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Abstract
In this paper, we define and investigate the properties of continuous

family groupoids. This class of groupoids is necessary for investigating
the groupoid index theory arising from the equivariant Atiyah-Singer
index theorem for families, and is also required in noncommutative
geometry. The class includes that of Lie groupoids, and the paper shows
that, like Lie groupoids, continuous family groupoids always admit (an
essentially unique) continuous left Haar system of smooth measures.
We also show that the action of a continuous family groupoid G on a
continuous family G-space fibered over another continuous family G-
space Y can always be regarded as an action of the continuous family
groupoid G ∗ Y on an ordinary G ∗ Y -space.

1. Introduction

In the context of noncommutative geometry, it is becoming increasingly clear that the
classical Atiyah-Singer index theory, in which a compact group acts equivariantly on a compact
manifold, requires to be extended to the context of a Lie groupoid acting properly on a
manifold. In this connection, Connes ([5, p.151]) says:

One of the interests of the general formulation [of the Baum-Connes conjecture]
is to put many particular results in a common framework. Thus, for instance, the
following three theorems:

1) The Atiyah-Singer index theorem for covering spaces
2) The index theorem for measured foliations
3) The index theorem for homogeneous spaces

are all special cases of the same index theorem for G-invariant elliptic operators D
on proper G-manifolds, where G is a smooth [i.e. Lie] groupoid with a transverse
measure Λ.

For example, in the foliation case, the smooth (Lie) groupoid G is the holonomy groupoid of
a compact foliated manifold. Like all Lie groupoids, it acts properly on itself as a G-space,
each g ∈ G acting as a diffeomorphism from Gs(g) onto Gr(g). (Here, s, r are respectively the
source and range maps on the groupoid. See §2 for more details.) So the “proper G-manifold”
in that case is G itself. Each G-invariant family of elliptic pseudodifferential operators along
the leaves defines an element of K0(F ∗), where F is the vector bundle of vectors tangential
along the Gu’s, and has its index in K0(C

∗(G)).
We note that smoothness is really only being used along the “leaves” Gu (and Gu), and

this leads naturally to considering the case where only this kind of smoothness is assumed for
the groupoid, and we have only continuity “transversely”. (This notion, as well as the C∞,0-
notation of the paper, appears in [4].) In fact, such a class of groupoids is required for the
equivariant version of the Atiyah-Singer index theorem for continuous families ([2]) alluded
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to at the end of that paper ([2, p.135]). (The groupoid interpretation of this theorem is given
in §4 of the present paper.) This equivariant index theorem cannot be formulated in terms of
Lie groupoids since the unit space of the groupoid in that context is the base space Y of the
continuous family on which a compact Lie group acts, and Y is not assumed to be a manifold
but only a compact Hausdorff space. To deal with this, then, we need to consider a class of
locally compact groupoids more general than that of Lie groupoids, in which, as above, we
only have smoothness along the leaves. The groupoids that we need for this are the continuous
family groupoids in the title of the paper.

Continuous families (in the sense of Atiyah and Singer) play an important role in in-
dex theory. For example, the Bott periodicity theorem, which asserts (for compact Y ) that
K0(Y ) = K0(Y × S2), involves the continuous family Y × S2 over Y . So if we restricted only
to smooth families, we would be effectively restricting K-theory to smooth manifolds, whereas
K-theory is a functor on the topological category.

In the non-equivariant families theorem, a continuous family is defined as follows. We are
given a compact Hausdorff space Y and a fiber bundle X over Y with fiber Z, where Z is
a smooth compact manifold and the structure group of X is Diff(Z).1 (Here Diff(Z) is a
topological group under the topology of uniform convergence for each derivative.) The space
X is thus a continuous family of spaces diffeomorphic to Z. Atiyah and Singer ([2]) showed
that the index of an elliptic family on X lies in K0(Y ).

For continuous family groupoids, we need to extend this to the case where the fibers are not
diffeomorphic to a fixed space. The general notion of a continuous family of manifolds, required
for the paper, is more accurately described as being a locally continuous family X of smooth
manifolds Xy with y ∈ Y , but for the sake of brevity, we will omit the adjective “locally”.
(The smooth version of this for almost differentiable groupoids is given in [12].) The role of
Diff(Z) is taken over by a certain pseudogroup of maps. We then (as in [2]) describe what we
mean by a vector bundle over X which is smooth along the fibers. (This is not actually used
later in the paper but is included since it is required for groupoid index theory.)

The definition of continuous family groupoids is given in §3. Lie groupoids are, of course,
continuous family groupoids. But there are many naturally occurring examples of continuous
family groupoids that are not Lie groupoids (including, in particular, the groupoid associated
with the equivariant index theorem for families referred to earlier). As for Lie groupoids, there
is an essentially unique, continuously varying, left Haar system of smooth measures for any
continuous family groupoid G, so that there is a canonical C∗(G). (The K0-group of this
C∗-algebra is the recipient for the index of elliptic families on G-manifolds.)

The last section §4 of the paper discusses G-spaces. Its main result is that for the category
of continuous family groupoids, by changing the groupoid, we need only consider “ordinary”
G-spaces rather than fibered G-spaces. Indeed, suppose that we are given G-spaces X, Y with
X fibered equivariantly over Y . Then we can form the “transformation groupoid” G ∗ Y
associated with the action of G on Y . This groupoid is shown to be itself a continuous family
groupoid, and the action of G on X fibered over Y is equivalent to the canonical action of
G ∗ Y on X with X treated as an ordinary G ∗ Y -space.

In the case of the equivariant Atiyah-Singer families index theorem, in which a compact Lie
group H acts equivariantly on a compact manifoldX over Y , the preceding shows that this is
equivalent to the transformation group groupoid H ∗Y acting on X, and even in that classical
context, we leave the group category for the continuous family groupoid category. (The index
of a H-invariant elliptic family of pseudodifferential operators on X can be shown to lie in
K0(C

∗(H ∗ Y )).)

