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KK-THEORY AS THE K-THEORY OF C∗-CATEGORIES
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(communicated by Jonathan Rosenberg)

Abstract

Let complex C∗ algebras be endowed with a norm-continuous ac-
tion of a fixed compact second countable group. From a separable C∗-
algebra A and a σ-unital C∗-algebra B, we construct a C∗-category
Rep(A,B) and an isomorphism

κ : Ki+1(Rep(A,B)) → KKi(A,B), i ∈ Z2,

where on the left-hand side are Karoubi’s topological K-groups, and
on the right-hand side are Kasparov’s equivariant bivariant K-groups.

1. Introduction

The purpose of this article is to study the possibility of calculation of Kasparov KK-theory
by K-theory. Some partial results are known in this direction, for example: Paschke’s result on
K-homology of nuclear C∗-algebras [13], the generalization of Paschke’s theorem for Kasparov
KK-groups when the first argument is nuclear [7], [17], Higson’s modification of Paschke’s
result for K-homology of separable C∗-algebras [6], and Künneth type theorem results for
KK-theory [15]. In all these situations, the algebras are trivially graded.

Let us present briefly the idea of this paper. The main objects of our study are additive
C∗-categories Rep(A,B) and Rep(A,B), where A and B are trivially graded C∗-algebras with
fixed compact group actions. In the first category, objects are equivariant A,B-bimodules
and morphisms are invariant B-homomorphisms which commute, up to the ideal of compact
homomorphisms, with the action of A. After definition of the first category, we define the
category Rep(A,B) as the universal pseudoabelian C∗-category of Rep(A,B). (The notation
‘universal pseudoabelian’ is slightly different from Karoubi’s analogous definition [8], [9]). After
small modification of Karoubi’s K-theory of a Banach category for C∗-categories, we study
properties of the K-groups of Rep(A,B). Then we apply this to prove our main result, that
the K-groups of Rep(A,B) are essentially isomorphic to Kasparov’s equivariant KK-groups,
up to a dimension shift, when A is a separable C∗-algebra and B is a σ-unital C∗-algebra with
fixed compact group actions.

This article is organized as follows. In Section 1 we review the basic definitions and proper-
ties of C∗-categories [4]. We give a construction of the universal pseudoabelian C∗-category of
an additive C∗-category, and a characterization of a cofinal subcategory of H(B⊗C(1,0)), that
are used in the next sections. In Section 2 we review Karoubi’s results ([8], [9]) on K-theory
of Banach categories, adapted specially for C∗-categories. In Section 3 we give some remarks
on the definition of the KK-groups in the form that is used in the sequel, and especially a
characterization of the KK-groups in the case when the algebras are trivially graded [2], [10],
[16]. In Section 4 we prove our main theorem.

Note that our main result shows that the category Rep(A,B) is an interesting object to be
studied from various points of view (particularly, for the study of algebraic K-theory, cyclic
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homology and connections with K-theory, i.e., connections with KK-theory).
I would like to express thanks to Prof. H. Inassaridze for his care during the working on

this article, Prof. J. Rosenberg for his interest and attention. Especially I am thankful to the
referee for his valuable comments and his hard work on the improving my language and which
made the article readable.

2. Remarks on C∗-categories

In this section we recall the definition of a C∗-category, and the main properties and ex-
amples, which are used in the next sections.

2.1. Definition and some properties of a C∗-category
By C is denoted the field of complex numbers.

Definition 1. A C-linear category A is called a C∗-category if :
a) hom(a, b) is a complex Banach space, the composition of morphisms is bilinear and

‖fg‖ 6 ‖f‖ · ‖g‖ for every pair of composable morphisms f and g;
b) There is an involutive antilinear contravariant endofunctor ∗ : A → A, which preserves

objects.
c) ‖f‖2 = ‖f∗f‖ for each morphism f , where f∗ = ∗(f);
d) The morphism f∗f is a positive element of the C∗-algebra hom(a, a) for each f ∈

hom(a, b).

Example 2. 1) The category with Hilbert spaces as objects and all bounded linear maps as
morphisms is a C∗-category, which will be denoted by H.

2) Let B be a C∗-algebra. The category with right Hilbert B-modules as objects and all
bounded B-homomorphisms, which have an adjoint, as morphisms is a C∗-category. We denote
it by H(B). If E and F are modules from H(B) then L(E, F ) or hom(E, F ) denotes the space
of morphisms from E to F , and K(E, F ) denotes the ideal of compact B-homomorphisms from
E to F .

3) A unital C∗-algebra is a C∗-category with one object and the elements of the algebra
themselves as morphisms.

Definition 3. Let A and B be C∗-categories. A functor F : A→ B is said to be a ∗-functor
if

a) F(f + g) = F(f) + F(g);
b) F(λf) = λF(f);
c) F(f∗) = F(f)∗ .

∗-functors between C∗-categories, like ∗-homomorphisms of C∗-algebras, are norm-decreasing.
For the following theorem we refer to [4].

Theorem 4. Every C∗-category A may be realized as a concrete C∗-category, i.e., there is a

faithful ∗-embedding F : A→ H
Let A be a C∗-category and I ⊂ HomA a subset. Put hom(a, b)I = hom(a, b) ∩ I. Then

I is called a left ideal if hom(a, b)I is linear subspace of hom(a, b) and f ∈ hom(a, b)I , g ∈
hom(b, c) imply gf ∈ hom(a, c)I . A right ideal is defined similarly. I is two-sided ideal if it is
both left and right ideal. An ideal I is closed if hom(a, b)I is closed in hom(a, b) for each pair
of objects.
I determines an equivalence relation on the morphisms of A: f ∼ g if f − g ∈ I. If I = I∗ is

an ideal of A, the set of equivalence classes A/I can be made into a C∗-category in a unique

way by requiring that the canonical map f 7→ f̂ give rise to a ∗-functor A → A/I. A/I can

be made into a normed ∗-category, by defining ‖f̂‖ = supg∈f̂ ‖g‖. Arguing as for C∗-algebras,
one can show
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Proposition 5. Let A be a C∗-category and I a be closed, two-sided ideal of A. Then I = I∗

and A/I is a C∗-category.

Example 6. ¿From Example 2(2) it follows that there exists a C∗-category Cal(B) = H(B)/K(B)
which sometimes will be called the Calkin C∗-category over B.

A word about Z2-graded C∗-categories: Let A be a C∗-category. A Z2-grading on A is
a direct sum decomposition, for any pair of objects a, b ∈ A, hom(a, b) = hom(0)(a, b) ⊕
hom(1)(a, b), with hom(0)(a, b) and hom(1)(a, b) two closed linear subspaces of hom(a, b), such
that

a) if f ∈ hom(i)(a, b) and g ∈ hom(j)(b, c), then gf ∈ hom(i+j)(a, c);

b) if f ∈ hom(i)(a, b), then f∗ ∈ hom(i)(b, a).

A morphism from hom(i)(a, b) is called homogeneous of degree i. The degree of a homoge-
neous element f is denoted ∂f .

A ∗-functor F : A → B of graded C∗-categories A and B is graded if F(hom(i)(a, b)) ⊂
hom(i)(F(a),F(b)) for any pair of objects a, b from A.

