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STRIPPING AND CONJUGATION IN THE
MOD p STEENROD ALGEBRA AND ITS DUAL

DAGMAR M. MEYER

(communicated by Hvedri Inassaridze)

Abstract
Let p be an odd prime and A∗ the mod p Steenrod algebra. We

study the technique known as “stripping” applied to A∗ and derive
certain conjugation formulas both for A∗ and its dual, generalising
work of J. H. Silverman for p = 2 (“Conjugation and excess in the
Steenrod algebra”, Proc. Am. Math. Soc. 119 (1993), no.2, 657 – 661;
“Hit polynomials and conjugation in the dual Steenrod algebra”,Math.
Proc. Camb. Philos. Soc. 123 (1998), no.3, 531 – 547) to the case of
an odd prime.

1. Introduction and statement of results

In this note we study the technique known as “stripping” applied to the mod p Steenrod
algebra A∗, where p is an odd prime, and use the results obtained to prove certain conjugation
formulas both in A∗ and its dual. This generalises work of Judith Silverman carried out in [S1]
and [S3] for p = 2 to the case of an odd prime. More precisely, our results concern Steenrod
operations which lie in the sub-Hopf algebra P∗ of A∗ which is generated by the reduced power
operations P(i), i > 1, in dimensions |P(i)| = 2i(p− 1). We use the convention P(0) := 1.

Of particular interest are the Steenrod operations in P∗ which are of the form

P[k; f ] := P(pk−1f) · P(pk−2f) · . . . · P(pf) · P(f)

where k > 1 and f > 0. Note that P[1; f ] is just P(f). Being a sub-Hopf algebra, P∗ inherits
the canonical anti-automorphism χ of A∗; following notation introduced in [WW], we write

θ̂ instead of χ(θ). In particular, P̂(a) = χ(P(a)) and P̂[k; f ] = χ(P[k; f ]).
For m > 0 we define

γ(m) :=
m−1∑
i=0

pi.

Our first main result is an explicit conjugation formula for P[k; f ] in certain special cases. It
generalises Thm. 3.1 in [S1] to odd primes:

Theorem 4.6 For all positive integers s, t and c with 1 6 c 6 p the following conjugation
formula holds:

P̂[s; cγ(t)] = (−1)stcP[t; cγ(s)]

The main result concerning conjugation in the dual P∗ is a conjugation formula for cer-
tain elements XI(k), which are defined in Section 5. This formula is the mod p analogue of
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Prop. 5.5 in [S3]. A special case states that modulo monomials of length strictly greater than

k the operations ξ̂
γ(k)
i and (−1)ikξ

γ(i)
k coincide up to a certain error term; the conjugate of

the error term is a sum of monomials of length strictly greater than i:

Theorem 5.6 Let i, k > 0. Modulo monomials of length > k we have

ξ̂
γ(k)
i ≡ (−1)ikξ

γ(i)
k −

∑
Idk 6=τ∈S(k)

sign(τ)
k−1∏
j=0

ξ̂p
j

i+τ(j)−j .

Here S(k) denotes the symmetric group acting on {0, 1, 2, . . . , k − 1} and ξ̂r := 0 for r < 0.
In particular, if f < γ(k + 1) is a non-negative integer then

ξ̂
γ(i)
k ∩ P[i; f ] = (−1)ikξ

γ(k)
i ∩ P[i; f ] = (−1)ikP[i; f − γ(k)] ,

where we use the notation y ∩ for the stripping operation D(y).

The ideas underlying the proofs of the results in this paper are similar to those of their
mod 2 counterparts in [S1] and [S3]. However, getting down to the details we note two major
differences that appear in the odd-primary case: first of all, in just about every formula we
prove there are some signs involved, and secondly (in Section 4) we have to deal with mod p
binomial coefficients which appear as non-trivial coefficients in our formulas. These difficulties
cause the generalisation of the mod 2 results to be not quite as straightforward as it may seem
at first glance.

Both Thm. 4.6 and Thm. 5.6 are essential ingredients for the work carried out in [M].
There the Steenrod operations P̂[k; f ] are studied further; in particular the excess of these
operations is determined. In fact, that project was one of the main motivations for the work
on the problems discussed in the present paper.

Acknowledgements: I would like to thank Judith Silverman for many helpful comments on the
subject of this paper, in particular for supplying the elegant proof of Lemma 4.4 which is reproduced
here. I also thank Ken Monks for pointing out to me the work of Ismet Karaca on related problems
and for sending me copies of [Ka2], [Ka3].

2. Preliminaries

Let S denote the additive monoid of sequences of non-negative integers almost all of which
are 0, with componentwise addition. We write 0S for the trivial element. Throughout we shall
use capital letters to denote sequences in S and small letters for their coordinates; e.g. S =
(s1, s2, . . . ). If S has si = 0 for i > L, we write S as (s1, s2, . . . , sL). The degree of an element
S ∈ S is defined to be |S| =

∑
i>1 si(p

i − 1), its length as len(S) = min{i > 0 | sj = 0 ∀j > i},
and its excess as ex(S) =

∑
i>1 si. It will be convenient to adjoin an extra element ∗ to S with

the property that ∗+ x = x+ ∗ = ∗ for all x ∈ S ∪ {∗} =: S∗. We also define sequences B(j)
for any j ∈ Z: if j > 0 then B(j) is the sequence with b(j)i := δij , if j < 0 we set B(j) := ∗.

