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SEMIDIRECT PRODUCTS OF CATEGORICAL GROUPS.

OBSTRUCTION THEORY
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(communicated by Antonio Cegarra)

Abstract
By considering the notion of action of a categorical group G

on another categorical group H we define the semidirect prod-
uct HnG and classify the set of all split extensions of G by H.
Then, in an analogous way to the group case, we develop an ob-
struction theory that allows the classification of all split exten-
sions of categorical groups inducing a given pair (ϕ, ψ) (called
a collective character of G in H) where ϕ : π0(G) → π0(Eq(H))
is a group homomorphism and ψ : π1(G) → π1(Eq(H)) is a
homomorphism of π0(G)-modules.

1. Introduction

An epimorphism of groups µ : E −→ G with kernel an abelian group H induces,
by conjugation in E, a G-module structure in H or, equivalently, a group homo-
morphism p : G→ Aut(H). The problem of classifying, up to equivalence, all such
extensions of G by H which induce p was solved in the 1930’s by using factor sets
[1],[18], and later [11] by means of the 2-dimensional cohomology group of G with
coefficients in H .

If the group H is non-abelian, for any normalized set-theoretical section of µ,
there is a pair of maps (f : G × G → H, α : G → Aut(H)) satisfying certain
conditions, which is called a factor set (or 2-cocycle) of G with coeffcients inH . This
factor set determines, up to equivalence, the extension and in this way Schreier’s
theorem [18] of classification of extensions of groups with non-abelian kernel assures
the existence of a natural bijection

H2(G,H) ∼= Ext(G,H)

between the set of equivalence classes of factor sets of G by H and the set of
equivalence classes of extensions of G by H . In particular, let us remark that, by
this bijection, split extensions correspond to the classes of factor sets of the form
(0, α) with α : G → Aut(H) a group homomorphism ( classification of semidirect
product extensions).
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In §3 of this paper we give the corresponding version, of the theorem of classifica-
tion of split extensions of groups, in the more general setting of categorical groups.
The analysis of the developing, in the last decades, of results extending the classical
results on group extensions, their cohomological classification and their topological
interpretation (c.f. [9], [10], [8]) reveals that the key of such a developing lies in the
consideration of (internal) groupoids instead of groups. In this sense, the 2-category
of the categorical groups has joined (see [19], [3], [21], [6], [7]) as an adequate con-
text in which to approach problems of the same nature as the above-mentioned but
from a more general point of view, thus obtaining a wider range of applications. For
instance, the classification of split extensions of categorical groups is the algebraiza-
tion of a topological problem consisting of the classification of those fibrations of
spaces p : E → B which admit a cross-section, where both the base space B and
the fiber of p, F , have the homotopy type of a categorical group [19].

In §2 we start by giving a summary of terminology, some significant examples
and recalling some known results of categorical groups. Then, in §3 we make the
transition to this context of main notions in group theory such as those of action
of a categorical group on another one, of the categorical group semidirect prod-
uct and the corresponding semidirect product extension. With the suitable notion
of equivalence, both for actions and extensions, we conclude in Theorem 3.9 the
classification of all split extensions of categorical groups. Using these notions, we
expect to develop in a forthcoming paper a study of derivations (or crossed homo-
morphisms) from a categorical group G to a G-categorical group H and its relation
with cohomology in this context.

Coming back again to the classical precedents, let us recall that, in the setting of
the group extensions theory, there exists (c.f. [1], [11], [9]) an “obstruction problem”
consisting of the classification of all group extensions 1 → H → E → G → 1
which induce a given group homomorphism p : G → Out(H) where Out(H) =
Aut(H)
Int(H) . Each extension certainly induces a homomorphism G → Out(H) but such

a homomorphism p need not always be induced by an extension. The existence
of an extension inducing p is measured by a 3-cocycle of G with coefficients in
the G-module center of H , which is called the obstruction of p. Note that if 1 →

H → E
µ
→ G → 1 is a split extension (i.e., there is a group homomorphism s :

G → E such that µs = idG) and ν : E → Aut(H) is the homomorphism given
by conjugation in E, then there is a homomorphism νs : G → Aut(H). Thus the
problem in this case consists of measuring the obstruction of those homomorphisms
p : G → Out(H) such that p = qα where α : G → Aut(H) and q : Aut(H) →
Out(H) is the projection. In this way, the obstruction theorems for group extensions
were formulated, providing on the other way and during years, the only known
interpretation of the third cohomology group of G with coefficients in a G-module
A.

In §4 we approach, in the context of the theory of extensions of categorical groups,
an analogous problem of obstruction in the case of considering split extensions of a
categorical group G by a categorical group H. Each split extension

H E G.
j // oo

s

p //
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induces what we call a collective character of G in H, that is, a pair (ϕ, ψ) where
ϕ : π0(G) → π0(Eq(H)) is a group homomorphism and ψ : π1(G) → π1(Eq(H)) is a
homomorphism of π0(G)-modules. However, such a pair (ϕ, ψ) need not always be
induced (realized) by a split extension of G by H and its existence can be measured
by a 3-cocycle of π0(G) with coefficients in π1(Eq(H)) which is called the obstruction
of the collective character (ϕ, ψ). We then conclude this section by formulating in
4.3 and 4.4 the corresponding obstruction theorems:

“ A collective character (ϕ, ψ) of a categorical group G in a categorical group H is
realizable if and only if its obstruction k(ϕ, ψ) ∈ H3

ϕ(π0(G), π1(Eq(H))) vanishes”,

“If a collective character (ϕ, ψ) is realizable then the set Ext
(ϕ,ψ)
split (G,H) of equiv-

alence classes of realizations of (ϕ, ψ) is a principal homogeneous space under the
abelian group H2

ϕ(π0(G), π1(Eq(H))). In particular, there is a (non-natural) bijection

Ext
(ϕ,ψ)
split (G,H) ∼= H2

ϕ(π0(G), π1(Eq(H)))”.

2. Categorical groups: Notation and preliminary results

In this preliminary section we recall the main definitions and first results con-
cerning the 2-category of categorical groups. We refer to [15], [17], [2], [3], [14],
[13], [19] for general background about them.

A monoidal category G = (G,⊗, a, I, l, r) consists of a category G, a functor
(tensor product) ⊗ : G × G → G, an object I (unit) and natural isomorphisms
called, respectively, the associativity, left unit and right unit constraints

a = aX,Y,Z : (X ⊗ Y ) ⊗ Z
∼

−→ X ⊗ (Y ⊗ Z)

l = lX : I ⊗X
∼

−→ X , r = rX : X ⊗ I
∼
−→ X ,

such that for any objects X, Y, Z,W ∈ G the following diagrams (associativity
coherence and unit coherence) are commutative:

(X ⊗ Y ) ⊗ (Z ⊗W )

((X ⊗ Y ) ⊗ Z) ⊗W (X ⊗ (Y ⊗ Z)) ⊗W

X ⊗ ((Y ⊗ Z) ⊗W )

X ⊗ (Y ⊗ (Z ⊗W ))

a ))TTTTTTTTTTT

a

����
��

��

a⊗1 //

a

��?
??

??
?

1⊗auujjjjjjjjjjj
(1)

(X ⊗ I) ⊗ Y X ⊗ (I ⊗ Y )

X ⊗ Y .

a //

r⊗1
��?

??
??

??
?

1⊗l
����

��
��

��
(2)
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Let us not that the naturality of l and r imply that, for any X ∈ G, the following
equalities are satisfied:

lI⊗X = 1I ⊗ lX ; rX⊗I = rX ⊗ 1I ,

and from the commutativity of (2) we have that

rI = lI : I ⊗ I
∼
−→ I ,

and also the commutativity of the following diagrams:

(I ⊗X) ⊗ Y I ⊗ (X ⊗ Y )

X ⊗ Y

a //

l⊗1
��?

??
??

??
?

l
����

��
��

��
(X ⊗ Y ) ⊗ I X ⊗ (Y ⊗ I)

X ⊗ Y .

a //

r

��?
??

??
??

?

1⊗r
����

��
��

��

In a monoidal category, an object X is termed invertible if the functors Y 7→
X⊗Y and Y 7→ Y ⊗X are equivalences. The natural isomorphisms of left and right
unit say just that the unit I is an invertible object.

A (right) inverse for an invertible object X consists of an object X∗ and an
isomorphism αX : X ⊗ X∗ ∼

→ I (this isomorphism exists since X ⊗ − is an au-
toequivalence). For other choice of inverse (X0, α′

X) there exists an isomorphism

ϕ : X∗ ∼
→ X0 determined uniquely by the commutativity of the diagram

X ⊗X∗ X ⊗X0

I .

1⊗ϕ //

αX

��?
??

??
??

??

α′
X����

��
��

��
�

A categorical group G is a monoidal small category where every object is invertible
and every morphism is an isomorphism (i.e., G is a groupoid). A categorical group
is termed strict when the isomorphisms of associativity and left and right unit are
identity arrows and the isomorphisms αX : X⊗X∗ ∼

→ I can be chosen as identities.
Any categorical group is equivalent to a strict one. This fact, commonly assumed
in the literature, can be obtained for instance as a consequence of Proposition 1.5
and Theorem 2.6 in [5].

In a categorical group G, once a system of (right) inverses (X∗, αX) has been
chosen, the isomorphisms αX determine isomorphisms βX : X∗ ⊗X

∼
→ I by means

of the following commutative diagram:

I ⊗X

(X ⊗X∗) ⊗X X ⊗ (X∗ ⊗X)

X ⊗ I .

