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MORE ABOUT HOMOLOGICAL PROPERTIES OF PRECROSSED
MODULES
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(communicated by Graham Ellis)

Abstract

Homology groups modulo g of a precrossed P-module in any dimen-
sions are defined in terms of nonabelian derived functors, where ¢ is
a nonnegative integer. The Hopf formula is proved for the second ho-
mology group modulo g of a precrossed P-module which shows that
for ¢ = 0 our definition is a natural extension of Conduché and El-
lis’ definition [CE]. Some other properties of homologies of precrossed
P-modules are investigated.

Introduction

The homology of precrossed modules was introduced by Conduché and Ellis in [CE]. The
aim of this paper is to pursue their line of investigation homological properties of precrossed
modules.

Let P be a group. A precrossed P-module (M, i) is a group homomorphism p : M — P
together with an action of P on M denoted by Pm for p € P and m € M, which satisfies the
following condition:

p(Pm) = ppu(m)p~t.
If in addition the following Peiffer identity holds
1

/ / -
#) ! = mm/m™?,

(M, ) is a crossed P-module (see e.x. [BH]).
A morphism ¢ : (M, u) — (N,v) of (pre)crossed P-modules is a commutative triangle

M _¥¢ | N
,u\ 1/1/5
P

where ¢ is a P-equivariant group homomorphism i.e. p(Pm) = Pp(m) for allm € M, p € P.
Let us denote the category of precrossed (crossed) P-modules by PCM (P) (CM(P)).

Further we shall occasionally supress explicit mention of the homomorphism p in a pre-
crossed P-module (M, p1) and write simply M.

Precrossed modules form a model of homotopy type in dimensions 1 and 2 for connected
CW-complexes. Precisly Kan’s G functor establishes an equivalence relation between the cat-
egory of connected CW-complexes and the category of free simplicial groups [K] and the first
two terms of the Moore chain complex associated to the simplicial group gives a precrossed
module.
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Let (M, u) be a precrossed P-module. The following type elements in M
(m,m')y = mm/mfl“(m)m/fl, m,m’' € M
are called Peiffer commutators, and now we give some identities for them from [BC]

(m, ") = {am, O (o,

\)

(") = m{m’, "y (o, #O ),
;D<m, m/> = <;Dm, ;Dm/>,
(k,m) = kmk~'m™",
(k,m)(m, k) = k™) 1

for all m,m/,m"” € M, p e P and k € Kerp.
The Peiffer commutator subgroup (M, M), which is a subgroup of the group M generated
by the Peiffer commutators, plays the same role for precrossed modules as the commutator

subgroup plays for groups. Analogously as a lower central series in a group, a lower Peiffer
central series in a precrossed P-module is defined by Baues and Conduché [BC]

MO =M>MP ..

N

A~ N /N /N
ot w
— — Y Y ~—

This series has properties like classical central series giving a hope to generalize some methods
of Curtis [CU1, CU2] and Quillen [Q] for nonsimply connected spaces.

The crossed P-module y/ : M/{M, M) — P associated to the precrossed P-module y :
M — P, where M/(M, M) is a factor group of M by the Peiffer commutator subgroup, the
homomorphism ' and the action of P on M/(M, M) are induced by p and the action of P
on M respectively, plays the role of abelianization of a group which we further call Peiffer
abelianization. As an analog of the classical first group homology, Conduché and Ellis [CE]
defined the first homology of a precrossed P-module (M, 1) by Peiffer abelianization i.e.

Hy(M)p = M/{M, M) .

We point out that despite its name, the Peiffer abelianization can be nonabelian.
Let (L, \), (M, n) and (N, v) be precrossed P-modules. A short exact sequence of groups

1 — 1L -2, -2, N 1

is called short exact sequence of precrossed P-modules if ¢ and 1 are morphisms of the category
PCM(P).

