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STRIPPING AND CONJUGATION IN THE
MOD p STEENROD ALGEBRA AND ITS DUAL

DAGMAR M. MEYER
(communicated by Hvedri Inassaridze)

Abstract

Let p be an odd prime and A* the mod p Steenrod algebra. We
study the technique known as “stripping” applied to A* and derive
certain conjugation formulas both for A* and its dual, generalising
work of J. H. Silverman for p = 2 (“Conjugation and excess in the
Steenrod algebra”, Proc. Am. Math. Soc. 119 (1993), no.2, 657 — 661;
“Hit polynomials and conjugation in the dual Steenrod algebra”, Math.
Proc. Camb. Philos. Soc. 123 (1998), no.3, 531 — 547) to the case of
an odd prime.

1. Introduction and statement of results

In this note we study the technique known as “stripping” applied to the mod p Steenrod
algebra A*, where p is an odd prime, and use the results obtained to prove certain conjugation
formulas both in A* and its dual. This generalises work of Judith Silverman carried out in [S1]
and [S3] for p = 2 to the case of an odd prime. More precisely, our results concern Steenrod
operations which lie in the sub-Hopf algebra P* of A* which is generated by the reduced power
operations P(7), ¢ > 1, in dimensions |P(i)| = 2i(p — 1). We use the convention P(0) := 1.

Of particular interest are the Steenrod operations in P* which are of the form

Plk; f] :=P@" ' f) - P@* 2 f)-...- P(pf) - P(f)

where k£ > 1 and f > 0. Note that P[1; f] is just P(f). Being a sub-Hopf algebra, P* inherits
the canonical anti-automorphism x of A4*; following notation introduced in [WW], we write
6 instead of x(#). In particular, P(a) = x(P(a)) and P[k; f] = x(P[k; f]).

For m > 0 we define

m—1

y(m) =" p'.

=0
Our first main result is an explicit conjugation formula for P[k; f] in certain special cases. It
generalises Thm. 3.1 in [S1] to odd primes:

Theorem 4.6 For all positive integers s, t and ¢ with 1 < ¢ < p the following conjugation
formula holds:

Pls; ey(t)] = (=1)*Plt; ey (s)]

The main result concerning conjugation in the dual P, is a conjugation formula for cer-
tain elements X7(k), which are defined in Section 5. This formula is the mod p analogue of
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Prop. 5.5 in [S3]. A special case states that modulo monomials of length strictly greater than

k the operations éz(k) and (—l)ikfz(i) coincide up to a certain error term; the conjugate of
the error term is a sum of monomials of length strictly greater than i:

Theorem 5.6 Let i,k > 0. Modulo monomials of length > k we have

k—1
~(k . i . g
§W= (kg - S sign(n) [[ €1,
j=0

Idp£7e6 (k)

Here &(k) denotes the symmetric group acting on {0,1,2,... ,k —1} and & =0 for r < 0.
In particular, if f <~y(k+ 1) is a non-negative integer then

Y NPl f] = (~0FGY APl ] = (<)PLE £ -y (k)]

where we use the notation y N _ for the stripping operation D(y).

The ideas underlying the proofs of the results in this paper are similar to those of their
mod 2 counterparts in [S1] and [S3]. However, getting down to the details we note two major
differences that appear in the odd-primary case: first of all, in just about every formula we
prove there are some signs involved, and secondly (in Section 4) we have to deal with mod p
binomial coeflicients which appear as non-trivial coefficients in our formulas. These difficulties
cause the generalisation of the mod 2 results to be not quite as straightforward as it may seem
at first glance.

Both Thm. 4.6 and Thm. 5.6 are essential ingredients for the work carried out in [M].
There the Steenrod operations f’[k, f] are studied further; in particular the excess of these
operations is determined. In fact, that project was one of the main motivations for the work
on the problems discussed in the present paper.

Acknowledgements: I would like to thank Judith Silverman for many helpful comments on the
subject of this paper, in particular for supplying the elegant proof of Lemma 4.4 which is reproduced
here. I also thank Ken Monks for pointing out to me the work of Ismet Karaca on related problems
and for sending me copies of [Ka2], [Ka3].