There are many interesting bases for A∗ and hence for P∗; the most important and most
commonly used are the basis of admissible monomials (“admissible basis”) and the Milnor
basis. Recall that the monomial P(a1) · . . . · P(an) with an > 0 is admissible if ar > par+1 for
all 1 6 r < n; we also define P (0) = 1 to be admissible. The admissible basis of P∗ can be
parameterised in terms of the numbers si = ai − pai+1; that is, given a sequence S ∈ S of
length n > 0, we define the admissible element E[S] := P(a1) · . . . · P(an) by setting an = sn
and ai = pai+1 + si for 1 6 i 6 n − 1. We also set E[0S ] := P (0) = 1. For example, if
S = (0, . . . , 0, f) has length k then E[S] = P(pk−1f) · . . . · P(f) = P[k; f ].

For the Milnor basis of P∗ consider the dual Hopf algebra P∗. This is a polynomial algebra
over Fp on generators ξi (i > 1) in dimension 2(pi − 1); we use the convention ξ0 := 1. For



Homology, Homotopy and Applications, vol. 2, No. 1, 2000 3

S ∈ S we write ξ[S] for the monomial
∏

i>1 ξ
si
i . In particular, ξ[Bj ] = ξj for any j > 0. The

Milnor basis of P∗ itself is the basis dual to the basis of P∗ consisting of all the monomials
ξ[S] with S ∈ S; the element dual to ξ[S] will be denoted by M [S].

We further set M [∗] = 0 = E[∗] and ξ[∗] = 0, and we adopt the convention that M [S] =
0 = E[S] and ξ[S] = 0 if S is a finite sequence of integers which does not belong to S, i.e. with
at least one negative entry. In particular, ξi := 0 if i < 0.

For any S ∈ S we define length and excess of the monomial ξ[S] as len(S) and 2ex(S)
respectively. Likewise, for the admissible and the Milnor basis we define

lenE(E[S]) :=len(S) =: lenM (M [S]) ,

exE(E[S]) :=2ex(S) =: exM (M [S]) .

More generally, suppose θ is any homogeneous element of P∗ with a basis representation given
by θ =

∑n
i=1 αiB[Si], where B stands for either E or M . Then we set

lenB(θ) := max
i

{lenB(B[Si])} = max
i

{len(Si)}

exB(θ) := min
i
{exB(B[Si])} = 2min

i
{ex(Si)} .

The excess of any operation θ in P∗ can also be defined as ex(θ) := min
{
n | θ(ιn) 6=

0 ∈ H∗(K(Z/p, n);Fp)
}
, where ιn ∈ H∗(K(Z/p, n);Fp) is the fundamental class. In fact,

all the different definitions of excess that we have given coincide (cf. [Kr]); in particular
exE(θ) = ex(θ) = exM (θ).

By [Mi], the change-of-basis matrix in each dimension between the admissible and the
Milnor basis is upper triangular with diagonal entry ±1, if for both bases we use the order
induced by the right-lexicographical order on S. From this it follows that for any S ∈ S we
have lenE(M [S]) = lenE(E[S]) = len(S) and lenM (E[S]) = lenM (M [S]) = len(S), and one
easily sees that this implies lenM (θ) = lenE(θ) for any θ ∈ P∗. Henceforth we denote this
common value simply by len(θ).

3. Stripping in P∗

3.1. Recollections about the stripping technique
Much recent progress on problems related to the structure of the Steenrod algebra has

been made by applying a tool that has become known as “stripping technique” (for a de-
tailed account see [W]). This technique applies to any Hopf algebra, so in particular to the
cocommutative, connected Hopf algebra P∗.

Let ∆∗ denote the diagonal map of P∗ and 〈 , 〉 the inner product. We consider the natural
action of the dual Hopf algebra P∗ on P∗ which is given for each ξ ∈ P∗ by

D(ξ) : P∗ ∆∗

−−−−→ P∗ ⊗ P∗ id⊗〈ξ, 〉−−−−−→ P∗ ;

this action satisfies

〈ξ · ψ, θ 〉 = 〈ψ,D(ξ)θ 〉 (1)

for all ψ ∈ P∗, θ ∈ P∗. The operation D(ξ) : P∗ −→ P∗ is called “stripping by ξ” and can be
considered as a kind of cap-product. For this reason the notation

D(ξ)θ =: ξ ∩ θ

has become customary.
For the reader’s convenience we now recall some important properties of the stripping

operation (cf. [S2]):
Let ∆∗ denote the product of P∗ and φ∗ the comultiplication; the canonical anti-automorphism

of P∗ will again be denoted by χ, with χ(y) =: ŷ. In what follows let φ∗(y) =:
∑
y′ ⊗ y′′ and

∆∗(θ) =:
∑
θ′ ⊗ θ′′. We write D for the Fp-vector space with basis {D(ξ[S]) |S ∈ S}.
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The maps χ : P∗ −→ P∗, ∆∗ : P∗ ⊗P∗ −→ P∗ and φ∗ : P∗ −→ P∗ ⊗ P∗ induce maps

χ : D −→ D, D(y) 7→ D(ŷ)

∆∗ : D ⊗D −→ D, D(y1)⊗D(y2) 7→ D(y1 · y2)
φ∗ : D −→ D ⊗D, D(y) 7→

∑
D(y′)⊗D(y′′) .

