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TRUNCATIONS OF THE RING OF NUMBER-THEORETIC FUNCTIONS

JAN SNELLMAN

(communicated by Winfried Bruns)

Abstract
We study the ring Γ of all functions N+ → K, endowed with the

usual convolution product. Γ, which we call the ring of number-theoretic
functions, is an inverse limit of the “truncations”

Γn = { f ∈ Γ ∀m > n : f(m) = 0 } .

Each Γn is a zero-dimensional, finitely generated K-algebra, which
may be expressed as the quotient of a finitely generated polynomial
ring with a stable (after reversing the order of the variables) monomial
ideal. Using the description of the free minimal resolution of stable
ideals given by Eliahou-Kervaire, and some additional arguments by
Aramova-Herzog and Peeva, we give the Poincaré-Betti series for Γn.

1. Introduction

Cashwell and Everett [2] studied “the ring of number-theoretic functions”

Γ =
{

f N+ → K
}

(1)

where N+ is the set of positive natural numbers (we denote by N the set of all natural numbers)
and K is a field containing the rational numbers. Γ is endowed with component-wise addition
and multiplication with scalars, and with the convolution (or Cauchy) product

fg(n) =
∑

(a,b)∈(N+)×(N+)
ab=n

f(a)g(b) (2)

With these operations, Γ becomes a commutative K-algebra. It is immediate that it is a local
domain; less obvious is the fact that it is a unique factorisation domain. Cashwell and Everett
proved this in [2] using the isomorphism

Φ : Γ→ K[[X]]

f 7→
∑

f(n)xα1

1 xα2

2 · · ·
(3)

where X = {x1, x2, x3, . . .}, K[[X]] is the “large” power series ring of all functions from the
free abelian monoid M = [X] (the free abelian monoid generated by X) to K, and where
the summation extends over all n = pα1

1 pα2
2 · · · ∈ N+. Here, and henceforth, we denote by pi

the i’th prime number, with p1 = 2, and by P the set of all prime numbers. That (3) is an
isomorphism is immediate from the following isomorphism of commutative monoids, implied
by the fundamental theorem of arithmetics:

(N+, ·) '
∐

p∈P

(N, +) (4)
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c© 2000, Jan Snellman. Permission to copy for private use granted.



Homology, Homotopy and Applications, vol. 2, No. 2, 2000 18

The following number-theoretic functions are of particular interest (whenever possible, we
use the same notation as in [2]):

1. The multiplicative unit ε given by ε(1) = 1, ε(n) = 0 for n > 1,

2. λ : N+ → N given by λ(1) = 0, λ(q1 · · · ql) = l if q1, . . . , ql are any (not necessarily
distinct) prime numbers.

3. λ̃ : N+ → N given λ̃(1) = 0, λ̃(pa1

1 . . . par

r ) =
∑

arpr .

4. The Möbius function µ(1) = 1, µ(n) = (−1)v if n is the product of v distinct prime
factors, and 0 otherwise,

5. For any i ∈ N+, χi(pi) = 1, and χi(m) = 0 for m 6= pi. Note that under the isomorphism
(3), Φ(χi) = xi.

The topic of this article is the study of the “truncations” Γn, where for each n ∈ N+,

Γn = { f ∈ Γ m > n =⇒ f(m) = 0 } (5)

With the modified multiplication given by

fg(n) =
∑

(a,b)∈{1,...,n}×{1,...,n}
ab=n

f(a)g(b) (6)

Γn becomes a K-algebra, isomorphic to Γ/Jn, where Jn is the ideal

Jn = { f ∈ Γ ∀m 6 n : f(m) = 0 } .

If we define

πn : Γ→ Γn (7)

πn(f)(m) =

{

f(m) m 6 n

0 m > n
(8)

then πn is a K-algebra epimorphism, and Jn is the kernel of πn. We note furthermore that Jn

is generated by monomials in the elements χi.
To describe the main idea of this paper, we need a few additional definitions. First, for

any n ∈ N+ we denote by r(n) ∈ N the largest integer such that pr(n) 6 n. In other words,
r(n) is the number of prime numbers 6 n (this number is often denoted π(n)). Secondly, for
a monomial m = xα1

1 · · ·x
αw

w , we define the support Supp(m) as the set of positive integers i
such that αi > 0. We define max(m) and min(m) as the maximal and minimal elements in
the support of m.