X
l ))RRRRRRRRRRRRRR

αX⊗1

����
��

��

a //

1⊗βX

��:
::

::
:

r
uullllllllllllll



Homology, Homotopy and Applications, vol. 3, No. 6, 2001 115

The isomorphisms β come to say that X∗ is also a left inverse for X and, actually,
the isomorphisms αX and βX determine each other and (X,X∗, αX , βX) is a duality
in G. The choice, for each X, of such a duality induces a contravariant endofunctor

of G, X 7→ X∗, (X
f
→ Y ) 7→ (Y ∗

f∗

→ X∗) (where f∗ = lX∗ (βY ⊗ 1)a−1
Y ∗,Y,X(1 ⊗ f ⊗

1)(1 ⊗ α−1
X )r−1

Y ∗), such that the isomorphisms αX and βX are natural.

Let us remark that, once a system of inverses has been chosen, there are natural
isomorphisms:

X
∼

−→ (X∗)∗ ; (X ⊗ Y )∗
∼

−→ Y ∗ ⊗X∗.

Suppose now that G and H are categorical groups. A homomorphism T = (T, µ) :
G → H consists of a functor T : G → H and a family of natural isomorphisms

µ = µX,Y : T (X ⊗ Y ) −→ T (X) ⊗ T (Y ) ,

such that, for any objects X, Y, Z ∈ G, the following diagram is commutative:

T ((X ⊗ Y ) ⊗ Z)

T (X ⊗ (Y ⊗ Z)) T (X) ⊗ T (Y ⊗ Z)

T (X) ⊗ (T (Y ) ⊗ T (Z))

T (X ⊗ Y ) ⊗ T (Z) (T (X) ⊗ T (Y )) ⊗ T (Z) .

T (a)

DD������

µ //

1⊗µ

��6
66

66
6

a

DD������
µ

��6
66

66
6

µ⊗1 //

(3)

If T : G → H is a homomorphism, there exists an isomorphism,

µ0 : T (I)
∼

−→ I, (4)

determined uniquely by the commutativity of the two following diagrams:

T (X ⊗ I) T (X) T (I ⊗X) T (X)

T (X) ⊗ T (I) T (X) ⊗ I , T (I) ⊗ T (X) I ⊗ T (X) .

T (r) //

r

OO

1⊗µ0 //

µ

��

T (l) //

l

OO

µ0⊗1 //

µ

��
(5)

The homomorphism (T, µ) is called strict when each of the isomorphisms µX,Y
and µ0 is an identity.

Let us note that, once a system of inverses (X∗, αX) for X ∈ G and (Y ∗, αY ) for
Y ∈ H has been chosen, there exist unique isomorphisms

λX : T (X∗)
∼
−→ T (X)∗

such that the following diagrams commute:
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T (X) ⊗ T (X)∗

T (X) ⊗ T (X∗) T (X ⊗X∗)

T (I)

I
αT (X) ))RRRRRRRRRRRRR

1⊗λX

����
��

�

µoo

T (αX )

��:
::

::

µ0

uulllllllllllllll

T (X)∗ ⊗ T (X)

T (X∗) ⊗ T (X) T (X∗ ⊗X)

T (I)

I .
β

T(X) ))RRRRRRRRRRRRR

λX⊗1

����
��

�

µoo

T (βX)

��:
::

::

µ0
uullllllllllllll

If (T, µ) : G → H and (T ′, µ′) : H → K are homomorphisms of categorical
groups, their composite is defined by (T ′′, µ′′) : G → K, where T ′′ = T ′T : G → K

and µ′′ = µ′′
X,Y : T ′T (X ⊗ Y ) → T ′T (X) ⊗ T ′T (Y ) is the isomorphism given by the

composition µ′

TX,TY T
′(µX,Y ).

Given homomorphisms of categorical groups (T, µ), (T ′µ′) : G → H, a morphism
from (T, µ) to (T ′, µ′) consists of a natural transformation ε : T → T ′ such that, for
any objects X, Y ∈ G, the following diagram is commutative:

T (X ⊗ Y ) T (X) ⊗ T (Y )

T ′(X ⊗ Y ) T ′(X) ⊗ T ′(Y ) .

µ //

ε

��
µ′

//

ε⊗ε

��
(6)

Observe that a natural transformation between two homomorphisms of categorical
groups is necessarily a natural isomorphism.

If ε : (T, µ) → (T ′, µ′) is a morphism, then the following diagrams are commuta-
tive:

T (I) T ′(I)

I

ε //

µ0

��?
??

??
??

??

µ′
0 ;

����
��

��
��

�
T (X∗) T ′(X∗)

T (X)∗ T ′(X)∗ .

εX∗ //

λ′
X

��(εX )∗ //

λX

��

(7)

All the above considerations yield to the 2-category of categorical groups, whose
1-cells are the homomorphisms of categorical groups and whose 2-cells are the mor-
phisms between them.
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Examples

1. If G is a group, the discrete category it defines, denoted by G ⇒ G, is a strict
categorical group where the tensor product is given by the group operation.
In the case that G is an abelian group, then the category with only one object
it defines, denoted by G ⇒ 1, is also a strict categorical group where both the
composition and the tensor product are given by the group operation.

2. It is well known that strict categorical groups or, equivalently, groupoids in
the category of groups, are the same as Whitehead crossed modules, [4]. Recall
that a crossed module of groups is a system Φ = (H, π, ϕ, ρ), where ρ : H → π
is a group homomorphism and ϕ : π → Aut(H) is an action (so that H is a
π-group) for which the following conditions are satisfied:

ρ(ah) = aρ(h)a−1 ; ρ(h)h′ = hh′h−1 .

Given a crossed module Φ, the corresponding strict categorical group G(Φ)
can be described as follows: The objects are the elements of the group π; an
arrow h : a → b is an element h ∈ H with a = ρ(h)b. The composition is
multiplication in H . The tensor product is given by

(a
h

−→ b) ⊗ (c
h′

−→ d) = (ac
hbh′

−→ bd) .

3. Suppose T : G → H is an equivalence of groupoids. Then each categorical
group structure on G transports along T to a categorical group structure on
H. This in particular applies to the case when G is a strict categorical group
and in this way one can obtain many algebraic examples of categorical groups.

4. The categorical group of loops of a pointed space, P2(X, ∗) (see [12]).
Let us denote by P1(Y ) the fundamental groupoid of a topological space Y .
If (X, ∗) is a pointed topological space with base point ∗ ∈ X, then P2(X, ∗) =
P1(Ω(X, ∗)), that is, the fundamental groupoid of the loop space Ω(X, ∗).
Thus, the objects are the maps ω : I → X such that ω(0) = ∗ = ω(1), and
the morphisms [f ] : ω → ω′ are homotopy classes rel end loops of homotopies
f : ω → ω′ rel end points. The composition of two morphisms in P2(X, ∗),
[f ] : ω → ω′ and [g] : ω′ → ω′′ is defined by [g][f ] = [gf ], where gf : I×I → X

is the map (gf)(t, s) =

{

f(t, 2s) 0 6 t 6 1/2
g(t, 2s− 1) 1/2 6 s 6 1

.

Since the functor P1 preserves products, the map µ : Ω(X, ∗) × Ω(X, ∗) →
Ω(X, ∗) defined by

µ(ω, ω′) =

{

ω(2t) 0 6 t 6 1/2
ω′(2t− 1) 1/2 6 t 6 1

induces a functor ⊗ : P2(X, ∗) ×P2(X, ∗) → P2(X, ∗) that is given on ob-
jects by ω ⊗ ω′ = µ(ω, ω′) and, on morphisms, by [f ] ⊗ [g] = [f ⊗ g] where

(f ⊗ g)(t, s) =

{

f(2t, s) 0 6 t 6 1/2
g(2t − 1, s) 1/2 6 t 6 1

.

There is an associativity constraint a : (ω ⊗ ω′) ⊗ ω′′ → ω ⊗ (ω′ ⊗ ω′′) which
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is defined as the homotopy class of the map A : I × I → X given by

A(s, t) =







ω( 4s
t+1 ) 0 6 s 6

t+1
4

ω′(4s− t− 1) t+1
4

6 s 6 t+2
4

ω′′(4s−2−t
2−v

) t+2
4

6 s 6 1

and there are a unit object ∗, which is the constant map from I to ∗, and unit
constraints

l = [L] : ∗ ⊗ ω → ω , r = [R] : ω ⊗ ∗ → ω ,

where L,R : I × I → X are respectively defined by

L(s, t) =

{

∗ 0 6 s 6 1−t
2

ω(2s+t−1
1+t ) 1−t

2 6 s 6 1

and

R(s, t) =

{

ω( 2s
t+1 ) 0 6 s 6

t+1
2

∗ t+1
2 6 s 6 1 ,

such that P2(X, ∗) = (P2(X),⊗, a, ∗, l, r) is a categorical group.

