ERRATUM TO "ON SPACES OF THE SAME STRONG n-TYPE"

[HHA, V. 1 (1999) NO. 10, PP. 205-217]

YVES FÈLIX AND JEAN-CLAUDE THOMAS

(communicated by Lionel Schwartz)

On the Arkowitz-Maruyama conjecture.

The main purpose to this short note is to make a correction to one of the result of the article : On spaces of the same strong n-type which has been published in [7]. We want to thank Ken-Ichi Maruyama who kindly reports to us our mistake. We also add some comments about the Arkowitz-Maruyama conjecture.

1) The AM-conjecture.

Let (X, x_0) be a based path connected space and let $\operatorname{Aut} X$ be the group of based homotopy classes of homotopy self-equivalences of (X, x_0) . We denote by $\operatorname{Aut}_{\pi}^n X$ the subgroup of homotopy classes that induce the identity on the homotopy groups $\pi_i(X, x_0)$ for $i \leq n$. Then we obtain the normal series

$$\operatorname{Aut} X \supset \operatorname{Aut}_{\pi}^{1} X \supset ... \operatorname{Aut}_{\pi}^{n-1} X \supset \operatorname{Aut}_{\pi}^{n} X \supset ...$$

and we denote by $\mathrm{Aut}_{\pi}Z$ the inverse limit:

$$\lim_{\leftarrow} \operatorname{Aut}_{\pi}^{n} X \cong \bigcap_{n \geqslant 1} \operatorname{Aut}_{\pi}^{n} X.$$

M. Arkowitz and K.I. Maruyama, [2] have conjectured that:

A-M. CONJECTURE. Let Z be a simply connected finite complex. There exists an integer N such that the natural monomorphism

$$\rho_N : Aut_{\pi}Z \to Aut_{\pi}^N Z$$

is an isomorphism, ie. $Aut_{\pi}^{N}Z = Aut_{\pi}^{n}Z$ for all $n \geqslant N$.

At our knowledge, the AM-conjecture is still unsolved for general complexes. It is trivially true for any finite complex Z which admits a finite Postnikov decomposition. In this case, if $Z^{(n)}$ denotes the n^{th} -Postnikov section of $Z = Z^{(k)}$ then for $n \geqslant k$

$$\operatorname{Aut} Z = \operatorname{Aut} Z^{(n)} = \operatorname{Aut}_{\pi}^{n} Z^{(n)} \cong \operatorname{Aut}_{\pi} Z.$$

The conjecture is also known for products of spheres [2] and if Z is an H_0 -space [6].

2) The localization conjecture.

Now recall that if $n \ge \dim Z$ then $\operatorname{Aut}_{\pi}^n Z$ is a finitely presented nilpotent group [3]. Let P be any set of prime numbers. Given a localization $l_P: Z \to Z_P$, the natural homomorphism $l_P: \operatorname{Aut}_{\pi}^n Z \to \operatorname{Aut}_{\pi}^n (Z_P)$, $[f] \mapsto [f_P]$ and the localization homomorphism $\lambda_p: \operatorname{Aut}_{\pi}^n Z \to \operatorname{Aut}_{\pi}^n Z$

Received 5 October 2000; published on 24 October 2000.

 $(\operatorname{Aut}_{\pi}^{n}Z)_{P}$ coincides, up to a natural isomorphism [4]:

$$\begin{array}{ccc} & \operatorname{Aut}_{\pi}^{n}Z \\ \lambda_{P}^{n}\swarrow & \searrow l_{P}^{n} \\ (\operatorname{Aut}_{\pi}^{n}Z)_{P} & \xrightarrow{\theta_{P}^{n}} & \operatorname{Aut}_{\pi}^{n}(Z_{P}) \end{array}$$

Thus, each $\operatorname{Aut}_{\pi}^{n}(Z_{P})$, $n \geq \dim Z$ is P-local and the group $\operatorname{Aut}_{\pi}(Z_{P}) = \lim_{\leftarrow} \operatorname{Aut}_{\pi}^{n}(Z_{P})$ is also P-local. Universal property of localization defines the natural homomorphisms θ_{P} in the diagram below:

$$\begin{array}{ccc} & \operatorname{Aut}_{\pi} Z \\ L_{P} \swarrow & & \searrow \lim_{\leftarrow} l_{P}^{n} = \phi_{P} \\ (\operatorname{Aut}_{\pi} Z)_{P} & \xrightarrow{\theta_{P}} & \operatorname{Aut}_{\pi} (Z_{P}) \end{array}$$

Localization does not necessarily respect inverse limit, nonetheless we conjecture:

P-LOCAL CONJECTURE. Let Z be a nilpotent finite complex. Then the natural map ϕ_P : $Aut_{\pi}Z \to Aut_{\pi}(Z_P)$ is a P-localization, ie. θ_P is an isomorphism.