2. Preliminaries

Let S denote the additive monoid of sequences of non-negative integers almost all of which
are 0, with componentwise addition. We write Og for the trivial element. Throughout we shall
use capital letters to denote sequences in S and small letters for their coordinates; e.g. S =
(s1,82,...). If S has s; =0 for i > L, we write S as (s1, 82,...,8r). The degree of an element
S € S is defined to be [S[ =}, si(p* — 1), its length as len(S) = min{i > 0]s; = 0 Vj > i},
and its excess as ex(S) = Y, s;. It will be convenient to adjoin an extra element * to S with
the property that «x +x =« Tx=xforallz € SU {x} =: §*. We also define sequences B(j)
for any j € Z: if j > 0 then B(j) is the sequence with b(j); := d;5, if j < 0 we set B(j) := *.

There are many interesting bases for A* and hence for P*; the most important and most
commonly used are the basis of admissible monomials (“admissible basis”) and the Milnor
basis. Recall that the monomial P(aq) - ... P(a,) with a,, > 0 is admissible if a, > pa,11 for
all 1 < r < n; we also define P(0) = 1 to be admissible. The admissible basis of P* can be
parameterised in terms of the numbers s; = a; — pa;11; that is, given a sequence S € S of
length n > 0, we define the admissible element E[S] := P(a1) - ... P(ay) by setting a,, = s,
and a; = pa;y1 + s; for 1 < i < n— 1. We also set F[0s] := P(0) = 1. For example, if
S =1(0,...,0, f) has length k then E[S] = P(p*~1f)-...-P(f) = P[k; f].

For the Milnor basis of P* consider the dual Hopf algebra P,. This is a polynomial algebra
over F,, on generators & (i > 1) in dimension 2(p’ — 1); we use the convention & := 1. For
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S € 8§ we write {[S] for the monomial [[;, £*. In particular, {[B;] = &; for any j > 0. The
Milnor basis of P* itself is the basis dual to the basis of P, consisting of all the monomials
¢[S] with S € S; the element dual to £[S] will be denoted by M|[S].

We further set M[«x] = 0 = E[*] and £[*] = 0, and we adopt the convention that M[S] =
0 = E[S] and £[S] = 0if S is a finite sequence of integers which does not belong to S, i.e. with
at least one negative entry. In particular, & := 0 if ¢ < 0.

For any S € S we define length and excess of the monomial £[S] as len(S) and 2ex(S)
respectively. Likewise, for the admissible and the Milnor basis we define

leng(E[S]) :=len(S) =: leny (M[S]),
exp(E[S]) :=2ex(S) =: expr (M[S]) .

More generally, suppose 6 is any homogeneous element of P* with a basis representation given
by 6 = >, a;B[S;], where B stands for either E or M. Then we set

leng () := m?x{lenB(B[Si])} = m?x{len(Si)}
exp(0) := rniin{eXB(B[Si])} = Qmiin{eX(Si)} .

The excess of any operation # in P* can also be defined as ex(f) := min{n|60(c,) #
0 € H*(K(Z/p,n);F,)}, where v, € H*(K(Z/p,n);F,) is the fundamental class. In fact,
all the different definitions of excess that we have given coincide (cf. [Kr]); in particular
exp(0) = ex(0) = exps(6).

By [Mi], the change-of-basis matrix in each dimension between the admissible and the
Milnor basis is upper triangular with diagonal entry +1, if for both bases we use the order
induced by the right-lexicographical order on §. From this it follows that for any S € S we
have leng(M[S]) = leng(E[S]) = len(S) and lenp (E[S]) = lenp (M[S]) = len(S), and one
easily sees that this implies lenys () = leng(0) for any 8 € P*. Henceforth we denote this
common value simply by len(6).

3. Stripping in P*

3.1. Recollections about the stripping technique

Much recent progress on problems related to the structure of the Steenrod algebra has
been made by applying a tool that has become known as “stripping technique” (for a de-
tailed account see [W]). This technique applies to any Hopf algebra, so in particular to the
cocommutative, connected Hopf algebra P*.

Let A* denote the diagonal map of P* and (, ) the inner product. We consider the natural
action of the dual Hopf algebra P, on P* which is given for each £ € P, by

D(€): Pr 21, prgpr 128 pe.
this action satisfies

for all ¥ € Py, 0 € P*. The operation D(§) : P* — P* is called “stripping by £” and can be
considered as a kind of cap-product. For this reason the notation

D)0 =:£n0

has become customary.