Proposition 3.1. The following formulas hold:

1. (y1 + y2) ∩ θ = y1 ∩ θ + y2 ∩ θ
2. (y1 · y2) ∩ θ = (y2 · y1) ∩ θ = y1 ∩ (y2 ∩ θ) = y2 ∩ (y1 ∩ θ)
3. y ∩ (θ1 · θ2) =

∑
(y′ ∩ θ1) · (y′′ ∩ θ2)

4. ŷ ∩ (θ1 · θ2) =
∑

(ŷ′′ ∩ θ1) · (ŷ′ ∩ θ2)

5. ŷ ∩ θ̂ = ŷ ∩ θ
2

3.2. Stripping in the Milnor basis and in the admissible basis
The effect of stripping by an element y ∈ P∗ on a Milnor basis element can easily be

described by writing y as a sum of basis elements ξ[R]. In fact, recall that the comultiplication
∆∗ of P∗ is determined by the formula

∆∗(M [S]
)
=

∑
S′+S′′=S

M [S]⊗M [S′′]

([Mi]). From this and the definition of stripping one easily sees that

ξ[R] ∩M [S] =M [S −R] .

In particular, stripping does not increase length.
Determining the effect of D(ξ[R]) on a given admissible monomial is more involved. More

generally, let P(a1) · · ·P(an) be any (not necessarily admissible) monomial in P∗. For n > k,
we define Vn,k to be the set of all sequences (v1, . . . , vn) in which the non-zero elements form
exactly the subsequence (pk−1, . . . , p, 1). For example, V3,2 consists of (0, p, 1), (p, 0, 1), and
(p, 1, 0). For n < k, we define Vn,k := ∅.

Proposition 3.2. With this notation

ξk ∩
(
P(a1) · . . . · P(an)

)
=

∑
V ∈Vn,k

P(a1 − v1) · . . . · P(an − vn) .

Proof. The proof is analogous to that of Prop. 3.1 in [S3]. Alternatively, see [CWW, Sec-
tion 2]. 2

We note the following consequences:

Corollary 3.3. 1. If θ ∈ P∗ has length n, then ξ[S]∩θ = 0 for any S ∈ S of length greater
than n; in particular ξk ∩ θ = 0 for any k > n .

2. If P(a1) · . . . · P(ak) is admissible of excess 2e, then

ξk ∩
(
P(a1) · . . . · P(ak)

)
= P(a1 − pk−1) · P(a2 − pk−2) · . . . · P(ak − 1) ,

which is again admissible and has excess 2e− 2. Consequently, if R = (r1, . . . , rk) ∈ S,
then ξk ∩ E[R] = E[(r1, . . . , rk−1, rk − 1)].

3. In particular,

ξk ∩ P[k; f ] = P[k; f − 1] and ξ̂k ∩ P̂[k; f ] = P̂[k; f − 1] ,
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where the second equation follows from Prop. 3.1(5).
2

The next thing we determine is the action of D(ξ̂[R]) on a given element θ ∈ P∗. By [Mi],
conjugation in P∗ is determined by

ξ̂k =
∑

α∈Part(k)

(−1)l(α)
l(α)∏
i=1

ξp
σi(α)

αi
(2)

where α runs through all ordered partitions α = (α1, α2, . . . , αl(α)) of k, l(α) is the length of

the partition α, and σi(α) is the partial sum
∑i−1

j=1 αj .

Consequences 3.4. 1. The excess of ξk = ξ[Bk] is 2 for any k, so the summand with the
largest excess in formula (2) is the monomial corresponding to the partition α of length
l(α) = k with αi = 1 for 1 6 i 6 k, i.e. the summand

(−1)k
k∏

i=1

ξp
i−1

1 = (−1)kξ
γ(k)
1

which has excess 2γ(k). Hence stripping by ξ̂k reduces excess by no more than 2γ(k).

2. Since ξl ∩ P(f) = 0 for all l > 1, we have

ξ̂k ∩ P(f) = (−1)kξ
γ(k)
1 ∩ P(f)

=

{
(−1)kP(f − γ(k)) if f > γ(k)
0 otherwise.

3.3. Stripping P[Λ; f ] by ξ̂jk
We will be mostly concerned with the special Steenrod operations P[Λ; f ]. Therefore we

take a closer look at the action of the stripping operations D(ξ̂jk) on these elements.

Lemma 3.5. For any θ in P∗ we have

ξ̂k ∩
(
P[2; f ] · θ

)
= P(pf) ·

(
ξ̂k ∩

(
P(f) · θ

))
.

Proof. The proof is analogous to the proof of Lemma 4.4 in [S2]: recall that the comultipli-
cation in P∗ is given by

φ∗(ξk) =

k∑
j=0

ξp
j

k−j ⊗ ξj (3)

([Mi]). Hence by Prop. 3.1(3) we obtain

ξ̂k ∩ (P[2; f ] · θ) = P(pf) ·
(
ξ̂k ∩ (P(f) · θ)

)
+

k∑
j=1

(
ξ̂j ∩ P(pf)

)
·
(
ξ̂p

j

k−j ∩ (P(f) · θ)
)
.

Cons. 3.4(2) implies that ξ̂j ∩ P(pf) = −ξ̂pj−1 ∩ P(pf − 1), thus

k∑
j=1

(
ξ̂j ∩ P(pf)

)
·
(
ξ̂p

j

k−j ∩ (P(f) · θ)
)

= −
k∑

j=1

(
ξ̂pj−1 ∩ P(pf − 1)

)
·
(
(ξ̂p(k−1)−(j−1))

pj−1

∩ (P(f) · θ)
)

= −ξ̂pk−1 ∩
(
P(pf − 1) · P(f) · θ

)
.
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But by the Adem relations P(pf − 1) · P(f) = 0, which proves the claim. 2

The following more general result is now easily proved by induction on Λ, the case Λ = 2
being given by Lemma 3.5:

Proposition 3.6. For Λ > 2 and any θ in P∗ we have

ξ̂k ∩
(
P[Λ; f ] · θ

)
= P[Λ− 1; pf ] ·

(
ξ̂k ∩ (P(f) · θ)

)
.