Let Γ : A→ A be a ∗-functor, which is the identity map on objects and such that Γ2 = idA.
Then hom(0)(a, b) = {f : F(f) = f} and hom(1)(a, b) = {f : F(f) = −f} gives a Z2-grading
on A. Conversely, given a grading, one can define a corresponding ∗-functor Γ by the identity
Γ(f(0) + f(1)) = f(0) − f(1).

Let F : A→ B and G : A→ B be graded ∗-functors. A set

α = {αa : F(a) → G(a)}a∈ObA

of morphisms is called a natural transformation of degree i, if ∂αa = i for all αa and

G(f)αa = (−1)∂α∂fαbF(f)

for any homogeneous morphism f : a → b from A.
A natural transformation α : G → F is called bounded if supa ‖αa‖ < ∞. Hereafter, by

‘transformation’ we will always mean ‘bounded transformation.’

Example 7. Let B be a Z2-graded σ-unital algebra and let H(B) be the Z2-graded C∗-
category with countably generated Z2-graded right Hilbert B-modules as objects, and B-
homomorphisms between Hilbert modules of degree i ∈ Z2, that have an adjoint, as the
morphisms of degree i. Let E = E(0)⊕E(1) be a module from H(B). Denote by Ě = Ě(0)⊕Ě(1)

the opposite graded module to E, Ě(0) = E(1) and Ě(1) = E(0). Next we need the following
endofunctor and natural transformation of degree 1.

Let V : H(B) → H(B) be the covariant functor defined by the formula V(E) = Ě and
V(f) = (−1)∂ff , and consider natural transformation τ : idH(B) → V of degree 1 given by

morphisms τE : E → Ě:

τE =

(

0 1
−1 0

)

,

in the decomposition Ě = Ě(0) ⊕ Ě(1). One checks that τ∗E = −τĚ .

2.2. Additive and pseudoabelian C∗-categories
First we recall that a projection in a C∗-category is a morphism with the properties p∗ = p

and p2 = 1, i.e., a projection is a self-adjoint idempotent.

Definition 8. An additive C∗-category is said to be a pseudoabelian C∗-category if each
projection has a kernel.

Remark. The main difference from the analogous definition of [8] and [9] is that here
idempotents in addition are self-adjoint, i.e., are projections.

The following theorem describes how an additive C∗-category can be embedded in a pseu-
doabelian C∗-category (cf. [8], [9]).
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Theorem 9. Let A be an additive C∗-category. There exists a pseudoabelian C∗-category Ã
and an additive ∗-functor φ : A → Ã with the following universal property. For any pseudoa-

belian C∗-category D and any additive ∗-functor ψ : A → D there exists a unique additive

∗-functor ψ′ : Ã → D such that ψ = φ · ψ′. The pair (φ, Ã) is unique up an additive ∗-
equivalence of additive C∗-categories.

Proof. We only give here the constructions, because the proofs are precisely analogous to
those in [8], [9]. An object of Ã has the form (E, p), where E ∈ Ob(A) and p ∈ hom(E,E) is
a projection. A morphism from (E, p) to (F, q) is defined as a morphism f : E → F of A such
that fp = qf = f . The composition of morphisms is defined as a composition of morphisms
in A. The sum of objects is given by formula (E, p)⊕ (F, q) = (E ⊕F, p⊕ q), and the norm of
morphisms is inherited from A. 2

As suggested in [8] and [9], the construction of K-theory is based on the notion of pseu-
doabelianness of an additive category, and is slightly different from the similar definition given
here. We carry out the construction using notion of a pseudoabelian C∗-category. Consider A
as a Banach category and denote by ξA the pseudoabelian category A in Karoubi’s sense. We
have following:

Lemma 10. Let A be an additive C∗-category. Then the category Ã is additively equivalent

to ξA.

Proof. Let i : Ã→ ξA be the faithful functor that is the identity on objects and morphisms.
To define j : ξA→ Ã firstly note that if q ∈ hom(F, F ) is an idempotent then

q̄ =
√

(2q∗ − 1)(2q − 1) + 1 · q ·
√

((2q∗ − 1)(2q − 1) + 1)−1

is a projection [10] and the pairs (F, q) and (F, q̄) are isomorphic by

uq =
√

(2q∗ − 1)(2q − 1) + 1.

Then define j by the formulas (E, q) 7→ (E, uqqu
−1
q ) on objects and j(f) = uq′fuq for a

morphisms, where f : (E, q) → (E′, q′). Now it is easy to show that the isomorphism i·j ' idξA
is given by the essential isomorphisms {uq} and j · i = idÃ. 2

2.3. On the main examples of C∗-categories
Here we assume that all C∗-algebras are trivially graded and they have a norm-continuous

action of a fixed compact group.
Having treated pseudoabelian C∗-categories, we now proceed to one of the main examples

of this paper.

Example 11. 1) Firstly we define the C∗-category H(B) over fixed compact second count-
able group G. The objects of this category are all countable generated right Hilbert B-
modules equipped with a B-linear, norm-continuous G-action such that g(xb) = g(x)g(b)
and < g(x), g(y) >= g < x, y >, for all g ∈ G. A morphism f : E → E′ is B-homomorphism
such that there exists f∗ : E′ → E satisfying the conditions: < T (x), y >=< x, T ∗(y) > where
x ∈ E and y ∈ E′. The norm of a morphism is defined as the norm of linear bounded map. It
is easy to check that H(B) is an additive C∗-category with respect to the sum of the Hilbert
modules . Finally, note that compact group acts on the morphisms by the following way: if
f : E → E′ then morphism gf : E → E′ is defined by the formula gf(x) = g(f(g−1(x))).
(Note that this action generally is not norm-continuous). A morphism is called invariant if
gf = f . In the next, under H(B) we mean above constructed additive C∗-category with this
action of G (cf. [11])

2) Now, we define the C∗-category rep(A,B). The objects of this category are pairs of form
(E, φ), where E is a countably generated right Hilbert B-module and φ : A → L(E) is an
equivariant ∗-homomorphism. Objects of this type are said to be A,B-bimodules (cf. [16]).
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A morphism f : (E, φ) → (E′, φ′) is an invariant B-homomorphism f : E → E′ in H(B)
such that fφ(a) = φ′(a)f for all a ∈ A. The structure of C∗-category is inherited from the
C∗-category structure of H(B) and it is easy to show that rep(A,B) is an additive C∗-category
(in fact, a pseudoabelian C∗-category). The following property of rep(A,B) will be used to
calculate the K-groups of rep(A,B). Note that there exists a ∗-functor ∞ : H(B) → H(B) and
a natural isomorphism of functors idH(B) ⊕∞ ' ∞, where E∞ = E ⊕E⊕ · · ·. This structure
induces a corresponding structure on rep(A,B) via the formulas (E, φ)∞ = (E∞, φ∞), where
φ∞(a) = (φ(a))∞ for all a ∈ A. This structure will be called an ∞-structure.

3) Consider the additiveC∗-category Cal(B) which is the quotientC∗-category H(B)/K(B).
It has an essential compact group action inherited from the action of a compact group on H(B).
Denote by π : H(B) → Cal(B) the canonical additive ∗-functor. We need also following C∗-
category denoted by Cal(A,B). By definition objects of this category have the form (E, ψ),
where E is a Hilbert B-module and ψ : A → homCalB(E,E) is a equivariantly liftable ∗-
homomorphism, i.e., there exists an A,B-bimodule (E, φ) such that πφ = ψ. A morphism
f : (E, ψ) → (E′, ψ′) is a morphism f : E → E′ of the category Cal(B) such that fψ(a) =
ψ′(a)f for all a ∈ A, and has a invariant lifting in H(B). Define the ∗-functor Θ : rep(A,B) →
Cal(A,B) by (E, φ) 7→ (E, πφ) and f 7→ π(f).