1In the notation of [2], the X and Z are interchanged.
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2. Continuous families of manifolds

Let Y be a topological space and k > 1. Let A1, A2 be open subsets of Y × Rk such that
q1(A1) ⊂ q1(A2) where q1 is the canonical projection map from Y ×Rk onto Y . For y ∈ q1(Ai)
(i = 1, 2), let Ay

i = {x ∈ Rk : (y, x) ∈ Ai}. Let f : A1 → A2 be a continuous map which
preserves fibers, i.e. for each y ∈ q1(A1), we have f({y} × Ay

1) ⊂ {y} × Ay
2 . For such an f ,

define fy : Ay
1 → Ay

2 by: f(y, x) = (y, fy(x)).
Then (cf. [4, p. 110]) the function f is said to be a C∞,0-function (f ∈ C∞,0(A1, A2)) if,

whenever U1, U2 are open subsets of Y and V1, V2 are open subsets of Rk such that Ui×Vi ⊂ Ai

for each i and f(U1 × V1) ⊂ U2 × V2, then the map y → (fy)|V1
is a continuous map from U1

into C∞(V1, V2). Here, the topology on C∞(V1, V2) is that of uniform convergence on compacta
for all derivatives, i.e. hn → h in C∞(V1, V2) if and only if, for every compact subset K of V1

and multi-index α = (α1, α2, . . . , αk), we have
∣

∣∂αhn(x) − ∂αh(x)
∣

∣

K
→ 0 (2.1)

as n → ∞. Here, the differentiation is with respect to the xi’s where x = (x1, . . . , xk), and
|g|K = supx∈K |g(x)| for any complex-valued function g bounded on K.

In the above definition, since f(U1 × V1) ⊂ U2 × V2 and f is fiber preserving, we have
U1 ⊂ U2. We can clearly take U1 = U2 above. In addition, by the continuity of f , every
element of A1 belongs to some open U1×V1 ⊂ A1 for which there exists an open U2×V2 ⊂ A2

with f(U1 × V1) ⊂ U2 × V2.
The set Diff0(A1, A2) is defined to be the set of functions f ∈ C∞,0(A1, A2) for which f−1

exists and belongs to C∞,0(A2, A1). (If Diff0(A1, A2) is non-empty, then of course q1(A1) =
q1(A2).) Every element of Diff0(A1, A2) is trivially a homeomorphism.

In practice, an alternative formulation of C∞,0(A1, A2) proves useful. Let us say that a fiber
preserving function f : A1 → A2 is C∞-continuous if given a ∈ A1 and an open subset of A2

of the form U2 × V2 (U2 ⊂ Y, V2 ⊂ Rk) which contains f(a), then there exists an open subset
U1 × V1 of A1 such that a ∈ U1 ×V1, f(U1 ×V1) ⊂ U2 × V2 and the map y → (fy)|V1

takes U1

into C∞(V1, V2).

Proposition 1. A function f : A1 → A2 belongs to C∞,0(A1, A2) if and only if it is C∞-
continuous.

Proof. If f ∈ C∞,0(A1, A2), then trivially f is C∞-continuous. Conversely, suppose that f is
C∞-continuous and let Ui×Vi be open subsets of Ai such that f(U1×V1) ⊂ U2×V2 . Let K be
a compact subset of V1 and y0 ∈ U1. Then for each v ∈ K, there exists, by the C∞-continuity
of f , an open subset Uv

i × V v
i of Ai with (y0, v) ∈ Uv

1 × V v
1 such that the map y → (fy)|V v

1

is continuous from Uv
1 into C∞(V v

1 , V
v
2 ). Cover K by a finite number of sets V v1

1 , . . . , V vn

1 ,
and let U ′ = ∩n

j=1U
vj

1 . There exist compact subsets Kj (1 6 j 6 n) such that Kj ⊂ V
vj

1 and

K = ∪n
j=1K

j . Then each of the maps y → (fy)
|V

vj
1

is continuous, and it follows (using the

Kj’s) that ‖∂αfy − ∂αfy0‖K → 0 if y → y0 in U ′. So f ∈ C∞,0(A1, A2).

Corollary 1. Let A1, A2, A3 be open subsets of Y × Rk such that q1(Ai) ⊂ q1(Ai+1) (1 6

i 6 2). Let f ∈ C∞,0(A1, A2) and g ∈ C∞,0(A2, A3). Then g ◦ f ∈ C∞,0(A1, A3). Further, if
f ∈ Diff0(A1, A2), then f−1 ∈ Diff0(A1, A2).

Proof. For the first assertion of the corollary, one just has to prove that g◦f is C∞-continuous.
To this end, note that (g ◦ f)y = gy ◦ fy . One then follows the elementary proof that the
composition of two continuous functions is continuous, and uses induction and the chain rule
to deal with the partial derivatives in (2.1). The second assertion is obvious.

We now recall the definition of a pseudogroup. Various definitions have been given of this
in the literature: the version that we will use is that given in [6, p.1]. A pseudogroup S on a
topological space X is an inverse semigroup of homeomorphisms f : A → B, where A,B are
open subsets of X (depending on f) such that:
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(i) if f : A→ B is a homeomorphism, where A = ∪i∈IAi and f|Ai
∈ S, then f ∈ S;

(ii) if f : A→ B belongs to S and A′ is an open subset of A, then f|A′ ∈ S.

(iii) If A is open in X, then the identity map id : A→ A belongs to S.

Let Γ(Y × Rk) be the union of all of the sets Diff0(A1, A2) (with A1, A2 ranging over the
open subsets of Y × Rk).

Proposition 2. The set Γ(Y × Rk) is a pseudogroup on Y × Rk.

Proof. Let S = Γ(Y × Rk). By Corollary 1, if f ∈ Diff0(A1, A2) and g ∈ Diff0(A3, A4),
then f−1 ∈ S and both f ◦ g, (f ◦ g)−1 = g−1 ◦ f−1 are Diff0 maps. From Corollary 1, if
f ∈ Diff0(A1, A2) and g ∈ Diff0(A3, A4) then g ◦ f ∈ Diff0(A5, A6), where A5 = f−1(A2 ∩A3)
and A6 = g(A2 ∩A3). So f−1 , f ◦ g ∈ S, and S is an inverse semigroup. Conditions (i) and (ii)
above follow by C∞-continuity (cf. the proof of Proposition 1), while (iii) is trivial.

Let X, Y be locally compact Hausdorff spaces and p : X → Y be a continuous open
surjection. We say that (X, p) is fibered over Y with fibers Xy = p−1({y}) (y ∈ Y ), and call
(X, p) a fiber space (over Y ). We now define what is meant by a continuous family of manifolds
over Y .

Definition 1. Let (X, p) be fibered over Y . Then the pair (X, p) is defined to be a continuous
family of manifoldsXy over Y or simply a continuous family over Y if there exists a set of pairs
{(Uα, φα) : α ∈ A}, where each Uα is an open subset of X and ∪α∈AUα = X, compatible
with the pseudogroup Γ(Y × Rk) in the following sense:

(i) for each α, the map φα is a homeomorphism from Uα onto an open subset of Y × Rk

for which q1 ◦ φα = p|Uα;

(ii) for each α, β, the mapping φβ ◦ φ−1
α ∈ Diff0(φα(Uα ∩ Uβ), φβ(Uα ∩Uβ )).

The family A = {Uα : α ∈ A} will be called an atlas for the continuous family (X, p), and
the Uα’s, or more precisely, the pairs (Uα, φα), will be called charts. Of course, in the above
definition, we can and will take the atlas A to be maximal. Then A is a basis for the topology
of X.