5. The categorical group Eq(G, c) of the equivalences of a categorical group.
An equivalence of a categorical group G is a homomorphism (T, µ) : G → G

such that the endofunctor T : G → G is an equivalence of categories. The ob-
jects of Eq(G) are the equivalences of G and the arrows are the morphisms
between them. The composition in Eq(G) is given by the usual vertical com-
position of natural transformations, (ε′ · ε)X = ε′XεX , which is again a mor-
phism in Eq(G). It is clear that Eq(G) is a groupoid. The composition of
the homomorphisms and the horizontal composition of the natural transfor-
mations define a tensor functor ⊗ : Eq(G) × Eq(G) → Eq(G), that is, given
ε : (T, µ) ⇒ (T ′, µ′) and ε′ : (T ′′, µ′′) ⇒ (T ′′′, µ′′′), then ε′ ⊗ ε is defined by
(ε′ ⊗ ε)X = ε′T ′XT

′′(εX) = T ′′′(εX)ε′TX . Thus, Eq(G) is a categorical group in
which I = 1G and an inverse for an object (T, µ) is obtained by taking a quasi-
inverse of T .
Let us remark that Eq(G) has a categorical subgroup, Aut(G), whose objects,
called automorphisms, are the equivalences (T, µ) that are strict and where T
is an isomorphism.

Suppose that G is a categorical group. Then, the set of connected components
of G, π0(G), has a group structure where the operation is given by [X] · [Y ] =
[X ⊗ Y ]. This is a well defined operation as consequence of the functoriality of
⊗; the associativity is consequence of the associativity constraints and the unit
constraints assure that [I] is a neutral element; finally, since the translations are
autoequivalences, every element has an inverse. On the other hand, G has also
associated the abelian group π1(G) = AutG(I). For instance, the group of connected
components of P2(X, ∗) is π1(X, ∗) and the group of automorphisms in the unit
object is π2(X, ∗).

For every object X ∈ G there are maps

γX , δX : π1(G) → AutG(X) (8)



Homology, Homotopy and Applications, vol. 3, No. 6, 2001 119

which are defined, for each u ∈ π1(G), as the unique morphisms making commuta-
tive the following diagrams:

I ⊗X

lX

��

u⊗idX // I ⊗X

lX

��

X ⊗ I

rX

��

idX⊗u // X ⊗ I

rX

��
X

γX (u)
// X X

δX (u)
// X

that is,

γX(u) = lX(u⊗ idX)l−1
X , δX(u) = rX(idX ⊗ u)δ−1

X .

These maps γX and δX are group isomorphisms [19] and then, for any object X ∈ G,
the group AutG(X) is abelian.

These isomorphisms are compatible with the functor ⊗ in the sense that, for any
objects X, Y ∈ G and any u ∈ π1(G), the following equalities are satisfied:

γX⊗Y (u) = γX(u)⊗idY ; δX⊗Y (u) = idX⊗δY (u) ; δX(u)⊗idY = idX⊗γY (u). (9)

Moreover, if f : X → Y is a morphism in G, the following diagrams are commu-
tative

X
γX (u) //

f

��

X

f

��

X
δX (u) //

f

��

X

f

��
Y

γY (u)
// Y Y

δY (u)
// Y

and then, the following diagram is also commutative

π1(G)
δX //

δY

��

AutG(X)

γ
−1
X

��xxrrrrrrrrrr

AutG(Y )
γ
−1
Y

// π1(G) ,

where the diagonal morphism is given by g 7→ fgf−1 . All these facts allow to show
[19] that for any two objects X, Y ∈ G and morphisms f, g : X → Y there exists a
unique element u ∈ π1(G) such that the following equality is satisfied

g = fγX (u) = γY (u)f , (10)

and therefore there is a map

π0(G) × π1(G) → π1(G) , ([X], u) 7→ γ−1
X δX(u) , (11)

giving to π1(G) a π0(G)-module structure.
Let us remark that, for any objects X, Y ∈ G and any v ∈ π1(G), the following

equalities are satisfied

idX ⊗ γY (v) = δX(v) ⊗ idY =

= γXγ
−1
X δX(v) ⊗ idY = γX⊗Y (γ−1

X δX(v)) = γX⊗Y ([X]v) (12)
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and therefore, for any u, v ∈ π1(G), we have:

γX(u) ⊗ γY (v) = (γX(u) ⊗ idY )(idX ⊗ γY (v)) =

= γX⊗Y (u)γX⊗Y ([X]v) = γX⊗Y (u[X]v). (13)

If for each x ∈ π0(G) we choose a representative Xx ∈ x with X1 = I, where
1 = [I], and for any Y ∈ x we choose a morphism iY : Y → Xx such that iXx

= idXx
,

iI⊗Xx
= lXx

and iXx⊗I = rXx
, then, for any three elements x, y, z ∈ π0(G), we can

consider the following automorphism of Xxyz:

X(xy)z

i−1
Xxy⊗Xz

��

γXxyz (bx,y,z)
// Xx(yz)

Xxy ⊗Xz
i−1
Xx⊗Xy

⊗1

// (Xx ⊗Xy) ⊗Xz a
// Xx ⊗ (Xy ⊗Xz)

1⊗iXy⊗Xz

// Xx ⊗Xyz

iXx⊗Xyz .

OO

Thus, as consequence of the coherence of the associativity constraint (1), the ele-
ment bx,y,z ∈ π1(G) determines a normalized 3-cocycle b of π0(G) with coefficients
in the π0(G)-module π1(G). Moreover, for any other choices of objects X̄x ∈ x and
of morphisms jY : Y → X̄x, the new 3-cocycle b̄ is cohomologous to b (see [19]).

Finally, note that if G and H are categorical groups and T = (T, µ) : G → H

is a homomorphism of categorical groups, then T induces a group homomorphism
π0(T ) : π0(G) → π0(H), [X] 7→ [TX], and a homomorphism of π0(G)-modules
π1(T ) : π1(G) → π1(H), where π1(H) is a π0(G)-module via π0(T ), which is given
by u 7→ µ0T (u)µ−1

0 .

3. Semidirect products and split extensions of categorical

groups

If G and H are groups, an action of G on H is a group homomorphism G →
Aut(H) and, in such case, H is said to be a G-group. In the context of crossed
modules of groups, K. Norrie [16] introduced the notion of actor of a crossed module,
as the analogue of the automorphism group of a group, and then she considered
actions of a crossed module on another one. More generally, by considering the
categorical group Eq(H) of the equivalences of a categorical group (see §2, Example
5), we have the following:

Definition 3.1. ([3],[7]) Let G and H be categorical groups. An action of G on H is
a homomorphism of categorical groups (T, µ) : G → Eq(H). When such a G-action
is given we shall say that H is a G-categorical group.

Proposition 3.2. Giving an action of a categorical group G on another categorical
group H is equivalent to giving a functor

ac : G × H −→ H , (X,A) 7→ XA ,

together with natural isomorphisms

φ = φX,Y,A : (X⊗Y )A
∼

−→ X(Y A) (14)
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φ0 = φ0,A : IA
∼

−→ A (15)

ψ = ψX,A,B : X(A ⊗B)
∼
−→ XA⊗ XB (16)

such that, for any objects X, Y, Z ∈ G and A,B, C ∈ H, the following diagrams are
commutative:

((X⊗Y )⊗Z))A

(X⊗(Y⊗Z))A X((Y⊗Z)A)

X(Y (ZA))

(X⊗Y )(ZA)

φ ((PPPPPPPPPPPPP

aA

AA��������

φ //

Xφ

$$HHHHHHHHH

φ

55llllllllllllll

(17)

(X⊗I)A
X(IA)

XA

φ //

rA
##GG

GG
GG

GGG
G

Xφ0{{ww
ww

ww
ww

ww

(18)

X((A ⊗B) ⊗ C)

X(A ⊗ (B ⊗ C)) XA⊗ X(B ⊗ C)

XA ⊗ (XB ⊗ XC)

X(A ⊗B) ⊗ XC (XA ⊗ XB) ⊗ XC

Xa

DD������

ψ //

1⊗ψ

��6
66

66
6

a

DD������
ψ

��6
66

66
6

ψ⊗1 //

(19)

(X⊗Y )(A⊗ B) (X⊗Y )A⊗ (X⊗Y )B

X(Y (A⊗ B)) X(Y A) ⊗ X(Y B).

φ⊗φ

��
ψ·Xψ //

ψ //

φ

��
(20)

Proof. If T = (T, µ) : G → Eq(H) is an action of G on H, we define a functor
ac : G × H −→ H by letting, for any pair of objects X ∈ G and A ∈ H, ac(X,A) =
XA = T (X)(A), and for any pair of morphisms, u : X → Y in G and f : A → B
in H, ac(u, f) = uf where uf is the diagonal morphism in the following diagram
(which is commutative due to the naturality of T (u) applied to f)
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XA XB

Y A Y B.

uf

$$JJJJJJJJJJJJJJJJ

T (X)(f) //

T (u)B

��

T (u)A

��

T (Y )(f)
//

Also, by considering the natural isomorphisms φX,Y,A = (µX,Y )A : (X⊗Y )A −→
X(YA), the commutativity of (17) is consequence of (3) and, by considering the
isomorphisms φ0,A = (µ0)A : IA→ A, the commutativity of (18) is consequence of
(5). Moreover, if for any object X ∈ G we consider the equivalence of H (T (X), µX),
we have the natural isomorphisms ψX,A,B = (µX)A,B : X(A⊗ B) → XA ⊗ XB.
These satisfy that (19) is commutative as consequence of (3) and (20) is so because
the commutativity of (6) for µX,Y .

