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TOPOLOGICAL K-THEORY OF THE INTEGERS AT THE PRIME 2

LUKE HODGKIN

(communicated by James Stasheff)

Abstract
Recent results of Voevodsky and others have effectively led to the

proof of the Lichtenbaum-Quillen conjectures at the prime 2, and con-
sequently made it possible to determine the 2-homotopy type of the
K-theory spectra for various number rings. The basic case is that of
BGL(Z); in this note we use these results to determine the 2-local
(topological) K-theory of the space BGL(Z), which can be described
as a completed tensor product of two quite simple components; one
corresponds to a real ‘image of J ’ space, the other to BBSO.

1. Introduction

As a result of Voevodsky’s solution of the Milnor conjecture [V] and related work by Bloch,
Lichtenbaum, Voevodsky and Suslin [B-L], [S-V], Weibel in [W] calculated the algebraic K-
theory of the integers πi(BGL(Z)+) at the prime 2 in terms which essentially confirmed the
appropriate version of the Lichtenbaum-Quillen conjectures [L,D-F]. (Much stronger and more
general versions of the prime-2 conjectures have since been proved, see in particular [RWK], [R-
W].) This result, since it expresses the space BGL(Z)+ in terms of rather well-known spaces,
makes it relatively easy to deduce other invariants. Arlettaz et al. in [A-M-N-Y] have done
this for the mod 2 cohomology; in this paper, I shall do the same for the (topological) 2-local
K-theory; the result, which is, perhaps predictably, quite different from that for cohomology
is stated in theorem 4.1 and corollary 5.1 below. The use of 2-local, rather than the more usual
2-complete theory requires a little more work, but perhaps can be considered as giving a more
interesting result.

While Weibel’s results are more general in character, and could lead to similar calculations
for various other rings e.g. Z[

√
−1], I shall here confine my attention to the integers, partly

because of their ‘historical’ interest, and partly because of the link with the stable mapping
class group BΓ = lim

→
BΓn via the composite BΓ → BSp(Z) → BGL(Z), which arises from

the action of surface homeomorphisms on H1.

Without attempting a complete survey of recent related work, I should draw attention to
the most important:

(i) The corresponding decomposition of spectra for the p-adics BGL(Zp̂ ) has been known
for some time — for arbitrary p — through work of Bökstedt, Madsen and Rognes [B-M],
[R2]. (Here the Milnor conjecture is not needed.)

(ii) Dwyer and Mitchell, in a sequence of papers, [D-M], [Mi1], [Mi2], have attacked precisely
the problem of finding the K-theory of the spectrum associated with BGL(R)p̂ ) when R is a
ring of algebraic integers, which they have (essentially) solved in terms of the ‘Iwasawa module’
M∞ of R. The remaining dificulties are those associated with the structure of M∞, and are
not trivial.
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(iii) In an important special case, Østvær [Ø] has found the homotopy type of BGL(R)2̂
when R is ‘2-regular and non-exceptional’. Examples include cyclotomic rings R = Z[ζ2r ], r >

2, (in particular the Gaussian integers); but no rings of integers in totally real fields. The
homotopy type is very simple, a product of a K(Fp) (finite field) and copies of U , SU .

Having said this, the result presented here is perhaps principally of interest in the way
that it displays the intertwining of the factors which go to make up BGL(Z). The justification
which Dwyer and Mitchell give for studying the topologicalK-theory of algebraic spectra (that
it sheds light on the K-localization of the spectra, and hence can provide evidence about the
Lichtenbaum-Quillen conjectures) is not really at issue at the prime 2 where the conjectures
are solved; however, the structure has independent interest.

We begin by describing the space which we shall study. Following [Bö], but working in the
category of 2-local spaces, we define the ‘étale K-space’ JK(Z) as the (2-local) homotopy fibre
of the composite map:

(1) c(ψ3 − 1) : BO
ψ3
−1−→ BSpin

c−→BSU

(Here ψ3 is the Adams operation and c denotes complexification.) This space can be realized
through a number of other fibrations, of which we shall note particularly (cf [R2], (2.3))

(2) JR2 → JK(Z) → BBSO

where JR2 is the real image of J space at 2, defined as the fibre of ψ3 − 1 : BO → BSpin,
localized at 2. (See e.g. [Ma].) The 2-completion of JK(Z) is equivalent to the space which
is named K ét(Z) in [D-F] and elsewhere. Bökstedt defined a map on 2-completions from
((BGL(Z)+)2̂ to JK(Z)2̂ ; it is a consequence of Voevodsky’s theorem and subsequent work
that this is a homotopy equivalence. However, it is not obvious that this map is an equivalence
— even that it exists — in the localized sense. [I am grateful to the referee for pointing this
fact out.] I shall therefore, in sections 2-4, find the K-theory of JK(Z) with coefficients in Z2̂

and Z2, by a simple application of the Rothenberg-Steenrod spectral sequence. Having done
that, in §5 I shall deduce the corresponding results for BGL(Z)+; the completed case is easy,
by the above remarks, but the local case requires a special investigation, using Bousfield’s
K-localization functor LK [Bou] to identify JK(Z) with LK(BGL(Z)+).