If (U, φ) ∈ A and x ∈ U , then there exists a V ⊂ U with x ∈ V such that (V, φ |V ) ∈ A and
φ(V ) = p(V )×W for some open subset W of Rk.805We shall write V ∼ p(V )×W . For many
purposes, we need only consider charts of this special form V .

The simplest example of a continuous family over Y is one of the form X = Y ×M where M
is a manifold. Such a family is called trivial. From the preceding paragraph, every continuous
family is locally trivial.

A continuous family in the sense of Atiyah and Singer is a continuous family in our sense.
To see this, recall (§1) that in that case, (X, p) is a fiber bundle over Y with a manifold Z
as fiber and with structure group Diff(Z). Then there is a basis {Jδ} for the topology of Y
and fiber preserving homeomorphisms cδ : p−1(Jδ) → Jδ ×Z such that the resultant cocycles
are continuous maps into Diff(Z). Let (Lγ, χγ) be a chart for Z. We obtain charts for the
continuous family in the sense of Definition 1 by taking sets of the form ((1 ⊗ χγ) ◦ cδ)

−1(A)
where A is an open subset of Jδ × Rk (k = dimZ)..

Smooth families are, of course, continuous families. These arise in the theory of Lie groupoids
(§3) ([8, 12, 13, 15, 16]). (In particular, for any Lie groupoid G with range and source maps
r, s and unit space G0, both (G, r), (G, s) are smooth families over G0.) For a smooth family,
we require that both X, Y be manifolds and that p : X → Y be a (surjective) submersion.
Then locally, p can be taken to be a smooth projection map (x, y) → x, and thus defines
a foliated manifold structure on X whose leafs are the Xy’s ([3, p.23-24]). Condition (ii) of
Definition 1 is satisfied since the maps φβ ◦ φ−1

α are diffeomorphisms.
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Let (X, p) be a continuous family of manifolds with atlas A = {Uα : α ∈ A}. Then (as is to
be expected) every Xy is a (smooth) manifold. Indeed, for fixed y, let

A
y = {Uα ∩Xy : α ∈ A}.

Then Ay gives the relative topology on Xy (as a closed subset of X). Since the restriction of
φβ ◦ φ−1

α to φα(Uα ∩ Uβ ∩ Xy) is a diffeomeomorphism onto φβ(Uα ∩ Uβ ∩ Xy), we obtain

that Xy is a manifold.
We now describe some operations that produce new continuous families from given ones.

We note without giving details that similar (easier) constructions can be given for fiber spaces.
A pull-back of a continuous family is also a continuous family. Specifically, let (X, p) be

a continuous family over Y , Z be a locally compact Hausdorff space and t : Z → Y be a
continuous map. The pull-back continuous family (t−1X, p′) over Z is given by the subset

t−1X = {(z, x) ∈ A×X : t(z) = p(x)}

of Z ×X and the map p′ where p′((z, x)) = z. We have the commuting diagram:

t−1X
t′

−−−−→ X

p′





y





y

p

Z
t

−−−−→ Y

(2.2)

where t′((z, x)) = x. We obtain charts for (t−1X,Z) as follows. If (U, φ) is a chart for X and
φ(x) = (p(x), h(x)), then (t−1U, φ′) is a chart for t−1X, where

φ′((z, x)) = (z, h(x)).

Let (X1, p1), (X2, p2) be continuous families over the same space Y and f : X1 → X2 be
a continuous fiber preserving map, i.e. p2 ◦ f = p1. We say that f ∈ C∞,0(X1, X2) if f is
locally C∞,0 in the earlier sense. That is, whenever (U, φ), (V, ψ) are charts for X1 and X2

respectively such that p1(U) = p2(V ) and f(U) ⊂ V , then ψ ◦ f ◦ φ−1 ∈ C∞,0(φ(U), ψ(V )).
We now discuss what is meant by a morphism of continuous families. We deal first with a

special case (to which, as we shall see, the general case can be reduced). In the special case, a
morphism from (X1, p1) into (X2, p2) over Y as in the preceding paragraph is just a function
f ∈ C∞,0(X1 , X2). We represent such a morphism by the commutative diagram:

X1
f

−−−−→ X2

p1





y





y

p2

Y
=

−−−−→ Y

(2.3)

We now define what is meant by a morphism of continuous families in the general case.
Let (X1, p1), (X2, p2) be continuous families over locally compact Hausdorff spaces Y1, Y2. Let
q : Y1 → Y2 be a continuous map and f : X1 → X2 be a continuous fiber preserving map
with respect to q in the sense that p2 ◦ f = q ◦ p1. (In the special case of a morphism above,

Y1 = Y2 = Y and q is the identity map.) For y ∈ Y1, let fy : Xy
1 → X

q(y)
2 be the restriction

of f to Xy
1 . Then f is called a morphism (with respect to q) if for each y ∈ Y1, the function

fy ∈ C∞(Xy
1 , X

q(y)
2 ) and the map y → fy is locally a C∞,0-function. More precisely, given

x ∈ X1 and a chart U2 ∼ p2(U2) × W2 in X2 containing f(x), then there exists a chart
U1 ∼ p1(U1) ×W1 in X1, and such that x ∈ U1, f(U1) ⊂ U2 and (in local coordinates) the
map y → fy is continuous from p1(U1) into C∞(W1,W2) where

f((y, w1)) = (q(y), fy(w1)).

We think of the continuous family X1 over Y1 as being taken over into the continuous family
X2 over Y2 by the maps f, q.
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We represent a morphism f by the following commutative diagram:

X1
f

−−−−→ X2

p1





y





y

p2

Y1
q

−−−−→ Y2

(2.4)

The set of morphisms f from X1 into X2 is denoted by C∞,0(X1, X2).
It is easy to prove that if (X3, p3) is a continuous family over Y3, q

′ : Y2 → Y3 is continuous
and g : X2 → X3 is a morphism with respect to q′, then g ◦ f : X1 → X3 is a morphism with
respect to q′ ◦ q. The commuting diagram for the morphism g ◦ f can be represented as the
“product” of the following commuting diagram:

X1 −−−−→
f

X2 −−−−→
g

X3

p1





y

p2





y

p3





y

Y1
q

−−−−→ Y2
q′

−−−−→ Y3

It is easy to show that the class of continuous families is a category with morphisms f as
above.

A morphism f : X1 → X2 in the general case can be reduced simply to the special case by
using a pull-back continuous family. More precisely, the pull-back continuous family q−1X2 is a
continuous family over Y1, and we have a map f ′ : X1 → q−1X2 given by: f ′(x) = (p1(x), f(x)).
It is left to the reader to check that a continuous, fiber-preserving map f is a morphism if and
only if f ′ is a (special case) morphism.