For the reader’s convenience we now recall some important properties of the stripping
operation (cf. [S2]):

Let A, denote the product of P, and ¢, the comultiplication; the canonical anti-automorphism
of P, will again be denoted by x, with x(y) =: §. In what follows let ¢.(y) =: > ¢’ ® y” and
A*(0) =: >0 ®6". We write D for the F,-vector space with basis {D(£[S])|S € S}.
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The maps x : Px — Py, Ay : P @ P — P, and ¢4 : P — Px ® P, induce maps
x:D—D, D(y)+~ D(y)
A.:D®D — D, D(y1)® D(y2) = D(y1 - y2)
¢«:D—D®D, D(y)— > Dy)®Dy").

Proposition 3.1. The following formulas hold:
L (y1+y2)NO=y1N0+y2N0
Cye)NO=(y2-y1)NO=1y1N(y2N0) =20 (y1 N0)

2

3 yn(6r-62) = Sy N61) - (4 N 6s)
b gn(@r-62) = (" N61) - (3 Nbo)
5 gnl=yno

3.2. Stripping in the Milnor basis and in the admissible basis

The effect of stripping by an element y € P, on a Milnor basis element can easily be
described by writing y as a sum of basis elements ¢[R]. In fact, recall that the comultiplication
A* of P* is determined by the formula

AT(M[S]) = D M[S]® M[S"]
5/4-81=58
([Mi]). From this and the definition of stripping one easily sees that
E[RINM[S] = M[S — R].

In particular, stripping does not increase length.
Determining the effect of D(£[R]) on a given admissible monomial is more involved. More
generally, let P(a1)---P(a,) be any (not necessarily admissible) monomial in P*. For n > k,

we define V,  to be the set of all sequences (v1,... ,v,) in which the non-zero elements form

exactly the subsequence (p*~1,... p,1). For example, V32 consists of (0,p,1), (p,0,1), and

(p,1,0). For n < k, we define V, 1, := 0.
Proposition 3.2. With this notation
&N (Plar)-...-Plan)) = > Plar—v1)-...-Plan —vn).

VGVW,,k
Proof. The proof is analogous to that of Prop. 3.1 in [S3]. Alternatively, see [CWW, Sec-
tion 2]. ]
We note the following consequences:

Corollary 3.3. 1. If6 € P* has length n, then £[S]N6 =0 for any S € S of length greater
than n; in particular & N0 =0 for any k >n .

2. If P(ay) - ... - P(ay) is admissible of excess 2e, then
&N (Plar) ... Plar)) =P(ay —p* ) Plag—p* ) -...-Plax — 1),
which is again admissible and has excess 2e — 2. Consequently, if R = (r1,... ,1%) € S,
then & N E[R] = E[(r1,... ,7k—1,7% — 1)].
3. In particular,

& NPlk; f]=Plk; f — 1] and & NPlk; f] = Plk; f — 1]
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where the second equation follows from Prop. 3.1(5).
O

The next thing we determine is the action of D({Tﬁ]) on a given element 6 € P*. By [Mi],
conjugation in P, is determined by

()

= > “”II&”“ (2)

a€ePart(k)

where « runs through all ordered partitions a = (0417 ®2,...,Qq)) of k, [(«) is the length of
the partition «, and o;(«) is the partial sum Ej 10,

Consequences 3.4. 1. The excess of & = &[By] is 2 for any k, so the summand with the
largest excess in formula (2) is the monomial corresponding to the partition « of length
(o) =k with a; =1 for 1 <i <k, i.e. the summand

Ic ng -t _ é-’Y(k)
which has excess 2y(k). Hence stripping by fk reduces excess by no more than 2y(k).

2. Since §NP(f) =0 for alll > 1, we have

& NnP(f) = (—1® np(f)
_ { (~1FP(f — (k) if | = (k)
0

otherwise.

3.3. Stripping P[A; f] by fi
We will be mostly concerned with the special Steenrod operations P[A; f]. Therefore we
take a closer look at the action of the stripping operations D(&},) on these elements.

Lemma 3.5. For any 0 in P* we have
&N (P[2:f]-6) =P(pf) - (&N (P(f)-9)).