Where not otherwise stated, all spaces are supposed localized at 2 in what follows.

2. The 2-complete theory

The natural procedure is in any case to begin with the 2-completed theory, and proceed to
integrate it with the rational to obtain a 2-local statement. With this in mind, we begin with
the following commutative diagram:

(3) O //c(ψ3
−1)

SU //η
JK(Z)

O //
ψ3
−1
Spin //

θ

OO

c

JR2

OO

j

Both rows in this diagram are fibrations; the top row derived in the obvious way from the
fibration (1), the second similarly from the definition of JR2. The two squares are commutative
by construction (compare the diagram on p.8 of [R2]); and the right hand square is fibred. The
most ‘natural’ approach for such K-theory computations is usually via the geometric spectral
sequence of Rothenberg-Steenrod (see e.g. [A-H]), which gives the K-theory of a quotient of
groups (for example) in terms of those of the group and subgroup; and we can apply this
spectral sequence to the fibre square provided that one of the Spin-actions is free. It will
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be convenient to suppose this for the action on SU (of course nearly free, but not quite...),
by the usual device of replacing SU by SU × ESpin. We are accordingly using a homotopy
equivalence of JK(Z) with (SU ×ESpin) ×Spin JR2; and we need the cohomology version of
the Rothenberg-Steenrod sequence, which uses derived functors in the category of comodules
over a coalgebra — in our case the coalgebra K∗(Spin; Z2̂ ).

Much of the argument can be simplified in this case, as we shall see, since we are deal-
ing with a trivial comodule. To clarify the details of the application we want, i.e. to the
2-complete K-cohomology, one or two technical points should be made. First, there is (as
usual in K-cohomology of large spaces) the question of topology on the coalgebra and comod-
ules K∗( ; Z2̂ ). Second, the coefficients are not a field, and the modules may not be free
or even projective. We need to deal with these objections together so as to obtain a reason-
able cotensor product functor. To begin with, the category C2 of profinite modules over Z2̂ is
abelian, and the appropriate tensor product is the completed one, ‘⊗̂’. Because lim

←
is exact

in the category, the functor −⊗̂A is exact if A is an inverse limit of finitely generated free
Z2̂ -modules. We shall call such a module ‘flat’, by analogy with the usual case. In particular,
this applies to the Hopf algebras K∗(Spin; Z2̂ ) and K∗(SU ; Z2̂ ). (This is a consequence of
[H], but the detail will be given later.) Hence K∗( ; Z2̂ ) translates products of spaces into
completed tensor products of Z2̂ -algebras, when one of the spaces is SU or Spin.

If A is a (profinite) flat cocommutative Z2̂ -coalgebra, and B,C are compact comodules
over A, we define the completed cotensor product B �̂A C to make the sequence (cf [M-M])

0 −→ B �̂
A
C −→ B⊗̂C ∆⊗1−1⊗∆−→ B⊗̂A⊗̂C

exact. (∆ denotes the structural morphisms for the comodules.) This bifunctor is left exact on
sequences of A-comodules which are split-exact over Z2̂ . Its derived functors will be written

Ĉotor
A

p (B,C). Recall the spectral sequence — stated here in the appropriate form for our
purpose.

Proposition 2.1. Let G be a group, and let X, Y be G-spaces with either X or Y free (all
in a suitably small category, e.g. 2-local CW-complexes). If G, X have K∗( ; Z2̂ ) flat in C2,
then there is a strongly convergent spectral sequence with

Ep2 = Ĉotor
p

K∗(G;Z2̂ )(K
∗(X; Z2̂ ), K∗(Y ; Z2̂ ))

E∞ ∼ K∗(X ×G Y ; Z2̂ )

Its edge homomorphism is the ‘standard’ map

η : K∗(X ×G Y ; Z2̂ ) → K∗(X; Z2̂ ) �̂
K∗(G;Z2̂ )

K∗(Y ; Z2̂ )

(which follows from the definitions).

The proof is the usual geometric one, using the bar resolution. Again because the inverse
limit is exact in C2 there are no convergence problems.