In the case where X = X1, Y = Y1, X2 = C and Y2 is a singleton, then we write
C∞,0(X1,C) = C∞,0(X1). A simple argument (using the charts for X) shows that C∞,0(X)
is a ∗-subalgebra of C(X), the algebra of continuous complex-valued functions on X. It is left
to the reader to show that X admits C∞,0− partitions of unity.

Let C0,∞
c (X) be the subalgebra of functions with compact support in C∞,0(X). If X is a

product Y × V where V is an open subset of Rk and (y0, k0) ∈ X, then there is a function
f ∈ C0,∞

c (X) with f((y0 , k0)) = 1. Indeed, we can take f = g⊗h where g ∈ Cc(Y ), h ∈ C∞
c (V )

and g(y0) = 1 = h(k0). By considering charts, it follows that for a general continuous family
X, the space C0,∞

c (X) separates the points of X.
Now let (X1, p1), (X2, p2) be continuous families over Y . Let (X1 ∗ X2, p) be the fibered

product of (X1, p1) and (X2, p2): so

X1 ∗X2 = {(x1, x2) ∈ X1 ×X2 : p1(x1) = p2(x2)}

and p(x1, x2) = p1(x1) = p2(x2). We sometimes write p = p1 ∗ p2. Then with the relative
topology, (X1 ∗ X2, p) is a continuous family of manifolds over Y , with each fiber Xy =
X1

y ×X2
y having the product manifold structure. Indeed, it is left to the reader to check that

if (x1, x2) ∈ X1 ∗X2 and (Ui, φi) are charts for Xi (i = 1, 2), xi ∈ Ui, p1(U1) = p2(U2), then
in an obvious notation, (U1 ∗U2, φ1 ∗ φ2) is a chart for X and these charts determine an atlas
for X1 ∗X2. Further, p is a continuous surjection which is open since p(U1 ∗ U2) = p1(U1) is
open in Y .

For clarity, we will sometimes write (X1, p1) ∗ (X2 , p2) in place of X1 ∗ X2. Note that Y
is trivially a continuous family over itself and that Y ∗ X1

∼= X1. Note also that if X′
1, X

′
2

are continuous families over Y and if ai : X′
i → Xi are morphisms, then the natural map

a1 ∗a2 : X′
1 ∗X

′
2 → X1 ∗X2 is a morphism of continuous families. This map is an isomorphism

if both a1, a2 are. These are proved by reducing to the case of charts.
We will need a slight generalization of X1 ∗X2 above later. In this situation, we have, for

i = 1, 2, fiber spaces (Yi, vi) over some Z, and (Xi, pi) continuous families over Yi. So Y1 ∗ Y2

is a fiber space over Z. We can then form the continuous family (X1 ∗X2, p1 ∗p2) over Y1 ∗Y2,
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where

X1 ∗X2 = {(x1, x2) : xi ∈ Xi, p1 ∗ p2(x1, x2) ∈ Y1 ∗ Y2}

and p1 ∗ p2(x1, x2) = (p1(x1), p2(x2). Note that when Y1 = Y2 = Y = Z with each vi the
identity map, then the two definitions of (X1 ∗X2, p1 ∗ p2) coincide. It is left to the reader to
show that (X1 ∗X2, p1 ∗ p2) is a continuous family over Y1 ∗ Y2.

Now let (X1, p1) and (X2, p2) be continuous families over Y . There are two other ways in
which X1 ∗X2 can be naturally regarded as a continuous family. These give pull-back families
(X1 ∗X2 , t1) over X1 and (X1 ∗X2 , t2) over X2. Here the ti’s are the natural projection maps:

t1(x1, x2) = x1, t2(x1, x2) = x2.

Firstly, the pull-back of the continuous family (X2, p2) by p1 : X1 → Y gives the continuous
family (p−1

1 (X2), t1), where

p−1
1 (X2) = {(x1, x2) : p1(x1) = p2(x2)} = X1 ∗X2.

In the same way, (p−1
2 (X1), t2) = (X2 ∗X1, t1) over X2. Interchanging first and second com-

ponents gives the continuous family (X1 ∗X2, t2).
Note that if (X2, p2) is assumed to be only a fiber space over Y (with (X1, p1) still being

assumed to be a continuous family), then (X1 ∗X2, t2) is still a continuous family, the X2 just
playing the continuous role of a parameter space. The following proposition will be used in §4.

Proposition 3. Let (X1, q1) and (X2 , q2) be continuous families over Z and f : X1 → X2 be
a morphism. Let (Y, q) be a continuous family over Z. Then there is a canonical morphism
f ∗ 1 from (X1 ∗ Y, t2) into (X2 ∗ Y, t2):

X1 ∗ Y
f∗1

−−−−→ X2 ∗ Y

t2





y





y

t2

Y
=

−−−−→ Y

(2.5)

Proof. To obtain (2.5), we “∗” the morphism diagram for f by Y to get:

X1 ∗ Y
f∗1

−−−−→ X2 ∗ Y

q1∗1





y





y

q2∗1

Z ∗ Y
=

−−−−→ Z ∗ Y

(2.6)

It is easy to check that (2.6) is commutative, and it is left to the reader to check, using charts,
that f ∗ 1 is a morphism. (2.5) now follows by identifying Z ∗ Y with Y and qi ∗ 1 with t2.

Now let (X, p) be a continuous family of manifolds over Y . We will define what is meant
by a smooth vector bundle over X of dimension m. This generalizes the corresponding notion
in [2].

We first define the pseudogroup in this situation corresponding to Γ(Y × Rk) earlier. Let
A1, A2 be open subsets of Y × Rk as earlier. Let m > 0 and Bi = Ai × Rm. Note that each
Bi ⊂ Y × Rk+m. Let f : A1 → A2 and g : B1 → Rm, and define F : B1 → B2 by:

F (y, w, ξ) = (y, f(y, w), g(y, w, ξ))

where (y, w) ∈ A1, ξ ∈ Rm. We say that F ∈ Diff0
` (B1, B2) if F ∈ Diff0(B1, B2) (B1 , B2

regarded as subsets of Y ×Rm+k) and for fixed (y, w), the map ξ → g(y, w, ξ) is a vector space
isomorphism of Rm. Let Γ(Y ×Rk; Rm) be the union of all of the sets Diff0

` (B1, B2). It is easy
to check that Diff0

`(B1 , B2) is a subpseudogroup of Γ(Y × Rk+m).

Definition 2. An m-dimensional vector bundle (E, π) over X is said to be a smooth vector
bundle if there exists an atlas of charts {(Uα, φα)} for (X, p) as in Definition 1 such that:
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(i) for each α, there is given a trivialization (π−1(Uα),Ψα) of E | Uα;

(ii) with Ψα as in (i) and with κα = (φα⊗ 1)Ψα : π−1(Uα) → Y ×Rk+m, each of the maps
κβκ

−1
α belongs to Diff0

`(κα(π−1(Uα)), κβ(π−1(Uβ ))).