Definition 1.1. A monomial ideal I ⊂ K[x1, . . . , xr] is said to be strongly stable if whenever
m is a monomial such that xjm ∈ I, then xim ∈ I for all i 6 j. If this condition holds at least
for all i 6 j = max(m) then I is said to be stable.

We can now state our main theorem:

Theorem 1.2. Let n ∈ N+ and r = r(n). Then the following holds:

(I) Γn '
K[x1,...,xr ]

In
, where In is a strongly stable monomial ideal, with respect to the reverse

order of the variables.

(II) Γn is artinian, with dimK(Γn) = n. Furthermore, if it is given the natural grading
with |χi| = 1, then its Hilbert series is

∑

i dit
i where di is the number of w 6 n with

λ(w) = i.

(III) There is a 1-1 bijection between the minimal monomial generators of In of minimal
support v, and the solutions in non-negative integers to the equation

logn− logpv <
r

∑

i=v

bi logpi 6 log n (9)
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(IV) If we denote by Cn,v the number of such solutions, then the Poincaré-Betti series of
the free minimal resolution of K as a cyclic module over Γn is the following rational
function:

P (TorΓn

∗ (K, K), t) =
(1 + t)r

1− t2
(∑r

i=1(1 + t)(i−1)Cn,r−i+1

) (10)

We will show this result, and also give the graded Poincaré-Betti series. For this, we define
the number Cn,v,d which counts the number of minimal generators of In of minimal support v
and total degree d. We determine some elementary properties of the numbers Cn,v,d and Cn,v.

2. The ring of number-theoretic functions and its truncations

2.1. Norms, degrees, and multiplicativity
For a monomialM 3 m = xa1

1 . . . xan

n we define the weight of m as w(m) = pa1
1 . . . pan

n (we
put w(1) = 1). Hence w gives a bijection between M and N+. Furthermore, we can define a
term order on M by m > m′ iff w(m) > w(m′). If we define the initial monomial in(f) of
f ∈ K[[X]] as the monomial in Supp(f) minimal with respect to >, then in(f) is easily seen
to correspond to the norm N(α) of a number-theoretic function α, defined as the smallest n
such that α(n) 6= 0. Here, we must use w and Φ to identifyM and N+ and K[[X]] and Γ. As
observed in [2], the norm is multiplicative: N(αβ) = N(α)N(β).

Cashwell and Everett also define the degree D(α) to mean the smallest d such that there
exists an n with λ(n) = d and α(n) 6= 0. This corresponds the smallest total degree of a
monomial in Supp(f). Furthermore, the norm M(α), defined as the smallest integer n with
λ(n) = D(α), α(n) 6= 0, corresponds to the initial monomial of f under the term order obtained
by refining the total degree partial order with the term order >.

A multiplicative function is an element α ∈ Γ such that α(1) = 1 and α(ab) = α(a)α(b)
whenever a and b are relatively prime. Cashwell and Everett observes that a multiplicative
function is necessarily a unit in Γ. One can further observe that if α is multiplicative, then
f = Φ(α) can be written

f(x1, x2, x3, . . . ) = f1(x1)f2(x2)f3(x3) · · ·

where each fi(xi) ∈ K[[xi]] is invertible. In particular, the constant function Γ 3 ν0 with
ν0(n) = 1 for all n, corresponds to

∑

m∈M

m =
1

1− x1

1

1− x2

1

1− x3
· · ·

Since the Möbius function is defined to be the inverse of this function, we get that it corresponds
to

(1− x1)(1 − x2)(1 − x3) · · · = 1− (

∞
∑

i=1

xi) + (
∑

i<j

xixj)− (
∑

i<j<k

xixjxk) + · · ·

2.2. Truncations of the ring of number-theoretic functions
Let n, n′ ∈ N+, n′ > n. Then there is a K-algebra epimorphism

ϕn′

n : Γn′ → Γn

ϕn′

n (f)(m) =

{

f(m) m 6 n

0 m > n

Hence, the Γn’s form an inverse system.

Lemma 2.1. lim←−Γn ' Γ.
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Proof. Given any f ∈ Γ, the sequence (π1(f), π2(f), π3(f), . . . ) is coherent. Conversely, given
any coherent sequence (g1, g2, g3, . . . ), we can define g : N → K by g(m) = gi(m) where
i > m.