Let X be aset and § : X — P a map to the group P. Then the free precrossed P-module
0 : F — P with base (X,0) is defined as follows: F' is the free group generated by the set
X x P, 9 is defined on generators by d(z,p) = pd(x)p~! and the action of P on F is given by
Pz, p') = (z,pp').

Conduché and Ellis in [CE] also defined the second homology group of a precrossed P-
module (M, p) by the Hopf formula

Hy(M)p = RO(F, F)/((F, R))

where 1 - R — F — M — 1 is a short exact sequence of precrossed P-modules, (F, 9) is a free
precrossed P-module with some base (X, §) which is called free presentation of the precrossed
P-module (M, p). They studied some properties so defined low dimensional homology groups
of precrossed P-modules and hoped that higher homology could be defined analogously using
Hopf formulas for higher homology groups (see [BE]). Using this way to define all homology
groups of a precrossed P-module (M, ), H,(M)p, one should have some difficulties, for
n 2 3, to prove that the definition does not depend on the free presentation of the precrossed
P-module (M, p).

In the present paper we have another conception to define all homology groups of a pre-
crossed P-module, particulary the use of nonabelian derived functors.
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All treatments with homology of precrossed P-modules we consider in the ¢ modular aspect,
where ¢ is a nonnegative integer, and for ¢ = 0 it gives homology groups of precrossed modules
introduced in [CE]. Thus, for nonnegative integer ¢, we define homology groups modulo ¢ of
precrossed P-module (M, 1) in any dimension n > 1, denoted by H, (M, q)p, and study their
properties generalizing the classical homology of groups with coefficients in Z, = Z/qZ.

1. Construction

Let us denote by Set(P) the category of sets over the group P, whose objects are all sets
with a map to P and morphisms are all maps of sets such that the corresponding triangles are
commutative.

Consider the functor F : Set(P) — PCM(P) defined as follows: for an object X —— P

of the category Set(P), let F(X ——— P) be a free precrossed P-module with base (X, a);

for a morphism X — X ' let F(k) be the canonical homomorphism induced by k.

It is known that the forgetful functor from the category PCM(P) to the category Set(P) is
a right adjoint of the functor F. This adjunction induces the cotriple (F, 7, d) in the category
PCM(P). Let P be the projective class in the category PCM (P) induced by the cotriple
(F,7,0) (see [TV], [IH]).

First we describe the projective class P and the corresponding P-epimorphisms.

Proposition 1.1. A morphism M —4 - N of the category PCM(P) is a P-epimorphism
if and only if ¢ is surjective (as map of sets).

Proposition 1.2. In the category PCM(P) the following conditions are equivalent:
(i) A precrossed P-module (Q,v) belongs to the projective class P;

(ii) (Q,v) is a free precrossed P-module with base (X, ) for some object X —2— P of the
category Set(P)

The proof of these propositions is left to the reader.

A precrossed P-module (IV, v) is a precrossed P-submodule of a precrossed P-module (M, p)
if N is a subgroup of M, the action of P on N is induced by the action of P on M and v is
the restriction of p on N. If, in addition, N is a normal subgroup of the group M then we
write N <p M.

Let (M, 1) be a precrossed P-module, N, N’ be two subgroups of M and ¢ be a nonnegative
integer. We denote by (N, N'), the subgroup of M generated by the elements (n,n’) and k¢
foralln € N,n" € N', ke NNN'NKerp. Let ((N,N"))q) = (N, N")(g)(N', N)(g)- One has
the following

Lemma 1.3. (i) If N and N’ are precrossed P-submodules of M then (N,N')q and
((N,N'))(q) are precrossed P-submodules of M.

(ii) If N <p M then (M, N>(q) <p M, (N, M>(q) <p M, {{M, N>>(q) <p M.