Note. Since we are interested in the 2-local theory, we shall also need a local version of this.
Here arguments using profiniteness naturally break down, and alternative methods must be
used. The best option is to use the corresponding sequence for K-homology, which involves the
ordinary tensor product and the ordinary Tor groups over K∗(G; Z2). Again (since homology
theories behave well with respect to direct limits) the sequence is strongly convergent; in this
case the proof is clearly simpler. We then need to dualize the results in the appropriate way
to derive the K-cohomology.

We are now ready to state the structure theorem for the map c : Spin → SU ; for maximum
generality we shall need the local version.

Proposition 2.2. (i) The Hopf algebras K∗(Spin; Z2) resp. K∗(SU ; Z2) are completed ex-
terior algebras on submodules of primitive generators, say PR, PC respectively; and the map
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c induces an epimorphism from PC to PR, whose kernel Q is a direct summand. Accordingly,
writing Ê( ) for the completed exterior algebra on primitive elements, we have:

K∗(Spin; Z2) = Ê(PR)

K∗(SU ; Z2) = Ê(PC) ∼= Ê(PR ⊕Q) = Ê(PR)⊗̂E(Q)

as a tensor product of Hopf algebras.

(ii) The same statements hold for K-theory with Z2̂ coefficients, and K∗(Spin; Z2̂ ) resp.
K∗(SU ; Z2̂ ) is isomorphic to K∗(Spin; Z2) ⊗Z2

Z2̂ resp. K∗(SU ; Z2) ⊗Z2
Z2̂

From this will follow:

Proposition 2.3. For any space X with an action of Spin, the edge homomorphism of the
spectral sequence defines a natural isomorphism

η : K∗((SU ×ESpin) ×
Spin

X; Z2̂ ) → Ê(Q)⊗̂K∗(X; Z2̂ )

We postpone the proof of proposition 2.2 to the next section, and show that it implies
proposition 2.3.

For this, it is sufficient to identify K∗(SU ; Z2̂ )�̂K∗(Spin;Z2̂ )K
∗(X; Z2̂ ). From the splitting

of proposition 2.2, we can deduce that

µ∗ : K∗(SU ; Z2̂ ) → K∗(Spin; Z2̂ )⊗̂K∗(SU ; Z2̂ )

is identified with

Ê(PR)⊗̂E(Q)
∆⊗1−→ Ê(PR)⊗̂Ê(PR)⊗̂Ê(Q)

Now we know that (Ê(PR)⊗̂Ê(Q)) �̂Ê(PR)K
∗(X; Z2̂ ) ∼= Ê(Q)⊗̂K∗(X; Z2̂ ); in fact, this is

the dual of the well-known analogous formula for the tensor product, and the isomorphism is
natural. However, Ê(Q)⊗̂K∗(X; Z2̂ ) is exact as a functor of the comodule K∗(X; Z2̂ ), since
Ê(Q) is flat, and so its derived functors are trivial:

Ĉotor
0

K∗(Spin;Z2̂ )(K
∗(X; Z2̂ ), K∗(SU ; Z2̂ )) = K∗(X; Z2̂ )⊗̂Ê(Q)

Ĉotor
p

K∗(Spin;Z2̂ )(K
∗(X; Z2̂ ), K∗(SU ; Z2̂ )) = 0 (p > 0)

Using the edge homomorphism of the spectral sequence, proposition 2.3 follows.

3. Structure of K∗(Spin), K∗(SU)

We now proceed to the proof of proposition 2.2. Let λir resp. λic be the ith ‘stabilized’
exterior power of the standard representation θ from Spin(2n + 1) resp. SU(2n + 1) to U ,
considered as an element of the representation ring. That is, λir is the result of applying the
operation λi to θ − (2n+ 1). Then it is obvious that under inclusion maps of Spin(2n + 1)’s
and SU(2n + 1)’s the λi’s are preserved; and that c∗(λic) = c∗(λ̄ic) = λir.

Let now β be the operation (see [H]) which to any representation ρ of G assigns its class
β(ρ) in K1(G) = [G,U ] considered as a map from G to U . The basic theorem of [H] gives us
that K∗(SU(2n + 1); Z2) is the exterior algebra

EZ2
(β(λ1

c ), . . . , β(λnc ), β(λ̄1
c), . . . , β(λ̄nc ))

since these can be seen to be equivalent to the basic representations modulo a little manipu-
lation. (The generators are also, as usual, the primitives for the Hopf algebra structure.) The
similar result is not quite true for Spin(2n+1), as is well known, the picture being complicated
by the Spin representation ∆n, of dimension 2n. We have:

K∗(Spin(2n + 1); Z2) = EZ2
(β(λ1

r), . . . , β(λn−1
r ), β(∆n))
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However, there is a relation between λnr and ∆n, since (∆n)
2 = λnr+ a sum of terms in

λ1
r , . . . , λ

n−1
r . Writing ∆n = 2n + ∆̃n, and applying the usual relations for β, we have that

β(∆n)2 = 2n+1β(∆n). Hence, β(λnr ) = 2n+1β(∆n) (mod β(λ1
r), . . . , β(λn−1

r )).