As usual we denote by Z_0 , instead of Z_{\emptyset} , the rationalization of the space Z and more generally the subscript $_{\emptyset}$ is replaced by subscript $_{0}$. In a recent preprint, [5], K-I. MARUYAMA proves:

If X is a finite nilpotent complex and if $Aut_{\pi}(X_0) = \{1\}$ then $Aut_{\pi}X_P \cong (Aut_{\pi}X)_P$ for any set of primes P.

3) Equivalence of the AM-conjecture and of the \emptyset -local conjecture.

In [7]-(first part of theorem 3), we have proved:

THEOREM A. Let Z be a simply connected CW complex of finite type and let Z_0 its rationalization. If $H^{>M}(Z;\mathbb{Q})=0$ for some M then there exists an integer N such that the natural map $\rho_0^N: Aut_\pi(Z_0) \to Aut_\pi^N(Z_0)$ is an isomorphism.

Recently K-I. MARUYAMA [5] has proved theorem A for finite nilpotent complexes. A consequence of theorem A is

THEOREM B. Let Z be a simply connected finite complex. The space Z satisfies the AM-conjecture iff Z satisfies the \emptyset -conjecture.

Proof. Let N as in theorem A and consider the commutative diagram,

$$\begin{array}{ccc} (\operatorname{Aut}_{\pi}Z)_0 & \stackrel{\theta_0}{\longrightarrow} & \operatorname{Aut}_{\pi}(Z_0) \\ \left(\rho^N\right)_0 \downarrow & & \cong \downarrow \rho_0^N \\ \left(\operatorname{Aut}_{\pi}^NZ\right)_0 & \stackrel{\theta_0^n}{\cong} & \operatorname{Aut}_{\pi}^N(Z_0) \end{array}$$

If the AM-conjecture holds then $(\rho^N)_0$ is an isomorphism and so is θ_0 . Thus the \emptyset -conjecture is satisfied. Conversely, suppose that θ_0 is an isomorphism then the monomorphism ρ^N has finite cokernel $C^N(Z)$. If $C^N(Z) = C^n(Z)$ for all $n \geqslant N$ then $\operatorname{Aut}_{\pi}^N Z = \operatorname{Aut}_{\pi}^n Z$ and the AM-conjecture is proved. If for some $N_1 \geqslant N$, $C^N(Z) \neq C^{N_1}(Z)$ then $C^{N_1}(Z)$ is strictly included in $C^N(Z)$. Again with N_1 playing the role of N the AM-conjecture is satisfied or there exists N_2 such that ... and so on. At the end we have a sequence $N_1, N_2, ..., N_k$ with $C^{N_k}(Z) = \{1\}$ and the AM-conjecture is proved for Z.

4) Composition of homotopy classes.

THEOREM C. The AM-conjecture is true for simply connected finite complexes Z satisfying: for each element $[a] \in \pi_m(Z)$ there exists a non torsion element $[b] \in \pi_r(Z)$ and a continuous map $g: S^m \to S^r$ such that [bg] = [a].

Proof. Let us denote by $\operatorname{Aut}_{\pi/\tau}^n Z$ the subgroup of $\operatorname{Aut} Z$ which consists of elements inducing the identity on each quotient $\pi_i(Z)/\tau(\pi_i(X))$, $i \leq n$ where $\tau(\pi_i(Z))$ denotes the torsion subgroup of $\pi_i(Z)$. By our assumption,

$$\operatorname{Aut}_{\pi}^{n} Z = \operatorname{Aut}_{\pi/\tau}^{n} Z.$$

This subgroup $\operatorname{Aut}_{\pi/\tau}Z$ have been considered in [5]. I.K. MARUYAMA has observed that these groups are not nilpotent in general and proves (Th. 1.2) that the natural map

$$\rho_{\tau}^{N}: \operatorname{Aut}_{\pi/\tau} Z \to \operatorname{Aut}_{\pi/\tau}^{N} Z$$

is an isomorphism for some N. Then theorem C is a consequence of theorem A and of the following commutative diagram:

$$\begin{array}{rclcrcl} (\operatorname{Aut}_{\pi}Z)_{0} & = & \left(\operatorname{Aut}_{\pi/\tau}Z\right)_{0} & \stackrel{\theta_{0,\tau}}{\longrightarrow} & \operatorname{Aut}_{\pi/\tau}(Z_{0}) \\ \left(\rho^{N}\right)_{0} \downarrow & & \downarrow \left(\rho^{N}_{\tau}\right)_{0} & & \cong \downarrow \rho^{N}_{0} \\ \left(\operatorname{Aut}_{\pi}^{N}Z\right)_{0} & = & \left(\operatorname{Aut}_{\pi/\tau}^{N}Z\right)_{0} & \stackrel{\theta_{0,\tau}}{\cong} & \operatorname{Aut}_{\pi/\tau}^{N}(Z_{0}) \,. \end{array}$$

5) Correction to the last assertion of the theorem 3 in [7].