Proof. (i) Follows from the relation (3) and the equality (k%) = (Pk)?,pe P,k € NN N'N
Kerp.
(ii) Follows from the relations (1), (2) and the equality mkim=! = (mkm=)%, m € M,
ke NN Kerp. O

Using Lemma 1.3 one can define a covariant functor 7{,) from the category PCM (P)
to the category &t of groups by the following way: for any precrossed P-module (M, u),

let Ty (M) = M/{((M,M))qy = M/(M, M) 4; for a morphism (M, ) — (M’ 1), let
T(4) () be a group homomorphism induced by ¢. Note that for ¢ = 0 the functor T, is the
Peiffer abelianization functor.
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In the category PCM(P) there exist finite limits (easy to show). Let us consider the non-
abelian left derived functors LFT(,), n > 0, of the functor T(,) : PCM(P) — &t relative to
the projective class P induced by the cotriple (F, 7, d) in the category PCM(P) [IH].

Definition 1.4. Let P be a group, (M, u) be a precrossed P-module and q be a nonnegative
integer. Define the n-th homology group modulo q of the precrossed P-module (M, i) by

Hn(Ma Q)P = EfflT(q) (M)a nz= 1.
Proposition 1.5. Let u : M — P be a precrossed P-module such that u(m) = 1 for all
m € M. Then one has
Hn(MaQ)P:Hn(Man)a TLZI

Proof. Consider a P-projective pseudosimplicial resolution (see [IH]) of (M, 1) in the category
PCM(P)

—_— K2 —_— K1
: F2—>}/1—>F1—>}/0—>F0—>M, (6)

where F,, € P and Y, is a simplicial kernel in the category PCM (P). By Propositions 1
and 2 all F,, are free groups and all k,, are surjective group homomorphisms, implying that
(6) is a projective resolution of the group M in the category &t. Since p is a trivial group
homomorphism, T{) (F,,) = F2°/qF2". Using [BB] one gets the assertion. O

2. Main Results

In this section we give our main results. We investigate the functor T(,) and prove a Hopf
type formula for the second homology modulo g of precrossed P-modules, generalizing the
classical one (see [BR], [E]).

Let C be a category with finite limits, Q be a projective class in the category C and T be a
covariant functor from the category C to the category &t of groups.

Definition 2.1 ([P]). The functor T is called a cosheaf over (C, Q) if for any Q-epimorphism
X — A the sequence of groups

TXxaX) — T(X) —T(A) — 1,
is simplicially exact, where X x4 X is the pullback of the diagram

X

i
X — A

Lemma 2.2. Let P be a group and q be a mnonegative integer. Then the functor
Tg) : PCM(P) — &t is a cosheaf over (PCM(P),P), where P is the projective class in-
duced by the cotriple (F,,9d) (see above).

Proof. It is easy to verify that for a short exact sequence of precrossed P-modules
l1—-L— M — N —1
there is an exact sequence of groups
Tig)(L) — Tig)(M) — T()(N) — 1 . (7)
Consider a P-epimorphism @ —%— M in the category PCM(P). We have to show that
the diagram of groups

do Ty (@)
T(@ > Q) —= Ti»(Q) —0 s Ty (M) — 1
1
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is exact. In effect, there is the following commutative diagram of groups

T ()
Tg(R) —— Tp@Q 25 TpM) — 1

I I I ,
Kerdy —%— Ti(@Q) 299 1,00 — 1

where R is the kernel of o : @ — M, X is a homomorphism induced by the inclusion
R — Q Xy Q, r— (r,1), and the top row is exact by (7). Hence the bottom row of this
diagram is also exact. O

Proposition 2.3. Let P be a group, (M, u) be a precrossed P-module and q be a nonnegative
integer. Then there is a natural isomorphism

Hy(M,q)p = M/{M, M)
Proof. Follows by Lemma 2.2 and [P or IH, Proposition 2.26].0

Theorem 2.4 (Hopf Formula). Let P be a group, (M, p) be a precrossed P-module and g
be a nonnegative integer. Then there is an isomorphism

Hy(M,q)p = RN (F, F) )/ {((F, R))(q) >

where 1 R F—"— M — 1is any free presentation of the precrossed

P-module (M, p) i.e. using Propositions 1 and 2, F is an object of the projective class P and
p 1s a P-epimorphism.

