinehart pair.

Summary

The coalgebra setting is used throughout this paper. First, we revisit the defi-
nitions of the Lie algebras of subordinate derivation sources, resting coderivations
and shared Lie modules, which lie behind the coalgebra realizations of both ho-
motopy and non-homotopy Lie algebras, Lie algebra modules, Lie-Rinehart pairs
and Rinehart cohomology. We review homotopy Lie-Rinehart resolutions for Lie-
Rinehart pairs and the conditions under which the homotopy Rinehart algebra for
a homotopy Lie-Rinehart resolution is a model for the Rinehart cohomology com-
plex for a Lie-Rinehart pair (§2). Next, using an interlaced inductive process, we
construct a homotopy Lie-Rinehart resolution for the Lie-Rinehart pair in classical
BRST algebra (§3). One surprising result is that the homotopy Rinehart complex
associated with the homotopy Lie-Rinehart resolution is isomorphic to the BRST
algebra (§4).

We have omitted all sign arguments from the proofs in this paper, as they are
not generally instructive. All vector spaces, algebras and coalgebras in this paper
are over a field k of characteristic zero. All tensor products are over k and all maps
are at least k-linear or k-multilinear.

Note that sg is the suspension of the Lie algebra g, i.e., all elements of g are
assigned degree zero and hence, all elements of sg have degree 1. Throughout this
paper, we will identify all Lie algebras (and strongly homotopy Lie algebras) with
their suspensions. At first, this identification will be explicit; later, when we work
with I

/
I2 and KI/I2 , we will hide the suspension.
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2. Necessary Background

Review of Chavalley-Eilenberg and Rinehart cohomologies

For any Lie algebra sg and sg-module B, an n-multilinear function fn : (sg)×n →
B is alternating if fn(sx1, ..., sxi, sxi+1, ..., sxn) = −fn(sx1, ..., sxi+1, sxi, ..., sxn).
The Chevalley-Eilenberg complex is the set of all alternating multilinear functions
Altk(sg, B), graded by n, and equipped with a degree +1 differential δCE :
Altnk (sg, B) → Altn+1

k (sg, B) given by

δCEfn(sx0, ..., sxn) =

n∑

i=0

(−1)iω(sxi ⊗ fn(sx0, ..., ŝxi, ..., sxn)

−
∑

i<j

(−1)i+j−1fn([sxi, sxj], sx0, ..., ŝxi, ..., ŝxj, ..., sxn),

(1)
where ŝxk indicates that sxk should be omitted. The map ω is the sg-module action
of sg on B. Any element b ∈ B is considered an element of Alt0k(sg, B). The image
of b under δCE is defined by setting δCEb(sx) = ω(sx ⊗ b). When B is an algebra,
the Chevalley-Eilenberg complex is a differential graded commutative algebra. For
fn and gm in Altk(sg, B), the product fn ^ gm is given by

(fn ^ gm)(sx1, ..., sxn+m) =
∑

σ

(n,m)

unshuffles

fn(sxσ(1), ..., sxσ(n))gm(sxσ(n+1), ..., sxσ(n+m)).

An (n, m)−unshuffle is any permutation σ in the symmetric group Σn+m such that

σ(1) < · · · < σ(n)︸ ︷︷ ︸
first σ hand

and σ(n + 1) < · · · < σ(n + m),︸ ︷︷ ︸
second σ hand

where σ(j) is the element of the set {1, ..., n+ m} moved to the jth position under
σ. The differential δCE acts as a derivation with respect to this multiplication.
The cohomology of this complex with respect to δCE is the Chevalley-Eilenberg
cohomology of g with coefficients in B [CE48].

Definition 2.1. [Rin63] Let B is an algebra and sg be a Lie algebra, both modules
over an algebra A over a field k of characteristic zero and modules over each other.
We denote the left B-module action µ on sg by µ(a⊗sα) := asα. Let ω : sg⊗B −→
B (or, alternatively, ω : sg → Der(B)) denote the sg-module action on B. The pair
(B, sg) is a Lie-Rinehart pair, provided the Lie-Rinehart relations (LRa) and (LRb)
are satisfied for all a, b ∈ B and sx, sy ∈ sg:

LRa: ω(asx ⊗ b) = a · ω(sx ⊗ b), where · indicates the multiplication on B.

LRb: [sx, asy] = a[sx, sy] + ω(sx ⊗ a)sy.

Suppose (B, sg) is a Lie-Rinehart pair and the alternating function fn is B-
multilinear, i.e., fn(a1sx1, ..., ansxn) = a1 · · ·anfn(sx1, ..., sxn). Because the Lie
action map ω maps sg into the derivations of B and as a result of the Lie-Rinehart
relations, the image of fn under the Chevalley-Eilenberg differential δCE is again
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B-multilinear, despite the fact that the bracket is not B-multilinear. The Rine-
hart algebra R = Alt

B
(sg, B) with differential δR = δCE is a subcomplex of the

Chevalley-Eilenberg algebra and the cohomology with respect to δR is the Rinehart
cohomology of sg with coefficients in B [Rin63].

Coalgebras and Subcoalgebras
A graded coassociative coalgebra is a pair (C, ∆), where C is a graded module

over k together with a 0-degree coassociative comultiplication ∆ : C → C ⊗ C. A
function f with degree |f | = r is a coderivation on C if (f ⊗1+1⊗f)∆ = ∆f . The
set of all coderivations on a coalgebra C, denoted Coder(C), is a graded Lie algebra
under the graded commutator bracket, that is to say, [f, g] = fg − (−1)|f||g|gf for
all f and g ∈ Coder(C), where |f | and |g| are the degrees of f and g.

We will work with the tensor coalgebra Tc(sV ) =
⊗

(sV ), where sV is the
suspension a graded module V over a k-algebra A, where k is a field of characteristic
0. We will let sv[1 to n] denote the element sv1 ⊗ · · · ⊗ svn ∈ (sV )⊗n. The internal
graded action ρ∧n of the symmetric group Σn on (sV )⊗n is given by σ · (sv[1 to n]) =

kid(σ)svσ[1 to n] for all n, σ ∈ Σn and sv[1 to n] ∈ (sV )⊗n. The symbol svσ[1 to n]

is shorthand for svσ(1) ⊗ · · · ⊗ svσ(n), where σ(i) is the element of the ordered

set {1, ..., k} which moves to the ith position under σ. The factor kid(σ) is the
sign produced by rearranging the svi’s into the σ order, following the Koszul sign
convention, which states that exchanging two objects of homogeneous degrees p

and q (whether elements or maps) introduces a factor of (−1)pq . The action ρ∧ =
{ρ∧n}

∞
n=1 of {Σn}

∞
n=1 on Tc(sV ) is defined in the obvious way. The ρ∧-invariant

subcoalgebra is well-known as the graded commutative coalgebra
∧

(sV ) and is
generated by elements of the form

∑

σ∈Σn

kid(σ)svσ[1 to n],

which we will denote by sv∧[1 to n]. The coassociative comultiplication on
∧

(sV ) is
given by

∆(sv∧[1 to n]) =
n∑

j=0

∑

ρ

(j,n−j)

kid(ρ)
(
sv∧ρ[1 to j]

)
⊗
(
sv∧ρ[j+1 to n]

)
.

where it is understood that the second sum is over all (j, n − j)-unshuffles.

Shared Lie modules, Subordinate and resting coderivations
Three algebraic objects are vital for what follows. The graded Lie algebra

CoderW
W (
∧

(sV )) is generated by the set of coderivations ln on
∧

(sV ), each of which
rests on a specific subordinate coderivation mn in the Lie algebra CoderW

W (
∧

(sV )⊗
W ). For a graded commutative algebra W , the Lie algebra CoderW

W (
∧

(sV )⊗W ) is
generated by the set of all coderivations mn, each of which is both subordinate to a
specific resting coderivation ln and a W -derivation source. Finally, the graded com-
mutative algebra HomW (

∧
(sV ),

∧
(sV )⊗W ) is generated by the set of all W -linear

maps fn from
∧

(sV ) into
∧

(sV ) ⊗ W . This algebra admits a shared Lie module
structure over both CoderW

W (
∧

(sV ) ⊗ W ) and CoderW
W (
∧

(sV )). We review what
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the terms subordinate coderivation, W -derivation source, resting coderivation and
shared Lie module mean. For a more detailed development, see [Kje01].

We extend any map ln : (sV )∧n → sV to a coderivation on the coalgebra
∧

(sV )
by setting

ln(sv∧[1 to k]) =
∑

ρ

(n,k−n)

kid(ρ)ln(sv∧ρ[1 to n]) ∧ sv∧ρ[n+1 to k]. (2)

Definition 2.2. A map mn on
∧

(sV ) ⊗ W is an ln-subordinate coderivation if
the degree of mn and ln agree and mn, as the extension of a map mn : (sV )∧n−1 ⊗
W → W as a coderivation on

∧
(sV ) ⊗ W , is defined on (sV )k ⊗ W by setting

mn(sv∧[1 to k] ⊗ w) = ln(sv∧ρ[1 to k]) ⊗ w +
∑

σ

(k−n+1,n−1)

kid(σ) kid(mn; sv∧σ[1 to k−n+1]) · sv
∧
σ[1 to k−n+1]⊗mn(sv∧σ[k−n+2 to k] ⊗w).

(3)
when k > n − 1 and setting mn = 0 when k < n − 1.

The set of all subordinate coderivations Coder(
∧

(sV ) ⊗ W ) forms a graded Lie
algebra under the graded commutator bracket. The bracket respects subordination,
that is to say, if mi and mj are li and lj -subordinate coderivations respectively,
then [mi, mj ] is a coderivation subordinate to [li, lj].