2

Finally, we investigate what happens if we strip P[Λ; f ] by ξ̂k a total of j times. We note
that only the right-most j places are affected:

Proposition 3.7. Suppose Λ > j > 1. Then

ξ̂jk ∩ P[Λ; f ] = P[Λ− j; pjf ] · (ξ̂jk ∩ P[j; f ]) .

Proof. The proof is by induction on j, starting with j = 1 where the result is provided by
Prop. 3.6. 2

4. Conjugation formulas for P∗

In this section we establish some useful formulas involving conjugation of elements in P∗. In
particular, we determine the simple formula for P̂[s; cγ(t)] with 1 6 c 6 p that was announced
in the introduction.

Suppose that y is a non-negative integer. We use the notation αi(y) for the coefficient of pi

in the p-adic expansion of y, i.e. y =:
∑

i>0 αi(y)p
i.

The following lemma will be needed for the proof of Prop. 4.3.

Lemma 4.1. Suppose that k, l, c,m and e are non-negative integers with

1. k > l,

2. 1 6 c 6 p− 1,

3. m < pk−1,

4. m ≡ 0 mod pl.

Then the following relation mod p holds:(
c(pk − pl) + e

pm

)
≡ −

c∑
i=1

(
c

i

)(
c(pk − pl) + e

pm+ ipl

)
+

(
e

pm+ cpl

)
(4)

Proof. The proof relies on the fact that mod p we have the relation
(
x
y

)
≡

∏
i>0

(
αi(x)
αi(y)

)
. There

are three cases: (I) αl(e) = c, (II) 0 6 αl(e) 6 c− 1, and (III) c+ 1 6 αl(e) 6 p− 1. If we are
in case (I) then the first term on the right of (4) is 0 and(

c(pk − pl) + e

pm

)
≡

(
e

pm+ cpl

)
as required.

If we are in case (II) then the second term on the right of (4) is zero and so we have to
show that (

c(pk − pl) + e

pm

)
≡ −

c∑
i=1

(
c

i

)(
c(pk − pl) + e

pm+ ipl

)
,
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i.e. that

1 ≡ −
c∑

i=1

(
c

i

)(
p− c+ αl(e)

i

)
for 0 6 αl(e) 6 c− 1. Setting a := p− c+ αl(e) this amounts to showing that

c∑
i=0

(
c

i

)(
a

i

)
≡ 0

for all p− c 6 a 6 p− 1. In order to show this equivalence, note that

c∑
i=0

(
c

i

)(
a

i

)
≡

c∑
i=0

(
c

i

)(
a

a− i

)
≡

(
c+ a

c

)
(5)

as one sees by considering the coefficient of xc in the binomial expansion of (x + 1)c+a =
(x+ 1)c(x+ 1)a. Now the claim follows since

(
c+a
c

)
≡ 0 for p− c 6 a 6 p− 1.

Case (III) is similar. 2

We will need the following multiplication formulas:

Lemma 4.2. Let u and v be non-negative integers. Then

P(u) · P̂(v) = (−1)v
∑
R

(
|R|+ ex(R)

pu

)
p

M [R] (6)

and

P̂(u) · P(v) = (−1)u
∑
R

(
ex(R)

v

)
p

M [R] (7)

where the sum ranges over all sequences R in S with |R| = (p − 1)(u + v) and
( )

p
denotes

mod p binomial coefficients.

Proof. The proof of (6) can be found in [G]. The other equality, (7), can be extracted from
[Ka1]. 2

Remark. In [Ka1], our Lemma 4.2 is stated (wrongly) without any minus signs. Unfortu-
nately, Karaca does not explicitly say what his definition of P̂(u) is. Instead, for the special

Milnor basis elements M [(0, . . . , 0, rt = ps)] =: Ps
t he defines P̂s

t as (−1)sχ(Ps
t ). Since there

exists a basis of P∗ which consists of certain monomials in elements of the form Ps
t , it is

possible to figure out what the expression P̂(u) should mean according to Karaca’s definition,

assuming that P̂s
t · Pv

u := P̂v
u · P̂s

t . However, doing this translation one easily sees that there
should be some non-trivial coefficients in his formula. The correct result can nevertheless easily
be deduced from the argument given in [Ka1].

After these preparations we are in a position to prove the following “hat-passing formula”,
which is a slightly generalised odd prime version of the formula given in [S1, Lemma 2.3]:

Proposition 4.3. Suppose that k, l, c,m and n are non-negative integers with

1. k > l,

2. 1 6 c 6 p− 1,

3. m+ n = cplγ(k − l),

4. m < pk−1,

5. m ≡ 0 mod pl.
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We use the convention P̂(s) := 0 if s < 0. Then for l = 0 we have

P(m) · P̂(n) = (−1)cP̂(m+ n− pm− c) · P(pm+ c)

and for l > 0 we have

P(m) · P̂(n) =
c∑

i=1

(−1)i+1

(
c

i

)
p

P(m+ ipl−1) · P̂(n− ipl−1)

+ (−1)cP̂(m+ n− pm− cpl) · P(pm+ cpl) .

Proof. In order to see that for l = 0 only one term in the expression for P(m) · P̂(n) appears,
note that |R| = (p− 1)cγ(k) = c(pk − 1), so that by applying Equation (6) in Lemma 4.2 we
obtain

P(m) · P̂(n) = (−1)n
∑

|R|=c(pk−1)

(
c(pk − 1) + ex(R)

pm

)
p

M [R] .

Now recall that ex(R) =
∑
i>1

ri. Dividing |R| by (p− 1) and substituting ex(R)−
∑
i>2

ri for r1

we have

cγ(k) =
|R|
p− 1

=
∑
i>1

riγ(i) = ex(R) +
∑
i>2

ripγ(i− 1) .