4) Now, we want to define the additive C∗-category Rep(A,B). The objects of this category
are also A,B-bimodules, i.e., objects are pairs (E, φ), where E is a countably generated right
Hilbert B-module and φ : A → L(E) is a equivariant ∗-homomorphism. Also, a morphism
f : (E, φ) → (E′, φ′) is a invariant morphism f : E → E′ in H(B) such that

fφ(a) − φ′(a)f ∈ K(E,E′)

for all a ∈ A. The structure of C∗-category is inherited from H(B). It is easy to show that
Rep(A,B) is an additive C∗-category but it isn’t a pseudoabelian C∗-category. There is a
canonical additive ∗-functor ΠA,B : Rep(A,B) → Cal(A,B) defined by (E, φ) 7→ (E, πφ) and
f 7→ πf . From the definition follows easily that the canonical linear map

hom((E, φ), (E′, φ′)) 7→ hom((E, πφ), (E, πφ′)

is surjective, i.e., Π is a Serre functor (see for the definition [8]). 2

Now we come to our main C∗-category, that is, Rep(A,B).

Definition 12. The C∗-category Rep(A,B) is the universal pseudoabelian C∗-category of
Rep(A,B). Using the definition of a pseudoabelian C∗-category, we have the following de-
scription of Rep(A,B). Objects of it are triples (E, φ, p), where (E, φ) is an object and
p : (E, φ) → (E, φ) is a morphism of Rep(A,B) such that p∗ = p and p2 = p. A mor-
phism f : (E, φ, p) → (E′, φ′, p′) is a morphism f : (E, φ) → (E′, φ′) of Rep(A,B) such that
fp = p′f = f . In detail, f has the properties

fφ(a) − φ′(a)f ∈ K(E, F ), fp = p′f = f. (1)

The structure of C∗-category of Rep(A,B) comes from the corresponding structure of
Rep(A,B). In particular, the sum of triples is given by formula (E, φ, p) ⊕ (F, ψ, q) = (E ⊕
F, φ⊕ ψ, p⊕ q).

2.4. On a cofinal subcategory of H(B ⊗C(1,0))
When A and B are trivially graded C∗-algebras, for an interpretation of KK1(A,B), we

need information on the following subcategory of H(B ⊗ C(1,0)). We begin this subsection
recalling a definition from [8], [9].

Definition 13. An additive ∗-functor F : A→ B of additive C∗-categories is said to be quasi-

surjective if for any object b from B there are objects a and b′ from A and B respectively,
and a unitary isomorphism b ⊕ b′ ' F(a). In particular, an additive C∗ sub-category A of B
is cofinal iff the canonical inclusion is quasi-surjective.



Homology, Homotopy and Applications, vol. 2, No. 10, 2000 132

Let C(1,0) be the Clifford algebra with one generator g (g∗ = g and g2 = 1), with trivial
action of a compact group. Consider the cofinal full subcategory HB(B⊗C(1,0)) of H(B⊗C(1,0))
which contains modules isomorphic to modules of form

En+1,n = E ⊗B⊗C(1,0) (Cn,n ⊗C⊗C(1,0) C(1,0))

where E is a trivially graded equivariant B-module.

Also,denote by HC(1,0)(B) the full subcategory of H(B) with objects isomorphic to B-
modules of the form

E′
n+1,n = E ⊗B⊗C (Cn,n ⊗ C(1,0)).

There is a canonical additive ∗-functor

S : HB(B ⊗ C(1,0)) → HC(1,0)(B)

defined by formulas S(En+1,n) = E′
n+1,n and S(f) = f for every B ⊗ C(1,0)-homomorphism

f , because f may be considered also as a B-homomorphism. This functor is injective, i.e., the
linear maps on hom sets are injective. Note that a B-homomorphism f : E′

n+1,n → F ′
n+1,n

defines a B⊗C(1,0)-homomorphism iff the morphism f is invariant under the action of 1⊗1⊗ε,
i.e.,

(1 ⊗ 1 ⊗ ε)f(1 ⊗ 1 ⊗ ε) = f.

But the C∗-category HC(1,0)(B) coincides with the full subcategory of H(B) generated by
modules isomorphic to E ⊕ Ě, where E is trivially graded equivariant B-module. For each
E ⊕ Ě consider the element

εE =

(

0 −τĚ
τE 0

)

(2)

where τE : E → Ě is the canonical isomorphism of degree 1. (See example 7.) Then ε∗E = εE
and ε2E = 1. Consider the essential Z2-action on the HC(1,0)(B) defined as follows. Let f :
E ⊕ Ě → F ⊕ F̌ be a B-homomorphism. Then we have

(

f11 f12

f21 f22

)

7→
(

f̌22 f̌21

f̌12 f̌11

)

(3)

where f̌ = V(f). (See example 7.) In particular, if f is a homomorphism of degree 0 invariant
under this action, then

f =

(

f0 0

0 f̌0

)

(4)

and if f has degree 1 under this action then

f =

(

0 f̌1
f1 0

)

. (5)

Denote by H∗(B) this invariant subcategory of HC(1,0)(B). Thus we have the following:

Proposition 14. Let B be a trivially graded C∗-algebra. Then the graded additive C∗-category

HB(B ⊗C(1,0)) is graded additively isomorphic to H∗(B).

3. K-groups of an additive category

The purpose of this section is to transform some main results of K-theory of Banach cate-
gories, introduced by M. Karoubi in [8], [9], to a C∗-category. There are some minor changes
which will be needed in sequel sections.
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3.1. K0 and K1 groups for an additive C∗-category
Definition 15. The group K0(A) of an additive C∗-category is the Grothendieck group of
the abelian monoid of unitary isomorphism classes of objects of A.

Note that this definition coincides with usual definition because in a C∗-category, objects are
isomorphic if and only if they are unitarily isomorphic. Indeed, if u : E → F is an isomorphism,
then u0 = u

√

(u∗u)−1 is a unitary isomorphism. So from lemma 10 we get the following:

Proposition 16. Let A be an additive C∗-category. The canonical functor induces an iso-

morphism i∗ : K0(Ã) → K0(ξA), where the left-hand K-group is as in the definition above,

and the right one as in [8], [9].

Now we discuss analogous questions for the K−1 group (cf. [8], [9]).

Definition 17. Let A be an additive C∗-category. Consider the set of pairs (E, α), where
E ∈ ObA and α ∈ hom(E,E) is a unitary automorphism.

a). The pairs (E, α) and (E′, α′) are said to be unitarily isomorphic if there exists a unitary
isomorphism u : E → E′ such that diagram

E
u→ E′

↓α ↓α′

E
u→ E′

is commutative.
b). The pairs (E, α) and (E, α′) are said to be homotopic if α and α′ are homotopic in

AutE.
c). A pair (E, α) is said to be elementary if it is homotopic to (E, 1E).
d). The sum is defined by the formula

(E, α)⊕ (E′, α′) = (E ⊕ E′, α⊕ α′).

e). The pairs (E, α) and (E, α′) are said to be stably isomorphic if there exist elementary
pairs (Ē, ē) and (Ê, ê), and a unitary isomorphism

(E, α)⊕ (Ē, ē) ' (E′, α′) ⊕ (Ê, ê).

f). The abelian monoid K−1(A) is defined as the monoid of classes of stably isomorphic
pairs. Denote by d(E, α) the class of (E, α) in K−1(A).