Definition 2.3. An ln-subordinate map mn is a W -derivation source if for every
sv∧[1 to n−1] in (sV )∧n−1, the map mn(sv∧[1 to n−1] ⊗ ( )) : W → W is a graded
derivation on W .

The subset of all W -derivation sources in Coder(
∧

(sV ) ⊗ W ) forms a graded
Lie subalgebra denoted by CoderW (

∧
(sV ) ⊗ W ). The subset of all coderivations

ln ∈ Coder(
∧

(sV )) which admit a subordinate W -derivation source mn forms a
graded Lie subalgebra which we will denote by CoderW (

∧
(sV )).

We can extend any map fn : (sV )∧n → W to function from
∧

(sV ) into
∧

(sV )⊗
W by setting fn = 0 for k < n and, for k > n, setting fn(sv∧[1 to k]) =

∑

σ

(k−n,n)

kid(σ) kid(fn; sv∧σ[1 to k−n])sv
∧
σ[1 to k−n] ⊗ fn(sv∧σ[k−n+1 to k]). (4)

The set of all such maps is denoted by Hom(
∧

(sV ),
∧

(sV ) ⊗ W ). The algebra
structure on W extends to a graded commutative algebra structure on

∧
(sV ) ⊗

W , which provides Hom(
∧

(sV ),
∧

(sV ) ⊗ W ) with a cup product. If fn and gs

are maps in Hom(
∧

(sV ),
∧

(sV ) ⊗ W ). Then fn ^ gs is given by setting (fn ^

gs)(sv
∧
[1 to n+s]) =

∑

ρ

(n,s)

kid(ρ) kid(gs; sv
∧
ρ[1 to n])fn(sv∧ρ[1 to n]) · gs(sv

∧
ρ[n+1 to n+s])

on (sV )∧n+s, where · represents the the multiplication on W (henceforth, the · will
be suppressed). The map fn ^ gs is then extended to all of

∧
(sV ) as in equation

(4).
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If the graded module sV is a module over the graded commutative algebra W ,
then

∧
(sV ) is a module over the tensor algebra TW . We will follow our general

convention and denote w1sv1 ∧ · · · ∧ wnsvn by wsv∧[1 to n]. The unraveling map

U :
∧

(sV ) → W ⊗
∧

(sV )

wsv[1 to n] 7→ u([1 to n])w·
[1 to n] ⊗ sv[1 to n],

where u([1 to n]) is the sign produced when moving the wi’s past the svj ’s. The
map U respects the coalgebra structure of

∧
(sV ).

Definition 2.4. A map fn : (sV )∧n → W is W -linear if

fn(wsv∧[1 to n]) = u([1 to n]) kid(fn; w·
[1 to n])w

·
[1 to n]fn(sv∧[1 to n]).

Likewise, a map mn : (sV )∧n−1 ⊗ W → W is W -linear if
mn(wsv∧[1 to n−1] ⊗ w) =

u([1 to n − 1]) kid(mn ; w·
[1 to n−1])w

·
[1 to n−1]mn(sv∧[1 to n−1] ⊗ w).

For a map mn : (sV )∧n−1 ⊗ W → W , we define the V -extension map me
n :

(sV )∧n → V by setting

me
n(wsv∧[1 to n]) =

∑

ρ

(n−1,1)

kid(ρ)mn(wsv∧ρ[1 to n−1] ⊗ wρ(n))svρ(n).

Definition 2.5. Given a W -linear, W -derivation source mn ∈ CoderW (
∧

(sV ) ⊗
W ) which is subordinate to ln ∈ CoderW (

∧
(sV )), the map ln is said to rest on mn

if ln(wsv∧[1 to n]) =

u([1 to n]) kid(ln ; w·
[1 to n])w

·
[1 to n]ln(sv∧[1 to n]) + me

n(wsv∧[1 to n]).

The subset of CoderW (
∧

(sV )) of all coderivations lp which rest on W -linear W -

derivation sources mp forms CoderW
W (
∧

(sV )). Similarly, the subset of

CoderW (
∧

(sV ) ⊗ W ) consisting of all W -linear W -derivation sources mp subor-

dinate to maps lp, which in turn rest on mp, forms CoderW
W (
∧

(sV ) ⊗ W ).

Suppose mp ∈ CoderW
W (
∧

(sV ) ⊗ W ) is subordinate to lp ∈ Coder(
∧

(sV )). Re-
markably, the map

〈mp, 〉 : HomW (
∧

(sV ),
∧

(sV ) ⊗ W ) → HomW (
∧

(sV ),
∧

(sV ) ⊗ W ),

given by setting

〈mp, fn〉 = mpfn − kid(mp; fn)fnlp

on (sV )∧n+p−1 and extending 〈mp, fn〉 to all of
∧

(sV ) as in equation (4) is well-
defined [Kje01]. This map exposes the shared Lie module structure on
HomW (

∧
(sV ),

∧
(sV ) ⊗ W ) [Kje01]. In a sense, it is simultaneously a Lie-module

over both CoderW
W (
∧

(sV ) ⊗ W ) and CoderW
W (
∧

(sV )) in that 〈[mi, mj], 〉 =
〈mi, 〈mj , 〉〉 − kid(mi; mj) 〈mj , 〈mi, 〉〉 . The map 〈mp, 〉 acts as a derivation
with respect to the cup product.
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Homotopy (and non-homotopy) Lie algebras and their modules
Strongly homotopy Lie algebras (shLie algebras) first appeared implicitly in

[Sul77] and explicitly in [SS] in the context of deformation theory. A concise in-
troduction to shLie algebras is found in [LM95]. The definitions below were lifted
directly from [LM95] and [LS93] and then modified in [Kje01] to fit the language
of this paper. The machinery used in deformation theory (see, for example, [GS90])
will prove useful in the process of constructing an shLie structure and an shLie mod-
ule structure on the resolution of the Lie-Rinehart pair in §3, although we will not
use the language in the traditional way.

Definition 2.6. An L(m)-structure on a graded module sL consists of a system
of coderivations {lk :

∧
(sL) →

∧
(sL) : 1 6 k 6 m 6 ∞, k 6= ∞} which

are extensions of maps lk : (sL)∧k → sL. Each lk has degree −1. Moreover, the
following generalized form of the Jacobi identity is satisfied for n 6 m:

JIDn =
1

2

∑

i+j=n+1

i,j>1

[lj, li] = 0 (5)

on
∧

(sL). If L admits an L(∞)-structure, then L is a strongly homotopy Lie
algebra (an shLie algebra).

For this paper, we will view a standard Lie algebra sg as a degenerate shLie
algebra

∧
(sg) where all coderivations l̂i are zero except l̂2. We decorate the bracket

l̂2 on sg to distinguish it from l2 on the shLie algebra which resolves
∧

(sg).
The following maps will be useful in §3, where we will use a deformation theoretic

approach to construct an shLie algebra together with an shLie module.

Definition 2.7. For n > 1, the nth Jacobi coderivation Jn :
∧

(sL) →
∧

(sL) is
given by

Jn = −
1

2

∑

i+j=n+1

i,j>1

[lj, li].

For an L(m)-algebra, Jn = [l1, ln] for every 2 < n < m. Since [l1, ln] = l1ln +
(−1)n−1lnl1 and l1 is a differential on L, it will be useful to have a name for the
following map even though it is not a coderivation on

∧
(sL).

Definition 2.8. For n > 1, the nth Jacobi obstruction map JOBSTn : (sL)∧n → sL

is given by

JOBSTn = Jn − lnl1 = −
∑

i+j=n+1

i>0 , j>1

lj li

In the language of deformation theory (see, among others, [Ger63], [Ger64],
[Ger66], [Ger68], [GS90], [GS88], [FGV95] and [FGV]), an L(m)-structure on L

may be extended to an L(m+1)-structure if there is a linear map lm+1 : L∧m+1 → L

such that JIDm+1 = 0 or, equivalently, such that 1
2 [l1, lm+1 ] = Jm+1. What we are
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deforming here is a bit obscure and less important than the process of extending an
L(m)-structure. The graded Lie algebra Coder(

∧
L), together with the differential

given by [l1, ], governs the extension theory of L(m)-structures on
∧

L. If we were
viewing the construction of an L(∞)-structure strictly as a deformation theory
problem rather than simply borrowing the machinery, the map Jn would be called
the nth obstruction. However, in the context of our construction in §3, the use of
the map JOBSTn is more consistent with the common notion of an obstruction. The
following lemmas concerning Jn and JOBSTn will also be useful in §3.

Lemma 2.9. The coderivation Jn is a cocycle, i.e., [l1,Jn] = 0.

Proof of Lemma 2.9. We will show that [l1,−4Jn] = 0.

[l1,−4Jn] =


l1,

∑

i+j=n+1

i,j>1

2[lj , li]


 =


l1,−

∑

i+j=n+1

i,j>1

([lj , li] + [li, lj])




=
∑

i+j=n+1

i,j>1

([l1, [lj, li]] + [l1, [li, lj]]) .

Since [l1, [lj, li]] = [[l1, lj], li] − [[l1, li], lj], it follows that

[l1, [lj, li]] + [l1, [li, lj]]

= [[l1, lj ], li]]− [[l1, li], lj]] + [[l1, li], lj]]− [[l1, lj ], li]]

= 0.

Therefore, [l1,Jn] = −1
4 [l1,−4Jn] = 0. 2

Lemma 2.10. If sL admits an L(n)-structure, then l1JOBSTn = 0 on (sL)∧n.

Proof of Lemma 2.10. The map JOBSTn = −
∑

i+j=n+1

i>0,j>1

(−1)i(j−1)lj li, so

l1JOBSTn = l1


−

∑

i+j=n+1

i>0,j>1

lj li


 = −

∑

i+j=n+1

i>0,j>1

l1(lj li)

= −
∑

i+j=n+1

i>0,j>1

(l1lj)li.