Conversely, suppose given a functor ac : G×H → H together with isomorphisms
(14), (15) and (16) satisfying that the diagrams (17), (18), (19) and (20) are com-
mutative. Then, each object X ∈ G defines an equivalence of H (T (X), µX) where

T (X)(A) = XA, T (X)(A
f
→ B) = XA

Xf
−→ XB and µX = (µX)A,B : X(A ⊗B) −→

XA⊗ XB is the isomorphism ψX,A,B . In this way, we actually have an equivalence
of H because the property corresponding to (3) is given by (19). Also, each mor-
phism u : X → Y in G defines a natural equivalence T (u) : T (X) → T (Y ) given by

T (u)A = XA
uA
−→ Y A and so we have defined a morphism between the equivalences

(T (X), µX) and (T (Y ), µY ) because (6) holds as consequence of the naturality of ψ.
In this way we have a functor T : G → Eq(H) and this determines, together with the
natural isomorphisms φX,Y,A : (X⊗Y )A −→ X(Y A), a homomorphism of categorical
groups since (3) and (6) hold as consequence of (17) and (20) respectively.

Note that, for any X ∈ G, there exists a unique isomorphism

ψ0 = ψ0,X : XI
∼
−→ I

determined by the commutativity of the following diagrams:

X(I ⊗ A) XI ⊗ XA

XA I ⊗ XA ,

ψ //

X l

��

l
oo

ψ0⊗1

��

X(A⊗ I) XA ⊗ XI

XA XA⊗ I ,

ψ //

Xr

��

r
oo

1⊗ψ0

��

and then the following diagram is also commutative:
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(X⊗Y )I
X(Y I)

I XI .

φ //

ψ0

��

Xψ0

��

ψ0

oo

IfG andH are groups and we consider the discrete categorical groups they define,
G ⇒ G and H ⇒ H , then Eq(H ⇒ H) = (Aut(H) ⇒ Aut(H)) and a (G ⇒ G)-
action on (H ⇒ H) is a G-action, in the usual sense, on H , that is, a structure of
G-group on H .

Definition 3.3. If G and H are categorical groups, two actions of G on H, T =
(T, µ),T′ = (T ′, µ′) : G → Eq(H) are termed equivalent if there exists a morphism
ε : T → T′.

If T and T′ are actions and, for each X ∈ G and A ∈ H, we denote TX(A) = XA
and T ′

X(A) = AX , the actions

(X,A) 7→ XA , (X,A) 7→ AX

are equivalent if, and only if, there exist natural isomorphisms

εX,A : XA −→ AX

such that, for any objects X, Y ∈ G and A,B ∈ H, the following diagrams are
commutative:

(X⊗Y )A
X(Y A)

A(X⊗Y ) (AY )X

φX,Y,A //

εX⊗Y

�� φ′
X,Y,A //

(εY,A)X .ε
X,Y A

��

X(A ⊗B) XA⊗ XB

(A⊗ B)X AX ⊗BX .

ψX,A,B //

εX,A⊗B

�� ψ′
X,A,B //

εX,A⊗εX,B

��

(21)
The existence of an equivalence between two actions of G on H determines an

equivalence relation in the set of all actions of G on H and we will denote by
Act(G,H) the corresponding quotient set.

Now, using the definition of action of a categorical group on another one, we
formulate the notion of semidirect product for categorical groups.

Definition 3.4. Let H be a G-categorical group via an action (X,A) 7→ XA. We
define the semidirect product of H by G as the categorical group, denoted by H n G,
whose underlying groupoid is the product H × G with tensor functor given by:

(A,X) ⊗ (B, Y ) = (A⊗ XB,X ⊗ Y )

(u, f) ⊗ (v, g) = (u⊗ fv, f ⊗ g).

The unit object is the pair (I, I) and the constraints of associativity and left and
right unit are given by:
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a(A,X),(B,Y ),(C,Z) =
(

(1 ⊗ ψ−1
X,B,Y C

)(1 ⊗ (1 ⊗ φX,Y,C))aA,XB,X⊗Y C, aX,Y,Z

)

,

l(A,X) = (lA(1 ⊗ φ0,A), lX) , r(A,X) = (rA(1 ⊗ ψ0,X), rX) .

The following definition of extension of a categorical group G by a categorical
group H is due to Breen [3].

Definition 3.5. Let G and H be categorical groups. An extension of G by H is a
sequence of categorical groups and homomorphisms of categorical groups

H
j

−→ E
p

−→ G

such that p is an essentially surjective fibration and j establishes an equivalence
between H and EI , the fiber category of p on the unit object of G (i.e., p(A) = I if
A ∈ EI , and p(f) = idI if f : A→ B is a morphism in EI).

The extension is termed split if there exists a homomorphism of categorical groups
s : G → E such that ps = idG.

Note that if G and H are categorical groups, and we consider the product H×G,
we have a split extension:

H H × G G.
j // oo

s

p //

where j(A) = (A, I), p(A,X) = X and s(X) = (I, X), which is called the direct
product extension.

Definition 3.6. Suppose H
j

−→ E
p

−→ G and H
j′

−→ E′ p′

−→ G are extensions of
G by H. A morphism between them consists of a pair (Γ, γ) where Γ : E → E′ is a
homomorphism of categorical groups with p′Γ = p, and γ : Γj → j′ is a morphism
such that p′(γA) = idI for every object A ∈ H.

Note that if H E G
j // oo

s

p //
is split and H

j′

−→ E′
p′

−→ G is equiv-

alent to it by means of morphism extensions (Γ, γ), then p′Γs = ps = idG and so
Γs is an splitting of p′.

The existence of a morphism (Γ, γ) determines (see ([6], Proposition 3.4) an
equivalence relation between extensions and we will denote by Ext(G,H) the cor-
responding quotient set and by Extsplit(G,H) the subset of the classes of the split
extensions of G by H. These sets are pointed by the class of the direct product
extension.

Proposition 3.7. If G and H are categorical groups, each action of G on H de-
termines, by considering the semidirect product with this action, a split extension
(semidirect product extension)

H H n G G.
j // oo

s

p //

Moreover, equivalent actions determine equivalent semidirect product extensions.
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Proof. Let (X,A) 7→ XA be an action of G on H. Then we consider the semidirect
product H n G and the homomorphisms of categorical groups j : H → H n G,
p : H n G → G and s : G → H n G defined as follows: j = (j, µ) is given by
j(A) = (A, I), j(u) = (u, 1) and µA,B = (1 ⊗ φ−1

0,B, l
−1
I ); p = (p, θ) is given by

p(A,X) = X, p(u, f) = f and θ(A,X),(B,Y ) = idX⊗Y ; s = (s, η) is given by s(X) =

(I, X), s(f) = (1, f) and ηX,Y = ((1 ⊗ ψ−1
0,X)l−1

I , idX⊗Y ). With these definitions, it

is now straightforward to see that, H H n G G
j // oo

s

p //
is actually a split

extension of G by H.

Moreover, if (X,A) 7→ XA and (X,A) 7→ AX are two equivalent actions of G

on H, there must exist natural isomorphisms εX,A : XA→ AX satisfying (21), and
then the semidirect product extensions associated to both actions are equivalent
since there exists a morphism of extensions (Γ, γ) where Γ = (Γ, ζ) is given by
Γ = idH×G and ζ(A,X),(B,Y ) : (A⊗XB,X⊗Y ) −→ (A⊗BX , X⊗Y ) is the morphism
(idA ⊗ εX,B , idX⊗Y ). Thus it is clear that p′Γ = p. On the other hand, γ : Γj → j′

is the identity since Γj = j′ as consequence of the equality φ′

0,B · εI,B = φ0,B which
can be deduced from (7).

Now, suppose H
j

−→ E
p

−→ G is an extension of G by H. Then, for each A ∈ EI

and each X ∈ E, once an inverse X∗ of X has been chosen, we have a morphism
(which is the composite of canonical morphisms) p((X ⊗ A) ⊗ X∗) −→ I. Thus,
since p is a fibration, there exists a morphism in E, δA,X , with source (X⊗A)⊗X∗

that is mapped by p in the above morphism. The target of this morphism δA,X
belongs to EI and, since j is an equivalence, it is of the form j(ξA,X ) for a unique
object ξA,X ∈ H. Then we can define a functor T : E → Eq(H) as follows: For any
X ∈ E, T (X) = (TX , µX) : H → H is defined by TX(A) = ξj(A),X , A ∈ H, and if
f : A → B is a morphism in H, TX(f) : ξj(A),X → ξj(B),X is the unique morphism
determined by the commutativity of the following diagram:

(X ⊗ j(A)) ⊗X∗ j(ξj(A),X)

(X ⊗ j(B)) ⊗X∗ j(ξj(B),X).

δj(A),X //

1⊗j(f)⊗1

��

j(TX(f))

��δj(B),X //

Note that TX is an equivalence of categories with quasi-inverse TX∗ . On the other
hand, given A,B ∈ H, we have to define (µX)A,B : TX(A⊗ B) → TX(A) ⊗ TX(B),
that is, (µX)A,B : ξj(A⊗B),X → ξj(A),X ⊗ ξj(B),X and this morphism is the uniquely
determined by the commutativity of the following diagram:

(X ⊗ j(A ⊗ B)) ⊗ X∗ j(ξj(A⊗B),X ) j(ξj(A),X ⊗ ξj(B),X)

((X ⊗ j(A)) ⊗ X∗) ⊗ ((X ⊗ j(B)) ⊗ X∗) j(ξj(A),X) ⊗ j(ξj(B),X) .