Lemma 18. (Cf. [9].) There are the following relations in K−1(A):
a). d(E, α) + d(E, α∗) = 0;
b). If α and α′ are homotopic unitary isomorphisms, then d(E, α) = d(E, α′).
c). d(E, α) + d(E, β) = d(E, βα);

In particular, K−1(A) is an abelian group.
Proof. a). The unitary automorphism α⊕ α∗ can be written in the form

(

0 α
α∗ 0

)

·
(

0 1
1 0

)

but each matrix is homotopic to 1E⊕E. Thus a) holds.
b). Apply a). We get

d(E, α′) − d(E, α) = d(E ⊕E, α′ ⊕ α∗)

But α′ ⊕ α∗ is homotopic to α⊕ α∗. Thus d(E ⊕ E, α′ ⊕ α∗) = 0.
c). Note that d(E, α) + d(E, β) = d(E ⊕ E, α⊕ β) and

d(E, αβ) = d(E ⊕ E, αβ ⊕ 1E).
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But (α ⊕ β)∗(αβ ⊕ 1E) = β ⊕ β∗, which is homotopic to 1E⊕E . Thus α⊕ β is homotopic to
αβ. Thus we can apply b). 2

The next proposition is analogous to the corresponding property of the group K0(A).

Proposition 19. Let A be an additive C∗-category. The canonical homomorphism

i∗ : K−1(A) → K
−1(A),

defined by d(E, α) 7→ d(E, α) is an isomorphism. Here K−1(A) is Karoubi’s group.

Proof. i∗ is an epimorphism: Let (E, α) be a pair with α an isomorphism. Consider the
unitary isomorphism ᾱ = α

√
α∗α. It is homotopic to α, because α∗α is homotopic to 1E . Apply

the lemma. We get that d(E, α) = d(E, ᾱ). i is a monomorphism: If i(d(E, α)) = 0, then there
exists elementary (E′, e′) such that (E ⊕ E′, α ⊕ e′) is elementary. Then (E ⊕ E′, α⊕ e′) is
also elementary, that is (E ⊕ E′, α⊕ ē′) elementary. This means d(E, α) = 0. 2

Thus the properties of K−1(A) are inherited from the corresponding properties of K−1(A).
In particular, we get the following:

Lemma 20. d(E, α) = 0 if there exists an object G such that α⊕ 1G is homotopic to 1E⊕G.

Theorem 21. Let A be an additive C∗-category, Ã be the associated pseudoabelian C∗-category

and i : A→ Ã the canonical additive ∗-functor. Then the induced homomorphism

i∗ : K−1(A) → K−1(Ã) (6)

is an isomorphism.

3.2. The K-group of a ∗-functor
Definition 22. Let A and B be additive C∗-categories and F : A → B be an additive ∗-
functor. Denote by Γ(F) the set of triples (E, F, α), where E and F are objects of A, and
α : F(E) → F(F ) is a unitary isomorphism from B.

a) Two triples (E, F, α) and (E′, F ′, α′) are unitarily isomorphic if there exist unitary
isomorphisms f : E → E′ and g : F → F ′ such that the diagram

F(E)
α→ F(F )

↓F(f) ↓F(g)

F(E′)
α′

→ F(F ′)

is commutative.
b). Two triples (E, F, α) and (E, F, α′) are called homotopic if α and α′ are homotopic in

the subspace of unitary isomorphisms of hom(E, F ).
c). The triple (E,E, 1E) is called trivial. A triple (E, F, α) is said to be elementary if this

triple is homotopic to the trivial triple.
e). The sum of triples is defined by the formula (E, F, α) ⊕ (E′, F ′, α′) = (E ⊕ E′, F ⊕

F ′, α⊕ α′).
f). Two triples σ = (E, F, α) and σ′ = (E′, F ′, α′) are stably unitarily isomorphic if there

exist elementary pairs τ = (Ē, Ē, ᾱ) and τ ′ = (Ē′, Ē′, ᾱ′) such that σ ⊕ τ and σ′ ⊕ τ ′ are
unitarily isomorphic.

The set K(F) of stably isomorphic triples is an abelian monoid with respect to to the sum
of triples. Denote by d(E, F, α) the class of (E, F, α) in K(F).

Lemma 23. The monoid K(F) is an abelian group. Moreover

d(E, F, α)+ d(F, E, α∗) = 0.

Proof. Note that

d(E, F, α) + d(F, E, α∗) = d(E ⊕ F, F ⊕E, α⊕ α∗)
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The last triple is isomorphic to (E ⊕ F, β), where

β =

(

0 −α∗

α 0

)

which is homotopic to 1F(E)⊕F(F ) by u(t) = σ(t)
√

σ∗(t)σ(t), where

σ(t) =

(

1 −tα∗

0 1

) (

1 0
tα 1

)(

1 −tα∗

0 1

)

2

The following theorem compares our definition of K(F) with the corresponding one of
Karoubi.

Theorem 24. The canonical homomorphism i : K(F) → K(F) defined by

d(E, F, α) 7→ d(E, F, α)

is an isomorphism.

Proof. Let (E, F, α) be a triple which defines an element in K(F), where α is an iso-
morphism (but not unitary isomorphism). Let ᾱ = α

√
α∗α. ᾱ is unitary and is homotopic

to α because α∗α is homotopic to 1F(E). This proves that i is an epimorphism. Now, let
d(E, F, α) ∈ K(F) defines 0 in K(F). This means by [9] that there exist objects G and H
and isomorphisms (but after polar decomposition we may suppose they are unitary isomor-
phisms) u : E ⊕ G → H and v : F ⊕ G → H that F(v)(α ⊕ 1F (G))F(u∗) is homotopic to
1F(H) (see [9]) by a homotopy h(t). Then h̄(t) = h(t)

√

h∗(t)h(t) gives homotopy between
(E, F, α)⊕ (G,G, 1G) and (H,H, 1H). This means d(E, F, α) = 0 in K(F). 2

This theorem means that all properties ofK(F) inherited from the corresponding properties
of K(F). In particular, we get the following results. (Cf. [8], [9].)

Lemma 25. There are the following relations in K(F):
a). If α and α′ are homotopic, then d(E, F, α) = d(E, F, α′);
b). d(E, F, α) + d(F,G, β) = d(E,G, βα).

Proposition 26. Let F : A→ B be a Serre quasisurjective additive ∗-functor.

a). If in the definition of K(F) we replace elementary triples by trivial triples then we get

the same group.

b). d(E, F, α) = 0 iff there exist an object G from A and unitary isomorphism β : E⊕G→
F ⊕G such that F(β) = α⊕ 1F(G).