Thus we see that ex(R) ≡ c mod p. Now we apply Lemma 4.1 with e = ex(R); we have just
seen that we are always in case (I) so that(

c(pk − 1) + ex(R)

pm

)
≡

(
ex(R)

pm+ c

)
.

Equation (7) in Lemma 4.2 now implies that

P(m) · P̂(n) = (−1)n
∑

|R|=c(pk−1)

(
c(pk − 1) + ex(R)

pm

)
p

M [R]

= (−1)c(−1)m+n−pm−c
∑

|R|=c(pk−1)

(
ex(R)

pm+ c

)
p

M [R]

= (−1)cP̂(m+ n− pm− c) · P(pm+ c) .

The formula for l > 0 easily follows from Lemma 4.1, carefully keeping track of any minus
signs that enter into the formula. 2

In order to arrive at the simple description of P̂[s; cγ(t)] that will be obtained in Theorem 4.6
we need yet another lemma. The elegant proof given here, due to Judith Silverman, is a nice
application of the “stripping technique” discussed in Section 3 and replaces the original, more
complicated proof which didn’t use stripping at all.

Lemma 4.4. Let c and l be positive integers with 1 6 c 6 p− 1. Then P(cγ(l)) ·P(apl−1) = 0
for any a which satisfies p− c 6 α0(a) 6 p− 1.

Proof. The lemma is proved by downward induction on c. We start with the case c = p− 1 so
that 1 6 α0(a) 6 p− 1. Then by the Adem relations we have

P(pl − 1) · P(apl−1)

=

pl−1∑
z=0

(−1)p
l−1+z

(
(p− 1)(apl−1 − z)− 1

pl − 1− pz

)
p

P(pl − 1 + apl−1 − z) · P(z) .
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We show that the mod p binomial coefficients appearing in this formula are all 0. First consider
the case z = 0: since 1 6 α0(a) 6 p − 1 we have 0 6 αl−1((p − 1)apl−1 − 1) 6 p − 2, but

αl−1(p
l − 1) = p− 1 and so

((p−1)apl−1−1
pl−1

)
≡ 0. On the other hand, if z 6= 0 then there exists

some index j0 with 0 6 j0 6 l − 2 such that 1 6 zj0 6 p − 1 but zj = 0 for all 0 6 j < j0.
Hence 1 6 αj0((p− 1)z) = p− zj0 6 p− 1 and so 0 6 αj0((p− 1)(apl−1 − z)− 1) 6 p− 2. But

αj0(p
l − 1− pz) = p− 1 and so again

((p−1)(apl−1−z)−1
pl−1−pz

)
≡ 0.

Now let 1 6 c < p− 1 and suppose that the lemma has been shown to be true for all ĉ with
c < ĉ 6 p−1. Choose a with p−c 6 α0(a) 6 p−1 (which implies p−(c+1) 6 α0(a−1) 6 p−1
and p− (c+ 1) 6 α0(a) 6 p− 1). The lemma for c+ 1 guarantees that

P
(
(c+ 1)γ(l)

)
· P(apl−1) = 0 (8)

and

P
(
(c+ 1)γ(l)

)
· P

(
(a− 1)pl−1

)
= 0 . (9)

Using Equation (3), Prop. 3.1(4) and Cons. 3.4(2) we strip Equation (8) by ξ̂l to obtain

0 = ξ̂l ∩
[
P((c+ 1)γ(l)) · P(apl−1)

]
=

[
ξ̂l ∩ P((c+ 1)γ(l))

]
· P(apl−1)

+

l−1∑
i=0

[
ξ̂i ∩ P((c+ 1)γ(l))

]
·
[
ξ̂p

i

l−i ∩ P(apl−1)
]

(10)

= (−1)lP(cγ(l)) · P(apl−1) + E,

where E is defined to be the big sum in (10). It remains to show that E = 0. We fix i with
1 6 i 6 l − 1 and observe that for any b > 0 we have

ξ̂p
i

l−i ∩ P(b) = (−1)l−iP(b− piγ(l − i)) = −ξ̂p
i

l−i−1 ∩ P(b− pl−1) .

Setting b = apl−1, we find that E can be rewritten as

E = −
l−1∑
i=0

[
ξ̂i ∩ P((c+ 1)γ(l))

]
·
[
ξ̂p

i

l−i−1 ∩ P((a− 1)pl−1)
]

= −ξ̂l−1 ∩
[
P((c+ 1)γ(l)) · P((a− 1)pl−1)

]
. (11)

But by (9), the product in (11) is 0. Consequently E = 0 as desired. 2

The next lemma establishes the basis of induction for Theorem 4.6.

Lemma 4.5. Let c be an integer with 1 6 c 6 p− 1. Then

P̂(cγ(s)) = (−1)scP[s; c] .

Proof. The case s = 1 is clear: by [Mi] we have

P̂(c) = (−1)c
∑

|Q|=c(p−1)

M [Q] = (−1)cP(c) ,

and in general

P̂(cγ(s)) = (−1)cγ(s)
∑

|Q|=c(ps−1)

M [Q] . (12)



Homology, Homotopy and Applications, vol. 2, No. 1, 2000 10

By induction and Equation (6) we obtain

(−1)scP[s; c] = (−1)scP(ps−1c) · P[s− 1; c]

= (−1)cP(ps−1c) · P̂(cγ(s− 1))

= (−1)cγ(s)
∑

|R|=c(ps−1)

(
|R|+ ex(R)

cps

)
p

M [R] ,

so that by (12) it only remains to show that
(|R|+ex(R)

cps

)
≡ 1 for all R with |R| = c(ps − 1).