δj(A⊗B),X //
j((µX )A,B)

//

can

��

can

��δj(A),X⊗δj(B),X //
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To check that diagrams (3) commute for these morphisms (µX)A,B is routine.
Moreover, T = (T, µ) : E → Eq(H) is a homomorphism of categorical groups where
µX,Y : T (X ⊗ Y ) → T (X) ⊗ T (Y ), X, Y ∈ E, is the morphism in Eq(H) de-
fined by the natural tansformation determined by the morphism in H (µX,Y )A :
TX⊗Y (A) → TXTY (A), that is, (µX,Y )A : ξj(A),X⊗Y → ξj(ξj(A),Y ),X , which is the
morphism uniquely determined by the commutativity of the following diagram:

((X ⊗ Y ) ⊗ j(A)) ⊗ (X ⊗ Y )∗ j(ξj(A),X⊗Y )

X ⊗ ((Y ⊗ j(A)) ⊗ Y ∗) ⊗ X∗ (X ⊗ ξj(A),Y ) ⊗ X∗ j(ξj(ξj(A),Y ),X ) .

δj(A),X⊗Y //

can

�� 1⊗δj(A),Y ⊗1
//

δj(ξj(A),Y ),X

//

j((µX,Y )A)

��

All these facts allow now to show the following:

Proposition 3.8. If G and H are categorical groups, each split extension of G by
H,

H E G ,
j // oo

s

p //

determines an action of G on H. Moreover, any other equivalent extension of G by
H determines an equivalent action.

Proof. If we compose the splitting s : G → E with the homomorphism T : E →
Eq(H) above described, then we have an action of G on H, F = Ts : G → Eq(H),
denoted by XA , which is given by XA = ξj(A),s(X).

If H
j′

−→ E′ p′

−→ G is another extension of G by H, that is equivalent to the
given one by means of morphism extensions (Γ, γ), then Γs is an splitting of p′.
This splitting determines, by composing it with the corresponding homomorphism
T′ : E′ → Eq(H), another action of G on H, denoted by AX , and given by AX =
ξj′(A),Γs(X).

Thus, the actions XA y AX , determined by both split extensions, are equiva-
lent by means of the isomorphisms εX,A : XA → AX determined uniquely by the
commutativity of the following diagrams:

Γ(s(X) ⊗ j(A) ⊗ s(X)∗) Γj(ξj(A),s(X) j′(ξj(A),s(X))

Γs(X) ⊗ Γj(A) ⊗ Γs(X)∗ Γs(X) ⊗ j′(A) ⊗ Γs(X)∗ j′(ξj′(A),Γs(X)) .

Γ(δj(A),s(X)) // γ //

can

��
1⊗γ⊗1 //

δj′(A),Γs(X) //

j′(εX,A)

��

Now it is straightforward to check that these isomorphisms satisfy the commu-
tativity of (21) and therefore we have that the two actions are equivalent.
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Propositions (3.7) and (3.8) assure that we have well-defined maps

∆ : Act(G,H) → Extsplit(G,H) , Ψ : Extsplit(G,H) → Act(G,H)

and actually we have:

Theorem 3.9. The map

∆ : Act(G,H) → Extsplit(G,H) (22)

is a bijection with inverse the map Ψ.

Proof. If E : H E G.
j // oo

s

p //
is a split extension of G by H, then we have

that E and ∆Ψ(E) =

(

H H n G G.
j′ // oo

s′

p′

//
)

are equivalent. To see this, we de-

fine a functor Γ : H n G → E as follows. Given (A,X) ∈ H n G we consider

the object of E j(A) ⊗ s(X) and the morphism p(j(A) ⊗ s(X))
µ

−→ I ⊗ X
l

−→
X where p = (p, µ); then, since p is a fibration, there exists a morphism in
E with source j(A) ⊗ s(X) which is carried by p in the morphism lµ; if λA,X
is such a morphism, we define Γ(A,X) as the target of λA,,X , and this mor-
phism satisfies that pΓ(A,X) = X. Given (u, f) : (A,X) → (Y, B) we define
Γ(u, f) : Γ(A,X) → Γ(B, Y ) as the morphism λB,Y (j(u) ⊗ s(f))λ−1

A,X and, in this
way, it is clear that Γ is actually a functor. Moreover, Γ = (Γ, θ) is a homomorphism
of categorical groups where θ(A,X),(B,Y ) : Γ((A,X) ⊗ (B, Y )) → Γ(A,X) ⊗Γ(B, Y )
is defined as follows: (A,X)⊗ (B, Y ) = (A⊗XB,X ⊗Y ) = (A⊗ ξj(B),s(X), X⊗ Y )
and Γ((A,X) ⊗ (B, Y )) is then the target of the following morphism

λA⊗ξj(B),s(X),X⊗Y : j(A ⊗ ξj(B),s(X) ⊗ s(X ⊗ Y ) → Γ((A,X) ⊗ (B, Y ));

also, we have the morphism λA,X ⊗λB,Y : j(A)⊗ s(X)⊗ j(B)⊗ s(Y ) → Γ(A,X)⊗
Γ(B, Y ) and if ζ is the following isomorphism, given by composition of canonical
isomorphisms,

j(A ⊗ ξj(B),s(X)) ⊗ s(X ⊗ Y )

j(A) ⊗ j(ξj(B),s(X)) ⊗ s(X) ⊗ s(Y )

j(A) ⊗ s(X) ⊗ j(B) ⊗ s(X)∗ ⊗ s(X) ⊗ s(Y )

j(A) ⊗ s(X) ⊗ j(B) ⊗ s(Y )

can

��

1⊗δ−1
j(B),s(X)

⊗1

��

can

��
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we define θ(A,X),(B,Y ) = (λA,X ⊗ λB,Y ) ζ λ−1
A⊗ξj(B),s(X),X⊗Y . Thus pΓ = p′. More-

over, there exists a morphism γ : Γj′ → j that is given, for any object A ∈ H, as
the following composition:

γA : Γ(A, I)
γ
−1
A,I
−→ j(A) ⊗ s(I)

1⊗µ0−→ j(A) ⊗ I
r

−→ j(A).

Note that γ is natural since, for any morphism u : A→ A′, we have that

γA′Γj′(u) = r(1 ⊗ µ0)λ
−1
A′,IΓj

′(u)

= r(1 ⊗ µ0)λ
−1
A′,IλA′,I(j(u) ⊗ s(1))λ−1

A,I

= r(1 ⊗ µ0)(j(u) ⊗ 1)λ−1
A,I

= r(j(u) ⊗ 1)(1 ⊗ µ0)λ
−1
A,I

= j(u)r(1 ⊗ µ0)λ
−1
A,I

= j(u)γA

and to check the commutativity of (6) is straightforward.

Conversely, given an action T : G → Eq(H), denoted by XA, we have

Ψ∆(T ) = Ψ( H H n G G.
j // oo

s

p //
) = (G → Eq(H))

and we denote this action by AX that is given in the target of the following mor-
phism:

δj(A),s(X) : (I, X) ⊗ (A, I) ⊗ (I, X)∗ −→ (AX , I).

Now, since (I, X)⊗(A, I)⊗(I, X)∗ = (I⊗XA⊗X⊗II, X⊗I⊗X∗), this new action
is equivalent to the first one by means of the isomorphisms εX,A : XA→ AX which
are defined as the following composition of canonical isomorphisms:

(XA, I) → (I ⊗ XA⊗ I, I) → (I ⊗ XA⊗ XI, X ⊗X∗) →

(I ⊗ XA⊗ X⊗II, X ⊗ I ⊗X∗) → (AX , I).

Finally it is straightforward to check that diagrams (21) are commutative and the
proof is finished.

4. Obstruction theory

Let H be a categorical group and Eq(H) the categorical group of the equivalences
of H (see §2, Example 5). We consider the group π0(Eq(H)) whose elements are the
isomorphism classes of equivalences of H with product induced by the composition
of equivalences, that is, [T][T′] = [TT′], for any equivalences T = (T, µ),T′ =
(T ′, µ′) : H → H. Also, we will consider the abelian group π1(Eq(H)) whose elements
are the morphisms u : idH → idH . Thus, an element u ∈ π1(Eq(H)) consists of a
family of automorphisms uA : A → A, A ∈ H, such that fuA = uBf for any
morphism f : A → B in H, and such that uA⊗B = uA ⊗ uB for any objects
A,B ∈ H.

Let us note that, for any u ∈ π1(Eq(H)) and any morphism ε : T → T′, where T
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and T′ are equivalences of H, we have the equality

uT ′ · ε = ε · uT (23)

and therefore, as consequence of (10), we have the following:

Lemma 4.1. Let T,T′ : H → H be equivalences of the categorical group H. Then,
for any two isomorphisms θ, ε : T → T′, there exists a unique u ∈ π1(Eq(H)) such
that

ε = uT ′ · θ = θ · uT .

Let us recall that, according to (11), π1(Eq(H)) is a π0(Eq(H))-module, that is,
there exists a group homomorphism ρ : π0(Eq(H)) → Aut(π1(Eq(H))) given by
ρ[T ](u) = Tu, where Tu is the unique element of π1(Eq(H)) such that

TuT = Tu. (24)

Now, keeping the Baer notion of “kollektivcharacter” in mind, we shall define a
collective character of a categorical group G in a categorical group H as a pair
(ϕ, ψ) where ϕ : π0(G) → π0(Eq(H)) is a group homomorphism and ψ : π1(G) →
π1(Eq(H)) is a homomorphism of π0(G)-modules, where π1(Eq(H)) is so via ϕ, that
is, through the induced homomorphism

HomGp(π0(G), π0(Eq(H)))
ρ∗−→ HomGp(π0(G), Aut(π1(Eq(H)))), ϕ 7→ ρ∗(ϕ) = ρϕ .