It is left to the reader to check that the standard operations on vector bundles (such as those
of forming alternating and tensor products of bundles) preserve the smoothness property.

An important smooth vector bundle over X is the tangent bundle (TX, π), where

TX = ∪y∈Y TX
y

and π is the canonical projection map. Let us show that TX is indeed a smooth k-dimensional
vector bundle over X. Let {(Uα, φα) : α ∈ A} be an atlas for (X, p) and let Zα = π−1(Uα) for
each α. For each y ∈ p(Uα), the restriction map φy

α of φα to Xy
α = Xy∩Uα is a diffeomorphism

onto an open subset of Rk. Define Ψα : Zα → Uα × Rk by:

Ψα(γ) = (φα(π(γ)), Dπ(γ)φ
p◦π(γ)
α (γ)).

It is easily checked that each Ψα is a bijection onto a set of the form A × Rk where A is an
open subset of Y × Rk, and that every Ψα(Zα ∩Zβ) is also an open subset of this form. The

transition function Ψβ ◦ Ψ−1
α : Ψα(Zα ∩ Zβ) → Ψβ(Zα ∩ Zβ) is given by:

(y, w, ξ) → ((φy

β
◦ (φy

α)−1)(y, w), Dw(φy

β
◦ (φy

α)−1)(ξ)).

It is routine to check that Ψβ ◦ Ψ−1
α ∈ Γ(Y × R

k; Rk). So TX is a smooth vector bundle over

X.
Let E be a smooth vector bundle over X. A Riemannian metric for E is a family of

Riemannian metrics on the smooth vector bundles E | Xy (y ∈ Y ) which, in terms of local
coordinates, vary continuously. Using a C∞,0− partition of unity, a standard argument shows
that E admits a Riemannian metric.

3. Continuous family groupoids

We now discuss the class of locally compact groupoids with which this paper is primarily
concerned and which generalize Lie groupoids. We first recall some facts about locally compact
groupoids.

A groupoid is most simply defined as a small category with inverses. Spelled out axiomati-
cally, a groupoid is a set G together with a subset G2 ⊂ G×G, a product map m : G2 → G,
where we write m(a, b) = ab, and an inverse map i : G → G, where we write i(a) = a−1 and
where (a−1)−1 = a, such that:

(i) if (a, b), (b, c) ∈ G2, then (ab, c), (a, bc) ∈ G2 and

(ab)c = a(bc);

(ii) (b, b−1) ∈ G2 for all b ∈ G, and if (a, b) belongs to G2, then

a−1(ab) = b (ab)b−1 = a.

We define the range and source maps r : G→ G0, s : G→ G0 by:

r(x) = xx−1 s(x) = x−1x.

The unit space G0 is defined to be r(G) = s(G), or equivalently, the set of idempotents u in
G. The maps r, s fiber the groupoid G over with fibers {Gu}, {Gu}, where Gu = r−1({u}) and
Gu = s−1({u}). Note that (x, y) ∈ G2 if and only if s(x) = r(y).
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For detailed discussions of groupoids (including locally compact and Lie groupoids below),
the reader is referred to the books [8, 13, 18]. Important examples of groupoids are given by
transformation group groupoids and equivalence relations.

A locally compact groupoid is a groupoid G which is also a second countable locally compact
Hausdorff space for which multiplication and inversion are continuous. (A detailed discussion
of non-Hausdorff locally compact groupoids is given in [13].) Note that G2, G0 are closed
subsets of G ×G,G respectively. Further, since r, s are continuous, every Gu, Gu is a closed
subset of G.

A locally compact groupoid G is called a Lie groupoid if G is a manifold such that:

(i) G0 is a submanifold of G;

(ii) the maps r, s : G→ G0 are submersions;

(iii) the product and inversion maps for G are smooth.

Note that G2 is naturally a submanifold of G × G and every Gu, Gu is a submanifold of G.
(See [13, pp.55-56].)

For analysis on a locally compact groupoid G, it is essential to have available a left Haar
system. This is the groupoid version of a left Haar measure, though unlike left Haar measure
on a locally compact group, such a system may not exist and if it does, it will not usually
be unique. However, in many case, there is a natural choice of left Haar system. For Lie
groupoids, such a system exists and is essentially unique. As we will see later, this result
extends to continuous family groupoids defined below.

A left Haar system on a locally compact groupoid G is a family of measures {λu} (u ∈ G0),
where each λu is a positive regular Borel measure on the locally compact Hausdorff space Gu,
such that the following three axioms are satisfied:

(i) the support of each λu is the whole of Gu;

(ii) for any g ∈ Cc(G), the function g0, where

g0(u) =

∫

Gu

g dλu,

belongs to Cc(G
0);

(iii) for any x ∈ G and f ∈ Cc(G),
∫

Gd(x)

f(xz) dλd(x)(z) =

∫

Gr(x)

f(y) dλr(x)(y).

The existence of a left Haar system on G has topological consequences for G – it entails that
both r, s : G→ G0 are open maps ([13, p.36]).

Definition 3. A locally compact groupoid G is called a continuous family groupoid if:

(i) both (G, s), (G, r) are continuous families of manifolds over G0;

(ii) the inversion map i : (G, s) → (G, r), where i(x) = x−1, is an isomorphism of continuous
families of manifolds:

G
i

−−−−→ G

s





y





y

r

G0 =
−−−−→ G0

(3.1)

(iii) the multiplication map m : (G ∗ G, t1) → (G, r) is a morphism of continuous families
with respect to r:

G ∗G
m

−−−−→ G

t1





y





y

r

G
r

−−−−→ G0

(3.2)
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In (iii) above, G ∗G is defined to be (G, s) ∗ (G, r), so that

G ∗G = {(x, y) ∈ G×G : s(x) = r(y)} = G2.

As in §2, G ∗ G is a continuous family over G with t1((x, y)) = x. The map m is a fiber
preserving map from (G ∗G, t1) into (G, r) (with respect to r : G→ G0) since r(xy) = r(x).

Condition (iii) as stated is one-sided in that the morphism property of m is formulated in
terms of t1, r rather than t2, s. Indeed, there is a commuting diagram:

G ∗G
m

−−−−→ G

t2





y





y

s

G
s

−−−−→ G0

(3.3)

and it is as natural to formulate the morphism property for m in terms of (3.3) as in terms of
(3.2). We now show that these two formulations are actually equivalent given (i) and (ii) of
Definition 3.