Proposition 27. Let F : A → B be a quasi-surjective additive ∗-functor. Then the sequence

of abelian groups

K−1(A)
f1−→ K−1(B)

∂−→ K0(F)
i−→ K0(A)

∂−→ K0(B) (7)

is exact, where i(d(E, F, α)) = d(E) − d(F ) (for the definition of ∂ see [9]). In addition, if

there exists a functor Ψ : B → A such that F ·Ψ ' IdB, then there exists a split exact sequence

0 → K0(F)
i→ K0(A)

j→ K0(B) → 0. (8)

Example 28. 1)Recall that an object of rep(A,B) has the form (E, φ), where E is a right
Hilbert B-module and φ : A → L(E) is supposed equivariant. A morphism from (E, φ)
to (E′, φ′) is by definition an invariant B-homomorphism f : E → E′ such that fφ(a) =
φ′(a)f (see example 11). Note that rep(A,B) is a pseudoabelian C∗-category. To show that
Ki(rep(A,B)) = 0 for all i ∈ Z2, consider the ∞-structure of rep(A,B) E∞ = E ⊕ E ⊕ · · ·,
α∞ = α⊕ α⊕ · · ·, and φ∞(a) = (φ(a))∞. Let

∞ : rep(A,B) → rep(A,B)
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be the ∗-functor defined by the formula ∞(E) = E∞, ∞(φ) = φ∞, and if α is a morphism in
rep(A,B), then ∞(α) = α∞. There exists a natural isomorphism idrep(A,B) ⊕∞ ' ∞. From
this it follows that the groups Ki(rep(A,B)) (and the cancellation monoid C(rep(A,B)) of
isomorphism classes of objects of rep(A,B)) have an automorphism I with property that

idKi(rep(A,B)) + I = I.

From this fact it follows that Ki(rep(A,B)) = 0 (resp., C(rep(A,B) = 0).
2) Consider the canonical quasi-surjective functor

ΘA,B : rep(A,B) → Cal(A,B).

Applying the exact sequence (7) of K-groups and result of example 1, one gets that the
canonical homomorphism

∂ : K−1(Cal(A,B)) → K0(ΘA,B) (9)

is an isomorphism. 2

4. Remarks on the definition of KK-groups

In this section we review definitions of KasparovKK-groups in the form that will be needed
for our purposes.

Let A and B be Z2-graded C∗-algebras, assuming that A is separable and B is σ-unital. Let
A+ be obtained from A by adjoining a unit of degree 0. We also assume that all C∗-algebras
have fixed compact group actions as above.

4.1. Operatorial homotopy and KK-theory
Let E(A,B) be the set of Kasparov A,B-bimodules. Denote by KK(A,B) the Kasparov

group obtained by dividing E(A,B) by the equivalence relation generated by unitary isomor-
phism and operator homotopy, modulo degenerate bimodules [10], [16], [3].

We need the following elementary properties of KK(A,B):
a) “Cofinality principle”. Let F be a cofinal full additive subcategory of H(B). If in the def-

inition of KK(A,B) the Kasparov A,B-bimodules are replaced by Kasparov A,B-bimodules
defined by F , then we get the same group.

b) “Unitization principle”. There exists a split exact sequence

0 → KK(A,B)
j→ KK(A+, B)

p∗,i∗↔ KK(C, B) → 0.

Remark. Let s : A→ A+ be the canonical inclusion, p : A+ → C the canonical projection,
and i : C → A+ the canonical inclusion. One has following split exact sequence

0 → KK(A+, A)
s∗→ KK(A+, A+)

i∗,p∗↔ KK(A+,C) → 0.

Consider the element 1−ip in KK(A+ , A+). One checks that p∗(1−ip) = 0. From this follows
that there exists a unique j ∈ KK(A+, A) such that

js = 1A in KK(A,A) and sj + ip = 1A+ in KK(A+, A+).

c) “Unitality principle”. Let A be unital C∗-algebra. Then in the definition of KK(A,B)
it is possible to take Kasparov A,B-bimodules of form (E, φ, F ) where φ(1) = 1.

The following definition is motivated by b) and c).

Definition 29. A Kasparov A,B-bimodule e = (E, ϕ, F ) is said to be almost unital if e has
the following properties:

[ϕ(a), F ] ∈ K(E), F − F ∗ ∈ K(E), F 2 − 1 ∈ K(E) (10)
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for all a ∈ A. An almost unital A,B-bimodule (E, ϕ, F ) is degenerate if

[ϕ(a), F ] = 0, F = F ∗, F 2 = 1 (11)

Denote by E+(A,B) set of almost unital Kasparov A,B-bimodules.

Define the groupKK+(A,B) by analogy with the definition ofKK(A,B), using almost uni-
talA,B-bimodules. By principles b) and c), KK+(A,B) is essentially isomorphic toKK(A+ , B).

Remark. a) Let e = (E, ϕ, F ) be an almost unital A,B-module, and π : L(E) → Cal(E)
be a canonical ∗-homomorphism. The morphism π(F ) is a unitary morphism in Cal(E), and
thus ||π(F )|| = 1. Apply the lifting theorem from [1], which confirms the existence of norm-
preserving lifting of an element, we get an element G′ ∈ L(E) such that G′ − F ∈ K(E) and
||G′|| = 1. Therefore, (E, ϕ,G′) is also an almost unital A,B-module with ||G′|| = 1. Replacing

G′ by G = G′+G′∗

2 , one get the A,B-module e′ = (E, ϕ,G) with the following properties:

[ϕ(a), G] ∈ K(E), G = G∗, G2 − 1 ∈ K(E), ||G|| 6 1 (12)

and G − F ∈ K(E). This fact implies that e is operatorial homotopy to e′, connected by
segment. The A,B-modules with properties 12 will be called fine A,B-modules.

b) Let (E, ϕ,G0) and (E, ϕ,G1) be two fine A,B-modules connected by an operatorial
homotopy (E, ϕ,Gt) of almost unital A,B-modules. Using the same technic as in a), one gets
an operatorial homotopy (E, ϕ,G′

t) of fine A,B-modules. When i = 0, 1, the A,B-modules
(E, ϕ,Gi) and (E.ϕ,G′

i) are trivially operatorial homotopic. Thus (E, ϕ,G0) and (E, ϕ,G1)
are operatorial homotopic in the set of fine A,B-modules.

The above remark shows that KK+(A,B) (resp., E+(A,B), CE+A,B, KE+(A,B)) does
not change if one replaces almost unital A,B-modules by the fine A,B-modules in the con-
structions.

Now, consider G(A,B) the set of A,B-bimodules (E, φ,G) with the following properties:

[φ(a), G] ∈ K(E), G = G∗, G2 = 1. (13)

which will be called best A,B-modules. Let G(A,B) be the abelian monoid of equivalence
classes of A,B-bimodules from G(A,B), equivalence being generated by unitary isomorphism
and operatorial homotopy. Let CG(A,B) be the cancellation monoid (resp., KG(A,B) be the
Grothendieck group) of G(A,B). The essential map G(A,B) → E(A,B) induces homomor-
phisms

µ : CG(A,B) → KK+(A,B)

and

α : CG(A,B) → KK+(A,B)

since KK+(A,B) is abelian group. According on the last remark, one has

Proposition 30. Let A and B be as above. Then the following sequence of groups is split

exact

0 → CG(A,B)
µ→ KK+(A,B)

p∗,i∗↔ KK(C, B) → 0. (14)

Also, the canonical homomorphisms CG(A,B) → KG(A,B) and

α : CG(A,B) → KK(A,B)

are isomorphisms.