Thus, given x ∈ π0(G) and u ∈ π1(Eq(H)), we have that, for any T ∈ ϕ(x),

xT = T u.

If (ϕ, ψ) is a collective character of G in H we will denote by Hn
ϕ(π0(G), π1(Eq(H))),

n > 0, the n-th cohomology group of π0(G) with coefficients in the π0(G)-module
(via ϕ) π1(Eq(H)). Next we will show that (ϕ, ψ) has canonically associated with
it a cohomology class k(ϕ, ψ) ∈ H3

ϕ(π0(G), π1(Eq(H))) whose construction is analo-
gous to a classic construction by Teichmller [20] for a similar situation with linear
algebras, and to that by Eilenberg-Mac Lane [11] for the study of obstructions to
group extensions with non-abelian kernels.

Any collective character has associated a functor T : G → Eq(H) which is defined
as follows. If X ∈ G let us consider x = [X] ∈ π0(G) and ϕ(x) ∈ π0(Eq(H)) and
let us choose an equivalence Tx : H → H. In particular, if 1 = [I], select T1 = idH.
Then we define T (X) = Tx. To define T on morphisms, let us choose, in each class
x ∈ π0(G), an object Xx ∈ x with X1 = I and for any X ∈ x we select a morphism
iX : X → Xx in G such that iXx

= idXx
, iI⊗Xx

= lXx
and iXx⊗I = rXx

. Then, given
any morphism f : X → Y in G, if x = [X] = [Y ], we consider the automorphism of
Xx

Xx
i−1
X−→ X

f
−→ Y

iY−→ Xx

and using the isomorphism (8) γXx
: π1(G) → AutG(Xx) we define T (f) =

(

ψγ−1
Xx

(iY fi
−1
X )
)

Tx : Tx → Tx which is actually a morphism in Eq(H) from Tx
to Tx.
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In this way T is a functor since:

T (idX) =
(

ψγ−1
Xx

(iX idXi
−1
X )
)

Yx =
(

ψγ−1
Xx

(idXx

)

Tx = (ψ(idI ))Tx =

ididH
Tx = idTx

= idT (X),

and given morphisms in G, X
f
→ Y

g
→ Z, we have that

T (gf) =
(

ψγ−1
Xx

(iZgfi
−1
X )
)

Tx
=

(

ψγ−1
Xx

(iZgi
−1
Y iY fi

−1
X

)

Tx
=

(

ψγ−1
Xx

(iZgi
−1
Y )ψγ−1

Xx
(iY fi

−1
X )
)

Tx
=

(

ψγ−1
Xx

(iZgi
−1
Y )
)

Tx ·
(

ψγ−1
Xx

(iY fi
−1
X )
)

Tx
= T (g)T (f).

Let us note that, if f : X → Y is a morphism in G and Z ∈ G, by using (9), we
have that α = γ−1

Xxz
(iY⊗Z(f ⊗ idZ)i−1

X⊗Z) = γ−1
Xxz

((iY fi
−1
X ) ⊗ idXz

) = γ−1
Xx

(iY fi
−1
X )

and thus

T (f ⊗ idZ) = ψ(α)Txz , T (f) = ψ(α)Tx. (25)

Likewise, if X ∈ G and f : Y → Z is a morphism in G, by using (2), we have
that β = γ−1

Xxy
(iX⊗Z(idX ⊗ f)i−1

X⊗Y ) = γ−1
Xxy

(idXx
⊗ (iZfi

−1
Y )) = xγ−1

Xy
(iZfi

−1
Y ) and

so, since ψ is a homomorphism of π0(G)-modules, ψ(β) = ϕ(x)ψ
(

γ−1
Xy

(iZfi
−1
Y )
)

=

ϕ(x)u. Thus, if T (f) = uTy, we have that

T (idX ⊗ f) = ψ(β)Txy = ϕ(x)uTxy. (26)

Suppose now X, Y ∈ G. If x = [X] and y = [Y ] then [X ⊗ Y ] = [X][Y ] = xy and
so, since ϕ is a group homomorphism, ϕ(xy) = ϕ(x)ϕ(y). Taking into account that
in Eq(H) the tensor on objects is given by the composition of equivalences, we have
that the equivalences Txy and TxTy belong to the same class in π0(Eq(H)). Then
we can select isomorphisms

µx,y : Txy → TxTy (27)

with µ1,x = µx,1 = idTx
, x ∈ π0(G).

For any three objects X, Y, Z ∈ G, if x = [X], y = [Y ] and z = [Z], the following
diagram need not be commutative

T(xy)z

Tx(yz) TxTyz

Tx(TyTz))

TxyTz (TxTy)Tz ,

T (aXx,Xy,Xz )
DD������

µx,yz //

Txµy,z

��6
66

66
6

������

������
µxy,z

��6
66

66
6

µx,yTz //

(28)

but, by Lemma 4.1, there exists a unique element kϕ,ψx,y,z ∈ π1(Eq(H)) such that:
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µx,yTz · µxy,z = Txµy,z · µx,yz · T (aXx,Xy,Xz
) · kϕ,ψx,y,zT(xy)z . (29)

According to the choices we have made, we have clearly that kϕ,ψx,y,z determines a
normalized 3-dimensional cochain of π0(G) with coefficients in π1(Eq(H)). Even
more:

Proposition 4.2. The cochain kϕ,ψ : π0(G)3 → π1(Eq(H)) is a 3-cocycle of π0(G)
with coefficients in the π0(G)-module π1(Eq(H)). Moreover:

i) If the choice of {Xx, iX} (for the definition of T on morphisms) is modified,
then kϕ,ψ changes to a cohomologous 3-cocycle.

ii) If the choice of µ in (27) is modified, then kϕ,ψ changes to a cohomologous 3-
cocycle and, by suitably changing µ, kϕ,ψ may be changed to any cohomologous
3-cocycle.

iii) If the choice of the equivalences Tx (for the definition of T on objects) is
modified, then a suitable new selection of µ leaves the 3-cocycle kϕ,ψ unaltered.

Proof. To prove that kϕ,ψ is a 3-cocycle, let (x, y, z, w) ∈ π0(G)4. Then we compute
the isomorphism

J : Txyzw TxyzTw TxyTzTw TxTyTzTw
µx,yTzTw //µxy,zTw //

µ(xy)z,w //

in two ways. On the one hand, we have:

J
(29)
= µx,yTzTw · Txyµz,w · µxy,zw · T (aXx,Xy,Xz

) · kϕ,ψxy,z,wT((xy)z)w
(nat)
= TxTyµz,w · µx,yTzw · µxy,zw · T (aXxy,XzXw

) · kϕ,ψxy,z,wT((xy)z)w
(29)
= TxTyµz,w · Txµy,zw · µx,y(zw) · T (aXx,Xy,Xzw

) · kϕ,ψx,y,zwT(xy)(zw)·
T (aXxy ,XzXw

) · kϕ,ψxy,z,wT((xy)z)w
(23)
= TxTyµz,w · Txµy,zw · µx,y(zw) · T (aXx,Xy,Xzw

) · T (aXxy ,XzXw
)·

kϕ,ψx,y,zwT((xy)z)w · kϕ,ψxy,z,wT((xy)z)w

= TxTyµz,w · Txµy,zw · µx,y(zw) · T (aXx,Xy,Xzw
) · T (aXxy ,XzXw

)·
(

kϕ,ψx,y,zw · kϕ,ψxy,z,w

)

T((xy)z)w,

and on the other hand:
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J = ((µx,yTz · µxy,z)Tw)µ(xy)z,w
(29)
=

(

(Txµy,z · µx,yz · T (aXx,Xy ,Xz
) · kϕ,ψx,y,zT(xy)z)Tw

)

· µ(xy)z,w

= Txµy,zTw · µx,yzTw · T (aXx,Xy,Xz
)Tw · kϕ,ψx,y,zT(xy)zTw · µ(xy)z,w

(23)
= Txµy,zTw · µx,yzTw · T (aXx,Xy,Xz

)Tw · µ(xy)z,w · kϕ,ψx,y,zT((xy)z)w
(23,25)

= Txµy,zTw · µx,yzTw · µ(xy)z,w · T (aXx,Xy,Xz
⊗ idXw

) · kϕ,ψx,y,zT((xy)z)w
(29)
= Txµy,zTw · Txµyz,w · µx,(yz)w · T (aXx,Xyz,Xw

) · kϕ,ψx,yz,wT(x(yz))w·
T (aXx,Xy,Xz

⊗ idXw
) · kϕ,ψx,y,zT((xy)z)w

(23)
= Txµy,zTw · Txµyz,w · µx,(yz)w · T (aXx,Xyz,Xw

) · T (aXx,Xy,Xz
⊗ idXw

)·
kϕ,ψx,yz,wT((xy)z)w · kϕ,ψx,y,zT((xy)z)w

= Tx(µy,zTw · µyz,w) · µx,(yz)w · T (aXx,Xyz,Xw
) · T (aXx,Xy,Xz

⊗ idXw
)·

kϕ,ψx,yz,wT((xy)z)w · kϕ,ψx,y,zT((xy)z)w
(29)
= TxTyµz,w · Txµy,zw · TxT (aXy,Xz,Xw