We substitute l1lj with −
∑

s+r=j+1

s>0,r>1

lrls and reassociate so that

∑

i+j=n+1

i>0,j>1




∑

s+r=j+1

s>0,r>1

lrls


 li =

∑

i+s+r=n+2

i,s>0,r>1

lr(lsli).
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If we let i + s = t + 1, the sum above becomes

∑

t+r=n+1
t>0,r>1

lr



∑

i+s=t+1

i,s>0

lsli


 =

∑

t+r=n+1
t>0,r>1

lrJIDt.

Since JIDt = 0 on (sL)∧t for all 1 6 t 6 n − 1, the final sum above is zero. 2

Definition 2.11. [LM95] Let (sL, li) be an L(p)-algebra (0 < p < ∞) and let M be
a differential graded module with differential m1. Then a left L(k)-module structure
over sL on M (for k 6 p) is a collection of coderivations {mn :

∧
(sL) ⊗ M →∧

(sL) ⊗ M : 1 6 n 6 k, n 6= ∞}. Each mn is ln-subordinate and the extension of
a map mn : L∧n−1 ⊗ M → M such that the nth action identity map

ACT IDn =
1

2

∑

i+j=n+1

i,j>1

[mj, mi] = 0

on
∧

(sL)⊗M . The differential graded module M is a strongly homotopy Lie module
over sL (or an sL-shLie module) if sL admits an L(∞)-structure and M is a module
with respect to that L(∞)-structure.

Definition 2.11 implies that the differential m1 on M must be l1-subordinate. It
is simple to verify that m1 is a differential on

∧
L ⊗ M .

When M is a differential graded commutative algebra, we will insist the maps
mi be M -derivation sources, that is to say, the map mi(v[1 to i−1] ⊗ ( )) : M → M

is in Der(M) for every v∧[1 to i−1] ∈ L∧i−1.
In this paper a module B over a Lie algebra g is a degenerate shLie module∧

(sg) ⊗ B over the shLie algebra
∧

(sg), where all the coderivations mi are zero
except for m̂2 (again, we decorate this particular map).

Below, we define the maps ACTn and ACTOBSTn, the analogs of Jn and JOBSTn.

Definition 2.12. For n > 1, the nth action map ACTn :
∧

(sL)⊗M →
∧

(sL)⊗M

is given by

ACTn = −
1

2

∑

i+j=n+1

i,j>1

[mj , mi].

Definition 2.13. For n > 1, the nth action obstruction map ACTOBSTn :
(sL)∧n−1 ⊗ M → M is given by

ACTOBSTn = ACTn − mnm1 = −
∑

i+j=n+1

i>0,j>1

mjmi.

If sL is an L(p)-algebra and M is an L(n)-module over sL with n < p − 1 (or
n < ∞ if p = ∞), we can extend the L(n)-module structure to an L(n + 1)-module
structure if an ln+1-subordinate M -derivation source mn+1 : (sL)∧n ⊗M → M can
be found such that ACT IDn+1 = 0. Again, what exactly we are deforming here is
less important than the language and machinery of deformation theory.
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The following lemmas and their proofs mimic lemmas 2.9 and 2.10 and their
proofs.

Lemma 2.14. The coderivation ACTn is a cocycle, i.e., [m1,ACTn] = 0.

Lemma 2.15. If L admits an L(p)-structure and M is an L-L(n)-module for n <

p − 1 (or n < ∞ if p = ∞), then m1ACTOBSTn = 0 on L∧n−1 ⊗ M .

Proposition 2.16. [LS93] If (sL, li) is an shLie algebra, the map DsL =
∑∞

i=1 li
is a differential on

∧
(sL), i.e. it is a map of degree -1 such that DsL ◦ DsL = 0.

Proof of Proposition 2.16. A proof can be found in [LS93]. Here the proof is essen-
tially the same but takes advantage of the bracket of coderivations:

DsL ◦DsL =




∞∑

j=1

lj


 ◦

(
∞∑

i=1

li

)
=

∞∑

j=1

∞∑

i=1

ljli =

∞∑

n=1

∑

i+j=n+1

i,j>1

lj li.

Using equation in definition 2.6, we see that

∞∑

n=1

∑

i+j=n+1

i,j>1

lj li =
1

2

∞∑

n=1

∑

i+j=n+1

i,j>1

[lj, li] =
1

2

∞∑

n=1

JIDn = 0.

Note also that DsL is a degree −1 coderivation, so DsL ◦ DsL = 1
2 [DsL, DsL] and

the graded skew-commutativity of the bracket ensures that [DsL, DsL] = 0. 2

For the Lie algebra
∧

(sg), the differential Dsg = l̂2.

Proposition 2.17. The map DM =
∑∞

i=1 mi is a differential on
∧

(sL) ⊗ M , i.e.,
DM ◦ DM = 0.

Proof of Proposition 2.17. Isomorphic to the proof of proposition 2.16. Notice that
DM is DsL-subordinate and that DM ◦ DM = 1

2
[DM , DM ] = 0. 2

For the Lie module
∧

(sg) ⊗ B, the differential DB = m̂2.

Homotopy Chevalley-Eilenberg cohomology
Definition 2.18. A homotopy Chevalley-Eilenberg pair (M, L) consists of an shLie
algebra L and an L-shLie module M .

A multi-linear graded alternating function Fn : L×n → M can be seen as a
linear function Fn : (sL)∧n → M . So the homotopy Chevalley-Eilenberg algebra
Altk(L, M) is isomorphic to Homk(

∧
(sL),

∧
(sL)⊗M) with the differential δhCE =

〈DM , 〉

Proposition 2.19. δhCE ◦ δhCE = 0.

Proof of Proposition 2.19. δhCE ◦ δhCE = 〈DM , 〈DM , 〉〉 =
〈

1
2 [DM , DM ],

〉
=

0. 2
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The cohomology with respect to δhCE is the homotopy Chevalley-Eilenberg co-
homology of sL with coefficients in M . A quick check shows that the Chevalley-
Eilenberg cohomology complex for the pair (B, sg) is simply a degenerate form of

the homotopy version where δCE = δhCE = 〈m̂2, 〉 because m̂i and l̂i are zero for
all i 6= 2.

When M is a differential graded commutative algebra, the homotopy Chevalley-
Eilenberg complex Homk(

∧
(sL),

∧
(sL) ⊗ M) is a differential graded commutative

algebra. The differential δhCE acts as a derivation with respect to this multiplication.

Homotopy Lie-Rinehart pairs and homotopy Rinehart cohomology
The homotopy Rinehart complex is a straightforward generalization of the Rinehart
complex in the ungraded setting. Since the Rinehart complex is defined only for Lie-
Rinehart pairs (B, sg), we must define what constitutes a homotopy Lie-Rinehart
pair (M, sL). The subset AltM (sL, M) of Altk(sL, M) consisting of all M -linear
graded alternating functions is isomorphic to HomM(

∧
(sL),

∧
(sL) ⊗ M).

Definition 2.20. A homotopy Lie-Rinehart pair (M, sL) consists of a differential
graded commutative algebra (M, mi) which is an shLie module over the shLie algebra
(sL, li), which in turn is an M -module. Moreover, the following two homotopy Lie-
Rinehart relations must be satisfied for all i > 1:

(hLRai): The shLie module structure map mi is M -linear.

(hLRbi): The shLie structure map li rests on mi (definition 2.5).

An L(p)-Lie-Rinehart pair ((M, mi), (sL, li)) has maps mi and li which satisfy
(hLRai) and (hLRbi) for 1 6 i 6 p.

The proposition below follows from the fact that, for every i, the image of F under
the map 〈m̂i, 〉 is again a map in HomM (

∧
(sL),

∧
(sL) ⊗ M) for all i [Kje01].

Proposition 2.21. If F is M -linear, then so is δhCEF .

We conclude that the subset of all M -linear functions in Homk(
∧

(sL),
∧

(sL) ⊗
M) forms a subcomplex R = HomM(

∧
(sL),

∧
(sL) ⊗ M) with differential δR =

〈DM , 〉. The differential, together with the cup product, provides the homotopy
Rinehart complex R with the structure of a differential graded commutative algebra.
The cohomology of R with respect to δR is the homotopy Rinehart cohomology of
sL with coefficients in M .

The following two propositions for general homotopy Lie-Rinehart pairs (M, sL)
are observations based on the fact that both CoderM

M(
∧

(sL)⊗M) and CoderM
M (
∧

(sL))
are graded Lie algebras.

Proposition 2.22. The maps ACT IDn and ACTn are are JIDn and Jn-subordinate,
respectively; both are M -linear and M -derivation sources.

The significance of this proposition lies in recognizing that, as a result, each of the
maps ACT IDn and ACTn are completely determined by their image on a generating
set for

∧
(sL) as an M -module and a generating set for M , so long as the maps

JIDn and Jn are available.
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Proposition 2.23. The maps JIDn and Jn rest on ACT IDn and ACTn, respec-
tively.

Here again, the implication is that the maps JIDn and Jn are completely determined
by their image on a generating set of

∧
(sL) as an M -module.

Homotopy Lie-Rinehart resolutions of Lie-Rinehart pairs
Let (B, sg) be a Lie-Rinehart pair over a k-algebra A with module structure

maps µ̂ : B ⊗ sg → sg and m̂2 : sg ⊗ B → B. Let l̂2 denote the bracket on
sg and πB denote the multiplication on B. The basic ingredients of a homotopy
Lie-Rinehart resolution for a Lie-Rinehart pair (B, sg) are (sL, li) and (M, mi, πM)
where Hl1 (sL) = sg and Hm1 (M) = B.