It follows directly from the definitions that 0 6 ex(R) 6 |R|
p−1 = cγ(s). On the other hand it

is easy to see that the sequence (0, · · · , 0, rs = c) is of excess c and that this is the minimal
excess of any sequence in S of degree c(ps − 1). The inequality c 6 ex(R) 6 cγ(s) now implies
that

cps 6 |R|+ ex(R) 6 cpγ(s) = cps + cps−1 + . . .+ cp

so that indeed
(|R|+ex(R)

cps

)
≡ 1 for all R with |R| = c(ps − 1). 2

Finally we can prove the conjugation formula announced earlier on, which is a slightly
generalised mod p version of [S1, Theorem 3.1]. The proof is similar to the one in the mod 2
case.

Theorem 4.6. For all positive integers s, t and c with 1 6 c 6 p the following conjugation
formula holds:

P̂[s; cγ(t)] = (−1)stcP[t; cγ(s)]

Proof. We first prove the theorem for 1 6 c 6 p− 1. The case c = p will follow from the case
c = 1 by a stripping argument.

The proof for 1 6 c 6 p− 1 is by induction on t. The basis of induction (i.e. the case t = 1
or equivalently s = 1) has been established in Lemma 4.5. So let us assume that t > 1, s > 1
and that the theorem has been shown to be true for all 1 6 t̂ 6 t− 1, all s and also for t̂ = t,
all 1 6 ŝ 6 s− 1. We begin with the following remark:
Remark. Under the above assumptions the following is true:
For all non-negative integers a with p− c 6 α0(a) 6 p− 1 and for all 1 6 l < s we have

P̂(apl−1) · P[l; cγ(t)] = 0 .

We prove this result as follows: we have

P̂(apl−1) · P[l; cγ(t)] = χ
[
P̂[l; cγ(t)] · P(apl−1)

]
,

which by induction equals

(−1)tlcχ
[
P[t; cγ(l)] · P(apl−1)

]
= (−1)tlcχ

[
P[t− 1; pcγ(l))] · P(cγ(l)) · P(apl−1)

]
.

But by Lemma 4.4 the expression P(cγ(l)) · P(apl−1) vanishes. This proves the remark.
Now we get back to the proof of the theorem: by induction we obtain

P̂[t; cγ(s)] = χ(P[t− 1; cγ(s)]) · χ(P(pt−1cγ(s)))

= (−1)(t−1)scP[s; cγ(t− 1)] · P̂(pt−1cγ(s)) . (13)

We claim that for 1 6 d 6 s the following formula holds:

P[d; cγ(t− 1)] · P̂(pt−1cγ(s)) = (−1)dcP̂(pt+d−1cγ(s− d)) · P[d; cγ(t)]

Proof of the claim: for d = 1 we have to show that

P(cγ(t− 1)) · P̂(pt−1cγ(s)) = (−1)cP̂(ptcγ(s− 1)) · P(cγ(t)) .
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This follows immediately from Prop. 4.3 with m = cγ(t− 1), n = pt−1cγ(s), k = t+ s− 1 and

l = 0. So suppose that 2 6 d 6 s, assuming that the claim has been proved for all 1 6 d̂ < d.
Then using induction we obtain

P[d; cγ(t− 1)] · P̂(pt−1cγ(s))

= P(pd−1cγ(t− 1)) · P[d− 1; cγ(t− 1)] · P̂(pt−1cγ(s))

= (−1)(d−1)cP(pd−1cγ(t− 1)) · P̂(pt+d−2cγ(s− d+ 1)) · P [d− 1; cγ(t)] .

Again, we apply Prop. 4.3, this time to the first two terms, with the parametersm = pd−1cγ(t−
1), n = pt+d−2cγ(s− d+ 1), k = t+ s− 1 and l = d− 1. We deduce that

P(pd−1cγ(t− 1)) · P̂(pt+d−2cγ(s− d+ 1))

=

c∑
i=1

(−1)i+1

(
c

i

)
p

P(pd−1cγ(t− 1) + ipd−2) · P̂((pt+d−2cγ(s− d+ 1)− ipd−2)

+(−1)cP̂(pt+d−1cγ(s− d)) · P(pd−1cγ(t)) .

By the remark, the terms in the big sum vanish upon multiplication with P[d− 1; cγ(t)] from
the right, and so we arrive at

P[d; cγ(t− 1)] · P̂(pt−1cγ(s))

= (−1)dcP̂(pt+d−1cγ(s− d)) · P(pd−1cγ(t)) · P[d− 1; cγ(t)]

= (−1)dcP̂(pt+d−1cγ(s− d)) · P[d; cγ(t)]

which proves the claim.
Setting d = s and substituting back into expression (13) yields

P̂[t; cγ(s)] = (−1)(t−1)scP[s; cγ(t− 1)] · P̂(pt−1cγ(s))

= (−1)tscP[s; cγ(t)]

which finishes the proof of the theorem for 1 6 c 6 p− 1.
There remains the case c = p. We strip the formula

P̂[s; γ(t+ 1)] = (−1)s(t+1)P[t+ 1; γ(s)]

(this is the case c = 1 with t+ 1 instead of t) by ξ̂s, and by Cor. 3.3(3) we obtain

P̂[s; pγ(t)] = ξ̂s ∩ P̂[s; γ(t+ 1)]

= (−1)s(t+1)ξ̂s ∩ P[t+ 1; γ(s)]

which by Cons. 3.4(2) and Prop. 3.6 equals

(−1)s(t+1)P[t; pγ(s)] ·
(
ξ̂s ∩ P(γ(s))

)
= (−1)s(t+1)P[t; pγ(s)] · (−1)sP(0)

= (−1)stP[t; pγ(s)] .