) · Txkϕ,ψy,z,wT(yz)w · µx,(yz)w·
T (aXx,Xyz,Xw

) · T (aXx,Xy ,Xz
⊗ idXw

) · kϕ,ψx,yz,wT((xy)z)w · kϕ,ψx,y,zT((xy)z)w
(24)
= TxTyµz,w · Txµy,zw · TxT (aXy,Xz,Xw

) · xkϕ,ψy,z,wTxT(yz)w · µx,(yz)w·
T (aXx,Xyz,Xw

) · T (aXx,Xy ,Xz
⊗ idXw

) · kϕ,ψx,yz,wT((xy)z)w · kϕ,ψx,y,zT((xy)z)w
(23)
= TxTyµz,w · Txµy,zw · TxT (aXy,Xz,Xw

) · µx,(yz)w · xkϕ,ψy,z,wTx((yz)w)·
T (aXx,Xyz,Xw

) · T (aXx,Xy ,Xz
⊗ idXw

) · (kϕ,ψx,yz,w · kϕ,ψx,y,z)T((xy)z)w
(24)
= TxTyµz,w · Txµy,zw · xT (aXy,Xz,Xw

)Tx · µx,(yz)w · xkϕ,ψy,z,wTx((yz)w)·
T (aXx,Xyz,Xw

) · T (aXx,Xy ,Xz
⊗ idXw

) · (kϕ,ψx,yz,w · kϕ,ψx,y,z)T((xy)z)w
(23,26)

= TxTyµz,w · Txµy,zw · µx,(yz)w · T (idXx
⊗ aXy,Xz,Xw

) · xkϕ,ψy,z,wTx((yz)w)·
T (aXx,Xyz,Xw

) · T (aXx,Xy ,Xz
⊗ idXw

) · (kϕ,ψx,yz,w · kϕ,ψx,y,z)T((xy)z)w
(23)
= TxTyµz,w · Txµy,zw · µx,(yz)w · T (idXx

⊗ aXy,Xz,Xw
) · T (aXx,Xyz,Xw

)·
T (aXx,Xy,Xz

⊗ idXw
) · xkϕ,ψy,z,wT((xy)z)w) · (k

ϕ,ψ
x,yz,w · kϕ,ψx,y,z)T((xy)z)w

= TxTyµz,w · Txµy,zw · µx,(yz)w·
T
(

(idXx
⊗ aXy,Xz ,Xw

) · aXx,Xyz,Xw
· (aXx,Xy,Xz

⊗ idXw
)
)

·
(

xkϕ,ψy,z,w · kϕ,ψx,yz,w · kϕ,ψx,y,z

)

T((xy)z)w
(1)
= TxTyµz,w · Txµy,zw · µx,(yz)w · T

(

aXx,Xy,Xzw
· aXxy,Xz,Xw

)

·
(

xkϕ,ψy,z,w · kϕ,ψx,yz,w · kϕ,ψx,y,z

)

T((xy)z)w.

Hence, comparison and Lemma 4.1 give

xkϕ,ψy,z,w · kϕ,ψx,yz,w · kϕ,ψx,y,z = kϕ,ψx,y,zw · kϕ,ψxy,z,w

that is, kϕ,ψ is a 3-cocycle.

i) If the choice of {Xx, iX} is changed by {Yx, jX}, we know (see the end of §2)
that the two following elements of π1(G),

bx,y,z = γ−1
Xxyz

(

iXx⊗(Xy⊗Xz) · aXx,Xy,Xz
· i−1

(Xx⊗Xy)⊗Xz

)

and

b̄x,y,z = γ−1
Yxyz

(

jYx⊗(Yy⊗Yz) · aYx,Yy,Yz
· j−1

(Yx⊗Yy)⊗Yz

)
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determine cohomologous 3-cocycles of π0(G) with con coefficients in π1(G). The
first choice gives kϕ,ψ satisfying

µx,yTz · µxy,z = Txµy,z · µx,yz · T (aXx,Xy,Xz
) · kϕ,ψx,y,zT(xy)z ,

and the second choice gives k̄ϕ,ψ satisfying

µx,yTz · µxy,z = Txµy,z · µx,yz · T̄ (aYx,Yy,Yz
) · k̄ϕ,ψx,y,zT(xy)zy ,

where T (aXx,Xy,Xz
) = ψ(bx,y,z)T(xy)z and T̄ (aYx,Yy,Yz

) = ψ(b̄x,y,z)T(xy)z . Then,

comparison and Lemma 4.1 give ψ(bx,y,z) · kϕ,ψx,y,z = ψ(b̄x,y,z) · k̄ϕ,ψx,y,z. Now, since

ψ is a homomorphism of π0(G)-modules, ψ(bx,y,z) and ψ(b̄x,y,z) are cohomologous
3-cocycles of π0(G) with coefficients in the π0(G)-module, via ϕ, π1(Eq(H)) and
therefore it is clear that kϕ,ψ and k̄ϕ,ψ are also cohomologous.

ii) By Lemma 4.1, any other choice θx,y : Txy → TxTy has the form θx,y =
µx,y · hx,yTxy where h : π0(G)2 → π1(Eq(H)) is a normalized 2-cochain. Then, for
any objects X, Y, Z ∈ G, we obtain the following expressions of the isomorphism
J : Txyz → TxTyTz given by:

J = Txθx,y · θx,yz · T (aXx,Xy,Xz
) · k′x,y,zT(xy)z.

On the one hand,

J = Txµy,z · Txhy,zTyz · µx,yz · hx,yzTx(yz) · T (aXx,Xy,Xz
) · k′x,y,zT(xy)z

(23)
= Txµy,z · Txhy,zTyz · µx,yz · T (aXx,Xy,Xz

) · hx,yzT(xy)z · k
′
x,y,zT(xy)z

(24)
= Txµy,z · xhy,zTxTyz · µx,yz · T (aXx,Xy,Xz

) ·
(

hx,yz · k′x,y,z
)

T(xy)z
(23)
= Txµy,z · µx,yz · xhy,zTx(yz) · T (aXx,Xy,Xz

) ·
(

hx,yz · k′x,y,z
)

T(xy)z
(23)
= Txµy,z · µx,yz · T (aXx,Xy,Xz

) · xhy,zT(xy)z ·
(

hx,yz · k′x,y,z
)

T(xy)z

= Txµy,z · µx,yz · T (aXx,Xy,Xz
) ·
(

xhy,z · hx,yz · k′x,y,z
)

T(xy)z

and on the other hand,

J
(29)
= θx,yTz · θxy,z

= µx,yTz · hx,yTxyTz · µxy,z · hxy,zT(xy)z
(23)
= µx,yTz · µxy,z · hx,yT(xy)z · hxy,zT(xy)z

(29)
= Txµy,z · µx,yz · T (aXx,Xy,Xz

) · kx,y,zT(xy)z · (hx,y · hxy,z)T(xy)z

= Txµy,z · µx,yz · T (aXx,Xy,Xz
) · (kx,y,z · hx,y · hxy,z)T(xy)z.

Comparison and Lemma 4.1 give

xhy,z · hx,yz · k
′

x,y,z = kx,y,z · hx,y · hxy,z ,

an equality which asserts that the 3-cocycles k and k′ are cohomologous.
iii) If Fx ∈ ϕ(x), x = [X] ∈ π0(G), is another selection of equivalences, then we

can select isomorphisms εx : Tx → Fx and choose, for any x = [X], y = [Y ] ∈ π0(G),
θx,y : Fxy → FxFy the isomorphism making the following diagram commutative:
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Txy

Fxy

TxTy

FxFy

FxTy .

εxy
77oooooooo

θx,y //_______

Fxεy

OO

µx,y ''OOOOOOOO

εxTy //

Thus we have,

θx,yFz · θxy,z · ε(xy)z = θx,yFz · Fxyεz · εxyTz · µxy,z
nat
= FxFyεz · θx,yTz · εxyTz · µxy,z
= FxFyεz · FxεyTz · εxTyTz · µx,yTz · µxy,z

(29)
= FxFyεz · FxεyTz · εxTyTz · Txµy,z · µx,yz · T (aXx,Xy,Xz

)·
kx,y,zT(xy)z

nat
= FxFyεz · FxεyTz · Fxµy,z · εxTyz · µx,yz · T (aXx,Xy,Xz

)·
kx,y,zT(xy)z

= Fxθy,z · Fxεyz · εxTyz · µx,yz · T (aXx,Xy,Xz
) · kx,y,zT(xy)z

= Fxθy,z · θx,yz · εx(yz) · T (aXx,Xy,Xz
) · kx,y,zT(xy)z

(23)
= Fxθy,z · θx,yz · F (aXx,Xy,Xz

) · ε(xy)z · kx,y,zT(xy)z
(23)
= Fxθy,z · θx,yz · F (aXx,Xy,Xz

) · kx,y,zF(xy)z · ε(xy)z .

Therefore θx,yFz ·θxy,z = Fxθy,z ·θx,yz ·F (aXx,Xy,Xz
) ·kx,y,zF(xy)z and the 3-cocycle

k is unchanged.