As a side remark, we note that

Lemma 2.2. The decreasing filtration

J1 ) J2 ) J3 ) · · · (11)

is separated, that is, ∩nJn = (0).

Definition 2.3. We define

In = K[[X]] {m ∈M w(m) > n } , (12)

that is, as the monomial ideal in K[[X]] generated by all monomials of weight strictly higher

than n. We put An = K[[X]]
In

.

Proposition 2.4. A K-basis of An is given by all monomials of weight 6 n. Hence An is an
artinian algebra, with dimK(An) = n. Putting r = r(n), we have that

An =
K[[X]]

In
'

K[x1, . . . , xr]

In ∩K[x1, . . . , xr]
(13)

Proof. As a vector space, K[[X]] ' U ⊕ In, where U consists of all functions supported on
monomials of weight 6 n. It follows that An ' U as K vector spaces. Of course, there are
exactly n monomials of weight 6 n. Finally, if s > r then w(xs) = ps > n, hence xs ∈ In.

We will abuse notations and identify In and its contraction In ∩K[x1, . . . , xr].

Lemma 2.5. Γn ' An.

Proof. Since An has a K-basis is given by all monomials of weight 6 n, the two K-algebras are
isomorphic as K-vector spaces. The multiplication in An is induced from the multiplication
in K[[X]], with the extra condition that monomials of weight > n are truncated. This is the
same multiplication as in Γn.

Proposition 2.6. In is a strongly stable ideal, with respect to the reverse order of the vari-
ables.

Proof. We must show that if m ∈ In, and xi |m , then mxj/xi ∈ I for i 6 j 6 r. We have that
w(mxj/xi) = w(m)pj/pi > w(m) > n.

Part I of the main theorem is now proved.
We give K[x1, . . . , xr] an N2-grading by giving the variable xi bi-degree (1, pi). Since each

In is bihomogeneous, this grading is inherited by An.

Theorem 2.7. The bi-graded Hilbert series of An is given by

An(t, u) =
∑

i,j

cijt
iuj ,

where cij is the number of pa1
1 . . . par

r 6 n with
∑

ar = i and
∑

arpr = j. Furthermore,

An(t, 1) =
∑

i

dit
i

An(1, u) =
∑

j

eju
j

where di is the number of w 6 n with λ(w) = i, and ei is the number of w 6 n with λ̃(w) = i.
In particular, the t1-coefficient of An(t, 1) is the number of prime numbers 6 n.
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Proof. The monomial xa1
1 · · ·x

an

n has bi-degree (
∑n

i=1 ai,
∑

aipi).

This establishes part II of the main theorem.

3. Minimal generators for In

Let n ∈ N+, and let r = r(n). We have that

xa1
1 . . . xar

r = m ∈ In ⇐⇒ w(m) > n ⇐⇒
r

∏

i=1

pai

i > n. (14)

We denote by G(In) the set of minimal monomial generators of In. For m = xa1

1 . . . xar

r to
be an element of G(In) it is necessary and sufficient that m ∈ In and that for 1 6 v 6 r,
xv |m =⇒ m/xv 6∈ In. In other words,

1 6 j 6 n, aj > 0 =⇒ n <

r
∏

i=1

pai

i 6 pjn. (15)

Definition 3.1. For n, v, d positive integers, we define:

Cn = #G(In) (16)

Cn,v = # {m ∈ G(In) min(m) = v } (17)

Cn,v,d = # {m ∈ G(In) min(m) = v, |m| = d } (18)

Theorem 3.2. Cn,v is the number of solutions (b1, . . . , br) ∈ Nr to the equation

log n− log pv <

r
∑

i=v

bi log pi 6 logn. (19)

Equivalently, Cn,v is the number of integers x such that n/pv < x 6 n and such that no prime
factors of x are smaller than pv.

Similarly, Cn,v,d is the number of solutions (b1, . . . , br) ∈ Nr to the system of equations

logn − log pv <

r
∑

i=v

bi log pi 6 logn

r
∑

i=1

bi = d− 1.

(20)

or equivalently, Cn,v,d is the number of integers x such that n/pv < x 6 n and such that no
prime factors of x are smaller than pv, and with the additional constraint that λ(x) = d.

Proof. We have that av > 0, aw = 0 for w < v. Hence equation (15) implies that

n <

r
∏

j=v

pai

i 6 pvn.