Proof. Firstly we show that µ is a monomorphism. Let (E, ϕ,G) and (E′, ϕ′, G′) be best
A,B-modules, and let them define the same element of KK+(A,B). Then there exist degen-
erate A,B-modules (Ê, ϕ̂, Ĝ) and (Ê′, ϕ̂′, Ĝ′) such that

(E, ϕ,G)⊕ (Ê, ϕ̂, Ĝ)
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is operatorial homotopic in the set of fine A,B-modules to

(E′, ϕ′, G′) ⊕ (Ê′, ϕ̂′, Ĝ′).

Let (R, φ, Lt) be this operatorial homotopy. Since ||Lt|| 6 1 for t ∈ [0; 1], one has the following
operatorial homotopy in the set of best A,B-modules:

(R⊕R, φ⊕ 0, L′
t)

where

L′
t =

(

Lt (1 − L2
t )

1/2

(1 − L2
t )

1/2 −Lt

)

,

which gives operatorial homotopy in the set of best A,B-modules. This means that the el-
ements (E, ϕ,G) and (E′, ϕ′, G′) are operatorial homotopic in the set of best A,B-modules
up to adding of degenerate A,B-modules. But from the example 28 follows that degener-
ate A,B-modules define zero element in CG(A,B). Thus (E, ϕ,G) is equal to (E′, ϕ′, G′) in
CG(A,B). Now we prove that ker(KK+(A,B) → KK(A,B)) ⊂ im(µ). Let (E, ϕ,G) be fine
A,B-module such that the induced C, B-module defines zero element in KK(C, B). Then
A,B-module (E, 0, G) defines zero element in KK+(A,B) too. Thus the best A,B-module
(E ⊕ E, ϕ⊕ 0, D), where

D =

(

G (1 −G2)1/2

(1 −G2)1/2 −G

)

, (15)

defines the same element as (E, ϕ,G) in KK+(A,B). To prove the other statements of exact-
ness is trivial and left to the reader. As a consequence we get that CG(A,B) is an abelian
group, and thus it is isomorphic to KG(A,B). Finally, comparing our split exact sequence
with the exact sequence of ”unitization principle”, one gets that α is an isomorphism. 2

4.2. Fredholm picture for the trivially graded case
In this subsection we consider the case when A and B are trivially graded C∗-algebras with

compact group actions. Let E = E0⊕E1 be a graded Hilbert B-module. Then E0 is a trivially
graded B-module and E1 = M̌ , where M is a trivially graded Hilbert B-module. Consider
e = (E, φ, F ), an almost unital Kasparov (A,B)-bimodule. Then in the decomposition E =
E(0) ⊕E(1), one has

φ =

(

φ(0) 0

0 φ(1)

)

and

F =

(

0 F (0)

F (1) 0

)

where (E(0), φ(0)) and (E(1), φ(1)) are A,B-bimodules and F (i) : (E(i), φ(i)) → (E(i+1), φ(i+1))
are bimodule morphisms of degree 1. This interpretation motivates the following:

Definition 31. a). Let A and B be C∗-algebras with compact group actions. A Fredholm
A,B-bimodule is µ = (E(0), φ(0), E(1), φ(1), F ), where E(i), i = 0, 1, are trivially graded
Hilbert B-modules, and (E(0), φ(0)) and (E(1), φ(1)) are A,B-bimodules, and F : (E(0), φ(0)) →
(E(1), φ(1)) is a morphism of A,B-bimodules of degree 0, i.e.,

Fφ(0)(a) − φ(1)(a)F ∈ K(E(0), E(1))

such that F ∗F − 1 ∈ K(E(0)) and FF ∗− 1 ∈ K(E(1)). The set of Fredholm A,B-bimodules is
denoted by F(A,B).

b). Fredholm bimodules

µ = (E(0), φ(0), E(1), φ(1), F )
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and

µ̄ = (Ē(0), φ̄(0), Ē(1), φ̄(1), F̄ )

are called unitarily isomorphic if there exist unitary B-isomorphisms u : E(0) → Ē(0) and
v : E(1) → Ē(1) such that uφ(0)u∗ = φ̄(0), vφ(1)v∗ = φ̄(1) and uFv∗ = F̄ .

c). An operator homotopy through Fredholm bimodules is

µt = (E(0), φ(0), E(1), φ(1), Ft)

which is a Fredholm bimodule for all t ∈ [0, 1], such that t 7→ Ft is norm continuous.
d). The addition of Fredholm bimodules is defined by the formula

µ⊕ µ̄ = (E(0) ⊕ Ē(0), φ(0) ⊕ φ̄(0), E(1) ⊕ Ē(1), φ(1) ⊕ φ̄(1), F ⊕ F̄ )

e). Let F (A,B) be the monoid of equivalence classes of Fredholm bimodules, where equiv-
alence is generated by unitary isomorphism and operator homotopy, and let CF (A,B) (resp.,
KF (A,B)) be its cancellation semigroup (resp., Grothendieck group).

Now our concern is to compare the notion of Fredholm bimodule and Kasparov bimodule.

Construction A

Let µ = (E(0), φ(0), E(1), φ(1), F ) be a Fredholm A,B-bimodule and Ě(1) be the opposite
graded Hilbert B-module of E(1). Let φ̌(1) : A → L(Ě(1)) be the opposite to φ1. Define an
almost unital Kasparov A,B-bimodule µ̄ as the triple (Ē, φ̄, F̄ ), where

Ē = E(0) ⊕ Ě(1), φ̄ =

(

φ(0) 0

0 φ̌(1)

)

, F̄ =

(

0 F̆ ∗

F̆ 0

)

and F̆ is the composition of F with the canonical B-homomorphism

τE(1) : E(1) → Ě(1)

of degree 1 (see example 7).

Proposition 32. Let χ : F(A,B) → E+(A,B) be defined by µ 7→ µ̄. Then the induced

homomorphism of semigroups χ : F (A,B) → E+(A,B) is an isomorphism. Therefore the

groups CF (A,B), KF (A,B) and KK+(A,B) are canonically isomorphic.

Proof. The first part is easy to check and the second part follows using proposition 30. 2

Now consider the canonical quasi-surjective additive ∗-functor

Θ : Rep(A,B) → Cal(A,B).

We can define Karoubi’s groupK(Θ). There exists a canonical homomorphism η : CF → K(Θ)
which maps the Fredholm A,B-bimodule

µ = (E(0), φ(0), E(1), φ(1), F ) (16)

to

η(µ) = (E(0), πφ(0), E(1), πφ(1), π(F )).

(See example 11 for the definition of π.)

Proposition 33. The homomorphism η : CF (A,B) → K0(ΘA,B) is an isomorphism.

Proof. It is enough to show that η is a monomorphism. Let (16) be a Fredholm bimodule
such that η(µ) = 0. Then there exist elementary Fredholm bimodules ε = (E, φ, E, φ,H) and
ω = (Ē, φ̄, Ē, φ̄, H̄) and an operator homotopy µ ⊕ ε ' ω. But the cancellation monoid of
the abelian monoid of isomorphic elementary Fredholm bimodules is 0 (cf. example 28). Thus
µ = 0 in CF (A,B). 2

Combining the above propositions we have the following:
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Corollary 34. Let A and B be as above. Then the canonical homomorphism

ηχ−1 : KK+(A,B) → K(ΘA,B)

is an isomorphism.