Definition 2.24. A homotopy Lie-Rinehart resolution of a Lie-Rinehart pair (B, sg)
over an algebra A is a homotopy Lie-Rinehart pair (M, sL) over A, such that

(a) the shLie algebra (sL, li), seen as the coalgebra
∧

(sL), resolves
∧

(sg), i.e.,

Hl1 (
∧

(sL)) =
∧

(sg), (6)

where (following the physicists’ notation) Hl1 denotes the homology with re-
spect to the differential l1,

(b) the differential graded commutative algebra (M, mi, πM) satisfies

Hm1 (
∧

(sL) ⊗ M) =
∧

(sg) ⊗ B, (7)

(c) the dgca (M, mi, πM) also satisfies

Hm1 (M ⊗ M) = B⊗ B. (8)

Furthermore, the following conditions hold:

i. Hl1 (l2) = l̂2 on
∧

(sg).

ii. Hm1(m2) = m̂2 on
∧

(sg) ⊗ B.

iii. Hm1(πM ) = πB on B⊗ B.

In the proposition below, we state conditions on the homotopy Lie-Rinehart pair
that guarantee it satisfies definition 2.24. The proof is found in [Kje01].

Proposition 2.25. Let (M, sL) be a homotopy Lie-Rinehart pair. Suppose the dif-
ferential graded algebra (M, mi, πM) is a projective resolution of B over A which
respects the algebra structure on B, i.e., condition iii of definition 2.24 is satisfied.
Suppose (sL, li) is a projective resolution sg. Furthermore,

(a) Hl1 (l2) = l̂2 on sg ∧ sg and

(b) Hm1(m2) = m̂2 on sg ⊗ B.

Then (M, sL) is a homotopy Lie-Rinehart resolution of (B, sg).

We used a spectral sequence argument in [Kje01] to prove the following theorem.

Theorem 2.26. If the pair (M, sL) is a projective homotopy Lie-Rinehart resolution
of the Lie-Rinehart pair (B, sg), then (R, 〈DM , 〉) is a cohomological model for
(R, 〈m̂2, 〉).
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3. Constructing the homotopy Lie-Rinehart pair

(KA/I,KI/I2) and classical BRST cohomology

Constructing homotopy Lie-Rinehart resolutions for a Lie-Rinehart pair is not
always easy, as we will see as we construct a homotopy Lie-Rinehart resolution
(KA/I , KI/I2) for the Lie-Rinehart pair (A

/
I, I

/
I2) from classical BRST coho-

mology. Details which are not instructive (especially sign arguments) are ommitted,
but can be found in [Kje96].

The Lie algebra I
/
I2 has already been suspended, i.e., every element of I

/
I2

has degree +1 and the bracket l̂2 is a coderivation on
∧
I
/
I2. However, we will

suppress the suspension indicator “s” both here and in the shLie algebra KI/I2 .

Let the set yα = {y1, ..., ys} generate the coisotropic ideal I as an finitely pre-
sented A-module. If yα forms a basis of I over the field k, there is a unique set
of structure constants Cδ

αβ ∈ k, each of which is antisymmetric in its lower in-

dices, such that {yα, yβ} = Cδ
αβyδ . (Note: We will use Einstein’s summation con-

vention throughout §3 and §4.) With structure constants, the Jacobi identity is a
statement about coefficients, namely Cδ

αβCε
δγ + Cδ

βγCε
δα + Cδ

γαCε
δβ = 0 for every

ε. When the generators do not form a basis for I over k, we can still find (not
necessarily unique) structure functions Cδ

αβ in A such that {yα, yβ} = Cδ
αβyδ. (In

the BRST context, the elements of the Poisson algebra A are functions on a sym-
plectic manifold, hence the term structure functions.) The Jacobi identity becomes
(Cδ

αβCε
δγ + {Cε

αβ, yγ} + c.p.)yε = 0, where c.p. stands for cyclic permutations of

α, β and γ. For convenience we will set J ε equal to (Cδ
αβCε

δγ + {Cε
αβ, yγ}+c.p.), so

that the Jacobi identity can be written as J εyε = 0. The Jacobi identity is now a
relation among the generators of I.

Definition 3.1. [Kim93], [FHST89] Let I be finitely generated by the set yα =
{y1, ..., ys}. The set is irreducible if fαyα = 0 implies fα = gαβyβ, where each
coefficient gαβ is antisymmetric with respect to its indices. An ideal which has a set
of irreducible generators is called irreducible.

Definition 3.2. [Kim93], [FHST89] An ideal I which is finitely generated by
the set yα1

= {y1, y2, . . . , ys1} admits a complete set of reducibility functions if
there exists Z

αn−1
αn in the complement of I, such that for n = 2, Zα1

α2
yα1 = 0 and

fα1yα1 = 0 implies that fα1 = gα2Zα1
α2

+ Υα1β1yβ1 , where Υα1β1 = −Υβ1α1 . For
n > 2, Z

αn−1
αn Z

αn−2
αn−1 ≡ 0 mod I and fαn−1Z

αn−2
αn−1 ≡ 0 mod I implies fαn−1 ≡

gαnZ
αn−1
αn mod I. An ideal which admits a complete set of reducibility functions is

reducible.

We consider only ideals which are either irreducible or reducible. Since the Jacobi
identity is a relation among the generators of I, when the ideal is irreducible, we
have J εyε = 0 implies J ε = gεδyδ . When the ideal is completely reducible, we have
J εyε = 0 implies J ε = gα2Zε

α2
+ Υεβ1yβ1 .

The quotient I
/
I2 inherits a Lie structure from I and is both an A and an A

/
I-

module. There is a Lie action of I on A given by z · f = {z, f}, which passes to the
quotient so that A

/
I is a Lie-module over both I and I

/
I2. Although (A

/
I, I) is



Homology, Homotopy and Applications, vol. 3, No. 8, 2001 178

not a Lie-Rinehart pair, the pair (A
/
I, I

/
I2) is. The actions µ and ω are given by

µ : A
/
I ⊗ I

/
I2 → I

/
I2

f ⊗ z̄ 7→ fz
and

ω : I
/
I2 ⊗ A

/
I → A

/
I

z̄ ⊗ f 7→ {z, f},

where and ¯ denote equivalence classes. It is a straightforward exercise to show
that the Lie-Rinehart relations are satisfied.

The construction of (KA/I , KI/I2)
Before we describe how we construct the homotopy Lie-Rinehart resolution
(KA/I , KI/I2) for the pair (A

/
I, I

/
I2), we skip ahead to STEP 1, where we review

the features of the Koszul-Tate resolution KA/I of A
/
I (see [Tat57] and [Joz72]), a

free differential graded commutative algebra over A which is a projective resolution
of A

/
I.

STEP 1: The Koszul-Tate resolution KA/I

The Koszul complex K(0) is a dgca over A and is isomorphic to A⊗
∧
{P1,P2, ...,Ps},

where the Pi’s are assigned degree 1 and are in one-to-one correspondence with the
generators yi. (Following the physics literature, we call the Pi’s antighosts [HT92].)
The differential m1 maps each Pi to yi and m1 is extended as an A-linear graded
derivation. The zeroth homology of the Koszul complex is A

/
I even if higher ho-

mologies do not vanish. Using the inductive method Tate introduced in [Tat57], we
kill an unwanted nontrivial homology class [zq] of degree q by adjoining a formal vari-
able Pzq of degree q+1 to the existing Koszul complex. The variable Pzq maps to zq

under the differential, killing the unwanted homology. But these new variables may
introduce new nontrivial homology on higher levels, which must in turn be killed.
More formally, if I is reducible and generated by the set yα1

= {y1, ..., ys1}, the ze-
roth homology of the Koszul complex K(0) = A⊗

∧
{Pα1} is A

/
I, but H1(K(0)) may

not be zero. The unwanted homology classes form a module generated by the cycles
zα2 = Zα1

α2
Pα1 , so we adjoin degree 2 antighosts Pα2 and setting m1(Pα2) = zα2 .

The resulting differential graded commutative algebra K(1) = A⊗
∧
{Pα1 ,Pα2} has

homology H0(K(1)) = A
/
I and H1(K(1)) = 0. Again, H2(K(1)) may contain non-

trivial classes, either as a result of introducing the level two antighosts or because
they were already present in K(0). Regardless of origin, we choose a generating set
zα3 for the nontrivial 2-cycles and adjoin degree 3 antighosts Pα3 to kill them. The
third homology of K(2) may be nonzero, so we continue the process. The complete
reducibility of I guarantees that a representative for each nontrivial n-class can be
chosen so that each zαn+1 = fαn

αn+1
Pαn+ “more”. The limit K(∞) is the Koszul-Tate

projective resolution KA/I of A
/
I and is isomorphic to A ⊗

∧
P , where P is the

graded vector space with basis {Pα1,Pα2 ,Pα3, . . .}. The product πK on KA/I is
a chain map. It is straightforward to check that Hm1 (πK) = π

A
/
I
, that is to say,

condition (iii) in definition 2.24 is satisfied.
A chain fIPI in KA/I , where PI = Pαn1

· · · Pαns
, has homogeneous degree,

which we again denote by I. In context, we will not confuse the index I with the
degree I. The boundary of an antighost Pαn will be denoted as Z

αn−1
αn Pαn−1 +

ZÎ
αn

PÎ whenever the “linear” term plays an important role. Otherwise, we will set
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m1(Pαn) = ZI
αn

PI . Whenever possible, an element of KA/I will be denoted simply
by X .

When A is a Poisson algebra and the ideal I is a multiplicative ideal, the Koszul-
Tate resolution KA/I admits a graded Poisson bracket given by {fIPI , g

JPJ} =
{fI , gJ}PIPJ .