Proposition 4. Let G be a locally compact groupoid satisfying (i) and (ii) of Definition 3.
Then the multiplication map m : (G ∗ G, t1) → (G, r) is a morphism with respect to r if and
only if m : (G ∗G, t2) → (G, s) is a morphism with respect to s.

Proof. We show first that (i∗i)˜, where (i∗i)˜((x, y)) = (y−1 , x−1), is a morphism from (G∗G, t1)
to (G ∗G, t2) with respect to i:

G ∗G
(i∗i)˜

−−−−→ G ∗G

t1





y

t2





y

G
i

−−−−→ G

(3.4)

Clearly, (i ∗ i)˜ is fiber preserving with respect to i. Let (x, y) ∈ G ∗ G. Let U ′ be a chart
for (G ∗ G, t2) containing (y−1 , x−1). We can suppose that U ′ = U1 ∗ U2 where U1 is a chart
for (G, s), U2 is a chart for (G, r) and s(U1) = r(U2). We can suppose further that U1 ∼
s(U1) ×W1, U2 ∼ r(U2) ×W2. Then U1 ∗ U2 ∼ U2 ×W1 under the map (u1, u2) → (u2, w1)
where u1 ∼ (s(u1), w1). Note that ((i ∗ i)˜)−1(U1 ∗ U2) = U−1

2 ∗ U−1
1 .

By (ii) of Definition 3, there exists a chart U ′
1 for (G, s) with x ∈ U ′

1 and U ′
1 ∼ s(U ′

1) ×
W ′

1, i(U
′
1) ⊂ U2. Similarly, there exists a chart U ′

2 for (G, r) with y ∈ U ′
2 and U ′

2 ∼ r(U ′
2) ×

W ′
2, i(U

′
2) ⊂ U1. Since s(x) = r(y), we can, by contracting U ′

1, U
′
2, suppose that s(U ′

1) = r(U ′
2).

Then (x, y) ∈ U ′
1 ∗ U

′
2 ∼ U ′

1 ×W ′
2 is a chart for (G ∗G, t1). Now in local terms, for (x1, w

′
2) ∈

U ′
1 ×W ′

2,

(i ∗ i)˜(x1, w
′
2) = (i−1(s(x1), w

′
2), x

−1
1 )

so that (i ∗ i)˜ is a morphism, again using (ii) of Definition 3.
Suppose thatm : (G∗G, t2) → (G, s) is a morphism with respect to s. Then m : (G∗G, t1) →

(G, r) is a morphism since it is the morphism product i ◦m ◦ (i ∗ i)˜:

G ∗G
(i∗i)˜

−−−−→ G ∗G
m

−−−−→ G
i

−−−−→ G

t1





y

t2





y

s





y





y

r

G
i

−−−−→ G
s

−−−−→ G0 =
−−−−→ G0

The converse is true in a similar way.

Let G be a continuous family groupoid. Note that (G ∗G)x = {x}×Gs(x) in (G ∗G, t1), so
that what (iii) of Definition 3 above is saying is that for fixed x ∈ G, the map Lx : y → xy is a
diffeomorphism from Gs(x) onto Gr(x) and this diffeomorphism is required to vary continuously
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with x. The same holds for the right multiplication map Ry : x → xy by Proposition 4.
So the multiplication in G can be regarded as “separately continuous” in the sense that
the diffeomorphisms Lx, Ry’s vary continuously. In contrast, Lie groupoids satisfy the much
stronger “joint continuity” condition that the multiplication map m : G ∗G→ G is smooth.

It is convenient to have available the pull-back version of (3.2). Note that the pull-back
r−1G of G, r) is:

{(x, z) ∈ G×G : r(x) = r(z)}.

The latter set will be denoted by G ∗r G and is the fibered product (G, r) ∗ (G, r). (Similarly,
G ∗s G is the fibered product (G, s) ∗ (G, s).) The associated morphism m′ : G ∗G → G ∗r G
is given by: m′(x, y) = (x, xy) and we have the diagram:

G ∗G
m′

−−−−→ G ∗r G

t1





y





y

t1

G
=

−−−−→ G

(3.5)

We now discuss some examples of continuous family groupoids. Firstly, every Lie groupoid
is a continuous family groupoid. Indeed, in Definition 3, (i) follows since r, s are submersions.
Properties (ii) and (iii) follow since both i and m are smooth.

A very simple example of a continuous family groupoid that is not a Lie groupoid is provided
by any locally compact Hausdorff space Y that is not a manifold (treated as a groupoid of
units). This is the groupoid associated with the (non-equivariant) index theorem for families.

Next, the transformation group groupoid G given by an action of a Lie group H on a locally
compact Hausdorff space Y is a continuous family groupoid. In this case, G = H×Y , and the
multiplication is given by ((h, y), (k, k−1y)) → (hk, k−1y) and inversion by (h, y) → (h−1, hy).
The unit space G0 can be identified with Y and the source and range maps are given by:
s((h, y)) = y, r((h, y)) = hy. For y ∈ Y , we have Gy = H , Gy = {(h, h−1y) : h ∈ H} which
can also be identified with H by sending (h, h−1y) to h. We will not give the proof here that
G is a continuous family groupoid since this will be generalized later in Proposition 5. It is
easy to see that G is a Lie groupoid if and only if Y is a manifold on which H acts smoothly.
This gives many examples of continuous family groupoids which are not Lie groupoids. For
example, if H acts trivially on Y and Y is not a manifold, then G is a continuous family
groupoid that is not a Lie groupoid.

Another example of a continuous family groupoid is an equivalence relation
G = {((y, z), (y, z′)) : y ∈ Y , z ∈ Z} on Y × Z, where Z is a smooth manifold. So
G = Y × (Z × Z) with the product given by (y, z, z′)(y, z′, z′′) = (y, z, z′′) and inversion
by (y, z, z′) → (y, z′, z). The unit space of G is Y × Z, where Z is identified with the
diagonal {(z, z) : z ∈ Z} in the obvious way. The source and range maps are given by:
s(y, z, z′) = (y, z′), r(y, z, z′) = (y, z). Each of G(y,z), G(y,z) is just the manifold Z. It is easy
to check that G is a continuous family groupoid, and is a Lie groupoid if and only if Y is a
manifold.

Let G be a continuous family groupoid. From the discussion in §2 (with (X, p) = (G, r)),
TG = ∪u∈G0TGu is a smooth vector bundle over (G, r). The restriction A(G) of TG to G0 is
a vector bundle over G0, and, as in the case of Lie groupoids, is called the Lie algebroid of G.
We now briefly discuss the existence of left Haar systems on G. The discussion parallels that
for Lie groupoids given in [13, 2.3].