Putting bv = av − 1, bj = aj for j > v we can write this as

n < pv

r
∏

j=v

pbi

i 6 pvn ⇐⇒ n/pv <

r
∏

j=v

pbi

i 6 n

from which (19) follows by taking logarithms. This implies (20) as well.

We have now proved part III of the main theorem.



Homology, Homotopy and Applications, vol. 2, No. 2, 2000 22

Figure 1: The numbers Cn and Cn,i.

n Σ i = 1 i = 2 3 4 5 6 7 8 9 10

2 1 1
3 3 2 1
4 3 2 1
5 6 3 2 1
6 6 3 2 1
7 10 4 3 2 1
8 10 4 3 2 1
9 11 5 3 2 1
10 11 5 3 2 1
11 16 6 4 3 2 1
12 16 6 4 3 2 1
13 22 7 5 4 3 2 1
14 22 7 5 4 3 2 1
15 23 8 5 4 3 2 1
16 23 8 5 4 3 2 1
17 30 9 6 5 4 3 2 1
18 30 9 6 5 4 3 2 1
19 38 10 7 6 5 4 3 2 1
20 38 10 7 6 5 4 3 2 1
21 39 11 7 6 5 4 3 2 1
22 39 11 7 6 5 4 3 2 1
23 48 12 8 7 6 5 4 3 2 1
24 48 12 8 7 6 5 4 3 2 1
25 50 13 9 7 6 5 4 3 2 1
26 50 13 9 7 6 5 4 3 2 1
27 51 14 9 7 6 5 4 3 2 1
28 51 14 9 7 6 5 4 3 2 1
29 61 15 10 8 7 6 5 4 3 2 1
30 61 15 10 8 7 6 5 4 3 2 1

Figure 2: The numbers Cn,i,g.

n i = 1 i = 2 3 4 5 6 7 8 9

2 1
3 2 1
4 u + 1 1
5 u + 2 2 1
6 2 u + 1 2 1
7 2 u + 2 3 2 1

8 u
2 + u + 2 3 2 1

9 u
2 + 2 u + 2 u + 2 2 1

10 u
2 + 3 u + 1 u + 2 2 1

11 u
2 + 3 u + 2 u + 3 3 2 1

12 2 u
2 + 2 u + 2 u + 3 3 2 1

13 2 u
2 + 2 u + 3 u + 4 4 3 2 1

14 2 u
2 + 3 u + 2 u + 4 4 3 2 1

15 2 u
2 + 4 u + 2 2 u + 3 4 3 2 1

16 u
3 + u

2 + 4 u + 2 2 u + 3 4 3 2 1

17 u
3 + u

2 + 4 u + 3 2 u + 4 5 4 3 2 1

18 u
3 + 2 u

2 + 3 u + 3 2 u + 4 5 4 3 2 1

19 u
3 + 2 u

2 + 3 u + 4 2 u + 5 6 5 4 3 2 1

20 u
3 + 3 u

2 + 2 u + 4 2 u + 5 6 5 4 3 2 1

21 u
3 + 3 u

2 + 3 u + 4 3 u + 4 6 5 4 3 2 1

22 u
3 + 3 u

2 + 4 u + 3 3 u + 4 6 5 4 3 2 1

23 u
3 + 3 u

2 + 4 u + 4 3 u + 5 7 6 5 4 3 2 1

24 2 u
3 + 2 u

2 + 4 u + 4 3 u + 5 7 6 5 4 3 2 1

25 2 u
3 + 2 u

2 + 5 u + 4 4 u + 5 u + 6 6 5 4 3 2 1

26 2 u
3 + 2 u

2 + 6 u + 3 4 u + 5 u + 6 6 5 4 3 2 1

27 2 u
3 + 3 u

2 + 6 u + 3 u
2 + 3 u + 5 u + 6 6 5 4 3 2 1

28 2 u
3 + 4 u

2 + 5 u + 3 u
2 + 3 u + 5 u + 6 6 5 4 3 2 1

29 2 u
3 + 4 u

2 + 5 u + 4 u
2 + 3 u + 6 u + 7 7 6 5 4 3 2 1

30 2 u
3 + 5 u

2 + 4 u + 4 u
2 + 3 u + 6 u + 7 7 6 5 4 3 2 1
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Example 3.3. The first few In’s are as follows: I2 =(x2
1), I3 =(x2

1, x
2
2, x1x2), I4 =(x3

1, x
2
2, x1x2),

I5 =(x3
1, x

2
2, x1x2, x

2
3, x1x3, x2x3).