4.3. An interpretation of KK1(A,B)
In this subsection we assume that all C∗-algebras are trivially graded and equipped with

a compact group action. We use the property of the subcategory of H(B ⊗ C(1,0)), given in
subsection 2.4, for characterization of KK1(A,B).

In detail, using the “cofinality principle” of subsection 4.1, and according to the proposition
14, one can use the category H∗(B) for the definition of KK1(A,B). Firstly note that if
E ∈ H(B) then E ⊕ Ě ∈ H∗(B). Denote by L∗(E,E

′) the space of morphisms from E ⊕ Ě to
E′ ⊕ Ě′ in the category H∗(B).

Consider G∗(A,B) the set of triples (E ⊕ Ě, φ, g), where E ∈ H(B),

φ : A→ L∗(E ⊕ Ě)

is a ∗-homomorphism, and g ∈ L∗(E ⊕ Ě), with

[g, φ(a)] ∈ L∗(E ⊕ Ě), g∗ = g, g2 = 1, ∂(g) = 1.

Thus using triples from G∗(A,B) and the analogue of the construction of KK(A,B), one gets
KK1(A,B). (cf. [2])

Denote by G∗(A,B) the abelian monoid of equivalence classes of G(A,B), where equivalence
is generated by operator homotopy and unitary isomorphism. From the properties of the
category H∗(A,B) it follows that

φ =

(

φ0 0

0 φ̌0

)

(17)

because all elements of A have degree 0, and

g =

(

0 ǧ0
g0 0

)

(18)

(as g has degree 1). From g∗ = g and g2 = 1 follows that g∗0 = ǧ0. Thus ḡ = τĚg0 has degree
0, and ḡ∗ = ḡ, ḡ2 = 1.(see example 7). From this construction follows that one can consider
G(A,B) as the set of triples of form (E, φ, g) where E is trivially graded Hilbert B-module
φ : A→ L(B) is equivariant ∗-homomorphism and g ∈ L(B) such that

[φ(a), g] ∈ K(E), g∗ = g, g2 = 1 and ∂g = 0, where a ∈ A.

We conclude that canonical homomorphism ρ : CG(A,B) → KK1(A,B) defined by

(E, φ, g) 7→
(

E ⊕ Ě,

(

φ 0

0 φ̌

)

,

(

0 gτĚ
−τEg 0

))

is an isomorphism.

Construction B

Denote by P(A,B) the set of triples of the form (E, φ, p), where E is a trivially graded
B-module, φ : A→ L(E) is a ∗-homomorphism, ∂(p) = 0 and

[φ(a), p] ∈ K(E), a ∈ A;
p∗ = p and p2 = p

Define a map ϑ : P(A,B) → G∗(A,B) as follows. For each triple (E, φ, p) consider the triple
(E, φ, gp), where gp = (2p− 1). 2

Let P (A,B) be the abelian monoid of equivalence class of bimodules of the above form,
where equivalence is generated by unitary isomorphism and operator homotopy. Let CP (A,B)
(resp,. KP (A,B)) be the cancellation monoid (resp., Grothedieck group) of P (A,B).
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Lemma 35. The map ϑ : P(A,B) → G∗(A,B), defined in construction B, is a bijection.

Proof. The inverse map is defined by the formula:

(E, φ, g) 7→ (E, φ, pg),

where pg = 1−g
2 2.

Thus we have

Theorem 36. Let A be separable and B be σ-unital trivially graded C∗-algebras with compact

group action. Then the canonical homomorphism

θ : KP (A,B) → KK1(A,B), (19)

defined as the composition θ = ρϑ, is an isomorphism.

5. Main Theorem

In this section we prove the following main result.

Theorem 37. Let A be separable and B be σ-unital trivially graded C∗-algebras with compact

group action. There exists an essential isomorphism

κ : Kj(Rep(A,B))
'−→ KKj+1(A,B), (20)

where Rep(A,B) is the pseudoabelian C∗-category associated with the additive C∗-category

Rep(A,B) and j = −1, 0.

The proof of this theorem consists of two parts, considered in subsections 5.1 and 5.2.

5.1. Proof of theorem in dimension zero
Firstly, recall the definition of K0(Rep(A,B)). By definition 12, objects of Rep(A,B) have

the form (E, φ, p), where E is a Hilbert B-module, φ : A → L(E) is a ∗-homomorphism and
p is a projection, (i.e., p2 = p and p∗ = p) such that

φ(a)p− pφ(a) ∈ K(E).

Two objects (E, φ, p) and (F, ψ, q) are unitarily isomorphic in the C∗-category Rep(A,B) (or
C∗-categorically unitarily isomorphic) if there exists a partial isometry v : E → F such that

vφ(a) − ψ(a)v ∈ K(E, F )

for all a ∈ A, v∗v = p and vv∗ = q. Define by K0(Rep(A,B)) the Grothendieck group of
the abelian monoid of unitarily isomorphic objects. This coincides with Karoubi’s analogous
definition (see section 2). On the other hand we may define w-unitary isomorphism of objects:
(E, φ, p) and (F, ψ, q) are w-unitary isomorphic if there exists a unitary u : E → F such that

uφ(a) − ψ(a)u ∈ K(E, F )

for all a ∈ A, up = qu. Denote by K0
w(Rep(A,B)) the Grothendieck group of the abelian

monoid of w-unitary isomorphic objects. Let us compare these groups. If two objects (E, φ, p)
and (F, ψ, q) are w-unitarily isomorphic by a unitary u, then qup is an isomorphism between
these objects. Conversely, if v : (E, φ, p) → (F, ψ, q) is a unitary isomorphism of the given
objects, then v : E → F is a partial isometry with v∗v = p and vv∗ = q. Consider the objects
(E, φ, 1) and (F, ψ, 1). Then

ω : (E, φ, p)⊕ (F, ψ, 1) → (F, ψ, q)⊕ (E, φ, 1)

is a w-isomorphism, where

ω =

(

v 1 − q
1 − p v∗

)

. (21)
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¿From this remark it follows that

(E, φ, p)⊕ (F, ψ, 1) and (F, ψ, q) ⊕ (E, φ, 1)

are equal in K0
w(Rep(A,B)), Note that K0(rep(A,B)) = 0, by example 28. From this fact it

follows that

(E, φ, 1) = (F, ψ, 1) = 0

in K0
w(Rep(A,B)). Thus

(E, φ, p) = (F, ψ, q)

in the last group. Therefore, there is a correctly defined essential isomorphism

ξ : K0(Rep(A,B)) → K0
w(Rep(A,B)). (22)

The next step is to define a homomorphism

µ : K0
w(Rep(A,B)) → KP (A,B). (23)

To do this one needs the following:

Lemma 38. Let (E, φ, p) and (E, ψ, p) be two objects such that

φ(a) − ψ(a) ∈ K(E)

for all a ∈ A. Then (E, φ, p)⊕ (E, ψ, 1) and (E, φ, 1)⊕ (E, ψ, p) are operator homotopic.

Proof. Consider

pt =

(

1 − cos2 t · (1 − p) sin t · cos t · (1 − p)
sin t · cos t · (p− 1) 1 + sin2 t · (p− 1)

)

.

