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Abstract
In this paper, we prove various results concerning DGA-algebras in

the context of the Homological Perturbation Theory. We distinguish
two class of contractions for algebras: full algebra contractions and
semi-full algebra contractions. A full algebra contraction is, in par-
ticular, a semi-full algebra contraction. Taking a full algebra contrac-
tion and an “algebra perturbation” as data of the Basic Perturbation
Lemma, the Algebra Perturbation Lemma (or simply, F-APL) of [20]
and [29] appears in a natural way. We establish here a perturbation
machinery, the Semi-Full Algebra Perturbation Lemma (or, simply, SF-
APL) that is a generalization of the previous one in the sense that the
application range of SF-APL is wider than that of F-APL. We show
four important applications in which this result is essential for the con-
struction of algebra or coalgebra structures in various chain complexes.

1. Introduction

Homological Perturbation Theory [52, 14, 8, 9, 18, 36, 19, 20, 29] is a set of techniques for
the transference of structures from one object to another up to homotopy. An essential notion
in this framework is that of contraction. A contraction r : {N, M, f, g, φ} [14, 15] is a special
homotopy equivalence determined by three morphisms f : N∗ → M∗ (projection), g : M∗ → N∗

(inclusion) and φ : N∗ → N∗+1 (homotopy) between two DG-modules N (the “big” one) and
M (the “small” one). The most important element of HPT is the Basic Perturbation Lemma
(BPL) which can be considered as an actual algorithm: its input is a contraction c and a
“perturbation” δ of the differential of N and its output is a new contraction rδ in which the
graded modules N and M remain unchanged. Contractions are also known in the literature
as SDR-data [36, 19, 20] or Eilenberg-Zilber data [22].

Perturbation results regarding preservation of additional structures (DG-algebras, DG-
coalgebras, Lie algebras, . . . ) have been largely considered. The technique for obtaining these
“homological perturbation machines” is the introduction of hypotheses such that BPL allows
to establish preservation results for the additional data structures. Let us now consider the case
of DG-algebras. Let A and A′ be two DG-algebras with respective products µA : A ⊗ A → A
and µA′ : A′ ⊗ A′ → A′, and let r : {A, A′, f, g, φ} be a contraction. In [20] and [29], an Al-
gebra Perturbation Lemma is described in which the algebra laws µA and µA′ are preserved.
In other words, taking as input a special class of algebra contraction (that we will name here
a full algebra contraction, in the sense that its component morphisms f , g and φ have the
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“maximum” degree of compatibility with regard to the algebra structures on A and A′) and
a derivation as perturbation datum, it is proved that the perturbed contraction is also a full
algebra contraction.

In this paper, assuming weaker hypotheses for the data of the Basic Perturbation Lemma,
we prove analogous theorems, where the resulting contraction, of course, has weaker properties
too. More precisely, we analyze conditions under which BPL preserves strict associativity. This
analysis consists in studying the A∞-algebra structure for the small complex of a perturbed
contraction and leads us to define a special class of contractions: semi-full algebra contractions.
In spite of the fact that the component morphisms of a contraction r of this class have a
“lower” degree of compatibility with regard to the algebra structures than that of full algebra
contractions, the semi-fullness property is sufficient to guarantee that the A∞-algebra structure
on M given by the contraction r (see [23]) reduces to the original associative product µM .
And, what is more important, semi-fullness is a hereditary property by composition, tensor
product and perturbation of contractions. Moreover, it is not difficult to find semi-full (non-
full!!) algebra contractions in Algebraic Topology and Homological Algebra (all the examples
of semi-fullness that we show here are contractions already defined by the firm Eilenberg-Mac
Lane in [14, 15]):

• The explicit contraction given in [15] from the reduced bar construction B̄(A⊗A′) to the
tensor product B̄(A) ⊗ B̄(A′), where A and A′ are augmented commutative differential
graded algebras.

• The explicit contractions established in [15] for the normalized reduced bar constructions
of the algebras Z[Z] and Z[Zp].

• An Eilenberg-Zilber contraction EZ (see the Apendix of the present paper for a explicit
combinatorial description) from CN

∗ (X × Y ) to CN

∗ (X) ⊗ CN

∗ (Y ), where X and Y are
simplicial groups and CN

∗ (K) means the normalized chain complex canonically associated
to the simplicial set K . The fact that the projection and the inclusion of this contraction
are morphisms of DGA-algebras was proved by Eilenberg and Mac Lane in [15]. In [3],
it is proved that this contraction is a semi-full (non-full) algebra contraction.

• In [14], Eilenberg and Mac Lane obtained a reduction g (a morphism inducing an iso-
morphim in homology) from the normalized reduced bar construction B̄(CN

∗ (G)) to the
normalized classifying construction W̄N (C∗(G)), where G is a simplicial group. They con-
jectured that this relationship could be extended to a contraction RWB . Having in hand
the homological perturbation machinery, it is an elementary work to obtain a homotopy
equivalence RWB (see [57, 44]). A more complex task is to determining if a contraction
of this type is a full algebra contraction or not. An answer is given in [3], where it is
proved that a contraction RWB is a semi-full (non-full) algebra contraction.

• Combining the previous result with those of Section 5 of this paper, it is easy to conclude
that the algebra homology of Eilenberg-Mac Lane spaces can be seen from the viewpoint
of semi-full algebra contractions. There are explicit semi-full algebra contractions from
the normalized chain complex of a K(π, n) (π being a finitely generated abelian group)
to a (non-twisted) tensor product of Cartan’s elementary complexes. This treatment of
the homology of these prime spaces is extremely important in the design of a general
algorithm computing the homology of twisted cartesian products of two Eilenberg-Mac
Lane spaces via perturbation (see [2]).

Apart from the intrinsic interest of the transference problem dealing with DG-algebras or
DG-coalgebras, in several important situations (see Section 5) our results allow us to determine
and construct essential algebra or coalgebra structures in various chain complexes which have
been constructed via perturbation. For example, the homology theory of commutative DGA-
algebras is entirely examined in terms of semi-full algebra contractions in [1], and “small”
p-local homological models of reduced bar constructions of twisted tensor product of Cartan’s
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elementary complexes are obtained in [6], due to the fact that all the contractions appearing
there are semi-full.

Here is a summary of the present paper. Notation and terminology are introduced in Sec-
tion 2. In Section 3, the basic ingredients in Homological Perturbation Theory are reviewed.
Our contribution starts in Section 4 which is devoted to introducing the notions of semi-
full, almost-full and full algebra contractions and to giving general perturbation results of
preservation of the (co)algebra category. Four important applications of this technique are
established in Section 5, in which the perturbation machinery of algebras given in [20] and in
[29] cannot be applied. The first one deals with the transference problem of the Hopf algebra
structure in the contraction B̄(r), constructed using an initial contraction r from a commuta-
tive DGA-algebra A to a simple DGA-module M . The contraction B̄(r) connects the reduced
bar construction B̄(A) to the bar tilde construction of the DGA-module M [23]. An interest-
ing consequence concerning A∞-structures is Corollary 5.7 in which Kadeishvili’s definition
[31] of commutative A∞-algebra appears. The second application is a multiplicative analysis
of the contraction from B̄(A ⊗ A′) to B̄(A) ⊗ B̄(A′), where A and A′ are both commutative
DGA-algebras, described in [15]. The third one is about the computation, via perturbation,
of small p-local homological models of Cartan’s elementary complexes (see [10]). The elemen-
tary complexes are small commutative DGA-algebras appearing in the Cartan’s method for
computing the homology algebra of Eilenberg-Mac Lane spaces. The fourth application, is
dedicated to analyze the p-local n-homology algebra of a concrete class of commutative DGA-
algebras. Finally, an appendix, written by Frederic Morace, is added. It is devoted to prove
that the homotopy operator of the Eilenberg-Zilber contraction EZ, recursively described in
[15], is defined by an explicit formula discovered experimentally by Julio Rubio and Francis
Sergeraert. I wish to express my sincere thanks to Frederic for having written down this result.

Acknowledgments. I would like to express my gratitude to Professor Francis Sergeraert
for suggesting a problem which led to the present paper. I wish to thank Professor Julio Rubio
for many valuable discussions. I am grateful to Professor Jim Stasheff for his many helpful
suggestions. These suggestions resulted in notable improvements to the exposition.

2. Notations and definitions

The purpose of this section is to give a reasonably complete account of the notions of
homological algebra necessary for this paper -for more complete details the reader is referred
to Mac Lane [38] and Weibel [58].

Let Λ be a commutative ring with 1 6= 0, taken henceforth as ground ring and fixed through-
out. Graded modules are graded by the non-negative integers. The degree of an (homogeneous)
element x of a graded module will be denoted by |x|. We denote

∑

n>0 Mn by M+. A mor-
phism f : M → N of graded modules has degree i, and it is denoted by |f | = i if it satisfies
f(Mn) ⊂ Nn+i for all n.

All tensor products are over Λ. Given a graded module M , we will denote M⊗0 = Λ and
M⊗n = M⊗ n times. . . ⊗M . The identity map of a graded module M will be denoted by 1M .
Throughout this paper, we adopt Koszul’s convention, which defines the tensor product of
two (homogeneous) graded morphisms as:

(f ⊗ g)(x ⊗ y) = (−1)|g||x|f(x) ⊗ g(y).

If f : M → N is a morphism of graded modules and n is a positive integer, the morphism
f⊗ n times. . . ⊗f ; M⊗n → N⊗n will be denoted by f⊗n.

Let M and N be two graded modules. The morphism of graded modules T : M⊗N → N⊗M
is defined by T (x ⊗ y) = (−1)|x|·|y|y ⊗ x.

If f : M⊗i → M is a morphism of graded modules and n is a positive integer, it is possible
to define the following morphism
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f [n] =
n−i
∑

j=0

1⊗j
M

⊗ f ⊗ 1⊗n−i−j
M

; (1)

in the summands for j = 0 and j = n− i, the morphism 1⊗0
M

is understood to be 1Λ. We define
the morphism f [ ] : ⊕j>i M⊗j → ⊕k>1 M⊗k as f [ ]|M⊗n = f [n] .

Let (M, dM) be a DG-module. The suspension of M , denoted by S(M), is defined by
S(M)n+1 = Mn and its differential is −dM . Let f : N → M be a morphism of DG-modules
(morphism of graded modules compatible with the differential structures) of degree i. We
define the morphism S(f) : S(N) → S(M) by S(f)(a) = (−1)if(a).

A DGA-module (M, dM , εM, ηM) is a DG-module (M, dM) equipped with two morphisms
of DG-modules: an augmentation εM : M → Λ and a coaugmentation ηM : Λ → M , so that
εMηM is the identity map of Λ; morphisms are then required to preserve this structure. The
DG-module M = Ker εM is defined in a natural way. Given a morphism of DGA-modules
f : M → N , it is defined f̄ : M → N by f̄(x) = f(x).

We shall use without further explanation the concepts of DGA-algebra, DGA-coalgebra,
derivation, coderivation, DG Hopf algebra, etc. The structure maps of a DGA-algebra (A, dA,
µA, εA, ηA) and a DGA-coalgebra (C, dC, ∆C, εC, ηC) will be

µA : A ⊗ A → A (product), and ηA : Λ → A (unit)

and

∆C : C → C ⊗ C (coproduct), and εC : C → Λ (counit),

respectively. Moreover, the augmentation εA and the coaugmentation ηC preserve the respective
structures.

We will denote the unit of a DGA-algebra A by θA = ηA(1).

Henceforth, if no possibility of confusion exists for the structure maps, DG-modules, DGA-
modules, DGA-algebras and DGA-coalgebras will be denoted only by the capital letter which
defines the underlying graded module.

If X =
∑

n>0 Xn is a graded set and M is the free graded module with basis X, we denote
by ΛM the free commutative graded algebra generated by M ; it is the tensor product of the
exterior algebra over Xodd and the polynomial algebra over Xeven.

Let A and C be a DGA-algebra and a DGA-coalgebra, respectively. The morphism t : C →
A of degree −1 is called a twisting cochain if it satisfies that dt + td = µA(t⊗ t)∆C, εAt = 0. A
twisted tensor product A ⊗t C is a DGA-module, such that, as an augmented graded module,
it coincides with A⊗C and its differential is 1A⊗dC +dA⊗1C +(µA ⊗1)(1A⊗t⊗1C)(1A⊗∆C).

A resolution of Λ over the DGA-algebra A is a DG-A-module X which is projective as an
A-module and such that the homology of X is zero except in degree 0 where it is Λ. If X is
actually a free DG-A-module, then X is called a free resolution.

Given a DGA-algebra A, the reduced bar construction on A is the DGA-coalgebra

(B̄(A), dB̄, ∆B̄, εB̄, ηB̄) = (T (S(A)), dt + ds, ∆T , εT , ηT ),

where (T (M), dt, ∆T , εT , ηT) is the tensor coalgebra of a DGA-module M .