We tabulate Cn,i and Cn,i,d, the latter in form of the polynomial u−2
∑

j Cn,i,ju
j in the

tables 1 and 2.

Theorem 3.4. (1) Cn,v = 0 for v > r(n)

(2) ∀n ∈ N : ∀v 6 r(n) : Cn,1+r(n)−v > v,

(3) ∀n ∈ N : Cn >
(

r(n)+1
2

)

,

(4) ∀v ∈ N : ∃N : ∀n > N : Cn,1+r(n)−v = v.

(5) If n is even, then Cn,v = Cn−1,v for all v,

(6) Cn,1 = dn/2e.

Proof. (1) Obvious.
(2) and (3) It suffices to show that for any subset S ⊂ {1, . . . , r} of cardinality 1 or 2, there

is an m ∈ G(In) with Supp(m) = S. If S = {i} then there is an unique positive integer a such
that pb−1

i 6 n < pb
i , and m = xb

i is the desired generator. If S = {i, j} with i < j then we
claim that there is a positive integer a such that xa

i xj ∈ G(In). Namely, choose b such that
pb−1

i 6 n < pb
i , then since pi < pj one has n < pb−1

i pj. Hence xb−1
i xj ∈ In, so it is a multiple

of some minimal generator. By the definition of b, this minimal generator must be of the form
xa

i xj for some a, which establishes the claim.
(6) We must show that the number of solutions in Nr to

n

2
<

r
∏

i=1

pi
bi 6 n

is precisely dn
2
e. Obviously, any integer ∈ (n

2
, n] fits the bill; there are dn

2
e of those.

(5) The case v = 1 follows from (6). Hence, it suffices to show that if v > 1, x ∈ ( n
pv

, n]∩N,

and if x has no prime factor < pv, then x ∈ (n−1
pv

, n − 1] ∩ N. The only way this can fail to
happen is if x = n, but then x is even, and has the prime factor 2 = p1 < pv, a contradiction.

(4) For large enough n, the only integers x 6 n with all prime factors > 1 + r(n) − v are
p1+r(n)−v, . . . , pr(n). There is v of these, and they are all > n

pv
.

Theorem 3.5. 1. Cn,v,d = 0 for v > r(n), and for d < 2,

2. ∀v ∈ N : ∃N : ∀n > N : Cn,1+r(n)−v,2 = v, Cn,1+r(n)−v,d = 0 for d 6= 2,

3.
(

r(n)
2

)

= # {m ∈ N+ m 6 n, λ(m) = 2 }.

Proof. The first and the last assertions are obvious. The second one follows from the proof of
(4) in the previous lemma.

4. Poincaré series

In [3], a minimal free multi-graded resolution of a I over S is given, where S = K[x1, . . . , xr]
is a polynomial ring, and I ⊂ (x1, . . . , xr)

2 is a stable ideal. As a consequence, the following
formula for the Poincaré-Betti series is derived:

P (TorS∗ (I, K), t) =
∑

a∈G(I)

(1 + t)max(a)−1 (21)

where G(I) is the minimal generating set of I. Since the resolution is multi-graded, (21) can
be modified to yield a formula for the graded Poincaré-Betti series (we here consider S as
N-graded, with each variable given weight 1):

P (TorS∗,∗(I, K), t, u) =
∑

a∈G(I)

u|a|(1 + t)max(a)−1 (22)
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We will use the following variant of this result:

Theorem 4.1 (Eliahou-Kervaire). Let I ⊂ (x1, . . . , xr)
2 ⊂ K[x1, . . . , xr] = S be a stable

monomial ideal. Put

bi,d = # {m ∈ G(I) max(m) = i, |m| = d } (23)

bi = # {m ∈ G(I) max(m) = i } (24)

Then

P (TorS∗ (I, K), t) =

r
∑

i=1

bi(1 + t)(i−1) (25)

P (TorS∗,∗(I, K), t, u) =

r
∑

i=1



(1 + tu)(i−1)
∑

j

bi,ju
j



 . (26)