Proof. Consider the Cech resolution of (M, 1) € PCM(P) for ¢ : F — M [P or IH, Definition
2.31, Examples|

do

. FxyFxyF d1 FxyF —/—] F —— M.
I do dy

By Lemma 2.2 T{, is a cosheaf over (PCM(P),P) and using [P or IH, Theorem 2.39(ii)]
there is an isomorphism

EfT(q) (M) ~ ch*,

where C, is the following simplicial group

Tq(do) Ty(do)
Co= — Tp(F xuFxyF) Tl T, (FxyF) —= T,HF) .
- Tq(d2) Tq(dr)

The Moore complex NC., of the simplicial group C has length 1 i.e. (NCi), =0, n > 2.
This follows from the fact that the Moore complex of the Cech resolution has length 1.

Hence mC = Ker T, (do) NKer Ty (d4).

Furthermore, one has the following isomorphism of precrossed P-modules
Fxy F —— RxF,defined by (r, f) — (rf, f), where the precrossed P-module structure
on the group R x F' is given by the following way: a homomorphism R x F' — P is defined by
(ry f) — pp(f) and an action of P on R x F by P(r, f) = (PrP f) forallpe P,r € R, f € F.

d
One gets Rx F == F, do(r, f) = f, di(r, f) = .
dy
It only remains and easy to prove that the homomorphism

a: (R/((F,R))(q) x F/{F,F)q —— TigRxF),
defined by a([r], [f]) = [(r, f)], is an isomorphism. O
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Remark 2.5. For u =0 Theorem 2.4 generalizes the classical Hopf Formula from [BR] and
for ¢ = 0 Proposition 2.3 and Theorem 2.4 show that one can get the first and the second
homology of precrossed P-modules of Conduché and Ellis [CE] as nonabelian derived functors
of the Peiffer abelianization functor.

Conjecture. Let P be a group, (M,pn) be a precrossed P-module and q be a nonnegative
integer. Choose a precrossed P-module (F,0) and R1, ..., R, <p F such that: F/ ngign R, ~
M, Hy(F,q)p = 1 and H,(F/]];c4 Ri,q)p = 1 for every proper subset A # 0 of (n) =
{L,...,n}, r = |A[ + 1 and |A| + 2 (for example, the precrossed P-modules F/]],c , Ri are
free for A # (n)). Then there is an isomorphism

Hy 1 (M, q)p ~ {0y Ri 0 (F. F) (o }/{ [ ((NieaRi,NigaRi)) ()}
AC(n)

3. Some other results

In this section we investigate low dimensional, first and second, homologies modulo ¢ of
precrossed P-modules, always have in mind Proposition 2.3 and Theorem 2.4 and give some
results generalizing in ¢ modular aspect the results of Conduché and Ellis [CE].

Proposition 3.1. Let P be a group, q be a nonnegative integer and
1-L—- M—-N-—1
a short exact sequence of precrossed P-modules. Then there is an exact sequence of groups

Hy(M,q)p — H2(N,q)p — L/({M, L>>(q) (8)
qu(MaQ)P—)Hl(NaQ)qu '

Proof. Suppose 1 - R — F — M — 1 is a free presentation of the precrossed P-module
M, and hence 1 - R' — F — N — 1 is a free presentation of the precrossed P-module N.
Therefore R C R' implying RN (F, F) g C R' N {(F, F)(g), ((F, R))(q) C {((F,R'))(q) and there
is the canonical group homomorphism Hs(M, q)p — Ha(N, q)p.

The following commutative diagram of groups with exact rows

1 R F N 1
1 L M N 1

induces a homomorphism Hy (N, q)p — L/{((M, L)) q)-
Other homomorphisms are defined naturally and it is easy to check that the sequence (8)
is exact. O

Remark 3.2. One can extend the sequence (8) to any dimensions using the long exact sequence
of the nonabelian derived functors and recovering for p = 0 the eight term exact homology
sequence of groups with coefficients in Zq [ER].