An homogeneous element S a1 ⊗ · · · ⊗ S an ∈ B̄(A) will be written in the form [a1| · · · |an].
We also adopt the convention 1 = [ ]. The morphisms dt and ds are called tensor differential
and simplicial differential, respectively. The simplicial differential is defined by:
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ds[a1| · · · |an] =
n−1
∑

i=1

(−1)ei [a1| · · · |µA(ai, ai+1)| · · · |an],

where ei = i+ |a1|+ · · ·+ |ai|. Both differentials are coderivations with respect to the canonical
coproduct. Given an element z = [a1| . . . |an], the tensor degree is defined by |z|t =

∑n

i=1 |ai|,
and the simplicial degree is defined by |z|s = n. It is clear that

|z| = |z|t + |z|s.

Let u = [a1| . . . |am] and v = [b1| . . . |bn] be two elements of B̄(A). We define the following
(non-commutative) product:

u • v = [a1| . . . |am|b1| . . . |bn] (2)

which is extended to B̄(A) by linearity.

If A is a commutative DGA-algebra, it is well known that it is possible to define a commu-
tative product ∗ on B̄(A) (called shuffle product).

In this way, B(A) enjoys a Hopf DGA-algebra structure and both simplicial and tensor
differentials are derivations with respect to the shuffle product. Let us recall that the homology
(or more precisely, the 1-homology) of a DGA-algebra A is defined as the homology of B̄(A).
Due to the fact that the reduced bar construction can be iterated in the case in which A is
commutative, the n-homology of A is defined as the homology of B̄n(A) = B̄(n times. . . B̄(A)) . . . ).

A resolution of Λ over a DGA-algebra A is the bar resolution B(A). This complex is the
twisted tensor product of the DGA-algebra A and the DGA-coalgebra B̄(A), where the twisting
cochain t is given by this formula:

t([a1| · · · |an]) =

{

a1 n = 1
0 otherwise.

(3)

We now introduce the notion of twisted tensor product (briefly, TTP) of DGA-algebras, that
we will distinguish from that of twisted tensor product of algebra and coalgebra (in Brown’s
sense) and that of TTP of chain algebras of [12].

Let {Ai}i∈I be a set of commutative DGA-algebras. A twisted tensor product ⊗̃
ρ

i∈IAi is a
commutative DGA-algebra satisfying the following conditions:

i) as a graded algebra, ⊗̃
ρ

i∈IAi coincides with the tensor product ⊗i∈IAi,

ii) and its differential is the sum of the differential of the banal tensor product and a
derivation ρ.

As an example of TTP of algebras, we can consider the bar resolution B(A) of a commutative
DGA-algebra A. In this case, B(A) is the commutative DGA-algebra A⊗̃

ρ
B̄(A), where

ρ(a ⊗ [a1|a2| · · · |an]) = µA(a, a1) [a2| · · · |an]. (4)

Hence, in the commutative case, we can regard B(A) as a TTP of algebra and coalgebra as
well as a TTP of DGA-algebras.

3. A review of HPT

In this paper, we deal with a special type of homotopy equivalence: a contraction.
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A contraction is a data set r : {N, M, f, g, φ} where f : N → M and g : M → N are mor-
phisms of DGA-modules (called the projection and the inclusion of the contraction r, re-
spectively) and φ : N → N is a morphism of graded modules of degree +1 (called homotopy
operator), and these data are required to satisfy the rules,

(c1) fg = 1M ;
(c2) φdN + dNφ + gf = 1N ;
(c3) φg = 0;
(c4) fφ = 0;
(c5) φφ = 0.

(5)

Given a contraction r : {N, M, f, g, φ}, we have Ker φ = Im g ⊕ Im φ. In fact, the DGA-
module N is a direct sum of M and an acyclic DGA-module. N is called the big DGA-module
of r , and M is called the small DGA-module of r.

In this definition we follow Eilenberg-MacLane ([14]) terminology; we also find in literature
“strong deformation retraction” or SDR (Lambe-Stasheff [36], Gugenheim-Lambe [19] and
Gugenheim-Stasheff [23]), “Eilenberg-Zilber data” (Gugenheim-Munkholm [22]), or “trivial
extension” (Munkholm [42]).

The bar resolution B(A) of a DGA-algebra A supports the following contraction:

RB(A) : {B(A), Λ, εB(A), ηB(A), s}, (6)

where the homotopy operator s : B(A) → B(A) is given by

s(a ⊗ [a1| · · · |an]) = θA ⊗ [a|a1| · · · |an]. (7)

An Eilenberg-Zilber contraction is a contraction from (L × L′)N to LN ⊗ L′
N
, where L and L′

are augmented simplicial modules [37]. The subscript N means normalization in the simplicial
structure. At least, one Eilenberg-Zilber contraction exists:

Theorem 3.1. [13] Let L and L′ be two augmented simplicial Λ-modules. The Alexander-
Whitney operator AW : (L × L′)N → LN ⊗ L′

N
, the Eilenberg-MacLane operator EML :

LN ⊗ L′
N
→ (L × L′)N and the Shih operator (of degree +1) SHI : (L × L′)N → (L × L′)N of

L and L′ are defined by the following formulas:

AW (xn, yn) =

n
∑

i=0

∂i+1 . . . ∂nxn ⊗ ∂0 . . . ∂i−1yn, (8)

EML(xp ⊗ yq) =
∑

(α,β)∈{(p,q)−shuffles}

(−1)σ(α,β) (sβq
. . . sβ1xp, sαp

. . . sα1yq) (9)

SHI(xn , yn) =

=
∑

(−1)n−p−q+σ(α,β)(sβq+n−p−q . . . sβ1+n−p−qsn−p−q−1∂n−q+1 . . . ∂nxn,

sαp+1+n−p−q . . . sα1+n−p−q∂n−p−q . . . ∂n−q−1yn),

where the last sum is taken over all the indices 0 6 q 6 n − 1, 0 6 p 6 n − q − 1, (α, β) ∈
{(p + 1, q) − shuffles} and σ(α, β) =

∑

[αi − (i − 1)].
Then, the data

EZL,L′ : {(L × L′)N , LN ⊗ L′
N , AWL,L′ , EMLL,L′, SHIL,L′}

defines a contraction.
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The first definition of the SHI operator was given in an inductive way in [15]. The explicit
formula above for the Shih operator is given by J. Rubio in [48]. Rubio discovered this for-
mula experimentally by means of a lisp program constructed together with F. Sergeraert. An
appendix in this paper, written by F. Morace, is devoted to proving that this explicit formula
satisfies the inductive definition given in [15]. Having a combinatorial formulation for this
operator has been essential for obtaining in [17] a simplicial description for cup-i products,
which open a door to an extremely general computational treatment of Steenrod cohomology
operations.

Let X and Y be two simplicial sets. Using the last contraction, we construct

EZX,Y : {CN(X × Y ), CN(X) ⊗ CN(Y ), AWX,Y , EMLX,Y , SHIX,Y },

where CN(K) denotes the normalized chain complex of a simplicial set K.
Several basic and known results ([36], [19]) about constructions of contractions will be

used in this paper. We record that if r : {N, M, f, g, φ} is a contraction, the suspension ver-
sion S(r) : {S(N), S(M), S(f), S(g), S(φ)} and the contraction r̄ : {N, M, f̄ , ḡ, φ̄} can be
formed. If we have two contractions

ri : {Ni, Mi, fi, gi, φi} i = 1, 2

1. and N2 = M1, the following composition contraction can be constructed:

r2r1 : {N1, M2, f2f1, g1g2, φ1 + g1φ2f1}

2. the tensor product contraction can be constructed:

r1 ⊗ r2 : {N1 ⊗ N2, M1 ⊗ M2, f1 ⊗ f2, g1 ⊗ g2, φ1 ⊗ g2f2 + 1M1 ⊗ φ2}. (10)

Notation 3.2. Of course, if we have a contraction r : {N, M, f, g, φ}, it is possible to form:

r⊗n = r
n times

⊗ . . .⊗ r : {N⊗n, M⊗n , f⊗n, g⊗n, φ[r,n]}

where its homotopy operator φ[r,n] : N⊗n → N⊗n is described by

φ[r,n] =

n−1
∑

i=0

φ[r,n,i] (11)

and φ[r,n,i] = 1⊗i
N

⊗ φ⊗ (gf)⊗(n−i−1); in the case i = 0, the morphism 1⊗i
N

is understood to be
the identity 1Λ, while, for i = n − 1, (gf)⊗n−i−1 similarly designates the identity 1Λ.

Let us observe the similarity between this notation φ[r,n] and f [n] defined in (1). The dif-
ference lies in the fact that the dependency of the morphism with regard to the contraction r
is indicated in the notation φ[r,n], whereas the morphism f [n] exclusively depend on f.

Then, using this notation, the tensor module contraction of r will be T (r) : {T (N), T (M),
T (f), T (g), T (φ)}, where T (f), T (g) and T (φ) are defined in each degree by:

T (f)n = f⊗n ; T (g)n = g⊗n and T (φ)n = φ[r,n].

The Basic Perturbation Lemma (for its genesis, see [14, 8, 52, 9, 18]; with regard to later
developments see [27, 36, 28, 19, 29, 20, 34, 35, 32, 21, 55, 26]) is a systematic and
efficient technique for transferring structures from one object to another up to homotopy. This
“algebraic fixed point theorem” [7] is a powerful device for obtaining chain complexes that
represent a given homotopy type.
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Remark 3.3. Historical introductions to HPT can be found in the papers [29] and [20]. We
consider that the germ of this idea of differential perturbation is in [14]. In that paper, Eilenberg
and Mac Lane defined the notion of contraction and a preliminary and special version of BPL
is in Th. 12.1, pages 82-83.

First we recall the concept of perturbation datum. Let M be a graded module N and let
f : N → N be a morphism of graded modules. The morphism f is pointwise nilpotent if for all
x, being a non-null element of N , a positive integer n exists (in general, the number n depends
on the element x) such that fn(x) = 0. A perturbation of a DGA-module N is a morphism of
graded modules δ : N → N of degree −1, such that (dN +δ)2 = 0 and εNδ = 0. For instance, if
A is a DGA-algebra, the simplicial differential ds is a perturbation of T (S(A)). A perturbation
datum of the contraction r : {N, M, f, g, φ} is a perturbation δ of the DGA-module N , which
satisfies that the composition φδ is pointwise nilpotent.

Theorem 3.4. (Basic Perturbation Lemma) [52] Let r : {N, M, f, g, φ} be a contraction
and δ : N → N a perturbation datum of this contraction. Then a new contraction

rδ : {(N, dN + δ, εN , ηN), (M, dM + dδ, εM , ηM), fδ , gδ, φδ}

is defined by the following formulas:

dδ = fδΣδ
rg; (12)

fδ = f(1 − δΣδ
rφ); (13)

gδ = Σδ
rg; (14)

φδ = Σδ
rφ; (15)

where

Σδ
r =

∑

i>0

(−1)i (φδ)i = 1 − φδ + φδφδ − · · ·+ (−1)i(φδ)i + · · ·

Let us note that Σδ
r(x) is a finite sum for each x ∈ N , because of the pointwise nilpotency

of the composition φδ. Moreover, it is obvious that the morphism dδ is a perturbation of the
DGA-module (M, dM, εM , ηM). From now on, the Basic Perturbation Lemma will be called
BPL.

For later references, we shall state two special cases.

Proposition 3.5. [19] Under the conditions of Theorem 3.4:

1. If the projection f verifies fδφ = 0, then fδ = f and dδ = fδg.

2. If the inclusion g verifies φδg = 0, then gδ = g and dδ = fδg.

It is well known that BPL has a good behaviour when we use classical algebraic construc-
tions.

Proposition 3.6. ([20], [29]) Let r : {N, M, f, g, φ} be a contraction and let δ, δ′ and δ + δ′

be perturbation data of r. Then, the following commutativity properties are satisfied:

rδ = r̄δ̄; (16)

S(rδ) = [S(r)]S(δ); (17)

(r ⊗ r)(δ⊗1+1⊗δ′) = rδ ⊗ rδ′ ; (18)
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T (rδ) = [T (r)]δ[ ] ; (19)

(rδ)δ′ = (rδ′ )δ = r(δ+δ′). (20)

4. Perturbation machinery for algebra and coalgebra categories

In [20] and [29] it is shown that BPL accepts algebra or coalgebra data without a change
in the formulas, provided that the initial contraction satisfies a strong compatibility condition
with respect to the underlying structures. In this section, we assume weaker conditions on the
morphisms of the initial contraction such that BPL produces a new contraction between two
DGA-algebras. The main motivation for doing this is the fact that the (Co)Algebra Pertur-
bation Lemma of [20] and [29] cannot be applied to several important cases in Homological
Algebra and Algebraic Topology (see Section 5).

In this section, we will set up perturbation theorems for DGA-algebras and DGA-coalgebras
and give the details for DGA-algebras.

Definition 4.1. Let A and A′ be two DGA-algebras and let r : {A, A′, f, g, φ} be a contrac-
tion. We say that r is an algebra contraction if f or g are morphisms of DGA-algebras.

We hereby define the notion of algebra homotopy.

Definition 4.2. ([19]) Let A and A′ be two DGA-algebras and let r : {A, A′, f, g, φ} be a
contraction. The homotopy φ is an algebra homotopy if

µAφ[r,2] = φµA.