Proof. The proof is analogous to the proof of Lemma 4.4 in [S2]: recall that the comultipli-
cation in P, is given by

K) = ioszij ® & (3)
([Mi]). Hence by Prop. 3.1(3) we obtain -
& N (P25 f]-0) = P(pf) - (& N (P +§;@0pr ) (€, N (P(f)-0)).
p
Cons. 3.4(2) implies that & NP(pf) = —€’_; NP(pf — 1), thus

k .
_Z & NP@f)) (€, n(P(f)-0)

j—1

k
= =2 (EanPeS =) ((Ery- )" 0P -0))
=1

=& n(P(pf-1)-P(f)-0).
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But by the Adem relations P(pf — 1) - P(f) = 0, which proves the claim. |

The following more general result is now easily proved by induction on A, the case A = 2
being given by Lemma 3.5:

Proposition 3.6. For A > 2 and any 6 in P* we have
&N (PA; f]1-0) = P[A = L;pf] - (60 (P(S) - ).
O

Finally, we investigate what happens if we strip P[A; f] by & a total of j times. We note
that only the right-most j places are affected:

Proposition 3.7. Suppose A > j > 1. Then
& NPIA; f] = PIA =507 f] - (LN P f1) -

Proof. The proof is by induction on j, starting with j = 1 where the result is provided by
Prop. 3.6. O

4. Conjugation formulas for P*

In this section we establish some useful formulas involving conjugation of elements in P*. In
particular, we determine the simple formula for P[s; ¢y(t)] with 1 < ¢ < p that was announced
in the introduction.

Suppose that y is a non-negative integer. We use the notation «;(y) for the coefficient of p’
in the p-adic expansion of y, i.e. y =: 2120 a;(y)p'.

The following lemma will be needed for the proof of Prop. 4.3.

Lemma 4.1. Suppose that k,l,c,m and e are non-negative integers with

1. k>1,

2. 1<ec<p—1,

3. m<phl,

4. m=0 mod p.

Then the following relation mod p holds:

()= Ot )

Proof. The proof relies on the fact that mod p we have the relation (””) = H (& z)) There
<

(4)

@i(y)
are three cases: (I) oq(e) = ¢, (I1) 0 < ay(e) < ¢— 1, and (III) ¢+ 1 < oy(e)
in case (I) then the first term on the right of (4) is O and

W —p) ey _ (e
pm - \pm +opt
as required.

If we are in case (II) then the second term on the right of (4) is zero and so we have to

show that
(C(p’“ —ph)+ 6) - Z (C> <C(p’“ -+ 6)
pm —\i pm + ipt ’

— 1. If we are
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EOC

for 0 < ay(e) < ¢ — 1. Setting a := p — ¢ + oy (e) this amounts to showing that

> (5)() =0

forall p— c < a <p-—1. In order to show this equivalence, note that

SO =20 = () .

as one sees by considering the coefficient of ¢ in the binomial expansion of (z + 1)°T* =
(z 4+ 1)¢(z + 1)®. Now the claim follows since (Cta) =0forp—c<a<<p-1
Case (III) is similar. |

i.e. that

We will need the following multiplication formulas:

Lemma 4.2. Let u and v be non-negative integers. Then

P)-P(o) = (~1)° ('R' * eX(R)) MR ©)

R pu

and
PP = (-0 3 (M) iy @

where the sum ranges over all sequences R in S with |R| = (p — 1)(u + v) and ( )p denotes
mod p binomial coefficients.

Proof. The proof of (6) can be found in [G]. The other equality, (7), can be extracted from
[Kal]. O

Remark. In [Kal], our Lemma 4.2 is stated (wrongly) without any minus signs. Unfortu-
nately, Karaca does not explicitly say what his definition of la(u) is. Instead, for the special
Milnor basis elements M[(0,...,0,7 = p®)] =: P§ he defines f’% as (—1)*x(Pg). Since there
exists a basis of P* which consists of certain monomials in elements of the form P}, it is
possible to figure out what the expression f’(u) should mean according to Karaca’s definition,
assuming that ﬁ = 1573 : 1/3\; However, doing this translation one easily sees that there
should be some non-trivial coefficients in his formula. The correct result can nevertheless easily
be deduced from the argument given in [Kal].