The Procedure
The construction of (KA/I , KI/I2) relies on four features: the Poisson structure on
the Koszul-Tate resolution KA/I , the relations among the generators of I, the fact

that both KA/I and KI/I2 are projective resolutions of A
/
I and I

/
I2, respectively,

and an A-module coderivation Ψ from KA/I to KI/I2 . A general outline of the
process follows:

STEP 1: Choose a Koszul-Tate resolution KA/I for A
/
I. The differential on

KA/I is m1, which must satisfy condition (iii) in definition 2.24. (Already
done!)

STEP 2: Construct a differential graded KA/I -module KI/I2 which is a pro-

jective resolution of I
/
I2 (See propositions 3.3 and 3.4). The action µ :

KA/I ⊗KI/I2 → KI/I2 is free, i.e., KI/I2 is isomorphic to KA/I ⊗Φ, where
Φ is a graded vector space over k which is isomorphic to the graded vector
space P . (We have already suspended the graded vector space Φ. Therefore,
KI/I2 is already suspended.) We construct the differential on KI/I2 using the
coderivation Ψ. The differential l1 rests on m1, so the pair (KA/I , KI/I2) has
an L(1)-Lie-Rinehart structure.

STEP 3: The loop—defining the homotopy Lie-Rinehart structure maps mn

and ln. For n > 2, the loop extends the L(n− 1)-Lie-Rinehart structure to an
L(n)-Lie-Rinehart structure.

(an). Constructing mn. Since the map mn must satisfy the homotopy Lie-
Rinehart relation (hLRan) and be a KA/I -derivation source, the map
mn is completely determined once we define it on Φ∧n−1 ⊗ A and the
basis elements ϕ[1 to n−1] ⊗ Pn of Φ∧n−1 ⊗ P , such that ϕ1 6 · · · 6 ϕn

with respect to a degree-preserving total ordering of the preghosts:

i. Define mn on Φ∧n−1 ⊗ A by setting mn(ϕ[1 to n−1] ⊗ f) =

(−1)n{mn−1(ϕ[1 to n−2] ⊗ Pn−1), f}.

Here, the inductive assumption (step an−1iii “above”) guarantees that
mn is well-defined on Φ∧n−1 ⊗ A. The extended Poisson bracket on
KA/I in the definition guarantees that mn will be an A-derivation
source. (Does not require proof.)

ii. Verify that ACT IDn = 0 on Φ∧n−1 ⊗ A by showing that m1mn =
ACTOBSTnon that subspace. (Requires proof. See proposition 3.5.)

iii. Ensure that mn is well-defined and that ACT IDn = 0 on Φ∧n−1 ⊗
P by exploiting the acyclicity of KA/I to define mn on the basis
ϕ[1 to n−1] ⊗ Pnof Φ∧n−1 ⊗ P with ϕ1 6 · · · 6 ϕn . (Requires proof.
See proposition 3.6.)
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iv. Since ACT IDn is completely determined by its image on the generat-
ing set Φ∧n−1 ⊗A and Φ∧n−1 ⊗P (recall Proposition 2.22), it follows
that ACT IDn = 0 on all of K∧n−1

I/I2 ⊗KA/I and therefore ACT IDn = 0

on
∧

KI/I2 ⊗KA/I . (Does not need proof.)

(bn). Constructing ln. The map ln must rest on mn and is therefore completely
determined once we define it on Φ∧n.

i. Set ln(ϕ[1 to n]) = Ψmn(ϕ[1 to n−1] ⊗Pn). Since mn is well-defined on

Φ∧n−1 ⊗ P , it follows that the map ln is well-defined on Φ∧n. (Does
not need proof.)

ii. Verify that JIDn = 0 on Φ∧n. We do so by showing that on the space
Φ∧n−1 ⊗ P, the sequence of equalities

l1ln(1∧n−1 ⊗ Ψ) = Ψm1mn = ΨACTOBSTn = JOBSTn(1∧n−1 ⊗ Ψ)

holds. (Requires proof. See proposition 3.7.)

iii. Since JIDn rests on ACT IDn (recall Proposition 2.23) and JIDn = 0 on
Φ∧n, it follows that JIDn = 0 on all of K∧n

I/I2 and therefore JIDn = 0

on
∧

KI/I2 . (Does not need proof.)

STEP 4: Verify that the conditions (i) and (ii) in definition 2.24 are met.

STEP 2: Constructing KI/I2

The shLie algebra KI/I2 is the free KA/I -module KA/I ⊗ Φ. The graded vector
space Φ is spanned by the graded basis {ϕα1 , ϕα2, ϕα3 , . . .}, where there is a one-to-
one correspondence between the preghosts ϕαi , and the antighosts Pαi. Each ϕαn

is assigned degree n. (The vector space Φ is the suspension of the vector space Φ
found in [Kje96].) A typical element has the form XIPαn

I ϕαn , where XIPαn

I is an
element of KA/I . As before, the degree of XIPαn

I in KA/I will be denoted by I.
The degree of the element XIPαn

I ϕαn , then, is the sum (I +n). Whenever possible,
an abbreviated form Xαnϕαn will be used for a typical element, in which case the
degree of Xαn will be denoted by αn, again, without confusion.

When I is irreducible, the map l1 = m1⊗1 is a differential on KI/I2 ≈ KA/I⊗Φ,

whose homology is A
/
I ⊗ Φ, which is isomorphic to I

/
I2 as A

/
I-modules. The

isomorphism is given by sending fα1ϕα1 7→ fα1yα1 . The details are left to the

reader. It follows that KI/I2 is a resolution of I
/
I2.

We define a degree 0 A-linear map Ψ : KA/I −→ KI/I2 by setting Ψ(Pαn) = ϕαn

and extending Ψ as a graded derivation, i.e., Ψ(PαiPαj) = (−1)ijPαjϕαi +Pαiϕαj .

In the irreducible case, the map Ψ is a chain map.
In the reducible case, the graded module KI/I2 does not come equipped with

a differential; we must build one. The tool we need is the map Ψ. We create l1 on
KI/I2 so that Ψ is a chain map. We set l1(ϕαn) = Ψm1(Pαn) and extend l1 to all of
KI/I2 so that it rests on m1. The map Ψ is a chain map provided l1 is a differential
on KI/I2 .
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Proposition 3.3. l1 ◦ l1 = 0 on KI/I2 .

Proof of Proposition 3.3. We begin by showing that l1(l1(ϕαn)) = 0. Recall that Ψ is
a chain map. It follows that l1(l1(ϕαn)) = l1(Ψ(m1(Pαn))) = Ψ(m1(m1(Pαn))) = 0.

Since l1 rests on m1, it follows that

l1(l1(X
αnϕαn)) = l1(m1(X

αn)ϕαn + (−1)αnXαnl1(ϕαn))

= m1(m1(X
αn))ϕαn + (−1)

αn−1
m1(X

αn)l1(ϕαn)

+(−1)
αnm1(X

αn)l1(ϕαn) + (−1)
αnXαn l1(l1(ϕαn))

= (−1)
αnXαnl1(l1(ϕαn))

= 0. 2

The spectral sequence argument below proves that KI/I2 resolves I
/
I2 as mod-

ules.

Proposition 3.4. Hl1 (KI/I2) = I
/
I2.

Proof of Proposition 3.4. The module KI/I2 is naturally bigraded. The bidegree of

the element Xαnϕαn is (αn, n). The differential decomposes as l1 = (m1⊗1)+d(1)+
d(2) + · · · with respect to the filtration of KI/I2 by preghost degree, where m1 ⊗ 1

has bidegree (−1, 0) and d(i) has bidegree (i− 1, i). The differential on the E0 term
is m1 ⊗1. The kth row of the E0 term is KA/I ⊗Φ(k) where Φ(k) is the vector space
spanned by the ϕαk ’s. Each row is exact except in the first slot. Therefore the E1

term of the spectral sequence is concentrated in the first column:

E1 :
...ygd(1)

A
/
I ⊗ Φ(3)ygd(1)

A
/
I ⊗ Φ(2)ygd(1)

A
/
I ⊗ Φ(1)y

0 .

Since the E1 term collapses to one column, the homology of KI/I2 with respect to
l1 will be the homology of the E1 term.

Let K be the kernel of the map π : A
/
I ⊗ Φ(1) −→ I

/
I2 which sends fα1 ⊗

ϕα1 to fα1yα1 . We need to show that d̃(1)(A
/
I ⊗ Φ(1)) = K. (⊆): Since l1ϕαn =

Z
αn−1
αn ϕαn−1 + “more”, it follows that d̃(1)fαnϕαn = fαnZ

αn−1
αn ϕαn−1 . Consider any

element fα2ϕα2 of A
/
I ⊗Φ(2). The image under πd̃(1) is zero because for all α2 the

sum Zα1
α2

yα1 = 0. (⊇): Suppose π(fα1ϕα1) = fα1yα1 = 0. Recalling that the ideal
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I admits a complete set of reducibility functions, we see that

fα1yα1 = hα1β1yβ1yα1 ⇒ (fα1 − hα1β1yβ1)yα1 = 0

⇒ fα1 ≡ gα2Zα1
α2

mod I.

It then follows that d̃(1)(gα2ϕα2) = gα2Zα1
α2

ϕα1 = fα1ϕα1 . We conclude that the

zeroth cohomology of KI/I2 with respect to l1 is (A
/
I ⊗Φ(1))

/
K, which is isomor-

phic to I
/
I2 as modules. For higher cohomologies, suppose fαnϕαn is a cocycle.