An easy way for determining that a homotopy operator of one contraction is not a (co)algebra
homotopy is provided by the following lemma. Its proof follows straight from condition (c5)
in (5).

Lemma 4.3. Let r : {A, A′, f, g, φ} be an algebra contraction. If the composite

φµAφ[r,2]

is not identical to zero, then φ is not an algebra homotopy.

Now, we define two notions that will allow us to distinguish algebra contractions.

Definition 4.4. Let r : {A, A′, f, g, φ} be an algebra contraction. We say that φ is a quasi
algebra homotopy if the following conditions hold:

φµA(φ ⊗ φ) = 0,
φµA(g ⊗ φ) = 0,
φµA(φ ⊗ g) = 0.

(21)

We say that f is a quasi algebra projection if the following conditions hold:

fµA(φ ⊗ φ) = 0,
fµA(g ⊗ φ) = 0,
fµA(φ ⊗ g) = 0.

(22)

Let us note that the product of the DGA-algebra A′ is not involved in the previous defini-
tions.

We shall now characterize various classes of algebra contractions.
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Definition 4.5. Let r : {A, A′, f, g, φ} be an algebra contraction. We say that r is

• a full algebra contraction if f and g are morphisms of DGA-algebras and φ is an algebra
homotopy;

• an almost-full algebra contraction if f and g are morphisms of DGA-algebras and φ is a
quasi algebra homotopy;

• a semi-full algebra contraction if f is a quasi algebra projection, g is a morphism of
DGA-algebras and φ is a quasi algebra homotopy.

One can see immediately that in the context of algebra contractions, the designation of full
implies almost-full and that almost-full implies semi-full. Let us observe that each of these
classes is closed by composition and tensor product of contractions.

Examples of full algebra contractions are given in [20], using the “tensor trick”. On the other
hand, it is very easy to find almost-full (non-full) algebra contractions in Algebraic Topology.
For instance, Eilenberg and MacLane determined in [15] explicit algebra contractions of this
type from B̄(Z[Z]) to the exterior algebra E(u, 1) on one generator u of degree 1, and from

B̄(Z[Zh]) to the twisted tensor product E(u, 1)⊗̃
δhΓ(v, 2), where Γ(v, 2) is the polynomial

power algebra on one “generator” v of degree 2 and δh(v) = h · u is a derivation. An explicit
almost-full (non-full) algebra contraction RB̄P can also be established from B̄(P (u, 2n)) to
E(v, 2n + 1), where P (u, 2n) is the polynomial algebra on one generator u of degree 2n. More
precisely, the component morphisms of RB̄P are given in positive degree by:

fB̄P [r1| · · · |rm] =

{

v if m = 1 and r1 = 1
0 otherwise;

gB̄P (v) = [1]

and

φB̄P [r1|r2| · · · |rm] = [1|r1 − 1|r2| · · · |rm];

where [r1|r2| · · · |rm] denotes the element [ur1 |ur2 | · · · |urm ] of B̄(P (u, 2n)).
If the DGA-algebra A is commutative, the contraction RB(A) (see (6)) is an almost-full

algebra contraction too.
Finally, it is not difficult either to establish semi-full (non almost-full) algebra contractions.

An example is the explicit algebra contraction that can be constructed from Q(2)(u, 4)⊗̃
δ
E(v, 5)

to E(w, 9), where Q(2)(u, 4) = P (u, 4)/(u2) is the truncated polynomial algebra on one gen-
erator u of degree 4 and δ(v) = u. In the following section, we will also deal with several
important semi-full algebra contractions that will appear in a natural way in the context of
the homology theory of commutative DGA-algebras.

The following proposition gives us a more concise definition of full-algebra contraction.

Proposition 4.6. An algebra contraction r : {A, A′, f, g, φ} in which φ is an algebra homo-
topy, is a full algebra contraction.

Proof.
Suppose, for instance, that the projection f is a morphism of DGA-algebras. We will prove

that g is also a morphism of DGA-algebras.
Making use of the fact that φ is an algebra homotopy:

φµA = µAφ[r,2], (23)

and composing (23) respectively with dA from the left and with d
[2]
A from the right, we obtain

the following relations
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dAφµA = µAd
[2]
A φ[r,2],

φdAµA = µAφ[r,2]d
[2]
A .

If we sum these last two equalities, we have:

(dAφ + φdA)µA = µA(d
[2]
A φ[r,2] + φ[r,2]d

[2]
A ) (24)

Plugging the rules (c2) of (5) for the contractions r and r ⊗ r into (24), we get

(1 − gf)µA = µA(1A⊗2 − g⊗2f⊗2)

or, simplifying

gfµA = µAg⊗2f⊗2. (25)

Taking into account that f is a morphism of DGA-algebras, (25) can be rewritten as

gµBf⊗2 = µAg⊗2f⊗2.

Thus, since the morphism f is onto, the preceeding equality is equivalent to the following
one:

gµB = µAg⊗2.

Hence, we have deduced that r is a full algebra contraction.
In an analogous way, we can prove that if g is a morphism of DGA-algebras, then f must

also be a morphism of DGA-algebras.
2

The next result describes the failure of compatibility of the component morphisms of a
contraction from a DGA-algebra to a simple DGA-module with respect to the “products”.

Proposition 4.7. Let A be a DGA-algebra, M a DGA-module and r : {A, M, f, g, φ} a con-
traction. We have the following equalities:

fµA − (fµAg⊗2)f⊗2) = dM(fµAφ[r,2]) + (fµAφ[r,2])d
[2]
A , (26)

µAg⊗2 − g(fµAg⊗2) = dA(φµAg⊗2) + (φµAg⊗2)dA, (27)

φµA − µAφ[r,2] = φµAφ[r,2]d
[2]
A − dAφµAφ[r,2] − gfµAφ[r,2]. (28)

Proof.
We will only verify here the equality (28), since (26) and (27) can be obtained in an analo-

gous way.
First, we use the property (c2) of the contraction r⊗2:

1⊗2
A

− g⊗2f⊗2 = d
[2]
A φ[r,2] + φ[r,2]d

[2]
A . (29)
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Composing (29) with µA from the left and using the facts that g is multiplicative and µA

commutes with the differential dA, we obtain:

µA − gµA′f⊗2 = dAµAφ[r,2] + µAφ[r,2]d
[2]
A . (30)

Composing again (30) with φ from the left and using the annihilation property (c3) of r,
we have

φµA = φdAµAφ[r,2] + φµAφ[r,2]d
[2]
A . (31)

Now we apply the property (c2) of r to the second term of (31)

φµA = (1A − gf − dAφ)µAφ[r,2] + φµAφ[r,2]d
[2]
A . (32)

Finally, (32) can be rewritten in the following form

φµA − µAφ[r,2] = φµAφ[r,2]d
[2]
A − dAφµAφ[r,2] − gfµAφ[r,2]. (33)

2

To distinguish almost-full algebra contractions from full algebra contractions, we can use
the following result, whose proof is left to the reader.

Proposition 4.8. Let r : {A, A′, f, g, φ} be an almost-full algebra contraction. It is a full
algebra contraction if and only if φµA(1 ⊗ φ) = 0.

We also leave the proof of the following result to the reader.

Proposition 4.9. Let r : {A, A′, f, g, φ} be a semi-full algebra contraction. It is an almost-full
algebra contraction if and only if fµA(1 ⊗ φ) = 0.

The following proposition states that a semi-full algebra contraction is an algebra contrac-
tion in which Ker φ is a sub-algebra of A.

Proposition 4.10. Let r : {A, A′, f, g, φ} be a semi-full algebra contraction. Let u and v be
two elements of Ker φ. Then

fµA(u ⊗ v) = µA′(f ⊗ f)(u ⊗ v) (34)

and

φµA(u ⊗ v) = µAφ[r,2](u ⊗ v). (35)

Proof.
We will only prove here the equality (35), since (34) can be demonstrated in an analogous

way.
We shall consider here the equality (28). Since φ is a quasi algebra homotopy and f is a

quasi algebra projection, the second term of (28) turns out to be:

ϕ = φµA(1A ⊗ φ)d
[2]
A − dAφµA(1A ⊗ φ) − gfµA(1A ⊗ φ).

If u and v are elements of Ker φ = Im g ⊕ Im φ, the relation ϕ(u ⊗ v) = 0 is immediately
proved.
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Hence, for these particular arguments, we get (35).

2

In order to determine the pairs of elements for which the projection and the homotopy
operator of a semi-full algebra contraction become multiplicative, we may refine the last result.

Proposition 4.11. Let r : {A, A′, f, g, φ} be a semi-full algebra contraction. Let u and v be
two elements of A. If u or v are in Im g, then

fµA(u ⊗ v) = µA′(f ⊗ f)(u ⊗ v) (36)

and

φµA(u ⊗ v) = µAφ[r,2](u ⊗ v). (37)

We also leave the proof of the following result to the reader. In spite of its simplicity, this
proposition will be essential in the proof of our main theorems.

Proposition 4.12. Let A be a DGA-algebra, M a DGA-module and r : {A, M, f, g, φ} a con-
traction. Let us suppose that

φµAg⊗2 = 0,
(resp. fµAφ[r,2] = 0).

Then the morphism υM = fµAg⊗2 defines a product on M (ηM being its unit) and r is an
algebra contraction from (A, dA, µA, εA, ηA) to (M, dM, υM , εM, ηM) with multiplicative inclusion
(resp. multiplicative projection).

It is time to introduce the notion of algebra perturbation datum.

Definition 4.13. [20] Let A and A′ be two DGA-algebras and let r : {A, A′, f, g, φ} be a
contraction. An algebra perturbation datum δ of this contraction is a perturbation datum of r
which is also a derivation.

At this point, it is natural to pose this question: if we have an algebra contraction
r : {A, A′, f, g, φ} and an algebra perturbation datum δ of r, under which conditions can we
state that the composition

υA′ = fδµA(gδ)
⊗2 (38)

on A′, that is defined by transferring the product on A to A′ by means of fδ and gδ, is an
actual product on (A′)δ?.

In [20] and [29], the perturbation problem for algebras is solved assuming that the homotopy
of the contraction is an algebra homotopy. In this way, they establish a preservation result
of (co)algebra laws. The following theorem for DGA-algebras (that we will call Full Algebra
Perturbation Lemma or, more briefly, F -APL) is a translation, in our language, of this result.

Theorem 4.14 (F -APL). [20] Let r : {A, A′, f, g, φ} be a full algebra contraction and δ an
algebra perturbation datum of r.

Then the contraction rδ obtained by applying BPL (Th. 3.4) is a full algebra contraction
from (A, dA + δ, µA, εA, ηA) to (A′, dA′ + dδ, µA′, εA′, ηA′). Moreover, the perturbation dδ for the
DGA-module A′ is a derivation.



Homology, Homotopy and Applications, vol. 2, No. 5, 2000 64

The preceding theorem tells us that the class of full algebra contractions is closed by per-
turbation. The goal of this section and the main aim of this paper is to establish perturbation
machineries for other classes of algebra contractions. The idea is to generalize the following
proposition (that we will call Special Algebra Perturbation Lemma or S-APL) which is an
enriched version of Proposition 3.5:

Proposition 4.15 (S-APL). [19] Let A and A′ be two DGA-algebras, r : {A, A′, f, g, φ} a
contraction and δ an algebra perturbation datum of r. If f (resp. g) is a morphism of DGA-
algebras and

φδg = 0 (resp. fδφ = 0) (39)

then the morphism gδ = g (resp. fδ = f) of the contraction rδ, obtained by applying BPL, is,
consequentely, a morphism of DGA-algebras and the perturbation dδ = fδg obtained in A′ is
a derivation.

In order to obtain perturbation results preserving the DGA-algebra category, we use Propo-
sition 4.12, taking as datum the perturbed contraction rδ. In this way, we state the following
result (that we will call General(inclusion) Algebra Perturbation Lemma or, more briefly GI-
APL) that guarantees the preservation of the strict associativity in a perturbed contraction.

Theorem 4.16 (GI-APL). Let A and A′ be two DGA-algebras, r : {A, A′, f, g, φ} a contrac-
tion and δ an algebra perturbation datum of r.

Let us assume that g is a morphism of DGA-algebras and

φµA(φ[r,2]δ[2])ng⊗2 = 0, ∀n > 1. (40)

Then the inclusion gδ of rδ, obtained by applying BPL, is a morphism of DGA-algebras
from (A′, dA′ + dδ, υA′ , εA′, ηA′) to (A, dA + δ, µA, εA, ηA), where the product υA′ is given by:

υA′ = fµA(gδ)
⊗2

= fµA[
∑

m>0(−1)m(φ[r,2]δ[2])mg⊗2].
(41)

Moreover, if we assume that f is also a morphism of DGA-algebras, the product υA′ coin-
cides with the initial product µA′ of A′.

Proof.
Considering Prop. 3.6 (18), we have

(gδ)
⊗2 = (g⊗2)δ[2] =

∑

n>0

(−1)n (φ[r,2]δ[2])ng⊗2.