After these preparations we are in a position to prove the following “hat-passing formula”,
which is a slightly generalised odd prime version of the formula given in [S1, Lemma 2.3]:
Proposition 4.3. Suppose that k,1,c,m and n are non-negative integers with

1. k>1,
1<e<p—1,
m+n=cply(k —1),

m < pkfl,

SR

m =0 mod p'.
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We use the convention P(s) := 0 if s < 0. Then for | =0 we have
P(m)-P(n) = (=1)°P(m +n —pm —¢) - P(pm +¢)

and for 1 > 0 we have

Plm) - Pl = 301 () Plon-+ i) Pl i)

+ (—1)Cf’(m +n—pm —cp') - P(pm + cp') .

Proof. In order to see that for [ = 0 only one term in the expression for P(m) - P(n) appears,
note that |R| = (p — 1)cy(k) = c(p* — 1), so that by applying Equation (6) in Lemma 4.2 we
obtain

k
A n c(p® — 1)+ ex(R
P(m)-P(n) = (-1) E < ( ) ( )> MIR].
pm
|R|=c(pk—1) p
Now recall that ex(R) = > r;. Dividing |R| by (p — 1) and substituting ex(R) — >_ r; for r

i>1 i>2
we have

) = B = S @) = ext®)+ L ranti- ).

Thus we see that ex(R) = ¢ mod p. Now we apply Lemma 4.1 with e = ex(R); we have just
seen that we are always in case (I) so that

(C(p’c - ;)er eX(R)) _ (:;(f)g .

Equation (7) in Lemma 4.2 now implies that

C ko X

|Rl=c(pk 1) pm
o ex(R)
Ri=cph—1) Py

= (=1)°P(m+n—pm—c) -P(pm+c).

The formula for [ > 0 easily follows from Lemma 4.1, carefully keeping track of any minus
signs that enter into the formula. O

In order to arrive at the simple description of 15[3; cy(t)] that will be obtained in Theorem 4.6
we need yet another lemma. The elegant proof given here, due to Judith Silverman, is a nice
application of the “stripping technique” discussed in Section 3 and replaces the original, more
complicated proof which didn’t use stripping at all.

Lemma 4.4. Let ¢ and [ be positive integers with 1 < ¢ < p—1. Then P(cy(1))-P(ap'=) =0
for any a which satisfies p — ¢ < ap(a) < p— 1.

Proof. The lemma is proved by downward induction on c. We start with the case c =p—1 so
that 1 < ap(a) < p— 1. Then by the Adem relations we have

P(p' —1)-P(ap'™")

r . —D(apt~—1 —2) —
= Z(fl)lﬁ —1+z ((p 1231(_p1 - ) 1> P(pl —14apt - z)-P(z).
z=0 p
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We show that the mod p binomial coefficients appearing in this formula are all 0. First consider
the case z = 0: since 1 < ag(a) < p—1 we have 0 < ay_1((p — Dap!~t — 1) < p— 2, but
a;_1(p' —1) =p—1 and so ((p_lz)jfllil_l) = 0. On the other hand, if z # 0 then there exists
some index jo with 0 < jo <1 —2such that 1 < z;, <p—1but z; =0 for all 0 < j < jo.
Hence 1 < ajy((p—1)2) =p—2j, <p—1landso 0 < aj,((p—1)(ap'~t —2) — 1) < p—2. But
(pfl)(lapl*LZ)*l) =0.
pt—1—pz

Now let 1 < ¢ < p—1 and suppose that the lemma has been shown to be true for all ¢ with
¢ < &< p—1. Choose a with p—c < ag(a) < p—1 (which implies p—(¢+1) < ap(a—1) < p—1
and p— (¢ + 1) < ap(a) < p—1). The lemma for ¢+ 1 guarantees that

P((c+1)y(1) - Plap'™) =0 (8)

ajo(p' — 1 —pz) = p— 1 and so again (

and
P((c+ 1) -P((a—1)p' ") =0. (9)
Using Equation (3), Prop. 3.1(4) and Cons. 3.4(2) we strip Equation (8) by & to obtain

0=4n [P((c+ 1)y(1) - P(ap'™")]

+1)
= [&NP((c+1)y(0)] - Plap'™)
-1 )
+ > [GnP((e+ DyD)] - [€ NP ap' )] (10)

— (C1)P(ey(1)) - Plap) + E.

where E is defined to be the big sum in (10). It remains to show that F = 0. We fix ¢ with
1 <4< 1—1 and observe that for any b > 0 we have

o

&.NPH) = (1) PB—piyi—i) = &,  nPB-p).