Then

fαnZαn−1
αn

ϕαn−1 = 0 ⇒ fαnZαn−1
αn

∈ I

⇒ fαn ≡ gαn+1Zαn
αn+1

mod I

⇒ fαnϕαn = gαn+1Zαn
αn+1

ϕαn = d̃(1)gαn+1ϕαn+1 .

Hence, the higher cohomologies are zero. 2

The map Ψ is quite useful. We constructed l1 so that Ψ was a chain map. In the
notation of shLie algebras and shLie modules, we were able to show that JID1 = 0
on Φ because ΨACT ID1 = JID1Ψ and ACT ID1 = 0 on Ψ−1Φ. We shall see this
pattern of proof again in proposition 3.7.

Let PI = PI1 · · · PIs ∈ KA/I . Then Ψ(PI) = k(Ii)P
Ii

I ϕIi , where PIi

I = PI1 · · ·

P̂Ii · · ·PIs and P̂Ii indicates that this factor is omitted. The sign k(Ii) is the sign
produced by moving PIi past PI1 · · ·PIi−1 . Recalling that m1Pαn = ZI

αn
PI, we can

write l1(ϕαn) = k(Ii)Z
I
αn

PIi

I ϕIi .

STEP 3: The loop
We prove the three propositions needed to complete the inductive step of the loop.
Then we will return to n = 2 and define m2 at the one location where both KA/I

and KI/I2 are not exact.

Proposition 3.5. (3anii) If we set mn(ϕ[1 to n−1] ⊗f)=(−1)n{mn−1(ϕ[1 to n−2] ⊗
Pn−1), f}, for ϕ1 6 · · · 6 ϕn−1, then

m1(mn(ϕ[1 to n−1] ⊗ f)) = ACTOBSTn(ϕ[1 to n−1] ⊗ f).

Proof of Proposition 3.5. We omit sign arguments and specific signs, opting instead
for ±. Using the definition, m1mn(ϕ[1 to n−1] ⊗ f)

= ±m1{mn−1(ϕ[1 to n−2] ⊗Pn−1), f}

= ±{m1(mn−1(ϕ[1 to n−2] ⊗Pn−1)), f} ± ZA
[1 to n−1]{m1(PA), f},

where mn−1(ϕ[1 to n−2]⊗Pn−1) = ZA
[1 to n−1]PA. Now, ACTOBSTn(ϕ[1 to n−1]⊗f)

contains one term ±m2(ln−1(ϕ[1 to n−1]) ⊗ f) which uses the (n − 1, 0)-unshuffle.
But since

ln−1(ϕ[1 to n−1])
= Ψmn−1(ϕ[1 to n−1]

⊗
Pn−1) = ZA

[1 to n−1]P
β
Aϕβ
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and m2 is KA/I -linear,

m2(Z
A
[1 to n−1]P

β
Aϕβ ⊗ f) = ±ZA

[1 to n−1]P
β
A{m1Pβ , f} = ±ZA

[1 to n−1]{m1(PA), f}.

Since m1mn−1 is equal to ACTOBSTn−1, we may rewrite ±{m1mn−1(ϕ[1 to n−2] ⊗
Pn−1), f} as ±{ACTOBSTn−1(ϕ[1 to n−2] ⊗ Pn−1), f}, which must equal the re-
maining terms in the map ACTOBSTn(ϕ[1 to n−1] ⊗ f).

We organize the remaining terms by unshuffle. Let σ be an (i, j−2)-unshuffle. Ap-
plying σ to ϕ[1 to n−1] produces two hands ϕσ[1 to i] and ϕσ[i+1 to n−1]. In
ACTOBSTn(ϕ[1 to n−1] ⊗ f), there are two terms in which the ϕi ’s appear in the σ

order. They are

(MjLiσ) = ±mj(li(ϕσ[1 to i]) ∧ ϕσ[i+1 to n−1] ⊗ f)

and

(Mi+1Mj−1σ) = ±mi+1(ϕσ[1 to i] ⊗ mj−1(ϕσ[i+1 to n−1] ⊗ f)).

There is a unique (j−2, i)-unshuffle ρ which switches the σ hands, i.e., ϕρ[j−1 to n−1] =
ϕσ[1 to i] and ϕρ[1 to j−2] = ϕσ[i+1 to n−1] . The two terms in which the ϕi ’s appear
in the ρ order, written in terms of σ are

(M̃i+2L̃j−2σ) = ±mi+2(lj−2(ϕσ[i+1 to n−1]) ∧ ϕσ[1 to i] ⊗ f)

and

(M̃j−1M̃i+1σ) = ±mj−1(ϕσ[i+1 to n−1] ⊗ mi+1(ϕσ[1 to i] ⊗ f)).

Organized in this way, the terms remaining in ACTOBSTn(ϕ[1 to n−1] ⊗ f) can be
rewritten as

1

2

∑

i+j=n+1

2<j<n

∑

σ

(i,j−2)

MjLiσ + Mi+1Mj−1σ + M̃i+2L̃j−2σ + M̃j−1M̃i+1σ.

Without loss of generality, we now compute the sum

MjLie + Mi+1Mj−1e + M̃i+2L̃j−2e + M̃j−1M̃i+1e

for the identity (i, j −2)-unshuffle e and show that the sum equals the two terms in

±{ACTOBSTn−1(ϕ[1 to n−2] ⊗Pn−1), f}

for which ϕ[1 to n−2]⊗Pn−1 is split into the hands ϕ[1 to i] and ϕ[i+1 to n−2]⊗Pn−1 .

The terms of the sum MjLie + Mi+1Mj−1e + M̃i+2L̃j−2e + M̃j−1M̃i+1e expand
to become
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(MjLie) = ±{mj−1(li(ϕ[1 to i]) ∧ ϕ[i+1 to n−2] ⊗Pn−1 , f} (A)

±{ZA
[1 to i] , f}mj−1(ϕ[i+1 to n−1] ⊗ PA), (B)

(M̃j−1M̃i+1e) = ±{ZB
[i+1 to n−1] , {Z

A
[1 to i] , f}}PBPA (C)

±{ZA
[1 to i] , f}mj−1(ϕ[i+1 to n−1] ⊗ PA), (D)

(Mi+1Mj−1e) = ±{ZA
[1 to i] , {Z

B
[i+1 to n−1] , f}}PAPB (E)

±{ZB
[i+1 to n−1] , f}mi+1(ϕ[1 to i] ⊗ PB), (F )

(M̃i+2L̃j−2e) = ±{ZB
[i+1 to n−1]mi+1(ϕ[1 to i] ⊗ PB), f} (G)

±{ZB
[i+1 to n−1] , f}mi+1(ϕ[1 to i] ⊗ PB), (H)

Terms which are identical up to sign cancel, i.e., (B) cancels with (D), (F ) can-
cels with (H). After exchanging PB and PA in (C), we can combine (C) with (E)
and use the Jacobi identity to produce ±{{ZA

[1 to i] , Z
B
[i+1 to n−1]}PAPB , f}, where

we have brought PAPB inside the bracket. Since mi+1(ϕ[1 to i] ⊗ ZB
[i+1 to n−1]) =

±{ZA
[1 to i] , Z

B
[i+1 to n−1]}PA, the term above becomes ±{mi+1(ϕ[1 to i]⊗

ZB
[i+1 to n−1])PB , f}. To this we add (G), yielding one of the desired terms:

±{mi+1(ϕ[1 to i] ⊗mj−1(ϕ[i+1 to n−2] ⊗Pn−1)), f}. This term and (A) are the two
terms in ±{ACTOBSTn−1(ϕ[1 to n−2] ⊗ Pn−1), f} for which ϕ[1 to n−2]⊗
Pn−1 is split into the hands ϕ[1 to i] and ϕ[i+1 to n−2] ⊗ Pn−1 . Therefore, for each
(i, j − 2)-unshuffle σ, we produce a term of the form ±{mj−1(li(first σ hand) ⊗
(second σ hand)), f} and a term of the form ±{mi+1((first σ hand)⊗
mj−1(second σ hand)), f} with the appropriate signs. As j runs from 2 to n, j − 1
runs from 1 to n − 1, so as we run through all (i, j − 2)-unshuffles and divide by
two, we produce ±{ACTOBSTn−1(ϕ[1 to n−2] ⊗ Pn−1), f}. 2

Proposition 3.6. (3aniii) For n > 3, one can define mn(ϕ[1 to n−1] ⊗Pn) for each

element of the totally ordered basis for Φ∧n−1 ⊗ P so that mn is well-defined and
so that

m1(mn(ϕ[1 to n−1] ⊗Pn)) = ACTOBSTn(ϕ[1 to n−1] ⊗Pn).

Proof of Proposition 3.6. We ensure that mn is well-defined on Φ∧n−1 ⊗ P by
defining mn on the basis elements ϕ[1 to n−1] ⊗ Pn with ϕ1 6 · · · 6 ϕn with
respect to the total ordering of the preghosts. The image of ϕ[1 to n−1]

⊗
Pn under

ACTOBSTn is in KA/I . The map ACTOBSTn has degree −2, so for n > 3, the
degree of ACTOBSTn(ϕ[1 to n−1] ⊗Pn) is at least one, at which level KA/I is exact.
So if we can show that

m1ACTOBSTn(ϕ[1 to n−1] ⊗Pn) = 0,

then a pre-image exists which we can set equal to mn(ϕ[1 to n−1] ⊗ Pn). Since
ACTOBSTn = ACTn − mnm1 and that ACTn is a symmetric chain map, we find
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that

m1ACTOBSTn = m1(ACTn − mnm1)

= m1ACTn − m1mnm1

= ACTnm1 − m1mnm1

= (ACTn − m1mn)m1.