This completes the proof of the theorem. 2

We observe the following:

Corollary 4.7. Let s, t and c be non-negative integers with s > 1 and 1 6 c 6 p. Then
the operations P̂[s; cγ(t)] have length exactly t independently of s and c. More generally, if
γ(t) 6 f < γ(t+ 1) then the operations P̂[s; f ] are all of length exactly t, independently of s.

Proof. For t > 1 the first statement is an immediate consequence of Theorem 4.6; for t = 0 the
statement is trivial. The second statement follows since stripping operations cannot increase
length (cf. Section 3.2). 2
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5. Conjugation formulas for P∗

We now turn to conjugation in the dual Steenrod algebra. Let S(k) be the symmetric group
with identity Idk acting on {0, 1, 2, . . . , k − 1}. For τ ∈ S(k) and i > 0 we define

Zi(k; τ) :=
k−1∑
j=0

pjB(i+ τ(j)− j) ,

Xi(k; τ) := ξ[Zi(k; τ)] =
k−1∏
j=0

ξp
j

i+τ(j)−j ,

and

Xi(k) :=
∑

τ∈S(k)

sign(τ)Xi(k; τ) .

Observation 5.1. Zi(k; Idk) = γ(k)B(i) and Xi(k; Idk) = ξ
γ(k)
i .

We will need the following lemma:

Lemma 5.2. For k > 1 we have X1(k) = (−1)k ξ̂k.

Proof. The proof is by induction on k. Let k = 1, then X1(1) = ξ1 = −ξ̂1, so the assertion

is true in this case. Now suppose the statement has been shown to be true for all 1 6 k̂ < k.
Note that if X1(k; τ) 6= 0 then necessarily τ(j) > j − 1 for all j. So if X1(k; τ) 6= 0 then define
l by l = τ−1k− 1. If l = k− 1 then we obtain a cycle decomposition of τ as (k− 1)σ for some
σ ∈ S(k− 1). If l 6= k− 1 then we obtain τ(k− 1) = k− 2, τ(k− 2) = k− 3, . . . , τ(l+1) = l,
so that τ has a cycle decomposition as (k − 1, k − 2, . . . , l)σ for some σ ∈ S(l). In any case
we have

X1(k; τ) = X1(l;σ) · ξp
l

k−l .

So for 0 6 l 6 k − 1 let Sl(k) = {τ ∈ S(k) | τ(l) = k − 1}; obviously S(k) =
∪
Sl(k). Then

by induction

X1(k) =
k−1∑
l=0

∑
τ∈Sl(k)

sign(τ)X1(k; τ)

=

k−1∑
l=0

ξp
l

k−l ·
∑

σ∈S(l)

(−1)k−1−lsign(σ)X1(l;σ)

= (−1)k−1
k−1∑
l=0

ξp
l

k−l · ξ̂l = (−1)k ξ̂k ,

where in the last line we used Milnor’s recursive formula for the anti-automorphism. 2

In analogy to [S3] we make the following more general definitions:

Definition 5.3. For k > 1, let I(k) be the set of non-decreasing sequences (i0, i1, . . . , ik−1)
of positive integers. For τ ∈ S(k) and I ∈ I(k) we define

ZI(k; τ) :=
k−1∑
j=0

pjB(iτ(j) + τ(j)− j) ,

XI(k; τ) := ξ[ZI(k; τ)] =
k−1∏
j=0

ξp
j

iτ(j)+τ(j)−j ,
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and

XI(k) :=
∑

τ∈S(k)

sign(τ)XI(k; τ) .

We further define

PI(k; τ) :=

k−1∑
j=0

pj+i0B(iτ(j) + τ(j)− (j + i0)) ,

RI(k; τ) := ξ[PI(k; τ)] =
k−1∏
j=0

ξp
j+i0

iτ(j)+τ(j)−(j+i0)
,

and

RI(k) :=
∑

τ∈S(k)

sign(τ)RI(k; τ) .

Observations 5.4. 1. If I = (i, i, . . . , i) ∈ I(k) is a constant sequence then we obtain
ZI(k; τ) = Zi(k; τ) and consequently XI(k; τ) = Xi(k; τ). Moreover, for such a sequence
I and τ 6= Idk we have PI(k; τ) = ∗ and consequently RI(k) = RI(k; Idk) = 1.

2. If I = (i0, i1, . . . , ik−1) ∈ I(k) and i0 > 1 let I[−1] denote the sequence (i0 − 1, i1 −
1, . . . , ik−1 − 1) ∈ I(k). Then RI(k) =

(
RI[−1](k)

)p
.

Theorem 5.5. Let k > 1. Then X̂I(k) ≡ (−1)i0kξ
γ(i0)
k · R̂I(k) modulo monomials of length

> k.

Proof. First recall that we have the following expression for X̂I(k):

X̂I(k) =
∑

ρ∈S(k)

sign(ρ)
k−1∏
j=0

ξ̂p
j

iρ(j)+ρ(j)−j

=
∑

ρ∈S(k)

sign(ρ) ξ̂iρ(0)+ρ(0) ·
k−1∏
j=1

ξ̂p
j

iρ(j)+ρ(j)−j .