Hence, condition (40) and the fact that g is a morphism of DGA-algebras imply that
φµA(gδ)

⊗2 = 0, and consequently, φδµA(gδ)
⊗2 = 0. If we now apply Prop. 4.12 to the contrac-

tion rδ, we endow A′ with an algebra structure

υA′ = fδµA(gδ)
⊗2

= (f − fδΣδ
rφ)µA(g⊗2)δ[2]

= fµA[
∑

m>0(−1)m(φ[r,2]δ[2])m]g⊗2.

Furthermore, the contraction rδ is an algebra contraction from (A, dA + δ, µA, εA, ηA) to
(A′, dA′ + dδ, υA′ , εA′, ηA′) with multiplicative inclusion.

If f is also a morphism of DGA-algebras, and making use of the properties (c1) and (c4)
of the contraction r, we get
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υA′ = fµA[
∑

m>0(−1)m(φ[r,2]δ[2])m]g⊗2

= µAf⊗2 [
∑

m>0(−1)m(φ[r,2]δ[2])m]g⊗2

= µA′f⊗2g⊗2

= µA′.

The previous result was already enunciated in [45].
We now give a similar result to the preceding one without proof.

Theorem 4.17 (GP -APL). Let A and A′ be two DGA-algebras, r : {A, A′, f, g, φ} an alge-
bra contraction and δ an algebra perturbation datum of r.

Let us suppose that f is a morphism of DGA-algebras and

f(δφ)n µA φ[r,2] = 0, ∀ n > 1. (42)

Then the projection fδ of the contraction rδ, obtained by applying BPL, is a morphism of
DGA-algebras from (A, dA + δ, µA, εA, ηA) to (A′, dA′ + dδ, υA′ , εA′ , ηA′), where the product
υA′ is given by the following formula:

υA′ = fδ µA g⊗2. (43)

Moreover, if we assume that g is also a morphism of DGA-algebras, the product υA′ coincides
with the initial product µA′ of A′.

The last theorems can be considered as respective generalizations of S-APL Theorem. On
the other hand, when we work with a full algebra contraction as initial input, GI-APL and
GP -APL theorems only tell us that the perturbed morphims fδ and gδ are morphisms of
DGA-algebras, giving us less information than F -APL Theorem.

Let us note that, in general, the perturbation datum δ is involved in an essential way
in the last perturbation results. However, if we take contractions in which its homotopy
operator is a quasi-algebra homotopy, we can prove the following perturbation result:

Theorem 4.18 (SF -APL). Let r : {A, A′, f, g, φ} be a semi-full algebra contraction and δ
an algebra perturbation datum of r. Then the perturbed contraction rδ is a semi-full algebra
contraction from (A, dA + δ, µA, εA, ηA) to (A′, dA′ + dδ, µA′, εA′, ηA′).

Proof.
Taking into account the formulas of the morphisms of the perturbed contraction rδ, we

see directly that fδ and φδ are, respectively, a quasi algebra projection and a quasi algebra
homotopy.

With regard to gδ, taking into account that φ is a quasi algebra homotopy and g is a
morphism of DGA-algebras, we obtain

φµA(gδ ⊗ gδ) = 0. (44)

Now, by GI-APL (Th. 4.16), we determine that gδ is a morphism of DGA-algebras from
(A′, dA′ + dδ, υA′ , εA′, ηA′) to (A, dA + δ, µA, εA, ηA), where the product υA′ is given by (41):

υA′ = fµA(gδ ⊗ gδ)
= fµA[(

∑

i>0 (−1)i(φδ)ig) ⊗ (
∑

i>0 (−1)j(φδ)jg)].
(45)

Taking into account that f is a quasi algebra projection, g is a morphism of DGA-algebras
and the property (c1) of the contraction r, the formula (45) turns out to be:
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υA′ = fµA(g ⊗ g) = fgµA′ = µA′ .

2

Hence, semi-fullness in algebra contractions is a hereditary property under homological per-
turbation. It is important to note that the perturbed differential dδ is completely determined
by its effect on the generators of the algebra A′, due to the fact that this morphism is a
derivation. This represents a substantial improvement in a later homology computation.

The development of the ideas above for DGA-coalgebras is analogous. Note, however, that
some care must be taken in establishing the hypotheses of the coalgebra perturbation results.
In this way, GI-CPL, GP -CPL and SF -CPL Theorems can be enunciated.

5. Applications

In this section, we will put forward several examples in which F -A(C)PL cannot be applied,
but the hypotheses of SF -A(C)PL or GI-A(C)PL Theorems are verified.

In order to understand the importance of these applications, it is convenient to define our
notion of homological model for a commutative DGA-algebra.

Definition 5.1. A n-homological model (n > 0) for a commutative DGA-algebra A is a pair
(H, r), such that H is a commutative DGA-algebra that is free and of finite type as graded
module and r is a semi-full algebra contraction from B̄n(A) to H .

A more restrictive definition of homological model will be given later, working over Z

localized at a prime.
Let us note that, if the ground ring is Z or Z localized at a prime p, the condition of

formality for a commutative augmented differential graded algebra [4, 16, 25, 21] is stronger
than that of the mere existence of a small computable homological model.

In this section, we give four applications of the perturbation result SF-APL for semi-full
algebra contractions. The first one deals with the transference of the Hopf algebra structure
in the contraction B̄(r), which is constructed, via perturbation, using a contraction r from a
commutative DGA-algebra A to a simple DGA-module M . The contraction B̄(r) is established
from the reduced bar construction of A to the bar tilde construction of M [53, 23]. The second
one concludes that the contraction given by Eilenberg and Mac Lane in [15] from the reduced
bar construction of a tensor product of two commutative DGA-algebras to the tensor product
of reduced bar constructions of both DGA-algebras is an almost-full algebra contraction. The
third one describes p-local homological models of Cartan’s elementary complexes. The paper
[6] makes use of these last results in order to progress in the computation of p-local homo-
logical models of TTPs of Cartan’s elementary complexes. Taking into account the results
of this section, the p-local n-homology theory of commutative DGA-algebras is appropriately
developed in terms of semi-full algebra contractions in [1]. This application is also an essential
step for considering the p-local homology algebra of Eilenberg-Mac Lane spaces from the point
of view of Homological Perturbation Theory (see [3]). This last study assists us in the search
of homological models for some fibre bundles in Topology [2].

To extend these positive results to a broader class of spaces is an interesting question.
This could be available, for example, by suitably modifying our perturbation technique for
DG Hopf algebras. Using a closely related perturbation machinery, Saneblidze constructs a
model for a given DG Hopf algebra A [50] (with not necessarily commutative product) by
the homology H(A). He takes any multiplicative bigraded resolution of H(A), he fix on it an
induced coproduct (not necessarily coassociative) from H(A) using the standard Adams-Hilton
argument (see [29, Th. 3.4]), and then he perturbs simultaneously the resolution differential
(compare [25]) and the coproduct. This, at least, gives a homotopy Hopf algebra (in the sense
of Anick [5]) model for A.
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Finally, we here analyze the p-local n-homology algebra of an extremely concrete class of
commutative DGA-algebras.

Definition 5.2. A connected minimal Koszul-Sullivan (K-S) algebra of finite type (or, simply,
minimal K-S algebra) is a free commutative DG-algebra (ΛM, d) where M is the free graded
module generated by a strictly positive graded set of finite type X =

∑

n>0 Xn and

(KS.1) The set X is indexed by a well ordered set I, such that |xi| 6 |xj| if i < j.

(KS.2) d(X) ⊂ (Λ+M)(Λ+M).

In [24], the notion of K-S complex is defined. In fact, the differential d of the previous
definition satisfies the “nilpotence” and minimality conditions required for K-S complexes of
[24] and the unique difference is limited to the degree of d that is here −1 (see also [56]).
We establish in the last subsection that the p-local n-homology algebra of a minimal K-S
algebra (ΛM, d) can be represented by a homological model that is a (non-twisted) tensor
product of Cartan’s elementary complexes. More precisely, in the case n = 1, we derive that
the homological model H is a banal tensor product of exterior and divided power algebras.
That is to say, H is the 1-homology algebra of ΛM and, therefore, the DGA-algebra B̄(ΛM)
is Z-formal.

5.1. Application 1: Hopf algebra structures on the bar construction contraction
Let r : {A, A′, f, g, φ} be a contraction where A and A′ are two commutative DGA-algebras.

We shall here study the multiplicative behavior of the contraction B̄(r) with respect to the
shuffle product ∗. Let us recall that the bar construction of a commutative DGA-algebra A is
a Hopf DGA-algebra denoted by (B̄(A), dB̄, ∗, ∆B̄, εB̄, ηB̄).

We begin with the following result:

Theorem 5.3. [20] Let A and M be a DGA-algebra and a DGA-module respectively, and
r : {A, M, f, g, φ} be a contraction. Hence, the following full coalgebra contraction can be
established:

B̄(r) = [T (S(r̄)]dA
s

: {B̄(A), B̃(M), B̄(f), B̄(g), B̄(φ)} (46)

where dA

s is the simplicial differential of B̄(A) and the DG-module B̃(M) is the bar tilde
construction of Stasheff [53].

From the contraction B̄(r), it is possible to determine the operations mi : M⊗i → M (i > 1)
of the A∞-algebra on M (see [23]).

In the next result, we state the compatibility of the bar construction contraction and the
perturbation machinery.

Theorem 5.4. Let r : {A, M, f, g, φ} be a contraction where A and M are a DGA-algebra
and a DGA-module, respectively. If δ is an algebra perturbation datum of r, then the following
commutativity property is satisfied:

B̄(rδ) = [B̄(r)]S(δ̄)[ ]

Proof.
First, by applying Prop. 5.3 to rδ, we get the perturbed contraction B̄(rδ) = [T (S(rδ)]dA

s
.

On the other hand, using the product of A, we define the following morphism of DG-modules
of degree -1:

S̃(µA) : S(Ā) ⊗ S(Ā) −→ S(Ā)
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defined by S̃(µA)(Sa′ ⊗ Sa′′) = (−1)|Sa′|µA(Sa′ ⊗ Sa′′).

It is easy to verify that the simplicial differential dA

s of B̄(A) is the morphism S̃(µA)[ ]. Since
δ is a derivation, then

S(δ̄)[ ]S̃(µA)[ ] + S̃(µA)[ ]S(δ̄)[ ] = 0.

Finally, taking into account the good behaviour of BPL in (16), (17), (19) and (20), we
have:

B̄(rδ) = [T (S(rδ))]ds

= [T (S(r̄δ̄))]ds

= [T (S(r̄)S(δ̄))]ds

= [T (S(r̄))S(δ̄)[ ] ]ds

= [T (S(r̄))ds
]S(δ̄)[ ]

= B̄(r)S(δ̄)[ ] . 2

2

If M = A′ is a DGA-algebra and r is an algebra contraction, then the contraction B̄(r)
“connects” two bar constructions (see [20]). For example, if g is a morphism of DGA-algebras,
then B̄(r) is a contraction from B̄(A) to B̄(A′) and its inclusion B̄(g) coincides with T (S(ḡ)).
Since this morphism preserves shuffle products, B̄(r) is an algebra contraction with multi-
plicative inclusion. Without making use of any assumption, we demonstrate here that B̄(g)
always preserves shuffle products.

Theorem 5.5. Let r : {A, M, f, g, φ} be a contraction where A is a commutative DGA-
algebra and M is a DGA-module. Then

B̄(r) : {B̄(A), B̃(M), B̄(f), B̄(g), B̄(φ)}

is a semi-full algebra contraction.

Proof.

It is known (see [20]) that B̄(r) is a full coalgebra contraction. It suffices to prove that the
inclusion of B̄(r) is multiplicative with respect to the shuffle product.

First, both differentials dA

t and dA

s are ∗-derivations. Secondly, T (S(r̄)) is an almost-full
algebra contraction. Indeed, it is obvious that both T (S(f̄ )) and T (S(ḡ)) are compatible with
the shuffle products. It is also a simple exercise to prove that T (S(φ̄)) is a quasi algebra
homotopy. Moreover,

T (S(φ̄)) ∗ T (S(φ̄))[T (S(r̄)),2]([Sa] ⊗ [Sb]) 6= 0

for a, b ∈ Ā with φ(a) 6= 0 6= φ(b). Hence, it follows from Proposition 4.8 that T (S(φ̄)) is not
an algebra homotopy.

With these ingredients, the result directly follows from SF -APL.

2

Remark 5.6. Of course, if r is a semi-full algebra contraction then B̄(r) is a semi-full algebra
contraction from B̄(A) to B̄(M).
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From the theorem above, we have in particular that the differential of B̃(M) is a derivation.
This fact means that B̃(M) is a DGA Hopf algebra and leads us to the notion of commutative
A∞-algebra introduced by Kadeishvili in [31].

Corollary 5.7. Let r : {A, M, f, g, φ} be a contraction where A is a commutative DGA-
algebra and M is a DGA-module. Let (m1, m2, m3, . . . ) be the A∞-algebra structure on M
derived from the algebra structure on A via the contraction B̄(r) (see [23]). If i > 2 and a
and b are two elements of B̃(M), with |a|s + |b|s = i, being |a|, |b| > 1 then

mi(a ∗ b) = 0, (47)

where the shuffle product a ∗ b is interpreted having its image on M i.