If G and H are categorical groups and Char(G,H) denotes the set of collective
characters of G in H, there is a diagram of maps

Act(G,H) Extsplit(G,H)

Char(G,H)

∆ //

χ

""EE
EE

EE
EEE

EE
EE

E

χ

||yy
yy

yy
yy

yy
yy

yy
(30)

where χ carries the class of an action of G on H, T = (T, µ) : G → Eq(H), to
the collective character (ϕ, ψ) where ϕ : π0(T ) : π0(G) → π0(Eq(H)) and ψ =
π1(T ) : π1(G) → π1(Eq(H)) (see last paragraph in §2), ∆ is the bijection (22) and
χ = χ∆−1. Therefore, χ : Extsplit(G,H) → Char(G,H) associates a collective
character with each equivalence class of split extensions of G by H. We refer to a
collective character (ϕ, ψ) of G in H as realizable if it is in the image of χ, that is,
if it is induced, as explained above, from a split extension of G by H. The map χ
produces a partition of the set of equivalence classes of split extensions

Extsplit(G,H) =
∐

(ϕ,ψ)

Ext
(ϕ,ψ)
split (G,H)

where, for any collective character (ϕ, ψ) ∈ Char(G,H), Ext
(ϕ,ψ)
split (G,H) = χ−1(ϕ, ψ)

denotes the fiber over (ϕ, ψ) of χ. Hence, a collective character (ϕ, ψ) is realizable
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if the set Ext
(ϕ,ψ)
split (G,H) is non empty. We refer to Ext

(ϕ,ψ)
split (G,H) as the set of

equivalence classes of realizations of the collective character (ϕ, ψ).
Analogously, let Act(ϕ,ψ)(G,H) = χ−1(ϕ, ψ) be the fiber of map χ over a collec-

tive character (ϕ, ψ) of G in H. Thus we have the partition

Act(G,H) =
∐

(ϕ,ψ)

Act(ϕ,ψ)(G,H),

and for any collective character (ϕ, ψ) the bijection

Act(ϕ,ψ)(G,H) ∼= Ext
(ϕ,ψ)
split (G,H).

Then we have:

Theorem 4.3. A collective character (ϕ, ψ) of a categorical group G in a cat-
egorical group H is realizable if and only if its obstruction k(ϕ, ψ) = [kϕ,ψ] ∈
H3
ϕ(π0(G), π1(Eq(H))) vanishes.

Proof. If (ϕ, ψ) is a realizable collective character, then Act(ϕ,ψ)(G,H) 6= ∅ or,
equivalently, there exists an action T = (T, µ) : G → Eq(H) with ϕ = π0(T ) y ψ =
π1(T ). Then, in the construction of the 3-cocycle kϕ,ψ of π0(G) with coefficients in
the π0(G)-module, via ϕ, π1(Eq(H)) one can take just the equivalences Tx : H → H,
x ∈ π0(G), given by Tx = T (X) and the isomorphisms µx,y those given by the
homomorphism T = (T, µ), that is, µx,y = µXx,Xy

. In this case, since in Eq(H) the
associativity is strict, the condition of T being a homomorphism (3) reduces to the
following equality:

µx,yTz · µxy,z = Txµy,z · µx,yz · T (aXx,Xy,Xz
) .

Thus, kϕ,ψx,y,z = 1 according to (29) and so k(ϕ, ψ) = [kϕ,ψ] is the zero cohomology
class in H3

ϕ(π0(G), π1(Eq(H))).
Conversely, suppose that (ϕ, ψ) is a collective character such that k(ϕ, ψ) is

the zero class. Once we have selected equivalences Tx : H → H, x ∈ π0(G), with
T1 = idH, Proposition 4.2, ii), assures that there is a choice of isomorphisms µx,y :
Txy → TxTy with µ1,y = id = µx,1 such that kϕ,ψ is identically 1. This means that
equality (29) becomes:

µx,yTz · µxy,z = Txµy,z · µx,yz · T (aXx,Xy,Xz
) ,

and so, according to (3) and (28), T : G → Eq(H) is a homomorphism of categorical

groups with χ(T, µ) = (ϕ, ψ). Therefore Act(ϕ,ψ)(G,H) ∼= Ext
(ϕ,ψ)
split (G,H) is not

empty so that the collective character (ϕ, ψ) is realizable.

To complete the classification of the split extensions of categorical groups, we
reach the result below.

Theorem 4.4. If a collective character (ϕ, ψ) is realizable, then the set

Ext
(ϕ,ψ)
split (G,H) of equivalence clases of realizations of (ϕ, ψ) is a principal homoge-

neous spade under the abelian group H2
ϕ(π0(G), π1(Eq(H))). In particular, there is

a (non-natural) bijection

Ext
(ϕ,ψ)
split (G,H) ∼= H2

ϕ(π0(G), π1(Eq(H))).
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Proof. We describe an action

H2
ϕ(π0(G), π1(Eq(H))) × Act(ϕ,ψ)(G,H) −→ Act(ϕ,ψ)(G,H)

set out below.
Let h : π0(G)2 → π1(Eq(H)) be a normalized 2-cocycle representative of an

element [h] ∈ H2
ϕ(π0(G), π1(Eq(H))) and (T, µ) a representative of an element

[T, µ] ∈ Act(ϕ,ψ)(G,H). Then, if for each pair of objects X, Y ∈ G we consider
x = [X], y = [Y ] in π0(G) and the isomorphism (h + µ)x,y : Txy → TxTy defined
by (h+ µ)x,y = hx,yTxTy · µx,y we observe, simply by reversing the proof of Propo-
sition 4.2, ii), that we have a new action (T, h + µ), representing another element
[T, h+ µ] ∈ Act(ϕ,ψ)(G,H), which we maintain depends only on [h] and [T, µ]. To
see this, let us suppose that g is another representative of [h] and (F, θ) is another
representative of [T, µ]. There must then exist isomorphisms ψx : idH → idH and
εx : Tx → Fx, x ∈ π0(G), such that, for any x, y ∈ π0(G), the following equalities
hold:

xψy · ψx · hx,y = gx,y · ψxy , (31)

Fxεy · εxTy · µx,y = θx,y · εxy . (32)

Then, if we consider the isomorphisms (ψ + ε)x) = ψxFx · εx : Tx → Fx, we have
that the actions (T, h+ µ) and (F, g+ θ) are equivalent since, for any X, Y, Z ∈ G,
if x = [X], y = [Y ] and z = [Z] are their classes in π0(G), we have:

Fx(ψ + ε)y · (ψ + ε)xTy · (h+ µ)x,y = FxψyFy · Fxεy · ψxFxTy·
εxTy · hx,yTxTy · µx,y

(23)
= FxψyFy · ψxFxFy · Fxεy · εxTy ·

µx,y · hx,yTxy
(32)
= FxψyFy · ψxFxFy · θx,y · εxy · hx,yTxy

(23)
= FxψyFy · ψxFxFy · θx,y · hx,yFxy · εxy

(23)
= FxψyFy · ψxFxFy · hx,yFxFy · θx,y · εxy

(24)
= xψyFxFy · ψxFxFy · hx,yFxFy · θx,y · εxy

(31)
= gx,yFxFy · ψxyFxFy · θx,y · εxy

(23)
= gx,yFxFy · θx,y · ψxyFxyεxy
= (g + θ)x,y · (ψ + ε)xy .

Therefore, ([h], [T, µ]) 7→ [h] + [T, µ] = [T, h + µ] is a well-defined action of the
abelian group H2

ϕ(π0(G), π1(Eq(H))) on Act(ϕ,ψ)(G,H).
The above action is principal since, if we suppose that [T, h+ µ] = [T, µ], there

must exist a family of isomorphisms εx : Tx → Tx such that, for any x, y ∈ π0(G),
Txεy · εxTy · (h + µ)x,y = µx,y · εxy. Then, by Lemma 4.1, we can write εx = uxTx
for a uniquely determined cochain u : π0(G) → π1(Eq(H)) and we have
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µx,y · uxyTxy = µx,y · εxy
= Txεy · εxTy · hx,yTxTy · µx,y
= TxuyTy · uxTxTy · hx,yTxTy · µx,y

(24)
= xuyTxTy · uxTxTy · hx,yTxTy · µx,y
= (xuy · ux · hx,y)TxTy · µx,y

(23)
= µx,y · (xuy · ux · hx,y)Txy ,

from which we deduce that uxy = xuy · ux · hx,y, that is, h = ∂(u) represents the
zero class in H2

ϕ(π0(G), π1(Eq(H))).
Finally we observe that the action is transitive. For this, let (T, β), (F, θ) be any

two actions representing elements in Act(ϕ,ψ)(G,H). For each X ∈ G, if x = [X]
in π0(G), we have that Tx, Fx ∈ ϕ(x) and then there must exist isomorphisms
εx : Tx → Fx, x ∈ π0(G), with ε1 = ididH

. Then, as in the proof of Proposition
4.2, iii), by choosing µx,y : Txy → TxTy the isomorphisms such that µx,y · εxy =
Txεy · εxTy · θx,y, x, y ∈ π0(G), we find a new action (T, µ) that represents the same
class in Act(ϕ,ψ)(G,H) as (F, θ). Now, by Lemma 4.1, we can write

βx,y = hx,yTxTy · µx,y (33)

where h : π0(G)2 → π1(Eq(H)) is a normalized 2-cochain of π0(G) with coefficients
in π1(Eq(H)), and, just as in the proof of Proposition 4.2 ii), (for k = k′ = 1), we
see that xhy,z ·hx,yz = hx,y ·hxy,z. Hence, h is a 2-cocycle of π0(G) with coefficients
in π1(Eq(H)) and clearly, according to (33), we have (T, h + µ) = (T, β) and so
[h] + [F, θ] = [h] + [T, µ] = [T, h+ µ] = [T, β] and the action is transitive.
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