Applying Milnor’s recursive formula for the anti-automorphism we obtain

−ξ̂iρ(0)+ρ(0) ≡
k∑

n=1

ξn · ξ̂p
n

iρ(0)+ρ(0)−n

modulo monomials of length > k. So we have

X̂I(k) ≡ −
k∑

n=1

∑
ρ∈S(k)

sign(ρ) ξn · ξ̂p
n

iρ(0)+ρ(0)−n ·
k−1∏
j=1

ξ̂p
j

iρ(j)+ρ(j)−j .

For each ρ ∈ S(k) we define ρ′ by

ρ′(l) =

{
ρ(0) if l = k − 1
ρ(l + 1) if 0 6 l 6 k − 2.

Note that sign(ρ) = (−1)k−1sign(ρ′). So

X̂I(k) ≡ (−1)k
k∑

n=1

∑
ρ′∈S(k)

sign(ρ′) ξn · ξ̂p
n

iρ′(k−1)+ρ′(k−1)−n ·
k−2∏
l=0

ξ̂p
l+1

iρ′(l)+ρ′(l)−(l+1)

modulo monomials of length > k.
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For the proof of the theorem, we fix k and use induction on i0. First suppose that i0 = 1.
Then

ξk · R̂I(k) =
∑

τ∈S(k)

sign(τ) ξk · ξ̂p
k

iτ(k−1)+τ(k−1)−k ·
k−2∏
j=0

ξ̂p
j+1

iτ(j)+τ(j)−(j+1)

so that

X̂I(k)− (−1)kξk · R̂I(k)

≡ (−1)k
k−1∑
n=1

∑
ρ′∈S(k)

sign(ρ′) ξn · ξ̂p
n

iρ′(k−1)+ρ′(k−1)−n ·
k−2∏
l=0

ξ̂p
l+1

iρ′(l)+ρ′(l)−(l+1) . (14)

It can easily be verified that the summand in (14) associated to n and ρ′ is the negative of the
term associated to n and ρ′′ where

ρ′′(l) =

 ρ′(l) if l 6= n− 1 and l 6= k − 1
ρ′(n− 1) if l = k − 1
ρ′(k − 1) if l = n− 1

(note that sign(ρ′) = −sign(ρ′′)). So the difference X̂I(k) − (−1)kξk · R̂I(k) vanishes modulo
monomials of length > k and the theorem holds for i0 = 1.

The proof for general I is similar. By induction we can assume that the statement is true
for (i0 − 1, i1 − 1, . . . , ik − 1) = I[−1]. By Observation 5.4(2)

ξ
γ(i0)
k · R̂I(k) =

(
ξ
γ(i0−1)
k · R̂I[−1](k)

)p · ξk
which modulo terms of length > k is

≡
(
(−1)k(i0−1)X̂I[−1](k)

)p · ξk
= (−1)k(i0−1)ξk ·

∑
τ∈S(k)

sign(τ)

k−1∏
j=0

ξ̂p
j+1

iτ(j)−1+τ(j)−j

= (−1)k(i0−1)
∑

τ∈S(k)

sign(τ) ξk · ξ̂p
k

iτ(k−1)+τ(k−1)−k ·
k−2∏
j=0

ξ̂p
j+1

iτ(j)+τ(j)−(j+1) .

Now one can define ρ′′ as before and proceed as in the case i0 = 1 in order to establish the
inductive step. 2

An especially interesting formula arises from Theorem 5.5 if we set I = (i, i, . . . , i), a
constant sequence:

Theorem 5.6. Let i, k > 0. Modulo monomials of length > k we have

ξ̂
γ(k)
i ≡ (−1)ikξ

γ(i)
k −

∑
Idk 6=τ∈S(k)

sign(τ)

k−1∏
j=0

ξ̂p
j

i+τ(j)−j .

In particular, if 0 6 f < γ(k + 1) then

ξ̂
γ(i)
k ∩ P[i; f ] = (−1)ikξ

γ(k)
i ∩ P[i; f ] = (−1)ikP[i; f − γ(k)] .

Proof. The first part follows immediately from Theorem 5.5 and Observation 5.4(1), so it
only remains to prove the second statement. By the part already proved we have the following
equality:

ξ̂
γ(k)
i ∩ P̂[i; f ] = (−1)ikξ

γ(i)
k ∩ P̂[i; f ]−

( ∑
Idk 6=τ∈S(k)

sign(τ)
k−1∏
j=0

ξ̂p
j

i+τ(j)−j

)
∩ P̂[i; f ]
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Now observe that for any Idk 6= τ ∈ S(k) the product
∏k−1

j=0 ξ
pj

i+τ(j)−j is of length strictly

greater than i, so for any such τ we get( k−1∏
j=0

ξ̂p
j

i+τ(j)−j

)
∩ P̂[i; f ] = χ

[( k−1∏
j=0

ξp
j

s+τ(j)−j

)
∩ P[i; f ]

]
= 0 .

Using Cor. 3.3(3) we thus obtain ξ̂
γ(k)
i ∩ P̂[i; f ] = P̂[i; f − γ(k)] = (−1)ikξ

γ(i)
k ∩ P̂[i; f ]. The

claim now follows by application of (−1)ikχ to this formula. 2

Finally, we note that Theorem 5.5 provides us with useful information regarding the be-
haviour of the stripping operations D(X̂I(k)):

Corollary 5.7. 1. If len(θ) < k, then X̂I(k) ∩ θ = 0 for all I ∈ I(k).

2. If len(θ) = k, then X̂I(k) ∩ θ = (−1)i0kR̂I(k) ∩ (ξ
γ(i0)
k ∩ θ).

3. In particular, X̂I(k) ∩ P[k; f ] = (−1)i0kR̂I(k) ∩ P[k; f − γ(i0)].

Proof. This follows immediately from the theorem by invoking Prop. 3.1 and Cor. 3.3. 2
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