WriteMn for the Z2-module which generates the exterior algebra K∗(Spin(2n+1); Z2) and
Nn for the submodule generated by the β(λir)’s. We can deduce a short exact sequence

(En) 0 → Nn →Mn → Z/2n+1 · β(∆n) → 0

The restrictions from En+1 to En are straightforward if we take into account that ∆n+1

restricts to 2.∆n. Hence the map from Z/2n+2 to Z/2n+1 in the above sequence multiplies
the generator by 2. It is easy to deduce that the inverse limit of the Z/2n+1’s is zero; and so
(since they are finite) is the lim

←

1. Hence the map from lim
←

{Nn} to lim
←

{Mn} — the primitives

of K∗(Spin) — is an isomorphism, and we have:

Proposition 3.1. The K-cohomology rings of Spin, SU are as follows:

K∗(Spin; Z2) = ÊZ2
(β(λ1

r), β(λ2
r), . . . )

K∗(SU ; Z2) = ÊZ2
(β(λ1

c ), β(λ2
c), . . . ; β(λ̄1

c), β(λ̄2
c) . . . )

and the restriction c∗ from SU to Spin maps β(λic), β(λ̄ic) to β(λir) (i = 1, 2, . . .)

From this, proposition 2.2 clearly follows.

We next deduce:

Proposition 3.2. The local K-theory of the quotient is given by

K∗((SU × ESpin)/Spin; Z2) ∼= ÊZ2
(β(λ1

c ) − β(λ̄1
c), . . . )

∼= ÊZ2
(Q)

in the terminology of proposition 2.2.

Proof. As stated above, the best way to prove this is as follows. First, dualize proposition
3.1 to give a result on the local K-homology (the map c now induces a split monomorphism).
Next, apply the Rothenberg-Steenrod sequence in local K-homology; this is well-behaved, and
strong convergence is easily established, as well as flatness (in the usual sense) for the K-
algebras involved. We find a natural isomorphism in K-homology in a form dual to that of
proposition 2.3. In the special case where X is a point, this can now simply be dualized back
to give the required result.

This procedure is of course roundabout, but seems preferable to developing a theory if
topological modules which will deal properly with very large algebras over Z2 of the kind we
are considering here in K-cohomology.

4. The K-theory of JK(Z)

We are now in a position to put the pieces together. The key point is that JR2 is a 2-adic
space, so the local theory and the 2-adic theory coincide for it.

Theorem 4.1. There is a natural isomorphism:

K∗(JK(Z); Z2) ∼= ÊZ2
(Q)⊗̂K∗(JR2; Z2)

∼= K∗(BBSO; Z2)⊗̂K∗(JR2; Z2)

with an analogous isomorphism for Z2̂ coefficients.

Proof. We’d like to use a basepoint in JR2, but of course can’t suppose there is one which
is fixed under Spin. Consider instead the equivariant embedding of JR2 in the unreduced
cone C+JR2. If we can prove the result for C+JR2 and for the pair P = (C+JR2, JR2)
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separately, then it will follow for JR2 by the 5-lemma. Now for C+JR2 it is already proved
(by proposition 3.2). For P , we consider the commutative diagram:

K∗(SU ×Spin P ; Z2) //η

��
α

K∗(SU ; Z2) �̂K∗(Spin;Z2)K
∗(P ; Z2)

��
β

K∗(SU ×Spin (P ); Z2̂ ) //
η K∗(SU ; Z2̂ ) �̂K∗(Spin;Z2̂ )K

∗(P ; Z2̂ )

The arrow η in the lower row is an isomorphism by proposition 2.3. The two vertical arrows
are induced by the coefficient homomorphism. Since the reduced homology of JR2 is finite
in every dimension, the same is true for the pair SU ×Spin P ; so K∗(SU ×Spin P ; Z2) is a
2-adic group. Hence the arrow marked α is an isomorphism. On the other hand, we can embed
K∗(SU ; Z2) �̂K∗(Spin;Z2)K

∗(P ; Z2) in K∗(SU ; Z2)⊗̂K∗(P ; Z2) and identify the latter with

K∗(SU ; Z2)⊗̂(Z2̂ ⊗̂K∗(P ; Z2))

(again because K∗(P ; Z2) is 2-adic). Using this, and the definition of the cotensor product, we
find that the right hand vertical arrow β is also an isomorphism. Hence the upper arrow η is
one.