For the Betti-numbers we have that

βq = dimK

(

TorS
q (I, K)

)

=

r
∑

i=1

bi

(

i− 1

q

)

. (27)

From Proposition 2.6 we have that the ideals In are stable after reversing the order of the
variables. Hence, replacing max by min, and hence bi with Cn,1+r−i, we get:

Corollary 4.2. Let n ∈ N+, r = r(n), S = K[x1, . . . , xr]. Then

P (TorS∗ (In, K), t) =

r
∑

i=1

Cn,1+r−i(1 + t)(i−1) (28)

P (TorS∗,∗(In, K), t, u) =

r
∑

i=1

(1 + tu)(i−1)
∑

j

Cn,1+r−i,ju
j. (29)

For the Betti-numbers we have that

βq =

r
∑

i=1

Cn,1+r−i

(

i− 1

q

)

. (30)

In [6, 1] it is shown that if S = K[x1, . . . , xr] and I is a stable monomial ideal in S, then
S/I is a Golod ring. Hence, from a result of Golod [4] (see also [5]), it follows that

P (TorS/I
∗ (K, K), t) =

(1 + t)r

1− t2P (TorS∗ (I, K), t)
(31)

Regarding S as an N-graded ring, one can show that in fact

P (TorS/I
∗ (K, K), t, u) =

(1 + ut)r

1− t2P (TorS∗ (I, K), t, u)
(32)

The following theorem is an immediate consequence:

Theorem 4.3 (Herzog-Aramova, Peeva). Let S = K[x1, . . . , xr], and suppose that I is a
stable monomial ideal in S. Put

bi,d = # {x ∈ G(I) max(x) = i, |x| = d }
bi = # {x ∈ G(I) max(x) = i }
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Then, for R = S/I, we have that

P (TorR∗ (K, K), t) =
(1 + t)r

1− t2
∑r

i=1(1 + t)(i−1)
∑

j bi
(33)

P (TorR
∗ (K, K), t, u) =

(1 + t)r

1− t2
∑r

i=1(1 + tu)(i−1)
∑

j bi,juj
(34)

Specialising to the case of An, we obtain:

Corollary 4.4. Let n ∈ N+, and let r = r(n). Regard An as a naturally graded K-algebra,
with each xi given weight 1, and regard K as a cyclic A-module. Then

P (TorAn

∗ (K, K), t) =
(1 + t)r

1− t2
∑r

i=1(1 + t)(i−1)Cn,r−i+1
(35)

P (TorAn

∗ (K, K), t, u) =
(1 + ut)r

1− t2
(

∑r
i=1

(

(1 + tu)(i−1)
∑

j Cn,r−i+1,juj
)) (36)

Part IV of the main theorem is now proved.

Example 4.5. We consider the case n = 5, then r = r(n) = 3, so S = K[x1, x2, x3] and
I = I5 = (x3

1, x1x2, x1x3, x2
2, x2x3, x

2
3). We get that C5,1 = 3, C5,2 = 2, C5,3 = 1. According

to our formulas1 we have

P S
I (t) = 1 + 2(1 + t) + 3(1 + t)2 = 6 + 8t + 3t2

P
S/I
K =

(1 + t)r

1− t2P S
I (t)

=
1

1− 3t

When we consider the grading by total degree, we have that C5,1,2 = 2, C5,1,3 = 1, C5,2,2 =
2, C5,3,2 = 1. Hence, our formulas yield

P S
I (t, u) = u2 + 2u2(1 + t) + (2u2 + u3)(1 + t)2

= 5u2 + u3 + (6u2 + 2u3)t +
(

2 u2 + u3
)

t2

P
S/I
K (t, u) = −

1 + tu

u3t2 + 2 t2u2 + 2 tu− 1

We list the first few Poincaré-Betti series P (TorAn

∗ (K, K), t, u) in table 3.