Let us begin by examining mn on an ordered basis element ϕ[1 to n−1] ⊗ Pn with
|ϕi | = 1 for all i. For such a basis element we have

m1ACTOBSTn(ϕ[1 to n−1] ⊗Pn) = (ACTn − m1mn)m1(ϕ[1 to n−1] ⊗ Pn)

= (ACTn − m1mn)(ϕ[1 to n−1] ⊗ yn).

Since we already know that ACT IDn(ϕ[1 to n−1] ⊗yn) = 0, we can replace ACTn −

m1mn with (−1)n−1mnm1, yielding mnm1(ϕ[1 to n−1] ⊗ yn), which equals 0.

The proof is completed by strong induction. Let ϕ[1 to n−1]k
⊗ Pnk be the kth

basis element in the ordered list and suppose ACT IDn(ϕ[1 to n−1]i
⊗ Pni) = 0 for

all basis elements before the kth one, where once again,

m1ACTOBSTn(ϕ[1 to n−1]k
⊗ Pnk) = (ACTn − m1mn)m1(ϕ[1 to n−1]k

⊗Pnk).

The element m1(ϕ[1 to n−1]k
⊗ Pnk) can only have pieces in K∧p

I/I2 ⊗ KA/I for

0 6 p 6 n − 1 and, moreover, the pieces in K∧n−1
I/I2 ⊗ KA/I contain only basis

elements of order less than that of ϕ[1 to n−1]k
⊗Pnk . So for m1(ϕ[1 to n−1]k

⊗Pnk),
we can replace ACTn − m1mn with mnm1. It follows that

(ACTn−m1mn)m1(ϕ[1 to n−1]k
⊗Pnk) = mn(m1(m1(ϕ[1 to n−1]k

⊗Pnk))) = 0. 2

Proposition 3.7. (3bnii) If we set ln(ϕ[1 to n]) = Ψmn(ϕ[1 to n−1] ⊗ Pn), then
JIDn = 0 on Φ∧n.

Proof of Proposition 3.7. As outlined above, we will prove that JIDn = 0 on Φ∧n

by showing that on Φ∧n−1 ⊗ P , the following equalities hold:

l1ln(1∧n−1 ⊗ Ψ) = Ψm1mn = ΨACTOBSTn = JOBSTn(1∧n−1 ⊗ Ψ).

The first equality holds because the map Ψ is a chain map. Since ACT IDn = 0, it
follows that m1mn = ACTOBSTn. The second equality holds because Ψm1mn =
ΨACTOBSTn. Showing that ΨACTOBSTn = JOBSTn(1∧n−1 ⊗ Ψ) is more difficult
because Ψ does not commute with mi for i > 1. We will need to organize ACTOBSTn

and JOBSTn by unshuffle. Let σ be any (i, j − 2)-unshuffle. The two terms in the
sum ACTOBSTn for which ϕ[1 to n−1] ⊗ Pn is split into the hands ϕσ[1 to i] and
ϕσ[i+1 to n−1] ⊗Pn are

±mj

(
li(ϕσ[1 to i]) ∧ ϕσ[i+1 to n−1] ⊗Pn

)

±mi+1

(
ϕσ[1 to i] ⊗ mj−1(ϕσ[i+1 to n−1] ⊗ Pn)

)
.

We will show that when Ψ is applied to each of the terms above, their sum becomes

±lj
(
li(ϕσ[1 to i]) ∧ ϕσ[i+1 to n−1] ∧ ϕn

)

±li+1

(
ϕσ[1 to i] ∧ lj−1(ϕσ[i+1 to n−1] ∧ ϕn)

)
.
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This fact completes the proof because we can expand JOBSTn(ϕ[1 to n]) so that ϕn

is never moved. For any (i, j − 1)-unshuffle which moves ϕn , we will use the graded
symmetry of the shLie structure maps to move ϕn back to the last position. With
this approach,

JOBSTn(ϕ[1 to n]) =
∑

i+j=n+1

i>0,j>1

∑

σ

(i,j−2)

(
lj
(
li(ϕσ[1 to i]) ∧ ϕσ[i+1 to n]

)

±li+1

(
ϕσ[1 to i] ∧ lj−1(ϕσ[i+1 to n])

))
.

Without loss of generality, we shall show that the desired equality holds for the
identity (i, j − 2)-unshuffle e. The e-terms of ACTOBSTn(ϕ[1 to n−1] ⊗ Pn) are

mj

(
li(ϕ[1 to i]) ∧ ϕ[i+1 to n−1] ⊗Pn

)

= ±ZA
[1 to i]P

Aa

A mj(ϕAa ∧ ϕ[i+1 to n−1] ⊗ Pn) (MjLi)

and

mi+1

(
ϕ[1 to i] ⊗ mj−1(ϕ[i+1 to n−1] ⊗Pn)

)

= ±{ZA
[1 to i] , Z

B
[i+1 to n]}PAPB ({}(i,j−2))

±ZB
[i+1 to n]P

Bb

B mi+1(ϕ[1 to i] ⊗PBb). (Mi+1Mj−1)

Applying Ψ to MjLi produces

±ZA
[1 to i]P

Aa

A lj(ϕAa ∧ ϕ[i+1 to n]) ± ZA
[1 to i]mj(ϕ[i+1 to n] ⊗ PAa

A )ϕAa .

The map Ψ acts on PAPB in the {}(i,j−2) term to produce two terms ±PBPAa

A ϕAa±

PAPBb

B ϕBb . Using the derivational property of the bracket and the definition of mj,

the first term of {}(i,j−2) equals ±mj(ϕ[i+1 to n] ⊗ ZA
[1 to i])P

Aa

A ϕAa . Adding this

term to Ψ(MjLi), we have

±ZA
[1 to i]P

Aa

A lj(ϕAa ∧ ϕ[i+1 to n]) ± mj(ϕ[i+1 to n] ⊗ ZA
[1 to i]P

Aa

A )ϕAa ,

which equals ±lj
(
li(ϕ[1 to i]) ∧ ϕ[i+1 to n]

)
. Similarly, the sum of Ψ(Mi+1Mj−1)

and the second term of Ψ({}(i,j−2)) is the second desired term

±li+1

(
ϕ[1 to i] ∧ lj−1(ϕ[i+1 to n])

)
. We produce all the terms in JOBSTn(ϕ[1 to n])

as we run through all (i, j − 2)-unshuffles with 2 < j < n. 2

Return to n = 2:

We can define m2(ϕαn ⊗Pβm) inductively on ϕαn ⊗Pβm with ϕαn 6 ϕβm , just as
in proposition 3.6, except for ϕα1 ⊗Pβ1 with ϕα1 6 ϕβ1 . Since m2 must be a chain
map, m1(m2(ϕα1 ⊗Pβm) should equal m2(ϕα1 ⊗m1(Pβ1 )). Having chosen structure
functions C

γ1

α1β1
in A, we find that m2(ϕα1 ⊗ m1(Pβ1)) = {yα1 , yβ1} = C

γ1

α1β1
yγ1 ,

which is in I. Therefore a pre-image exists under m1; we set m2(ϕα1 ⊗ Pβ1) =
C

γ1

α1β1
Pγ1 .
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We have completed the definition of m2 and in doing so, have finished the defi-
nition of l2 on KI/I2 as well.

STEP 4:

To complete the construction of the homotopy Lie-Rinehart resolution (KA/I , KI/I2),

we must verify that Hm1 (m2) = m̂2 on I
/
I2 ⊗ A

/
I and that Hl1 (l2) = l̂2 on

I
/
I2 ∧ I

/
I2, i.e., conditions (ii) and (i) in definition 2.24 are satisfied.

Let λ1 be a splitting from A
/
I into KA/I and let λ2 be a splitting of I

/
I2 into

KI/I2 . Then for z ⊗ f ∈ I
/
I2 ⊗ A

/
I, the map m2 maps λ2(I

/
I2)⊗ λ1(A

/
I) into

A. It follows that Hm1 (z⊗f) = m2(λ2(z) ⊗ λ1(f)). Suppose λ2(z) = gα1

z ϕα1 , which

implies that z = gα1

z yα1 . Then

m2(g
α1

z ϕα1 ⊗ λ1(f)) = gα1

z {yα1 , λ1(f)}

= {gα1

z yα1 , λ1(f)} − {gα1

z , λ1(f)}yα1

= {gα1

z yα1 , λ1(f)}

= m̂2(z ⊗ f).

Similarly, for any z ∧w, there exists an element gα1

z ϕα1 ∧ h
β1

w ϕβ1 in KI/I2 ∧KI/I2

whose class is z ∧ w. Then

Hl1 (l2)(z ∧ w) = [l2(g
α1

z ϕα1 ∧ h
β1

w ϕβ1)]

= [gα1

z h
β1

w C
γ1

α1β1
ϕγ1 + gα1

z m2(ϕα1 ⊗ h
β1

w )ϕβ1 − h
β1

w m2(ϕβ1 ⊗ gα1

z )ϕα1 ]

= gα1

z h
β1

w C
γ1

α1β1
yγ1 + gα1

z {yα1 , h
β1

w }yβ1 − h
β1

w {yβ1 , g
α1

z }yα1

= {gα1

z yα1 , h
β1

w yβ1}

= l̂2(z ∧ w).

We conclude that the homotopy Rinehart algebra R for the homotopy Lie-
Rinehart resolution (KA/I ,KI/I2) is a model for the Rinehart algebra R for the

Lie-Rinehart pair (A
/
I,I
/
I2).