Now by the argument used in proposition 2.3, this implies that K∗(SU ×Spin P ; Z2) is

isomorphic to ÊZ2
(Q)⊗̂K∗(P ; Z2). This proves the first line of the theorem. The second results

from

Lemma 4.1. The fibre SU/Spin of c : BSpin → BSU can be identified with the Hopf map
η : BBSO → BSpin.

Proof. The composite c ◦ η is trivial and so lifts to a map η̃ : BBSO → F ib(c). A check
on the homotopy sequence shows that this is a homotopy equivalence.

A comparison with the fibre sequence (2) shows that the sequence splits from the viewpoint
of 2-local K-theory. Finally, it is worth noting that the K-theory of JR2 has been known
for a long time, see [H-S]; it is essentially the completed representation ring of the infinite
symmetric group Σ∞.

5. The results for BGL(Z)+

As was remarked in §1, theorem 4.1 immediately gives us the 2-adic K-theory of BGL(Z)+,
since (BGL(Z)+)2̂ is homotopy equivalent to JK(Z)2̂ . To deal with the localizations, we shall
prove the following result:

Theorem 5.1. Let LK denote Bousfield’s K-theory localization functor on spaces [Bou].
There is a homotopy equivalence of JK(Z) with LK(BGL(Z)+).

Since K∗(LK (X; Z2)) ∼= K∗(X; Z2) for any X, this shows:

Corollary 5.1. The K-theory of BGL(Z)+ with Z2 or Z2̂ coefficients is computed by theo-
rem 4.1.

For the proof of theorem 5.1, we shall simplify notation by writing K(Z) for the ring
Z×BGL(Z)+. We follow the arguments of [Bö] and (§2 of) [R1]. In [Bö], the rational component
is considered as well as the 2-adic, but the discussion is essentially concerned with ΩK(Z);
while in [R1], the argument is at the level of spectra, but is purely 2-adic. Our concern is to
use K-localization to circumvent these restrictions.

We first define a map s as the composite BSO
i−→BSG

η−→SG, where i is the ‘forgetful’
map from bundles to spherical fibrations, and η is multiplication by the Hopf map. Both maps
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are 2-locally defined, and are infinite loop maps. If r : SG → K(Z)1 is the map into the
‘one-component’ induced by QS0 → K(Z), then r is again a local infinite loop map. In [R1] it
is shown that the 2-completion of r ◦ s is nullhomotopic at the level of spectra. However, since
SG has finite homotopy groups, r ◦ s is 2-locally trivial if it is trivial after completion; and as
in [R1], the nullhomotopy deloops to give a map g : Bfib(s) → K(Z)1.

Lemma 5.1. The localizations LK (Bfib(s)) and LK(JK(Z)) are homotopy equivalent.

Proof. This follows directly from diagram 2.8 of [R1], since the fibre sequence C⊗ →
Bfib(s) → JK(Z) can be constructed 2-locally using ρ3. Since LK(C⊗) is a point by [H-S],
the fibration becomes an equivalence after K-localization.

Finally, we need:

Lemma 5.2. The K-theory localization of g, LK (g), is a homotopy equivalence from
LK(Bfib(s)) to LK(K(Z)1).

Proof. Since the homotopy groups in each case are finitely generated, it will be enough to
show that g induces isomorphisms on homotopy (a) when 2-completed and (b) when tensored
with Q. For the 2-completion, we again use Rognes’ diagram 2.8. The preceding lemma implies
that the map there called ‘h’ exists after K-localization; we shall call it ‘LK(h)’, ignoring
the question of whether h exists. And LK(g) is an equivalence if and only if LK(h) is. But
by the subsequent arguments of Rognes, LK(h) is a right inverse for the more usual map
Φ : LK(K(Z)1)2̂ → LKJK(Z)2̂ . (As pointed out in [R1], this involves an essentially 2-adic
argument.) We now know, however, that Φ is a 2-adic equivalence, and so LK(h) is. For the
rational version we use the argument on pp.31-2 of [Bö]; the homotopy groups of fib(s)2̂
and (ΩK(Z)1)2̂ are the same after inverting 2, and hence Ωg is an isomorphism on rational
homotopy. The same result therefore follows for g and so for LK(g).
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