Then (E ⊕E, φ⊕ ψ, pt) is desired operator homotopy.
¿From this lemma follows that the map (E, φ, p) 7→ (E, φ, p) correctly defines the epimor-

phism µ and also the epimorphism

µ · ξ : K0(Rep(A,B)) → KP (A,B).

To prove that µ · ξ is a monomorphism one needs the following:

Lemma 39. Let (E, φ, p0) and (E, φ, p1) be operator homotopic triples. Then they are unitarily

isomorphic as objects in Rep(A,B).

Proof. Let (E, φ, pt) be an operator homotopy. As [0, 1] is a compact space, one can choose
finite set of points t0, t1, . . . , tn ∈ [0, 1] such that ‖pti+1 − pti‖ < 1 for all i = 0, . . . , n − 1.
Using lemma 6.4 of [10], one gets that pti+1 and pti are unitarily isomorphic in the C∗-algebra
of morphisms from (E, φ) to (E, φ) (in the category Rep(A,B)). From this it follows that the
triples from the lemma are isomorphic objects in Rep(A,B). 2

Now one can define a canonical isomorphism

κ : K0(Rep(A,B)) → KK1(A,B) (24)

as the composition of isomorphisms ξ, µ and isomorphism θ of 19.

5.2. Proof of theorem in dimension one
Consider the quasi-surjective Serre additive ∗-functor

ΠA,B : Rep(A,B) → Cal(A,B).

Applying the exact sequence (7), one gets the following exact sequence:

K−1(Rep(A,B))
Π∗→ K−1(Cal(A,B))

∂Π→ K0(Π)
i→ K0(Rep(A,B)).

The properties of this sequence are given below.
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Lemma 40. There exists a canonical isomorphism

τ : K0(ΠA,B) → K0(ΘO,B), (25)

where O is the zero C∗-algebra.

Proof. Consider e = (E, φ, E′, ψ, α) such that αφ(a) = ψ(a)α for all a ∈ A, where φ(a) =
πφ(a), ψ(a) = πψ(a). Then e defines an element in K0(ΠA,B). Let 0φ : O → L(E) and
0ψ : O → L(E′) be the zero homomorphisms. One has e0 = (E, 0φ, E

′, 0ψ, α) that gives an
element inK0(ΘO,B). Conversely, let e0 = (E, 0φ, E

′, 0ψ, α) define an element from K0(ΘO,B).
Then the corresponding element in K0(ΠA,B) is defined by the same e0, with 0φ and 0ψ the
trivial homomorphisms on A. Thus we have two homomorphisms

τ : K0(ΠA,B) → K0(Θ0,B)

and

η : K0(Θ0,B) → K0(ΠA,B)

such that τη = 1. To prove that τ is an isomorphism, it is enough to show that {e}−{e0} = 0.
In order to show this, consider

(E ⊕E′, φ⊕ 0ψ, E
′ ⊕ E, ψ ⊕ 0φ, α⊕ α∗).

It is isomorphic to

(E ⊕ E′, φ⊕ 0ψ, E ⊕E′, 0φ ⊕ ψ, t(α⊕ α∗),

where

t(α⊕ α∗) =

(

0 α∗

α 0

)

=

(

1 0
0 −1

) (

0 α∗

−α 0

)

. (26)

Note that

(

0 α∗

−α 0

)

is homotopic to

(

1 0
0 1

)

. Thus α⊕α∗ lifts to an isomorphism from

φ⊕ 0ψ to ψ ⊕ 0φ. That concludes the proof of the lemma (see subsection 3.2). 2

Lemma 41. Let e = (E, φ, α) and e′ = (E, φ, β) both define elements in K−1(Rep(A,B)). If

α− β ∈ K(E), then {e} = {e′}.

Proof. Consider the triples (Ē, φ̄, ᾱ) and (Ē, φ̄, β̄) where

Ē = E ⊕ E, φ̄ =

(

φ 0
0 0

)

, ᾱ =

(

α 0
0 β

)

, β̄ =

(

β 0
0 α

)

(27)

These triples are operator homotopic by

h(t) =

(

α+ sin2 t · (β − α) sin t · cos t · (α− β)
sin t · cos t · (β − α) β + sin2 t · (α− β)

)

. 2

Lemma 42. The canonical homomorphism

Π∗ : K−1(Rep(A,B)) → K−1(Cal(A,B))

is a monomorphism.

Proof. Let e = (E, φ, α) represent an element in K−1(Rep(A,B)) such that Π∗(e) = 0.
Then by lemma 20 there exists (E′, ψ, 1ψ) such that Π(α)⊕ 1Π(ψ) is homotopic to 1Π(φ)⊕Π(ψ).
Let h(t) be this homotopy. Consider its lifting in the group U(E ⊕ E′, φ ⊕ ψ) of unitary
automophisms, such that h(0) = 1. Put β = h(1), then β − α ⊕ 1ψ ∈ K(E). Using lemma 18
and lemma 41, we get

{(E, φ, α)⊕ (F, ψ, 1)} = {E ⊕ F, φ⊕ ψ, β} = 0. 2
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Let e = {(E, φ, E′, ψ, α)} ∈ K0(ΠA,B). Consider the unique element e′ = {(0, β)} ∈
K−1(Cal(A,B)) such that ∂Π(e′) = e. Then the homomorphism

s : K0(Π) → K−1(Cal(A,B))

defined by e 7→ e′defines a right inverse for ∂Π.

Corollary 43. Let A and B be trivial graded C∗-algebras with compact group actions. Then

there is a split exact sequence of groups

0 → K−1(Rep(A,B))
Π−→ K−1(Cal(A,B))

τ·∂Π−→ K0(ΘO,B) → 0. (28)

Now we are ready to prove the main theorem. Firstly note that one can replace K−1(Rep(A,B))
by K−1(Rep(A,B)) (see theorem 21).

We need some homomorphisms:
a) Define the homomorphism

κ : K−1(Rep(A,B)) → KK0(A,B)

as follows. Let e = (E, φ, α) define an element of K−1(Rep(A,B)). Consider the triple ē =
(Ē, φ̄, ᾱ), defined in construction A of section 3, by

Ē = E ⊕ Ě, φ̄ =

(

φ 0

0 φ̌

)

, ᾱ =

(

0 α̌
α 0

)

.

Then by definition κ(e) = ē.

b) Define homomorphism

∆ : K−1(Cal(A,B)) → KK+(A,B)

in the following way. Let e = (E, πφ, α) be a triple that defines element of K−1(Cal(A,B)),
where (E, φ) is object of Rep(A,B). Choose F such that π(F ) = α. Of course, the triple
e′ = (E, φ, F ) is an almost unital Kasparov A,B-bimodule. By definition ∆(e) = ē′.

c) Let ω : K(ΘO,B ) → KK0(C, B) be defined by the equality ω = χη−1.
Consider the commutative diagram

0 → K−1(Rep(A,B))
Π→ K−1(Cal(A,B))

τ·∂→ K0(ΘO,B) → 0

↓κ ↓∆ ↓ω

0 → KK0(A,B)
j→ KK+(A,B)

i∗→ KK0(C, B) → 0

Then ∆ and ω are isomorphisms, because ∆ = χη−1∂Θ is the composition of the isomorphism
from corollary 34 and the isomorphism (9) of example 28. Also, ω = χη−1 is an isomorphism
because of lemma 40. Thus κ is an isomorphism.
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