4. Comparing the homotopy Rinehart algebra R with the

BRST algebra A

Following [FV75], [BF83] and [BV85], the classical BRST algebra A for the
Poisson reduction of the Poisson algebra A by a finitely presented coisotropic ideal
I is a differential graded Poisson algebra, built from a specific choice of Koszul-Tate
resolution KA/I of A

/
I. The BRST algebra A is formed by tensoring the graded

commutative algebra
∧

N with KA/I , where N and P are isomorphic as vector
spaces over k. The basis elements of N are denoted by {ηα1, ηα2 , ηα3, ...}, and are
called ghosts. The result is

A ≈
∧

N ⊗ A ⊗
∧

P
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(see [FHST89], [HT88], [Sta92], [HT92], [Sta96] etc.). Each ηαn has the same
degree as the corresponding Pαn , namely n. If we let N I denote a string of ghosts

ηαn1 ∧ · · · ∧ ηαni = η
αn[1 to i] , the degree of N I is the sum

∑i
1 np, which we shall

denote by I without confusion. There are two significant gradings on the BRST
algebra A. Let NIfJ

I PJ be an element of A. The first grading is the internal degree,
which is the difference between the ghost degree gh(NIfJ

I PJ) = I and the antighost
degree antigh(NIfJ

I PJ) = J . The second grading is by ghost number. The ghost
number gh#(NIfJ

I PJ) = i if N I = η
αn[1 to i] . The multiplication on A is given by

the multiplication in each of its three pieces and obeys the Koszul sign convention,
that is to say,

(NIfJ
I PJ)(NKfL

KPL) = (−1)JKNINKfJ
I fL

KPJPL.

The Poisson bracket on KA/I is extended to all of A by setting {N, N} = {N, A} =
0 and {ηαn ,Pβm} = δαn

βm
(where δαn

βm
is the Kronecker delta). If we view N as the

dual of P , this bracket formula is the usual symplectic structure on N ⊕P [Sta92].

When I is irreducible, Batalin, Fradkin and Vilkovisky ([BF83] and [BV85])
were the first to define a differential D on A which is a Poisson derivation and whose
zeroth cohomology H0(A,D) ≈ (A

/
I)I [BF83]. Later it was shown that the BRST

algebra (A,D) is a model for the entire Rinehart complex in the irreducible case
(see [HT92]).

A KA/I -linear map Fk :
∧k

KI/I2 → KA/I is completely determined by where
it sends each element of the ordered basis ϕαn[1 to k]

. Once we set ηαn equal the

k-dual of ϕαn , the map Fk can be represented by
∑

αn16···6αnk

η
αn[1 to k] Fk(ϕαn[1 to k]

).

It follows that the homotopy Rinehart algebra R ≈ Homk(
∧

(Φ), KA/I). This fact
allows us to compare the homotopy Rinehart algebra with the BRST algebra A.

Theorem 4.1. Given a Lie-Rinehart pair (A
/
I, I

/
I2) and a specific Koszul-Tate

resolution KA/I of A
/
I, the BRST algebra A =

∧
N ⊗ KA/I is isomorphic to

the homotopy Rinehart algebra R = Hom
KA/I

(
∧

(KI/I2),
∧

(KI/I2) ⊗ KA/I) as

KA/I-modules and as algebras (but not necessarily as differential graded algebras).

Proof of Theorem 4.1. It is straightforward to show that the map sending

Fk 7→
∑

αn16···6αnk

η
αn(1 to k)Fk(ϕαn[1 to k]

)

is bijective and respects the KA/I -module structures on both R and A. We need to

show that it is a map of algebras. Let Fi :
∧i

(Φ) → KA/I and Gj :
∧j

(Φ) → KA/I .

Recall that the product Fi ^ Gj :
∧i+j

(Φ) → KA/I , evaluated on ϕαp[1 to i+j]
is

∑

σ

(i,j)

k(σ) k(Gj ; ϕαpσ[1 to i]
)Fi(ϕαpσ[1 to i]

)Gj(ϕαpσ[i+1 to i+j]
).
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This product can be represented in A by
∑

αp16···6αpi+j

η
αp[1 to i+j] (Fi ^ Gj)(ϕαp[1 to i+j]

).

Similarly, Fi =
∑

αr16···6αri

η
αr(1 to i)Fi(ϕαr[1 to i]

) and Gj =
∑

αq16···6αqj

η
αq(1 to j) Gj(ϕαq[1 to j]

).

The product of Fi and Gj in A is
∑

αr16···6αri
αq16···6αqj

k(Gj ; ϕαpσ[1 to i]
)η

αr[1 to i] η
αq[1 to j] Fi(ϕαr[1 to i]

)Gj(ϕαq[1 to j]
),

but the terms η
αr[1 to i] η

αq[1 to j] are no longer in the proper order. Returning the
η ’s in each term to the proper order produces the sign k(σ) corresponding to the
(i, j)-unshuffle σ which places n[1 to i+j] into the hands r[1 to i] and q[1 to j]. The
sum above becomes

∑

αp16αpi+j

η
αp[1 to i+j]



∑

σ

(i,j)

k(σ) k(Gj; ϕαpσ[1 to i]
)Fi(ϕαpσ[1 to i]

)Gj(ϕαpσ[i+1 to i+j]
)


 ,

which equals
∑

αp16···6αpi+j

η
αp[1 to i+j] (Fi ^ Gj)(ϕαp[1 to i+j]

). 2

The bidegree (ghost number, internal degree) on A agrees with the bidegree
(external degree, (suspended internal degree − external degree)) on R.

The differentials {Q, } and 〈DM , 〉 when I is irreducible
The differential D is an inner-derivation on A, i.e. D = {Q, }, where the element
Q ∈ A has total degree +1 and {Q, Q} = 0. The element Q (called the BRST
charge) is a sum

∑∞
n=0 Qn, where Qn has ghost number n + 1. The Jacobi identity

for the Poisson bracket guarantees that D has square zero. We construct the BRST
charge Q using methods from homological perturbation theory. The BRST algebra
A is filtered by ghost degree and Qn is defined by induction on n once we select a set
of generators {yα} for I and structure functions C

γ
αβ [Sta92]. We set Q0 = ηαyα

and find that Q1 must equal −1
2
ηαηβC

γ
αβPγ in order to kill the nonzero piece of

{Q0, Q0,} with ghost degree 2. This process continues: for every i > 1, the terms of

{
∑i−1

n=0 Qn,
∑i−1

n=0 Qn} have ghost degree at least i + 1. An element Qi with ghost
degree i + 1 is selected to kill the terms with ghost degree i + 1.

With respect to the filtration of A by ghost number, {Q, } decomposes as

1⊗m1 + δ̂R + δ2 + .... In terms of the BRST differential, 1⊗ m1 is {Q0, }|V P
and

δ̂R = {Q1, }|V N
+ {Q0, }|A + {Q1, }|V P

is, loosely speaking, a “lifting” of the Rinehart differential δR on R. The E1 term
of the associated spectral sequence is isomorphic to

∧
N ⊗A

/
I and the differential

d1 for the E1 term which δ̂R induces on H1⊗m1 (A) is the map δR.
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The filtration of R by external degree is the same as the filtration of A by
ghost number. The differential 〈DM , 〉 breaks up into the sum

∑∞
i=1 〈mi, 〉, where

〈mi, 〉 increases external degree by i − 1. For any map Fk ∈ R, the map 〈m1, Fk〉
is m1Fk because l1 = 0 on

∧
(Φ). Suppressing the sum over the ordered ba-

sis (it is henceforth understood), we write Fk as η
αn[1 to k] Fk(ϕαn[1 to k]

) and the

map m1Fk is represented in A by η
αn[1 to k] m1Fk(ϕαn[1 to k]

), which equals (1 ⊗

m1)(η
αn[1 to k] Fk(ϕαn[1 to k]

)). So 〈m1, 〉, when realized on A, is 1 ⊗ m1. We con-

clude that in the irreducible case, the E1 terms of the spectral sequences associated
with {Q,−} and 〈DM , 〉 are isomorphic. The differentials for the E1 terms are

induced by δ̂R and 〈m2, 〉, respectively; we claim that δ̂R = 〈m2, 〉 . Because both

δ̂R and 〈m2, 〉 are derivations, a quick check on the ghosts, antighosts and the
elements of A suffices. For ηα , we see that 〈m2, η

α〉 (ϕβ ∧ ϕγ) = ηα l2(ϕβ ∧ ϕγ) =
ηα(Cδ

βγϕδ ) = Cα
βγ and

{
−

1

2
ηaηbCδ

abPδ , ηα

}
(ϕβ ∧ ϕγ) =

1

2
ηaηbCα

ab(ϕβ ∧ ϕγ) =
1

2
Cα

βγ −
1

2
Cα

γβ = Cα
βγ .

For Pα , we find that 〈m2,Pα〉 (ϕβ) = m2Pα(ϕβ ) = −m2(ϕβ ⊗Pα) = Cδ
αβPδ and

{
−

1

2
ηaηbCδ

abPδ ,Pα

}
(ϕβ) =

1

2
ηaCδ

aαPδ(ϕβ ) −
1

2
ηbCδ

αbPδ(ϕβ) = −
1

2
Cδ

βαPδ +
1

2
Cδ

αβPδ = Cδ
αβPδ .

And for f ∈ A, it is straightforward to compute that 〈m2, f〉 (ϕβ ) = m2f(ϕβ ) =
m2(ϕβ ⊗ f) = {yβ, f} and {ηαyα, f}(ϕβ) = ηα{yα, f}(ϕβ) = {yβ , f}. We con-
clude that (A, {Q, }) and (R, 〈DM , 〉) are equivalent as models for the Rinehart
cohomology of the Lie-Rinehart pair (A

/
I, I

/
I2) when the ideal I is irreducible.

When the ideal is reducible, we know that (R, 〈DM , 〉) is also a model for the
Rinehart cohomology, but we do not know, except in cases arising from particularly
nice symplectic settings (see [FHST89]), whether (A, {Q, }) is a model for the
Rinehart cohomology. This problem will be addressed in a future paper.
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