For a chart (U, φ) of (the continuous family) (G, r) and for any u ∈ r(U), let φu be the
restriction of φ to U ∩ Gu and Wu = φu(U ∩ Gu) ⊂ Rk (where k is the dimension of the
manifolds Gu). Given a measure µ on U ∩Gu, the measure µ ◦ φu on Wu is defined by:

µ ◦ φu(E) = µ((φu)−1(E)).

For any open subset W of Rk let λW be Lebesgue measure restricted to W . A left Haar system
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{λu} for G is called a C∞,0 left Haar system if for any chart (U, φ) for (G, r), the measure

λu ◦ φu is equivalent to λWu

, and the map f that sends (u, t) → (d(λu ◦ φu)/dλWu

)(u, t)
belongs to C∞,0(φ(U)). The left Haar system is called continuous if f ∈ C(φ(U)). (Of course
every C∞,0 left Haar system is continuous.) If G is a Lie groupoid, then the left Haar system
is called smooth if f is a C∞ function.

Note that two continuous left Haar systems on a continuous family groupoid give isomorphic
universal C∗-algebras and isomorphic reduced C∗-algebras. The argument for this (which
presupposes Renault’s representation theory of locally compact groupoids ([9, 19]) goes as
follows. Any quasi-invariant measure µ on G0 determines, for any left Haar system {λu},
a measure ν =

∫

λu dµ(u) on G, and this in turn determines other measures ν−1, ν2 on G
and G2 respectively. Two continuous left Haar systems will give equivalent measures ν (and
similarly for ν−1, ν2) since both ν ’s are equivalent on a chart. The representations for G are
then the same for each of these two left Haar systems and any such representation gives
equivalent representations for each system on Cc(G). It follows that the universal C∗-algebras
C∗(G) for the two systems are isomorphic. Similarly, the reduced C∗-algebras C∗

red(G) are
also independent of the choice of system.

In the Lie groupoid case, the equivalence of smooth left Haar systems is captured precisely
in Connes’s density bundle approach to integration on Lie groupoids ([5, p.101]) which is
canonical, and indeed that approach can be readily adapted to apply to C∞,0 (resp. continuous)
left Haar systems for continuous family groupoids. However, for relating the representation
theory for continuous family groupoids to the existing representation theory for locally compact
groupoids as well as for calculation purposes, the C∞,0 (resp. continuous) left Haar system
approach is convenient and will be used in this paper.

It is known that every Lie groupoid admits a smooth left Haar system. The present writer
does not know if every continuous family groupoid admits a C∞,0 left Haar system. However,
as we shall see, every continuous family groupoid admits a continuous left Haar system. The
proof of this result is along the same lines as that for the existence of a smooth left Haar
system on a Lie groupoid ([13, p.63]). (See also [7, 17].)

Theorem 1. Let G be a continuous family groupoid. Then there exists a continuous left
Haar system on G.

Proof. We observe first that the 1-density bundle Ω(A(G)∗) is trivial, and there exists a
strictly positive section α of that bundle. For each x ∈ G, define Lx−1 : Gr(x) → Gs(x) by:
Lx−1 (y) = x−1y. The map Lx−1 is a diffeomorphism (using Definition 3).

As in the Lie groupoid case, we take the measure λu to be the regular Borel measure
associated with the density z → (Lz−1 )∗

s(z)(αs(z)) on Gu. To check that this is well defined,

for each u0 ∈ G0 and z0 ∈ Gu0, we obtain in terms of local charts for u0, z0 in G that
αu = g(u) dw1 . . . dwk for some continuous positive function g, and

(Lz−1 )∗s(z)(g(s(z)) dw1 · · ·dwk) = g(s(z)) | J(Lz−1 )(z) | dz1 · · ·dzk

where J stands for the Jacobian. The function z → g(s(z)) | J(Lz−1 )(z) | is (using Definition 3)
a continuous function. It follows that {λu} is a continuous left Haar system on G, the proofs
of the other items requiring to be checked being the same as in the Lie groupoid case.

4. Actions of continuous family groupoids

To motivate the need for continuous family groupoid actions, it is helpful to consider the
situation of the Atiyah-Singer equivariant families theorem. (Atiyah and Singer refer this “to
the reader” ([2, p.135]).) There, we have a compact fiber bundle (X, p) over Y with compact
smooth manifold Z as fiber and structure group Diff(Z). We are also given a compact Lie
group H acting continuously on Y and in a C∞,0-way on X with p equivariant. We want to
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interpret this in terms of an action of the continuous family groupoid H ∗ Y on X, given by:

(h, y)x = hx

where p(x) = y. The index of an equivariant family of pseudodifferential operators elliptic
along the leaves will then lie in K0(C

∗(H ∗ Y )). (The Lie groupoid version of this is proved in
[14].) So even in the classical Atiyah-Singer index context, we have to leave the category of
groups and move to the category of continuous family groupoids.

With this motivation, we now turn to the problem of determining what a left action of a
continuous family groupoid should be. It turns out - slightly surprisingly - that all that we
require for present purposes is a continuous action of a continuous family groupoid G on a
fiber space Y over G0. The reason is that the unit space of the locally compact groupoid G∗Y
is identified with Y , while its fibers (G ∗ Y )y, (G ∗ Y )y are effectively the continuous family
groupoid fibers Gp(y), G

p(y), so that the C∞,0− structure of G ∗Y is effectively that of G with
the Y only playing the role of a continuous parameter space. We now discuss this in more
detail.

Let G be a locally compact groupoid (not necessarily a continuous family groupoid) with
r, s open maps, and let (Y, p) be a fiber space over G0. Form the fibered product G ∗ Y =
(G, s) ∗ (Y, p) of the fiber spaces (G, s), (Y, p) over G0. The action of G on Y is then given by
a continuous map n : G ∗ Y → Y . The action has to satisfy the natural algebraic axioms: so
we require p(gy) = r(g), g1(g2y) = (g1g2)y and g−1(gy) = y whenever these make sense. The
space Y with such an action of G is called a G-space (cf.[10]).

Let Y be a G-space. It is well known and easy to check from the groupoid axioms of §2 that
G ∗Y is a locally compact groupoid with operations given by: (h, z)(g, g−1z) = (hg, g−1z) and
(g, y)−1 = (g−1, gy). Let µ be the multiplication map and i be the inversion map on G ∗ Y . So

µ(h, z, g, g−1z) = (hg, g−1z). (4.1)

Further, s(g, y) = (s(g), y), r(g, y) = (r(g), gy). We can identify (s(g), y) with y (since s(g) =
p(y)), and so (G ∗ Y )0 = Y . (In fact, this is just identifying G0 ∗ Y with Y .) Note that r = n
and s = t2.