5.2. Application 2: A particular Eilenberg-Zilber contraction
A contraction RB̄⊗, described by Eilenberg-MacLane in [15], from B̄(A ⊗ A′) to

B̄(A) ⊗ B̄(A′), where A and A′ are two commutative DGA-algebras, is recorded here. Let
us note that the reduced bar construction B̄(A) of a commutative DGA-algebra A has a
DGA-algebra structure with regard to the shuffle product ∗. In this section, we show that the
contraction RB̄⊗ is an almost-full algebra contraction. Moreover, taking this contraction as ini-
tial datum, if we perturb the differential of A⊗A′ or we modify the product of A⊗A′ in such a
way that we still have a new commutative DGA-algebra, we determine the (co)multiplicative
behaviour of the perturbed contraction by making use of SF -APL and GI-CPL Theorems.

The study done in this section can be generalized in a natural way to the contraction from
B̄(⊗n

i=1Ai) to ⊗n
i=1B̄(Ai), for n = 3, 4, . . . .

Theorem 5.8. [15, pp. 59-60] If A and A′ are two commutative DGA-algebras, then there
is an algebra contraction RB̄⊗ with multiplicative projection and inclusion from B̄(A ⊗ A′) to
B̄(A) ⊗ B̄(A′).

RB̄⊗ is also a coalgebra contraction with comultiplicative inclusion.

Eilenberg and Mac Lane in [14, pp. 75-76] assign to each commutative DGA-algebra A, a
construction B(A) that may be regarded, in particular, as an augmented simplicial Λ-algebra
(that we will call Bsmp(A)) and, hence, they establish the normalized construction Bsmp

N
(A).

This last construction endowed with the degree, differential, product and coproduct induced by
B(A) coincides with our definition of bar construction B̄(A). Eilenberg and Mac Lane exploit
the Eilenberg-Zilber Theorem (Th. 3.1) and they establish a contraction EZBsmp(A),B̄smp(A′)

from (B̄smp(A) × B̄smp(A′))N to B̄smp

N (A) ⊗ B̄smp

N (A′). The desired contraction

RB̄⊗ : {B̄(A ⊗ A′), B̄(A) ⊗ B̄(A′), fB̄⊗, gB̄⊗, φB̄⊗}.

is obtained by composing the preceding contraction with iso-contractions which amount largely
to sign changes.

Let us recall the explicit formulas of the projection and inclusion of this contraction given
by Eilenberg-Mac Lane in [15]:

• fB̄⊗[a1 ⊗ a′
1| · · · |an ⊗ a′

n]

=
n

∑

i=0

ξA(µA(ai+1 · · ·an))ξA′(µA′(a′
1
· · ·a′

i
))[a1| · · · |ai] ⊗ [a′

i+1
| · · · |a′

n
] .

• gB̄⊗([a1| · · · |an] ⊗ [a′
1| · · · |a

′
m])

= [a1 ⊗ θA′ | · · · |an ⊗ θA′ ] ∗ [θA ⊗ a′
1| · · · |θA ⊗ a′

n] .

The formula of the homotopy operator is:

φB̄⊗ = ς−1 SHIB̄smp A,B̄smpA′ ς.
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The morphism SHIB̄smpA,B̄smpA′ is the homotopy operator of the contraction EZB̄smpA,B̄smpA′

which is explicitly described in Theorem 3.1 (face and degeneracy operators of B̄smpA are de-
fined in [14, p. 75]), and the isomorphism of DG-modules ς : B̄(A ⊗ A′) → (B̄smp(A) ×
B̄smp(A′))N is defined in [15, p. 60].

Hence, the image φB̄⊗[a1 ⊗ a′
1| · · · |an ⊗ a′

n] is a sum taken over all (p + 1, q)-shuffles (with
0 6 p 6 n − q − 1 6 n − 1) of elements of this kind (up to sign):

εA(µA(an−q+1 · · ·an))[a1 ⊗ a′
1| · · · |an−p−q−1 ⊗ a′

n−p−q−1|µA′(a′
n−p−q · · ·a

′
n−q)|

|([an−p−q| · · · |an−q] ∗ [a′
n−q+1| · · · |a

′
n])].

Now, it is easy to see that φB̄⊗ is not an algebra homotopy.
As counterexample, we take u = [a ⊗ a′] and u′ = [b ⊗ b′], where a, b ∈ A, a′, b′ ∈ A′ and

|x| > 0, for x = a, b, a′, b′.
On one hand, we have,

φB̄⊗(u ∗ u′) = −[a ⊗ a′|b′|b] + [µA′(a′, b′)|a|b] + [b⊗ b′|a′|a] − [µA′(a′, b′)|b|a];

On the other hand, we get

u ∗ φB̄⊗(u′) + φB̄⊗(u) ∗ gB̄⊗fB̄⊗(u′) = [b′|b|a⊗ a′] − [b′|a ⊗ a′|b] + [a⊗ a′|b′|b].

In addition, the morphism φB̄⊗ is not a coalgebra homotopy. In fact, the projection fB̄⊗ is
not a morphism of DGA-coalgebras. If we take [a|a′] ∈ B̄(A ⊗ A′), where a and a′ are elements
of A and A′ respectively, we have

(fB̄⊗ ⊗ fB̄⊗)∆B̄⊗[a|a′] = ([ ] ⊗ [ ])⊗ ([a]⊗ [a′]) + ([a] ⊗ [ ]) ⊗ ([ ] ⊗ [a′])+
+([a]⊗ [a′]) ⊗ ([ ] ⊗ [ ])

and on the other hand,

(1 ⊗ T ⊗ 1)(∆B̄ ⊗ ∆B̄) fB̄⊗[a|a′] =

([ ] ⊗ [a′]) ⊗ ([a]⊗ [ ]) + ([a] ⊗ [ ]) ⊗ ([ ] ⊗ [a′]) +

+ ([ ] ⊗ [ ]) ⊗ ([a]⊗ [a′]) + ([a] ⊗ [a′]) ⊗ ([ ] ⊗ [ ])

Since gB̄⊗ is a morphism of DGA-coalgebras and taking into account Proposition 4.6, we
deduce that φB̄⊗ is not a coalgebra homotopy.

The rest of this subsection is devoted to proving that RB̄⊗ is an almost-full algebra con-
traction.

First, we introduce the following definitions:

Definition 5.9. Let A and A′ be two DGA-algebras. An element a of Ā (resp. a′ of Ā′) can
be regarded as an element of the tensor product A ⊗ A′ by the morphism of DGA-algebras:

a 7→ c = a ⊗ θA′ ,
(resp. a′ 7→ c′ = θA ⊗ a′).

The elements of c ∈ A⊗A′ (resp. c′ ∈ A⊗A′) which are obtained in this way are called simple
elements of A ⊗ A′.

Remark 5.10. We can consider the DGA-algebras A and A′ as sub-DG-algebras of A ⊗ A′.
In the same way, the constructions B̄(A) and B̄(A′) can be viewed as sub-DG-algebras of
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B̄(A⊗A′) and of B̄(A)⊗ B̄(A′). From now on, we will make use of these identifications when
they may be considered appropriate.

Definition 5.11. Let A and A′ be two DGA-algebras. Let u = [c1| · · · |cm] be an element of
B̄(A ⊗ A′). We say that u is simple if for all 1 6 i 6 m, ci is a simple element of A⊗A′. In this
case, this element has s inversions if there are exactly s elements cri

∈ A′ with i = 1, . . . , s and
r1 < r2 < . . . < rs, such that crs+1 ∈ A. The graded module generated by the simple elements
of B̄(A ⊗ A′) will be denoted by SB̄(A ⊗ A′).

Of course, if u is a simple element of Ker fB̄⊗, this element has at least 1 inversion.

Definition 5.12. Let A and A′ be two DGA-algebras. Let u = [c1| · · · |cm] be an element of
B̄(A ⊗ A′). We say that u is 1-simple if there is only one subscript k ∈ {1, . . . , m} such that
ci is simple, for i 6= k, and ck ∈ A⊗ A′. In this case, this element has s + 1 inversions if there
are exactly s elements cri

∈ A′ with i = 1, . . . , m and r1 < r2 < . . . < rs, such that crs+1 ∈ A
or crs+1 = ck ∈ A ⊗ A′. The graded module generated by the 1-simple elements of B̄(A ⊗A′)
will be denoted by S1B̄(A ⊗ A′).

Definition 5.13. Let A and A′ be two DGA-algebras. Let u = [c1| · · · |cm] be an element of
B̄(A ⊗ A′). We say that u finishes with an inversion if there is a subscript k ∈ {1, . . . , m} such
that [ck|ck+1| · · · |cm] is an element of SB̄(A ⊗ A′) having one inversion. The graded module
spanned by these elements will be denoted by IB̄(A ⊗ A′).

The proof of the following proposition follows from the explicit definition of the morphisms
fB̄⊗, gB̄⊗ and φB̄⊗ of the contraction RB̄⊗.

Proposition 5.14. Let A and A′ be two commutative DGA-algebras. Then,

a) S1B̄(A ⊗ A′) ⊂ Ker fB̄⊗.

b) Im gB̄⊗ ⊂ SB̄(A ⊗ A′) ⊂ Ker φB̄⊗.

c) SB̄(A ⊗ A′) ∗ SB̄(A ⊗ A′) ⊂ SB̄(A ⊗ A′).

d) ∆B̄(SB̄(A ⊗ A′)) ⊂ SB̄(A ⊗ A′) ⊗ SB̄(A ⊗ A′).

e) The homotopy operator φB̄⊗ carries 1-simple elements with s inversions to zero or to
sums of simple elements of Ker fB̄⊗ with at least s inversions.

f ) IB̄(A ⊗ A′) = Im φB̄⊗ ⊂ Ker φB̄⊗.

From the proposition above, it is easy to obtain:

Theorem 5.15.

(1) The contraction RB̄⊗ is an almost-full algebra contraction.

(2) The contraction RB̄⊗ is a coalgebra contraction with comultiplicative inclusion. Neither
is fB̄⊗ a quasi coalgebra projection nor is φB̄⊗ a quasi coalgebra homotopy.

The following result directly follows from SF -APC and Theorem 5.15 (1).

Corollary 5.16. Let A and A′ be two commutative DGA-algebras and δ an algebra pertur-
bation datum of the contraction RB̄⊗ from B̄(A ⊗ A′) to B̄(A) ⊗ B̄(A). Then the perturbed
contraction (RB̄⊗)δ is a semi-full algebra contraction.

Now, we define two special types of perturbation data of the contraction RB̄⊗.

Definition 5.17. Let A and A′ be two commutative DGA-algebras and δ a perturbation
datum of the contraction RB̄⊗. We say that δ is a simple (resp. 1-simple) perturbation datum
if it is a derivation, a coderivation and carries simple elements into simple or 1-simple (resp.
into 1-simple) elements.
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The perturbations for RB̄⊗ arising from perturbations of the differential of A ⊗ A′ (for
examples, PTTs of algebras) or from “modifications” of the product of A⊗A′ so that the new
modified tensor product is still a commutative DGA-algebra, are simple perturbation data.
We will find specific perturbation data of this type in the next section.

The use of the coalgebra perturbation result GI-CPL is essential in the following theorem.

Theorem 5.18. Let A and A′ be two commutative DGA-algebras. Assume that δ is a simple
perturbation datum of RB̄⊗.

Then the inclusion of the perturbed contraction (RB̄⊗)δ is a morphism of Hopf DGA-algebras
from

(B̄(A) ⊗ B̄(A′), d
[2]
B̄ + dδ, (∗A ⊗ ∗A′)(1 ⊗ T ⊗ 1), ∆̃⊗B̄, ε⊗2

B̄
, η⊗2

B̄
)

to

(B̄(A ⊗ A′), dB̄ + δ, ∗A⊗A′, ∆B̄, εB̄, ηB̄),

where

∆̃⊗B̄ = (fB̄⊗ ⊗ fB̄⊗)∆B̄(gB̄⊗)δ.

Moreover, the perturbation dδ over B̄(A) ⊗ B̄(A′) is a derivation and a coderivation.

Proof.
With regard to algebra structures, all have been proved in Theorem 5.16 which is valid for

every algebra perturbation datum δ.
To complete the proof, it suffices to verify that the following condition holds:

(1 ⊗ φB̄⊗ + φB̄⊗ ⊗ gB̄⊗fB̄⊗)∆B̄(φB̄⊗δ)ngB̄⊗ = 0, ∀n > 0. (48)

First, by Prop. 5.14 b) we have that ImgB̄⊗ ⊂ SB̄(A ⊗ A′). From the fact that δ is a
simple perturbation datum and Prop. 5.14 e), the composite (φB̄⊗δ)n carries any element of
SB̄(A⊗A′) into an element of this same graded module. Finally, (48) follows from Prop. 5.14
d) and b).