The proof of the last assertion of theorem 3 in [7]:

"Moreover if $H^{>M}(Z;\mathbb{Z})=0$, then there exists an integer N such that the natural map $Aut_{\pi}Z \to Aut_{\pi}^{N}Z$ is an isomorphism"

is false, since in fact we have assumed the \emptyset -local conjecture to be true in our proof.

6) The Ω -conjecture.

Denote by $\operatorname{Aut}_{\Omega}^{n}X$ the group of homotopy classes of self-homotopy equivalences f of X such that the restriction of Ωf to $(\Omega X)^{(n-1)}$ is homotopic to the identity.

Clearly, each $\operatorname{Aut}_{\Omega}^{n}X$ is a subgroup of $\operatorname{Aut}_{\pi}^{n}X$.

If Z is a finite simply connected complex then $\operatorname{Aut}_{\pi}^{n}Z$, $n \geqslant \dim Z$ is a finitely generated nilpotent group and thus $\operatorname{Aut}_{\Omega}^{n}Z$ is a nilpotent group for $n \geqslant \dim Z$.

We denote by ${\rm Aut}_\Omega X$ the inverse limit :

$$\lim_{\leftarrow} \operatorname{Aut}_{\Omega}^{n} X \cong \bigcap_{n \geqslant 2} \operatorname{Aut}_{\Omega}^{n} X.$$

 Ω -Conjecture. Let Z be a simply connected finite complex. There exists an integer N such that the natural map

$$\rho_{\Omega}^{N}: Aut_{\Omega}Z \to Aut_{\Omega}^{N}Z$$

is an isomorphism.

If Z is a finite simply connected complex, the natural injections $\operatorname{Aut}_{\Omega}^n Z \hookrightarrow \operatorname{Aut}_{\pi}^n Z$ induce isomorphisms

$$(\operatorname{Aut}_{\Omega}^{n} Z)_{0} \cong (\operatorname{Aut}_{\pi}^{n} Z)_{0}$$
,

for any $n \geqslant \dim Z$. Indeed, if $[f] \in \operatorname{Aut}_{\pi}Z$ there are only finitely many obstructions for [f] being in $\operatorname{Aut}_{\Omega}Z$.

We do not know if there exists a simply connected finite complex Z such that $(\operatorname{Aut}_{\Omega} Z)_0 \not\cong (\operatorname{Aut}_{\pi} Z)_0$. Clearly, we obtain:

Theorem D. Let Z be a simply connected finite complex such that

$$(Aut_{\Omega}Z)_0 \cong (Aut_{\pi}Z)_0$$
.

Then Z satisfies the AM-conjecture iff Z satisfies Ω -conjecture.

References

- M. Arkowitz and C. Curjel, Groups of homotopy classes, Lectures Notes in Mathematics,
 Springer-Verlag, 1967.
- [2] M. Arkowitz and K.I. Maruyama, Self homotopy equivalences which induce the identity on homology, cohomology or homotopy groups, Topology Appl. 87 (1998) 133-154.
- [3] E. Dror and A. Zabrodsky. Unipotency and nilpotency in homotopy equivalences. Topology 18 (1979), 187-197.
- [4] K.I. Maruyama, Localization of a certain subgroup of self-homotopy equivalences, Pacific J. Math. 136 (1989), 293-301.
- [5] K.I. Maruyama, A subgroup of self-homotopy equivalences which satisfies the M-L condition. Bulletin of The Faculty of Education, Chiba University 48 -02/29/2000.
- [6] K.I. Maruyama, Stability properties of maps between Hopf spaces. Preprint.
- [7] Yves FÈlix and Jean-Claude Thomas, On spaces of the same strong n-type, Homology, Homotopy and Applications 1 No 10 (1999), 205-217.

This article may be accessed via WWW at http://www.rmi.acnet.ge/hha/or by anonymous ftp at ftp://ftp.rmi.acnet.ge/pub/hha/volumes/2000/n8/n8.(dvi,ps,dvi.gz,ps.gz)

Yves Fèlix felix@agel.ucl.ac.be

Départment de Mathématiques Chemin du Cyclotron 2 1348 Louvain-la-Neuve Belgique

Jean-Claude Thomas jean-claude.thomas@univ-angers.fr

Université d'Angers Faculté des Sciences 2bd Lavoisier, Cedex 01 France