Now, in addition, assume that G is a continuous family groupoid. We will show that G ∗ Y
is also, in a natural way, a continuous family groupoid. We first discuss the continuous family
structures for (G ∗ Y, s) and (G ∗ Y, r). We have a commuting diagram:

G ∗ Y
i

−−−−→ G ∗ Y

r





y





y

s

Y
=

−−−−→ Y

(4.2)

where i is the inversion map on G ∗ Y . We can identify (G ∗ Y, s) canonically with (G ∗ Y, t2).
As observed in §2, (G ∗Y, t2) is a continuous family (since (G, s) is a continuous family). Next,
the map r is a continuous surjection which is open, since s is and i is a homeomorphism.
We give (G ∗ Y, r) the (unique) continuous family structure that makes i an isomorphism of
continuous families. In particular, an atlas for (G ∗ Y, r) is determined by charts of the form
i−1(U ∗ V ), and the C∞-structure on each (G ∗ Y )z = {(g, g−1z) : g ∈ Gp(z)} is just that
obtained by identifying (G∗Y )z with Gp(z) through the map (g, g−1z) → g−1 (and hence with

Gp(z) through the map (g, g−1z) → g, using (ii) of Definition 3.)

Proposition 5. The continuous family G ∗ Y = (G, s) ∗ (Y, p) is a continuous family
groupoid.

Proof. We check that the requirements for a continuous family groupoid in Definition 3 hold
for G ∗ Y . (i) and (ii) of that definition follow from the discussion preceding the statement of
the proposition. It remains to show that the multiplication map µ on G ∗ Y is a morphism.
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To this end, consider the following commutative diagram:

(G ∗ Y ) ∗ (G ∗ Y )
α

−−−−→ G ∗ Y
i−1

−−−−→ G ∗ Y

t1





y

s





y

r





y

G ∗ Y
r

−−−−→ Y
=

−−−−→ Y

(4.3)

Here, α(h, z, g, g−1z) = (g−1h−1, hz). Then µ = i−1 ◦ α, and since i−1 is a morphism ((4.2)),
it remains to show that α is a morphism. It is sufficient for this to show that γ : G ∗G → G,
where γ(h, g) = g−1h−1, is a morphism:

G ∗G
γ

−−−−→ G

t1





y





y

s

G
r

−−−−→ G0

(4.4)

For since the map (h, z) → hz is continuous, it follows that (h, z) → α(h,z) varies in a C∞,0−
way if the map h → γh does. The map γ is a morphism since it is the composition of two
morphisms:

G ∗G
m

−−−−→ G
i

−−−−→ G

t1





y

r





y

s





y

G
r

−−−−→ G0 =
−−−−→ G0

(4.5)

Motivated by the families situation (discussed in the first paragraph of this section) we
now have to extend the G-space notion to that of a fiber space (X, q) over Y which is also a
G-space with an action compatible with that on Y . compatible action. Precisely, (X, p ◦ q) is
a fiber space over G0 and we require that this fiber space and (Y, p) be G-spaces such that for
all (g, x) ∈ G ∗X, we have q(gx) = gq(x). (Note that (g, q(x)) ∈ G ∗ Y since p(q(x)) = s(g).)
This can be formulated in terms of the commuting diagram of continuous maps:

G ∗X
nX−−−−→ X

id∗q





y





y

q

G ∗ Y
nY−−−−→ Y

(4.6)

where nX , nY are the action maps of G on X and Y respectively. We say that X is a G-space
over Y . We now show that X is itself a G ∗ Y -space in a natural way.

Theorem 2. Let G be a continuous family groupoid and Y be a G-space. Then the class of
G-spaces X over Y is canonically identified with the class of G ∗ Y -spaces.

Proof. Let (X, q) be a G-space over Y . Recalling that the source map of the groupoid G ∗ Y
is the map (g, y) → y, it follows that (G ∗ Y ) ∗X = (G ∗ Y, s) ∗ (X, q) is a fiber space over Y .
Define a map

nY,X : (G ∗ Y ) ∗X → X, (4.7)

by: nY,X(g, y, x) = gx. Calculations very similar to those of the next paragraph show that
nY,X is an action of G ∗ Y on X. So X is a G ∗ Y -space.

Conversely, suppose that (X, q) is a G ∗ Y -space. Then q : X → (G ∗ Y )0 = Y is continuous
and onto, and so X is a fiber space over Y . Let n : (G ∗ Y ) ∗X → X be the action map. Then
(X, p◦ q) is a fiber space over Y , so that G ∗X is defined. For (g, x) ∈ G ∗X, define the action
of G on X by:

gx = n((g, q(x)), x) = (g, q(x))x.
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Clearly the map (g, x) → gx is continuous. We now check the algebraic action axioms for the
map (g, x) → gx. For the associative law, with z = q(x), we have (hg)x = [(h, gz)(g, z)]x =
(h, gz)[(g, z)x] = (h, gz)(gx) = h(gx). Next g−1(gx) = s(g)x = s((g, z))x = x. Lastly, q(gx) =
q((g, z)x) = r((g, z)) = gz. It follows that X is a G-space over Y . It is left to the reader to
show that if we apply the nY,X construction to X with this G-space structure, then we get
back to the G ∗ Y -space with which we started.

In the situation of the equivariant families index theorem, one has to consider a G-space
X over Y which is a continuous family and on which G acts in a C∞,0− way. We now briefly
indicate how this is defined. By Theorem 2, we can, by replacing G by G∗Y , suppose that X =
Y . Then the action of G on Y is said to be C∞,0 if the multiplication map n : (G ∗ Y, t1) → Y
is a morphism with respect to r:

G ∗ Y
n

−−−−→ Y

t1





y





y

p

G
r

−−−−→ G0

(4.8)

We say that Y is a C∞,0 G-space. The continuous family groupoid G is itself a C∞,0 G-space.
This follows from (iii) of Definition 3.

As in (3.5), the morphism property of (4.8) can be reformulated in terms of a morphism n′:

G ∗ Y
n′

−−−−→ G ∗r Y

t1





y





y

t1

G
=

−−−−→ G

(4.9)

where G ∗r Y = (G, r) ∗ (Y, p) and the map n′ is given by: n′(g, y) = (g, gy).
In conclusion, Theorem 2 says that a G-space X over Y is the same as a (G ∗ Y )-space, the

fibering of X over Y being “absorbed” as it were into the fibering of the continuous family
groupoid G ∗ Y . (The same applies if we work in the category of C∞,0 G-spaces.) Note that
this cannot be formulated if we stay within the group category, since in formingG∗Y , we leave
the group category. So we do not need to work in the situation where a G-space X is fibered
over another G-space Y . For the “higher order” fibered space X is itself just an “ordinary”
groupoid space for the groupoid G ∗ Y , and we do not leave the category of continuous family
groupoids by forming G∗Y . Thus we only ever need consider the action of a continuous family
groupoid on a G-space, changing the groupoid if necessary.
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