Thus, we are able to apply GI-CPL and this proves the theorem.
2

5.3. Application 3: p-minimal homological models of Cartan’s elementary com-
plexes

Let us recall that in 1954, Henri Cartan [10] determined the integer homology algebra of
Eilenberg-MacLane spaces. To do this, he introduced the notion of construction and several
homological operations (suspension, transpotence and divided powers) constructing, thanks to
them, tensor products of a certain number of “elementary complexes”, one for each appropri-
ated homological operation (admissible words). The homology of this tensor product reduced
by several identifications gave the desired integer homology of an Eilenberg-MacLane space.
On the other hand, an extensive study of the p-local (p prime) homology of Cartan’s little
constructions was given by John C. Moore in [40]. A short account of the work of Moore on
this subject is given in [54].

As a third illustration, taking Λ = Z(p) (Z localized at a prime p) as the ground ring, we
here show a method for representing the homology algebras of Cartan’s elementary complexes
in terms of semi-full algebra contractions.

We must point out that the relation of the methods of the Séminaire Cartan to Homological
Perturbation Theory is studied in [33], [34] and [35], in which it is proved that Cartan’s little
constructions can be considered as small resolutions which split off of the bar resolution. In
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these papers, a constructive version of the comparison theorem for resolutions is used for
establishing a splitting (contraction) of the bar resolution. Here, we use the techniques of
Eilenberg and Mac Lane in [14] and [15] for obtaining homological information of Cartan’s
elementary complexes, under the form of semi-full algebra contractions. Thanks to Theorem
3.3 of [6], it is possible to translate all this information to resolutions in an appropriate way. In
our process, a case appears in which SF -APL will be the unique algebra perturbation theorem
that could be applied. In the method developed by Cartan, the generators of the elementary
algebras appearing in this iterative process admit an interpretation in terms of homological
operations. Here, we maintain this notation in order to provide a comparison with Cartan’s
method. Finally, let us note that this work is extremely important in the design of algorithms,
based on perturbation techniques, for computing the homology of simplicial fibre bundles in
Topology [2] or the n-homology (with n > 2) of commutative DGA-algebras [1, 11].

We begin with the following definitions:

Definition 5.19. [10] Let A be a commutative DGA-algebra. We define the following mor-
phisms of graded modules:

• The suspension,

σ : A → B̄(A) defined by
σ(a) = [a], where a ∈ A.

• The p-transpotence, where p is a prime number,

ϕp : A → B̄(A), defined by
ϕp(a) = [a|ap−1] where a ∈A.

Let us notice that Cartan defines the additive functions suspension and transpotence with
values in H∗(B̄(A)), whereas here we define analogous functions from a DGA-algebra A to its
reduced bar construction.

Now we shall define Cartan’s elementary complexes.

Definition 5.20. [10] Let p be a prime number. An elementary complex is a DGA-algebra
of the form:

• Type I: an exterior algebra E(u, 2n− 1);

• Type II: a divided power algebra Γ(u, 2n);

• Type III: a twisted tensor product E(u, 2n− 1)⊗̃
δ±pr

Γ(v, 2n);

• Type IV: a twisted tensor product Γ(u, 2n)⊗̃
δ±pr

E(v, 2n + 1);

where n > 1 and the derivation δ±pr is given by the formula

δ±pr (v) = ±pr u, r > 1.

Definition 5.21. ([29]) Let p be a prime number and let Λ = Z(p) be our ground ring. A
DGA-module (M, dM , εM, ηM) is called p-minimal if it is free, of finite type as a graded module
and dM(M) ⊂ p ·M .

Definition 5.22. Let p be a prime number and let Λ = Z(p) be our ground ring. We say that
H is a p-minimal n-homological model of a commutative DGA-algebra A if there is an algebra
contraction from the iterated bar construction B̄n(A) to the p-minimal DGA-algebra H .

Working over Z(p), our goal in this subsection is to obtain by perturbation semi-full algebra
contractions from bar constructions of Cartan’s elementary complexes to p-minimal DGA-
algebras.

A first result on the homology of elementary complexes is given by Eilenberg-MacLane:
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Theorem 5.23. [15] Let Λ be a commutative ring with 1 6= 0 and let n be a natural number.
There is an isomorphism of Hopf DGA-algebras between the bar construction of an exterior
algebra B̄(E(u, 2n− 1)) and the divided power algebra Γ(σ(u), 2n).

In an obvious way, the last isomorphism can be considered as a full algebra contraction:

RB̄I : {B(E(u, 2n− 1)), Γ(σ(u), 2n), fB̄I , gB̄I , 0} (49)

where

fB̄I([u| k times. . . |u]) = γk(σ(u));

and

gB̄I(γk(σ(u)) = [u| k times. . . |u].

From now on, in order to compare later our method with the one developed by Cartan, we
will denote the generators of the small DGA-algebras of the contractions that may appear, by
making use of the suspension, transpotence and divided power morphisms . For example, the
generator v of the divided power algebra in the last contraction has been denoted by σ(u).
The notation σ(u) means that gB̄I(v) = σ(u).

Now, it is about to find an explicit contraction for the bar construction of a divided power
algebra (complex of type II). This case is quite complicated. This was the principal problem
Eilenberg and MacLane encountered when studying the homology of K(π, n)s.

Here, we can solve this question if we work with coefficients in Z(p) (p prime). We will
only deal with odd primes p. For p = 2, similar results can be obtained. In the sequel of this
subsection, we will take as the ground ring Z(p).

First, we establish the following result

Proposition 5.24. Let n and p be a natural number and a prime number, respectively. There
is an isomorphism of DGA-algebras between the divided power algebra Γ(u, 2n) and

⊗̃i>0Q(p)(ui, 2npi).

As Z(p)-module, this last DGA-algebra is equal to the ordinary tensor product
⊗i>0Q(p)(ui, 2npi). Its multiplicative law is

uk
i uh

j =







uk
i ⊗ uh

j if i 6= j,

uk+h
i if i = j and k + h < p,

−put
iui+1 if i = j and k + h = p + t.

(50)

Proof.
We can consider the above isomorphism as a full algebra contraction:

RΓ : {Γ(u, 2n), ⊗̃i>0Q(p)(ui, 2npi), fΓ, gΓ, 0} (51)

We take the function Sp(n) = pn−1
p−1 , ∀n = 0, 1, 2, . . .. The explicit morphisms of RΓ are

defined by:

fΓ : Γ(u, 2n) → ⊗̃i>0Q(p)(ui, 2npi)

fΓ(γk(u)) =
(−p)

Pr
i=1 kiSp(i)

k!
uk0

0 . . . ukr
r ,
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where k = k0 + k1p + . . . + krp
r (0 6 ki < p) is the p-adic development of k,

and

gΓ : ⊗̃i>0Q(p)(ui, 2npi) → P (u, 2n)

gΓ(u
k
n) =

(−1)nkk(kpn − 1)!

pkSp(n)−n
γkpn(u), 0 6 k < p.

Notice that the numbers
(−p)

P

r
i=1 kiSp(i)

k!
and

(−1)nkk(kpn − 1)!

pkSp(n)−n
are invertible elements in

Z(p).

2

Remark 5.25. From now on, we will identify the generators ui of the truncated algebras with
the elements γpi (u) of Γ(u, 2n); in fact, gΓ(ui) coincides with γpi (u), excluding the coefficient.

This simplification of the DGA-algebra Γ(u, 2n) tells us that knowing the homology of the
truncated algebras is essential for obtaining by perturbation the homology algebra of a divided
power algebra. In order to get an explicit contraction for the bar construction of a truncated
algebra, we have slightly modified an argument used by Eilenberg-MacLane in [15].

Proposition 5.26. Let n and p be a natural number and an odd prime number, respectively.
There is an almost-full algebra contraction:

RBQ : {B̄(Q(p)(u, 2n)), E(σ(u), 2n + 1) ⊗ P (ϕp(u), 2np + 2),
fBQ, gBQ, φBQ}

(52)

Proof.

We denote an element of B̄(Q(p)(u, 2n)) with the form [ur1 | . . . |urm ] by [r1| . . . |rm], where
0 6 ri < p.

The explicit morphisms of RBQ are the following:

fBQ[r1|t1| . . . |rm|tm] = {
∏n

k=1 δp,rk+tk
}γm(ϕp(u)),

fBQ[r1|t1| . . . |rm|tm|l] = δ1,l{
∏n

k=1 δp,rk+tk
}σ(u) · γm(ϕp(u)),

where the symbols δi,j are defined by:

δi,j =

{

0 i 6= j
1 i = j

The morphism gBQ : E(σ(u), 2n + 1) ⊗ Γ(ϕp(u), 2np + 2) → B̄(Q(p)(u, 2n)) is defined over
the generators as follows:

gBQ(σ(u)) = [1],

gBQ(γk(ϕp(u))) = [1|p− 1| k times. . . |1|p− 1].

The homotopy operator φBQ is defined by:
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φBQ1 = 0; φBQ[1] = 0;

φBQ[x] = −[1|x− 1] 1 < x < p;

φBQ[x|y] = −[1|x− 1|y];

φBQ[x|y|z] = −[1|x− 1|y|z] − δp,x+y [1|p− 1|φ(z)]

where z ∈ B̄(Q(p)(u, 2n)).
Finally, proving the almost-fullness of this algebra contraction is a simple exercise that it

is left to reader.
2

Remark 5.27. For p = 2, the truncated algebra Q(2)(u, 2n) coincides with E(u, 2n) as DGA-
algebras.

We are ready to establish:

Theorem 5.28. Let n and p be a natural number and an odd prime number, respectively.
There is a semi-full algebra contraction RB̄II from B(Γ(u, 2n)) to the DGA-algebra

E(σ(u), 2n + 1) ⊗ (⊗i>1[E(σγpi(u), 2npi + 1)⊗̃
δpΓ(ϕpγpi−1 (u), 2npi + 2)])

Proof.
For the sake of clarity, we will write the DGA-algebras without noting the degree of the

generators.
Proposition 5.24 tells us that there is an isomorphism of DGA-algebras between Γ(u) and a

tensor product ⊗̃i>0Q(p)(γpi (u)) (note that we are using the identifications of (5.25)). This then
enables us to state that the respective bar constructions of these two algebras are isomorphics
too. This isomorphism of Hopf DGA-algebras is denoted by B̄(RΓ), where the construction
B̄( ) over a contraction is defined in Theorem 5.3 and the contraction RΓ is determined by
(51).

Then, for the construction of RB̄II, we need to establish a contraction for the Hopf DGA-
algebra B̄(⊗̃i>0Q(p)(γpi (u))). To this end, we first consider the ordinary tensor product, ex-
cluding the modification of the product of the truncated algebras ⊗i>0Q(p)(γpi (u)) (50), and
we take:

• the almost-full algebra contraction:

RB̄⊗Q : {B̄(⊗i>0Q(p)(γpi (u))),⊗i>0B̄(Q(p)(γpi (u))), fB̄⊗Q, gB̄⊗Q, φB̄⊗Q},

which is constructed thanks to Theorem 5.8,

• and the almost-full algebra contraction:

R⊗B̄Q : {⊗i>0B̄(Q(p)(γpi (u))), ⊗i>0 E(σγpi (u)) ⊗ Γ(ϕpγpi (u)),
f⊗B̄Q, g⊗B̄Q, φ⊗B̄Q},

which is constructed thanks to Proposition 5.26 and (10). In fact, R⊗B̄Q is the contraction
⊗i>0R

i
BQ

, where

Ri
BQ

: {B̄(Q(p)(γpi (u)), E(σγpi (u)) ⊗ Γ(ϕpγpi (u)), f i
BQ

, gi
BQ

, φi
BQ

}

is a contraction of type (52).
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It is time to apply the machinery of homological perturbation to the composition con-
traction RBP = R⊗B̄QRB̄⊗Q, where the perturbation datum δ is the difference between the
differentials of the bar constructions B̄(⊗i>0Q(p)(γpi (u))) and B̄(⊗̃i>0Q(p)(γpi (u))). It is
clear that δ is a derivation and represents the perturbation induced in the simplicial dif-
ferential of B̄(⊗i>0Q(p)(γpi (u))) by the modification produced in the product of the algebra
⊗i>0Q(p)(γpi (u)). The projection, inclusion and homotopy operator of the contraction RBP

will be denoted by fBP , gBP and φBP , respectively.
From SF -APL, we directly deduce that (RB̄P )δ is a semi-full algebra contraction. Moreover,

S-APL can be applied in this case. Our aim here is to verify the following relation:

φBPδgBP = 0,

or, written in a more developed form:

(φB̄⊗Q + gB̄⊗Qφ⊗B̄QfB̄⊗Q) δ (gB̄⊗Qg⊗B̄Q) = 0. (53)

First, the composite gB̄⊗Qg⊗B̄Q carries any generator w into an element z of the form [1]
or [1|p − 1] of B̄(Q(p)(γpri (u)) ⊂ B̄(⊗i>0Q(p)(γpi (u))). Obviously, z is a simple element of
B̄(⊗i>0Q(p)(γpi (u))).