Conjecture 4.6. P (TorAn

∗ (K, K), t) = − (1+t)`1(n)

qn(t) , qn(t) =
∑`2(n)

i=0 hi(n)ti, with

1. qn(−1) 6= 0,

2. `1(n) is the number of odd primes p such that p2 6 n,

3. `2(n) = `1(n) + 1,

4. h0(n) = −1,

5. h1(n) = r(n) − `1(n),

6. h`2(n)(n) = Cn,1 = dn/2e.
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1Here, we have used the abbreviation PS
I (t) = P (TorS

∗
(I, K), t), we will also write P

S/I
K (t) =

P (Tor
S/I
∗

(K,K), t) et cetera.
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n Graded Non− graded

2 − (tu− 1)
−1

− (t− 1)
−1

3 − (2 tu− 1)
−1

− (2 t− 1)
−1

4 − 1+tu
(u3+u2)t2+tu−1

− (2 t− 1)
−1

5 − 1+tu
(u3+2 u2)t2+2 tu−1 − (3 t− 1)

−1

6 − 1+tu
(2 u3+u2)t2+2 tu−1 − (3 t− 1)

−1

7 − 1+tu
(2 u3+2 u2)t2+3 tu−1 − (4 t− 1)

−1

8 − 1+tu
(u4+u3+2 u2)t2+3 tu−1 − (4 t− 1)

−1

9 − 1+2 tu+t2u2

(u5+2 u4+2 u3)t3+(u4+3 u3+4 u2)t2+2 tu−1 − 1+t
5 t2+3 t−1

10 − 1+2 tu+t2u2

(u5+3 u4+u3)t3+(u4+4 u3+3 u2)t2+2 tu−1 − 1+t
5 t2+3 t−1

11 − 1+2 tu+t2u2

(u5+3 u4+2 u3)t3+(u4+4 u3+5 u2)t2+3 tu−1 − 1+t
6 t2+4 t−1

12 − 1+2 tu+t2u2

(2 u5+2 u4+2 u3)t3+(2 u4+3 u3+5 u2)t2+3 tu−1
− 1+t

6 t2+4 t−1

13 − 1+2 tu+t2u2

(2 u5+2 u4+3 u3)t3+(2 u4+3 u3+7 u2)t2+4 tu−1
− 1+t

7 t2+5 t−1

14 − 1+2 tu+t2u2

(2 u5+3 u4+2 u3)t3+(2 u4+4 u3+6 u2)t2+4 tu−1 − 1+t
7 t2+5 t−1

15 − 1+2 tu+t2u2

(2 u5+4 u4+2 u3)t3+(2 u4+6 u3+5 u2)t2+4 tu−1 − 1+t
8 t2+5 t−1

16 − 1+2 tu+t2u2

(u6+u5+4 u4+2 u3)t3+(u5+u4+6 u3+5 u2)t2+4 tu−1 − 1+t
8 t2+5 t−1

17 − 1+2 tu+t2u2

(u6+u5+4 u4+3 u3)t3+(u5+u4+6 u3+7 u2)t2+5 tu−1
− 1+t

9 t2+6 t−1

18 − 1+2 tu+t2u2

(u6+2 u5+3 u4+3 u3)t3+(u5+2 u4+5 u3+7 u2)t2+5 tu−1
− 1+t

9 t2+6 t−1

19 − 1+2 tu+t2u2

(u6+2 u5+3 u4+4 u3)t3+(u5+2 u4+5 u3+9 u2)t2+6 tu−1 − 1+t
10 t2+7 t−1

20 − 1+2 tu+t2u2

(u6+3 u5+2 u4+4 u3)t3+(u5+3 u4+4 u3+9 u2)t2+6 tu−1 − 1+t
10 t2+7 t−1

21 −
(1+tu)2

t3u6+3 u5t3+t2u5+3 t3u4+3 u4t2+4 t3u3+6 t2u3+8 t2u2+6 tu−1 − 1+t
11 t2+7 t−1

22 − (1+tu)2

t3u6+3 u5t3+t2u5+4 t3u4+3 u4t2+3 t3u3+7 t2u3+7 t2u2+6 tu−1
− 1+t

11 t2+7 t−1

23 − (1+tu)2

t3u6+3 u5t3+t2u5+4 t3u4+3 u4t2+4 t3u3+7 t2u3+9 t2u2+7 tu−1
− 1+t

12 t2+8 t−1

24 − (1+tu)2

2 t3u6+2 u5t3+2 t2u5+4 t3u4+2 u4t2+4 t3u3+7 t2u3+9 t2u2+7 tu−1 − 1+t
12 t2+8 t−1

25 − (1+tu)3

q(t,u) − (1+t)2

13 t3+22 t2+7 t−1

Figure 3: Graded and non-graded Poincaré-Betti series of the minimal free resolution of K
over An.
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