1

Setting b = ap'~!, we find that E can be rewritten as

-1 _
E == [&nP((c+1)yD)] - &, nP((a—1)p' )]
=0
==& N [P((e+1)y(D) - P((a—1)p' )] (11)
But by (9), the product in (11) is 0. Consequently E = 0 as desired. m|

The next lemma establishes the basis of induction for Theorem 4.6.

Lemma 4.5. Let ¢ be an integer with 1 < c < p—1. Then
P(ev(s)) = (=1)*Plsi ]
Proof. The case s =1 is clear: by [Mi]| we have
Ple) = (-1)° > M[Q] = (-1)°P(c),
|Q|=c(p—1)

and in general

Pley(s) = (=17 Y~ MIQ]. (12)
|Ql=c(p*—1)
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By induction and Equation (6) we obtain
(—1)*°P[s;c] = (~1)*P(p°~'¢) - P[s — 1]
= (=1)°P(p*'e) - Pley(s — 1))

ey +ex<R>>p MR,

S
|Rl=c(p*—1) P

so that by (12) it only remains to show that (lRHef(R)) = 1 for all R with |R| = ¢(p® — 1).

cp
It follows directly from the definitions that 0 < ex(R) < % = ¢v(s). On the other hand it
is easy to see that the sequence (0,---,0,75 = ¢) is of excess ¢ and that this is the minimal

excess of any sequence in S of degree ¢(p® — 1). The inequality ¢ < ex(R) < ¢y(s) now implies
that

v < Rl +ex(R) < epyls) = '+ 4.t ap
so that indeed (lth;f(R)) =1 for all R with |R| = ¢(p® — 1). |

Finally we can prove the conjugation formula announced earlier on, which is a slightly
generalised mod p version of [S1, Theorem 3.1]. The proof is similar to the one in the mod 2
case.

Theorem 4.6. For all positive integers s, t and ¢ with 1 < ¢ < p the following conjugation
formula holds:

Pls;cy(t)] = (—1)*"“P[t; cv(s)]

Proof. We first prove the theorem for 1 < ¢ < p — 1. The case ¢ = p will follow from the case
¢ =1 by a stripping argument.

The proof for 1 < ¢ < p— 1 is by induction on ¢. The basis of induction (i.e. the case t =1
or equivalently s = 1) has been established in Lemma 4.5. So let us assume that ¢ > 1, s > 1
and that the theorem has been shown to be true for all 1 <7 <t — 1, all s and also for t= t,
all 1 < § < s — 1. We begin with the following remark:

Remark. Under the above assumptions the following is true:
For all non-negative integers a with p — ¢ < ap(a) < p—1 and for all 1 <1 < s we have

Blap' ) - Pli;er(8)] = 0.
We prove this result as follows: we have
Pap'™") - Pll;ey(1)] = x [Pl ey ()] - Pap' )],
which by induction equals
(=) x[P[t; ey ()] - Plap™)] = (=1)"x[P[t — 1;pey(1))] - P(ex(D)) - Pap' )] .

But by Lemma 4.4 the expression P(cy(l)) - P(ap!~!) vanishes. This proves the remark.
Now we get back to the proof of the theorem: by induction we obtain

Plt; cy(s)] = x(P[t — L ex(s)]) - X (P(r' ™ ex(s))
= (=)D Ps;ey(t — 1)) - P(p'ler(s)) . (13)

We claim that for 1 < d < s the following formula holds:
Pld; ey(t — 1)] - P(p" Tey(s)) = (=) “P@ 4 ey(s — d)) - Pld; ey (t)]
Proof of the claim: for d = 1 we have to show that

P(ey(t —1)) - P ey(s)) = (=1)°P(p'er(s — 1)) - Pley (1))
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This follows immediately from Prop. 4.3 with m = cy(t —1), n = p'~ley(s), k =t +s—1 and
I = 0. So suppose that 2 < d < s, assuming that the claim has been proved for all 1 < d < d.
Then using induction we obtain

Pld;cy(t —1)] - P(p'*ey(s)) )
=P ley(t—1)) - Pld—1;ey(t —1)] - P tev(s))
= (1)@ Pt tey(t — 1)) - P 2ey(s —d + 1)) - Pld — L eq(t)] .