We shall now study the image of z under δ. It is not difficult to see that this image is zero
if z = [1] and [γpi+1 (u)] if z = [1|p − 1]. Then the image of any generator under δgB̄⊗Qg⊗B̄Q

lies in S̄(⊗i>0Q
i
(p)) and, hence, in Ker φB̄⊗Q (see Prop. 5.14).

Thus, it is clear that fB̄⊗QδgBP (w) is zero or an element [1] ∈ Ker φri
BQ

⊂ Ker φ⊗B̄Q. This
completes the proof of (53).

Therefore, Theorem S-APL tells us that the perturbed contraction RB̄II = (RBP)δ from

B̄(⊗̃i>0Q(p)(γpi (u))) to E(σ(u)) ⊗ (⊗i>1 [E(σγpi(u))⊗̃
δpΓ(ϕpγpi−1 (u))]) can be constructed,

where its inclusion gB̄II is precisely gBP = gB̄⊗Qg⊗B̄Q. Consequently, gB̄II is a morphism of
DGA-algebras.

We can easily check that the formula given by BPL for the twisted differential of the pairs

E(σγpi (u), 2npi + 1)⊗̃
δpΓ(ϕpγpi−1 (u), 2npi + 2)

is the following:

δp(γkϕpγpi−1 (u)) = fBΓδgBP(γkϕpγpi−1 (u))

= p (σγpi (u) ⊗ γk−1ϕpγpi−1 (u)),

∀k > 1 and ∀i > 1.

This yields the desired result.
2

Therefore, a complex of type II presents as p-minimal 1-homological model a tensor product
of complexes of type I and III. We are now concerned with an explicit algebra contraction for
the bar construction of a complex of type III.

Theorem 5.29. Let n and p be a natural number and an odd prime number, respectively.

There is a semi-full algebra contraction RB̄III from B̄(E(u, 2n + 1)⊗̃
δpr

Γ(v, 2(n + 1)) to the
DGA-algebra

[Γ(σ(u), 2(n + 1))⊗̃
δ−pr

E(σ(v), 2n + 3)]⊗

(⊗i>1[E(σ̃γpi (v), 2(n + 1)pi + 1)⊗̃
δpΓ(ϕpγpi−1 (v), 2(n + 1)pi + 2)]).

(54)
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The notation σ̃γpi (v) means that a change of basis has taken place in which the generator
of the algebra E(σγpi (v)) has been modified.

Proof.
For brevity, we shall write the algebras omitting the degree of the generator.
First, we shall consider:

• the almost-full algebra contraction:

REΓ

B⊗ : {B̄(E(u) ⊗ Γ(v)), B̄(E(u)) ⊗ B̄(Γ(v)), fB̄⊗, gB̄⊗, φB̄⊗}

which is constructed using Theorem 5.8,

• and the semi-full algebra contraction RE,Γ

⊗B̄
= RB̄I ⊗RB̄II from B̄(E(u)) ⊗ B̄(Γ(v)) to the

DGA-algebra

Γ(σu) ⊗ E(σv) ⊗ [⊗i>1E(σγpiv)⊗̃
δpΓ(ϕpγpi−1v)].

This contraction is obtained from the contraction (49) and that of Th. (5.28). We shall
denote the projection, inclusion and homotopy operator of the contraction RE,Γ

⊗B̄
by f⊗B̄ ,

g⊗B̄ and φ⊗B̄ , respectively.

Hence, we are interested in the semi-full algebra contraction RBEΓ = RE,Γ

⊗B̄ REΓ

B⊗. The projec-
tion, inclusion and homotopy operator of this last contraction will be denoted as fBEΓ, gBEΓ

and φBEΓ, respectively.
Here, the perturbation datum ρ for RBEΓ will be the modification generated by δpr that

is induced in the tensor differential of the bar construction B̄(E(u)⊗̃
δpr

Γ(v)). The morphism
ρ is a derivation because it is the difference between the differentials of the constructions

B̄(E(u)⊗̃
δpr

Γ(v)) and B̄(E(u) ⊗ Γ(v)). Additionally, it is not hard to prove the pointwise
nilpotency of the composite φBEΓδ.

Hence, the SF -APL perturbation machine guarantees that (RBEΓ)ρ = RBIII is a semi-full
algebra contraction from

B̄(E(u)⊗̃
δpr

Γ(v))

to

(Γ(σ(u)) ⊗ E(σ(v)) ⊗⊗i>1[E(σγpi (v))⊗̃
δpΓ(ϕpγpi−1 (v))], d′)

where d′ denotes the differential obtained by perturbation.
We shall now compute the differential d′ in the small DGA-algebra of the perturbed con-

traction RBIII. First at all, we analyze the inclusion of RBIII:

(gBEΓ)ρ =
∑

n>0

(−1)n(φBEΓρ)ngBEΓ. (55)

The morphism gBEΓ is defined by:

gBEΓ = gB̄⊗g⊗B̄ = gB̄⊗(gB̄I ⊗ gB̄II) = gB̄⊗(gB̄I ⊗ gBΓ).

The previous morphism carries any generator of the small DGA-algebra (54) to an element of
B̄(E(u)) or an element w of the form [1] or [1|p − 1] of
B̄(Q(p)(γpi (v))) ⊂ B̄(Γ(v)) ⊂ B̄(E(u) ⊗ Γ(v)). Obviously, this image lies in Ker φB̄⊗.

We can now concentrate our study on determining the image under ρ of an argument w of
the form [1] or [1|p− k] (with 0 < k < p) of B̄(Q(p)(γpi (v))). This image is, in general, a sum
of two 1-simples elements of B̄(E(u) ⊗ Γ(v)). The only term with 1 inversion in this sum is
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w̄ = [u ⊗ b] • z̄ (56)

where b ∈ Γ(v) and z̄ is [ ] if w = [1] or [p− k] if w = [1|p− k] ∈ B̄(Q(p)(γpi (v))). Let us note
that in the case i = 0, w̄ is the simple element [u] • z̄.

Now, the homotopy operator of the contraction RBEΓ has the form:

φBEΓ = φB̄⊗ + gB̄⊗φ⊗B̄fB̄⊗ = φB̄⊗ + gB̄⊗(1 ⊗ φB̄II)fB̄⊗.

By Proposition 5.14 g), the image of a 1-simple element of B̄(E(u)⊗Γ(v)) with r inversions
(r > 2) under φB̄⊗ is zero or a sum of simple elements of Ker fB̄⊗ with at least r inversions.
It is easy to check that if we take a simple element of Ker fB̄⊗ with r inversions (r > 2),
the image of this element under ρ is a sum of 1-simple elements with at least r inversions
or simple elements of Ker fB̄⊗. On the other hand, fB̄⊗ carries a 1-simple element into zero.
Furthermore, from Prop. 5.14 b), the morphism φB⊗ carries a simple element of Ker fB̄⊗ into
zero.

Now we pick w′ = [u ⊗ b] • [u| r − 1 times. . . |u] • z′ with r > 1, b ∈ Γ(v) and z′ = [ ] or
z′ = [h] ∈ B̄(Q(p)(γpi (v))).

In φB̄⊗(w′), the unique simple element with 1 inversion (up to sign):

[b] • [u| r times. . . |u] • z′. (57)

Now the morphism ρ maps an argument of the form (57) onto an element of B̄(E(u) ⊗ Γ(v))
which only has one term with at most 1 inversion:

[u⊗ b′] • [u| r times. . . |u] • z′, (58)

where δpr (b) = pr (u ⊗ b′).
In fact, if b = γ1(v), the element (58) is the simple element x = [u| r + 1 times. . . |u] • z′. Since

φBI = 0, we determine that φBEΓ carries the element x into zero if z′ = [ ] or z′ = [1], and into
the shuffle product y = [u| r + 1 times. . . |u] ∗ [1|h − 1] if z′ = [h] with h > 1. On the other hand,
fBEΓ maps x to γr+1σ(u) if z′ = [ ], to zero if z′ = [h], with h > 1 and to γr+1σ(u) ⊗ σγpi (v)
if z′ = [1].

Taking into account that ρ is a derivation and Proposition 4.11 (37), we have

(φBEΓρ)n(y) = [u| r + 1 times. . . |u] ∗ (φBEΓρ)n([1|h− 1]).

Summarizing, we can determine the image (up to invertible coefficient in Z(p)) of different
generators of (54) under d′ = f⊗B ρΣρ g⊗B :

d′(σ(v)) = − pr σ(u); (59)

d′(σγpi (v)) = − pr pi

γpiσ(u) (60)

d′(ϕpγpi−1 (v)) = − prpi−1(p−1)γpi−1(p−1)σ(u) ⊗ σγpi−1 (v). (61)

That is to say, a scheme of the behaviour of the differential d′ could be the following,

d′(Γ(σ(u))) = 0;

d′(E(σ(v))) ⊂ Γ(σ(u)); (62)

d′(E(σγpi (v))) ⊂ Γ(σ(u)); (63)

d′(Γ(ϕpγpi−1 (v))) ⊂ Γ(σ(u)) ⊗ E(σγpi−1 (v)). (64)
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We can see that (62) corresponds to (59), (63) corresponds to (60), and (64) corresponds
to (61).

Now (63) and (64) can be eliminated, making a basis change. This basis change can be seen
as a full algebra contraction Rnorm (with homotopy operator zero) from

([Γ(σ(u)) ⊗ E(σ(v))] ⊗ (⊗i>1[E(σγpi(v))⊗̃
δpΓ(ϕpγpi (v))]), d′),

to

(Γ(σ(u))⊗̃
δ−pr

E(σ(v))) ⊗ (⊗i>1[E(σ̃γpi (v))⊗̃
δpΓ(ϕpγpi (v))]).

As we have mention before, the notation σ̃γpi (v) means that a change of basis has been
carried out in which the generator of the algebra E(σγpi (v)) has been modified.

In fact, this process of “normalization” was determined by Moore [40] in his study of the
p-adic homology of the Eilenberg-MacLane spaces.

The expression (62) coincides with the derivation δ−pr . In the same way, the differential δp

of the couples E(σγpi (v))⊗̃
δpΓ(ϕpγpi−1 (v)) remains unchanged too.

Therefore, the desired contraction is:

RBIII = Rnorm(RBEΓ)ρ.

2

Thus, an elementary complex of type III has a tensor product of elementary complexes of
type III and IV as p-minimal 1-homological model.

Proceeding as we did in the previous proof, we obtain an explicit semi-full algebra contrac-
tion for an elementary complex of type IV. In this case, it is possible to apply S-APL Theorem.
Its p-minimal 1-homological model will be a tensor product of elementary complexes of type
III. We leave the details to the reader.

Theorem 5.30. Let n and p be a natural number and an odd prime number, respectively.

There is a semi-full algebra contraction RB̄IV from B̄(Γ(u, 2n)⊗̃
δpr

E(v, 2n + 1)) to

[E(σ(u), 2n + 1)⊗̃
δ−pr

Γ(σ(v), 2n + 2)]⊗

(⊗i>1[E(σγpi (u), 2npi + 1)⊗̃
δpΓ(ϕpγpi−1 (u), 2npi + 2)])

Remark 5.31. For p = 2, all the previous results are valid, with the sole modification in
their statements of changing the symbol ϕp for the composition γ2σ and the inclusions of
contractions which are, in this case, morphisms of Hopf DGA-algebras.

The behavior of elementary complexes of any type when we apply the bar construction to
them, corresponds to symbol rules for its generators; that is to say, as we have denoted the
generators in relation to the operations of suspension σ, transpotence φp and k-th divided
power γk, these generators are in one-to-one correspondence with “admissible words” in the
alphabet composed by the indicated three letters. These results agree with those described by
Cartan (see [10]).

We are able to translate the Cartan-Moore approach (for obtaining the homology algebras
of Eilenberg-Mac Lane spaces) to the homological perturbation framework. Working over Z

localized at a prime p, we here obtain explicit semi-full algebra contractions from bar con-
structions of Cartan’s elementary complexes to tensor products of these same DGA-algebras.
On the other hand, an old conjecture established by Eilenberg-Mac Lane (see [14]) can be
immediately solved by means of Homological Perturbation Theory [57]. An explicit contrac-
tion RWB from CN

∗ (W̄ (G)) to B̄(CN

∗ (G)) is described in that paper, where CN

∗ ( ) means the
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normalized chain complex canonically associated to a simplicial set and W̄ (G) is the classify-
ing simplicial set of the simplicial group G. It is proved in [3] that RWB is a semi-full algebra
contraction. Appropriately combining this result with those showed in this section, it is pos-
sible to determine the homology algebra of the K(π, n) by semi-full algebra contractions from
CN

∗ (K(π, n)) to (non-twisted) tensor product of Cartan’s elementary complexes. That is, we
have a p-minimal homological model of these simplicial groups. From these data, it is very sim-
ple to design algorithms, via perturbation, for computing the p-local homology of some fibre
bundles (see [2]). That work is influenced by the organization of effective homology versions
of various important spectral sequences given in [51, 48, 49, 45]. Significant improvements of
these algorithms can be done whenever we deal with twisted cartesian products of simplicial
groups which are themselves simplicial groups. These improvements rest on the fact that the
Eilenberg-Zilber contraction (Th. 3.1), in the case of working with simplicial groups, is an
almost-full algebra contraction [3].