The following result generalises the classical group result and uses the standard proof,
originally due to [S].

For any precrossed P-module (M, 1) and any nonnegative integer ¢ there is the following
family of precrossed P-submodules

1) _ () _ (n+1) _ (n)
M(q) =M, M(q) = ({(M,M))(q),-- .,M(q) = (M, M(q) N (a)-

Theorem 3.3. Let P be a group, q be a nonnegative integer and ¢ : M — N be a morphism
of precrossed P-modules such that the following properties hold:
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(i) the natural homomorphism Hy(M,q)p — H1(N,q)p, induced by @, is an isomorphism;
(i) the natural homomorphism Ho(M,q)p — H2(N, q)p, induced by ¢, is a surjection.

Then ¢ induces a natural isomorphism of precrossed P-modules
(n) _ = (n)
M/M(q) e N/N(q) for n>2.

Proof. By induction. For n = 2 the theorem is true. Suppose it is true for n. By Proposition
3.1 and the following commutative diagram of groups with exact rows

1 — M((:)) M M/M((:)) -1
| | | ’

1] — NO N N/N®
(9) (9)

one has the following commutative diagram of groups with exact rows

Ha(M,q)p —— Ha(M/M(,q)p —— MO /MO

! ! !

Hy(N,q)p —— Hy(N/N(,q)p —— NN

—— Hi(M,q)p —— Hi(M/M}, g)p —— 1

! !

—— Hi(N,q)p —— Hi(N/NJ.q)p —— 1

Using the “five lemma” M ((:)) /M ((:)H) is isomorphic to N, ((:)) /N ((:)H). Then the following com-

mutative diagram of groups

(n) )y p(nt1) (nt1) (n)
L My /My ——— M/M,"" ——— M/M,} —— 1

! | !

(n) ) nr(nt1) (nt1) (n)
L —— Nygy/Ny = — N/Ngy » ——— N/Nyy —— 1

gives the result for n + 1. O
For any precrossed P-module o : M — P, let M A% M be the group generated by the
symbols m A m' and {k}, m,m’' € M, k € Keru subject to the following relations:

mAm'm” = (mAm)(mAm")((m,m"”)" AFm), (9)

mm/ Am" = (m Am/m"m/ =) (Fm! AP, (10)

(m,m'y A (n,n/)y = (mAm)(n AR YmAm) " HnAn) (11)
((m,m/y Am/")(m" A (m,m')) = (m A ) (™ m o ) (12)
Ak =1, (13)

{EYm Am){k} "t = (k9m Am/) (k% A F™m/ )~ (14)

{kk'} = {k} H(’fﬁl AR (R RTIO KD, (15)
{RHFEHE}HE Y = ROAR, (16)

{(m,m)} = (m Am/)? (17)

for all m,m/,m"” ,n,n' € M and k, k' € Kerpu.



Homology, Homotopy and Applications, vol. 2, No. 7, 2000 112

Note that (9)-(13) are the defining relations for the group M Ap M defined in [CE]. Fur-
thermore, when P =1 or u = 0 the group M A% M coincides with the nonabelian exterior
product modulo g, M A? M, introduced by Conduché and Rodriguez-Fernandez [CR] (see also
(B, [ER], [E], [IN]).

There is an action of the group P on the group M A% M given by P(m Am') = Pm APm/
and P{k} = {Pk} for all m,m’ € M, k € Keru. Moreover, there exists a P-equivariant group
homomorphism 9§ : M AL M — M defined by 93(m Am') = (m,m’) and 93 ({k}) = k9. It is

2
clear that 03(M A%, M) = M((q)).