Finally, the results obtained in this subsection tell us that it is possible to “control” the
differential structure of the p-minimal 1-homological models of these particular algebras, in the
sense that the small complexes are simple tensor products of Cartan’s elementary complexes.
The problem of generalizing these results to a large set of twisted tensor products (TTP) of
exterior and divided power algebras is studied in [6]. In that paper, given a twisted tensor
product A of n (exterior and divided power) DGA-algebras, it is established that a tensor
product of TTPs of i (exterior and divided power) DGA-algebras, with i 6 n, is a p-minimal 1-
homological model of A. In this way, we have a phenomenon of controllability of the differential
for this kind of algebras.

Passing from reduced complexes to resolutions can be done using Theorem 8.1.3 of [34], but
there the multiplicative structures are not studied in the commutative case. Using SF-APL,
one can directly prove the following result affecting to Cartan’s little constructions.

Theorem 5.32. Let Z(p) be the ground ring. Let A be a Cartan’s elementary complex. There

is a free resolution A⊗ρ′

H that splits off of the bar resolution. More precisely, the splitting is
a semi-full algebra contraction.

The reduced complex H is determined by one of the Theorems 5.23, 5.28, 5.29 or 5.30. A
generalization of this construction of small free resolutions is given in [6, Th. 3.3].

Finally, the A∞-coalgebra structure of the 1-homological model {H, r} of a Cartan elemen-
tary complex can be obtained from the contraction r, via the cobar functor. An interesting
question is the determination of the higher homotopy coalgebra structure on H derived from
r.

5.4. Application 4: On the p-local n-homology algebra of a minimal K-S algebra
With all the results established in this section at hand, we are able to get n-homological

information for minimal K-S algebras (see Def. 5.2). For n = 1, we can state the following
result:

Theorem 5.33. Let (ΛM, d) be a minimal K-S algebra. There is a semi-full algebra contrac-
tion from B̄(ΛM, d) to a tensor product of exterior and divided power algebras. That is to say,
we obtain a 1-homological model (in fact, its algebra homology) for (ΛM, d).

This result tells us that B̄(ΛM, d) is formal over the integers.
We shall not specify full details of the proof, only the ideas involved in it.
Using the almost-full algebra contractions RB̄E (see (49)), RB̄P (see page 4) and RB̄⊗ (see Th.

5.8), we construct an almost-full algebra contraction R from B̄(ΛM) (excluding the differential
d) to a (eventually infinite) tensor product of exterior and divided power algebras H . Moreover,
at graded algebra level, each E(xi, 2n − 1) factor in ΛM contributes a Γ(σ(xi), 2n) factor to
H and each P (xi, 2n) factor in ΛM contributes a E(σ(xi), 2n + 1) factor to H .
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The differential-derivation d produces an algebra perturbation datum δ for R. Now, let us
denote by f , g and φ the projection, inclusion and homotopy operator of R. We deduce the
pointwise nilpotency of the composite φδ from the facts that φ increases simplicial degree by
1 and δ does not change simplicial degree (in fact, this morphism decreases tensor degree by
1).

By applying SF-APL, we obtain a semi-full algebra contraction Rδ from B̄(ΛM, d) to the
connected commutative DG-algebra (H, dδ). Since the differential dδ is a derivation we only
need to compute this morphism on the generators of this DG-algebra. Due to the minimality
condition of the differential d and to the fact that the projection f is the last morphism that
is applied when we obtain the image of a generator xi under dδ = fδΣδ

R
g, it is easy to deduce

that dδ is zero. In other words and recalling the terminology of Subsection 5.2, δ is a 1-simple
perturbation datum (see Def. 5.17) and f is zero over 1-simple elements (see Prop. 5.14 a)).
All this means that the 1-homological model of the minimal K-S algebra (ΛM, d) is a banal
tensor product of exterior and divided power algebras.

2

We now proceed to construct a n-homological model for a minimal K-S algebra.

Theorem 5.34. Let Z(p) be the ground ring and (ΛM, d) be a minimal K-S algebra. There is a
semi-full algebra contraction from B̄n(ΛM) (n > 2) to a tensor product of Cartan’s elementary
complexes. That is, we have a p-minimal n-homological model for (ΛM, d).

Let X =
∑

n>0 Xn be the graded set generating the free graded module M . Recall that
the set X is indexed by a well-ordered set I, such that d(xj) is a polynomial in those xi with
i < j.

The starting point here is the semi-full algebra contraction Rδ obtained in Theorem 5.33
from B̄(ΛM, d) to a tensor product H1 of exterior and divided power algebras. Working over
Z(p) and applying the contraction construction B̄() (see Subsection 5.1) to Rδ, we determine
a semi-full algebra contraction C1 from B̄2(ΛM, d) to B̄(H1). Since H1 can be expressed by a
tensor product ⊗i∈IAi, where Ai = E(σ(xi), |xi|+1) (with |xi| even) or Ai = Γ(σ(xi), |xi|+1)
(with |xi| odd), using the contractions RB̄⊗, RB̄E and RB̄Γ (see Th. 5.28) we construct a
semi-full algebra contraction C2 from B̄(H1) to a tensor product H2 of Cartan’s elementary
complexes. Therefore, the composition C2C1 establishes a “small” p-minimal 2-homological
model for the K-S algebra. Proceeding in an analogous way and taking into account that the
1-homology of elementary complexes can be represented as a tensor product of elementary
complexes (see the previous Subsection), we obtain the result for every homological degree n.

2

6. Appendix: The Shih operator

The complex of simplicial chains (respectively of normalized simplicial chains) of a simplicial
set X will be denoted C(X) (respectively CN(X)).

The Eilenberg-Mac Lane operator is the only (see [43]) natural transformation CN(X) ⊗

CN(Y )
EML
−→ CN(X × Y ) ; it has been defined in (9). The Alexander-Whitney natural trans-

formation, CN(X × Y )
AW
−→ CN(X) ⊗ CN(Y ), has been defined in (8).

Recall that for any simplicial operator D = sir
...si1∂js

...∂j1 of degree r − s and initial
dimension p, one can associate its derived simplicial operator D′ of degree r − s and initial
dimension p + 1, defined by

D′ = sir+1...si1+1∂js+1...∂j1+1.

We call Shih natural transformation to the natural transformation C(X×Y )
Φ

−→ C(X×Y )
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satisfying the inductive formula
{

Φ0 = 0
Φn = −(Φn−1)

′ + (EML ◦ AW )′ s0.

It induces a natural transformation on normalized complexes.

Let us recall Rubio’s formula for C(X × Y )
SHI
−→ C(X × Y )

SHI(xn , yn) = (65)
∑

(−1)n−p−q+σ(α,β)(sβq+n−p−q...sβ1+n−p−qsn−p−q−1∂n−q+1...∂nxn,

sαp+1+n−p−q...sα1+n−p−q∂n−p−q...∂n−q−1yn).

where the sum is taken over all 0 6 q 6 n−1, 0 6 p 6 n−q−1 and (α, β) ∈ {(p+1, q)−shuffles}.

Remark 6.1. Note that this formula makes sense whenever n > 1. We set SHI = 0 : CN

0 (X×
Y ) −→ CN

1 (X × Y ).

This explicit formula has already been used in [48], [49] and [47].
To obtain more information about the previous definitions, the reader may consult [48],

[37] and [39].

Theorem 6.2. The Shih natural transformation is characterized by Rubio’s formula.

Proof of the theorem.
Thanks to remark 6.1, in dimension 0 both definitions correspond to Φ0 = 0. It remains to

demonstrate that Rubio’s formula satisfies the inductive formula given by Shih :

SHI = −SHI′ + (EML ◦ AW )′ s0.

We are going to make calculations in C(X×Y ) and only at the end of this proof, we will show
that the expected result is true in CN(X × Y ).

To begin with, let us apply the first term of the right member of this identity to any
n-simplex (xn, yn)

−SHI′(xn, yn) = −
∑

(−1)(n−1)−p−q+σ(α,β)

(sβq+(n−1)−p−q+1...sβ1+(n−1)−p−q+1s(n−1)−p−q−1+1∂(n−1)−q+1+1...∂(n−1)+1xn,

sαp+1+(n−1)−p−q+1...sα1+(n−1)−p−q+1∂(n−1)−p−q+1...∂(n−1)−q−1+1yn)

where the sum is taken over all 0 6 q 6 n−2, 0 6 p 6 n−q−2 and (α, β) ∈ {(p+1, q)−shuffles}.
The previous expression may be simplified and can be rewritten as

−SHI′(xn, yn) = (66)
∑

(−1)n−p−q+σ(α,β)(sβq+n−p−q...sβ1+n−p−qsn−p−q−1q∂n−q+1...∂nxn,

sαp+1+n−p−q...sα1+n−p−q∂n−p−q...∂n−q−1yn)

where the sum is taken over q, p and (α, β) describing the same sets.
Let us now compute (EML ◦ AW )′ s0 on any n-simplex (xn, yn). First,

EML ◦ AW (xn, yn) =
n

∑

i=0

∑

(α,β)

(−1)σ(α,β)(sβn−i
...sβ1∂i+1...∂nxn, sαi

...sα1∂0...∂i−1yn)
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where the second sum is taken over all the (i, n − i)-shuffles.

We can derive this operator and apply it on the 0-degenerate simplex (s0xn, s0yn)

(EML ◦ AW )′(s0xn, s0yn) =
n

∑

i=0

∑

(α,β)

(−1)σ(α,β)(sβn−i+1...sβ1+1∂i+2...∂n+1s0xn, sαi+1...sα1+1∂1...∂is0yn)

where the second sum is still taken over all the (i, n − i)-shuffles.

Using the identities ∂isj = sj∂i−1 whenever i > j + 1, since i + 2 > 1, we can write

(EML ◦ AW )′(s0xn, s0yn) =
n

∑

i=0

∑

(α,β)

(−1)σ(α,β)(sβn−i+1...sβ1+1s0∂i+1...∂nxn, sαi+1 ...sα1+1∂1s0∂1...∂i−1yn)

Using the identity ∂1s0 = 1, we get

(EML ◦ AW )′(s0xn, s0yn) = (67)
n

∑

i=0

∑

(α,β)

(−1)σ(α,β)(sβn−i+1...sβ1+1s0∂i+1...∂nxn,

sαi+1...sα1+1∂1...∂i−1yn).

When, in the previous sum, i = 0, there is only one (0, n)-shuffle corresponding to the
identical permutation of n terms (βk = k − 1, for all 0 6 k 6 n− 1). The single corresponding
term in the previous sum (sn...s1s0∂1...∂nxn, s0yn) is clearly 0-degenerate. Indeed, using the
identities sj+1s0 = s0sj , whenever j > 0, we can write

(sn...s1s0∂1...∂nxn, s0yn) = (s0sn−1...s0∂1...∂nxn, s0yn)

= s0(sn−1...s0∂1...∂nxn, yn).

Let us set z = (sn−1...s0∂1...∂nxn, yn).

Remark 6.3. The s0z class is null in the normalized complex.

The expression (67) may be written

(EML ◦ AW )′(s0xn, s0yn) = (68)

s0z +
∑

(−1)σ(α,β)(sβj+1...sβ1+1s0∂n−j+1...∂nxn,

sαi+1...sα1+1∂1...∂n−j−1yn)

where the sum is now taken over all 0 6 j 6 n − 1, and all the (i, j)-shuffles (α, β) with
i = n − j.

Note that when i = 1, there are no face operators in the second terms of the couples. In
fact, we once again find those couples in Rubio’s formula (see (65)) when q = n−1 and p = 0.
This suggests a change of indices. Let us now consider the new indices p and q, defined by
p = i − 1 and q = j. The relation (68) becomes

(EML ◦ AW )′(s0xn, s0yn) = (69)

s0z +
∑

(−1)σ(α,β)(sβq+1...sβ1+1s0∂n−q+1...∂nxn,

sαp+1+1...sα1+1∂1...∂n−q−1yn)

where the sum is taken over all 0 6 q 6 n−1, and all the (p+1, q)-shuffles with p = n− q−1.

If we add the right terms of (66) and (69) and subtract s0z, we get exactly (65). Indeed, as
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in (69), p = n − q − 1 then n − p − q = 1 and (7) becomes

(EML ◦ AW )′(s0xn, s0yn) = (70)

s0z +
∑

(−1)σ(α,β)(sβq+n−p−q ...sβ1+n−p−qs0∂n−q+1...∂nxn,

sαp+1+n−p−q...sα1+n−p−q∂n−p−q...∂n−q−1yn)

where this last sum is still taken over all 0 6 q 6 n − 1, and all the (p + 1, q)-shuffles with
p = n − q − 1. The expression of the summands in (70) is now the same as in (66) and (65),
except the term s0z but this is of no consequence since it is degenerate. It then suffices to note
that the set of shuffles over which the sum is taken in (65) is the disjoint union of those over
which the sums are taken in (66) and (70).

Due to Remark 6.3, we get the expected result in the normalized complex. 2
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