Note that the complex of groups M A% M
the sence of Conduché [C].

o I3 . .
—2 . M —— P is a 2-crossed module in

Proposition 3.4. Let (M, u) be a precrossed P-module, ¢ > 0 and
1 R F—*—> M 1

a short exact sequence of precrossed P-modules, where (F,v) is a free precrossed P-module. If
the homomorphism 85 : F AL F — F s injective then the group M A% M is isomorphic to the

group F2)J((F, R)) ).

Proof. Let Lp (resp. Lys) be the free group generated by the set (F x F) U Kerv (resp.
(M x M) U Kerp). There is a commutative diagram of groups

LF — LM

| [

FANLF —— MALM

3

where the horizontal homomorphisms are surjective and 7r and 7 are canonical homomor-
phisms defined by wr(f, f') = f A [, nr(g) = {¢9} and 7p(m,m') = m Am/, 7p(k) = {k}
forall f,f" € F, g € Kerv, mym/’ € M and k € Kerp. It is easy to get that Ker(F AL F —
M A% M) is the homomorphic image of Ker(Lp — L) by mp. It is also easy to check that
Ker(Lp — Lyy) is the normal subgroup of Lr generated by the elements (fi, fo)(f'1, f'2)~!
and f3f'3 " such that of; = of's, fi, f € F (i = 1,2) and ¢fs = ¢f's, f3, f's € Kerv. Thus
its image in F' A% F is the normal subgroup generated by the elements (f1 A f2)(f'1 A f/2) "
and {f3}{f’s} !, which by the formulas (9), (10) and (16) coincides with the normal subgroup
of F' A% F generated by the elements f Ar, r A f and {r}, f € F, r € R. Then the image

of this subgroup by the isomorphism F AL F ~ 05(F A% F) = F((;)) is ((F, R))(q) and thus
F 3 J(F, RY) (g ~ M A M. D
Lemma 3.5. Let h: A — B and g : B — C be group homomorphisms. If h is surjective then
the following sequence of groups

1 — Ker(h) — Ker(gh) — Ker(g) — 1.

1s exact.

Theorem 3.6. Let y: M — P be a precrossed P-module, ¢ > 0 and

1 ——R F—2 M —s1

a short exact sequence of precrossed P-modules, where F' is a free precrossed P-module. If the
homomorphism 83 : F AL F — F((;)) is an isomorphism then there is an isomorphism of groups

Hy(M,q) ~ Ker(M AL M — M).
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Proof. By Lemma 3.5 one has the following exact sequence of groups
1 — Ker(p AL @) — Ker(93(p A% ) — Kerd§ — 1.
From the commutative diagram of groups

q
FALE 22220 A AL M

zJ{ J{Bg
(2)
®(q) (2)
Mg
one gets Ker(d3(p AL @) =~ Kempg; = RN F((;)). Then Ker(9§ : M AL M — M) =
RNFE JU(F, R)q) = Ha(M,q)p.
Finally we give an example showing that there exists such a group P and a free precrossed
P-module F' that the homomorphism 95 : F' A% F — F is injective.

F@

Lemma 3.7. Let (M, ) be precrossed P-module and q be a nonnegative integer. Then there
is an exact sequence of groups

MApM —2— MANLM ——— kerp/(M,M) —— 1.

Proof. The homomorphism ¢ is given by ¢(m A m’) = m A m/. The required exacteness is
easy to check. O

Proposition-Example 3.8. Let P be a free group, u: F — P be a free precrossed P-module
and q¢ > 0. Then the homomorphism 03 : F N F — F((;)) is an isomorphism.

Proof. Using Lemma 3.7 one has the following commutative diagram of groups with exact
rows

1 — FApF —— FALF — kep/F®» 1

1 o2 1 a3 Lo ;
1 — F®» ., F®»  __, FYFe ., 1
(@) (@)
where F®?) = (F F), 0, is an isomorphism [BC] proved applying a theorem of

J.H.C. Whitehead [W] on 2-dimensional CW-complexes and the theorem of Kan [K] (see
above) and hence ¢ is injective. One can directly check that « is an isomorphism and so is 5.
O
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