1

Again, we apply Prop. 4.3, this time to the first two terms, with the parameters m = p?~!ey(t—

D, n=pt92cy(s—d+1),k=t+s—1and | =d— 1. We deduce that
P(p? eyt — 1)) - P Pey(s —d + 1))

=Y (-t (f) P(p"ley(t — 1) +ip?=?) - P(0" Pey(s —d + 1) —ip™?)
=1 P

+H(=1) P ey(s — d) - P(p e ().

By the remark, the terms in the big sum vanish upon multiplication with P[d — 1; ¢y(t)] from
the right, and so we arrive at

Pld; cy(t —1)] - f’(pt’lcy(S))
= (—1)dclf’(pt+d_107(5 —d))-P(p*ey(t) - Pld — L e(t)]
= (=)™ P ey(s — d)) - Pld; ey (t)]

which proves the claim.
Setting d = s and substituting back into expression (13) yields

Plt;ey(s)] = (=) Pls;er(t = 1)] - P(p' ' ey(s))
= (=1)"“P[s; cy(1)]

which finishes the proof of the theorem for 1 <c¢<p— 1.
There remains the case ¢ = p. We strip the formula

Blsia(t+ 1)) = (-1 IP[E + 1i2(s)
(this is the case ¢ = 1 with ¢ + 1 instead of ¢) by &, and by Cor. 3.3(3) we obtain
Pls; py(t)] = & N Ps;y(t +1)]
= (—1)*HVE NP+ 15y(s)]
which by Cons. 3.4(2) and Prop. 3.6 equals
(=1 VP py(s)] - (6 N P((s)) = (=1 TP py(s)] - (~1)°P(0)
= (=1)"Plt;py(s)].

This completes the proof of the theorem. O

We observe the following;:

Corollary 4.7. Let s, t and ¢ be non-negative integers with s > 1 and 1 < ¢ < p. Then
the operations P[s;cy(t)] have length ezactly t independently of s and c. More generally, if
v(t) < f <~(t+ 1) then the operations P[s; f] are all of length exactly t, independently of s.

Proof. Fort > 1 the first statement is an immediate consequence of Theorem 4.6; for t = 0 the
statement is trivial. The second statement follows since stripping operations cannot increase
length (cf. Section 3.2). O
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5. Conjugation formulas for P,

We now turn to conjugation in the dual Steenrod algebra. Let & (k) be the symmetric group
with identity Id; acting on {0,1,2,... ,k —1}. For 7 € &(k) and i > 0 we define

k—1
Zi(k;) =Y P B(i+7(j) = J),

7=0

Xilki7) i= €12 H ey

and

Xi(k) = > sign(r) X;(k; 7).

Te€S(k)
Observation 5.1. Z;(k;1dy,) = v(k)B(i) and X;(k;1dy) = &™)
We will need the following lemma:
Lemma 5.2. For k > 1 we have Xy (k) = (=1)%&.

Proof. The proof is by induction on k. Let k = 1, then X;(1) = & = —51, so the assertion
is true in this case. Now suppose the statement has been shown to be true for all 1 < <k<k.
Note that if X;(k;7) # 0 then necessarily 7(j) > j — 1 for all j. So if X;(k;7) # 0 then define
Ibyl=71"1k—1.1f l = k — 1 then we obtain a cycle decomposition of 7 as (k — 1) for some
ce€6(k—-1).Ifl#k—1thenweobtain 7(k—1)=k—-2,7(k—2)=k-=3,...,7(l4+1) =1,
so that 7 has a cycle decomposition as (k — 1,k — 2,... ,l)o for some o € &(l). In any case
we have

X1(k;m)=X1(l;0) - le—l .

Sofor 0 <l <k—1let §(k)={r e &k)|7() =k — 1}; obviously &(k) = |J&,;(k). Then
by induction

Z Z sign(7) X1 (k;7)

1= 0766;( )

_ka L Z 1 sign(o) X1 (1; 0)

UGG(l)
— 1 ~ ~
= (—1)F! Zfz_l &= (-1)F,
1=0
where in the last line we used Milnor’s recursive formula for the anti-automorphism. O

In analogy to [S3] we make the following more general definitions:

Definition 5.3. For k > 1, let Z(k) be the set of non-decreasing sequences (ig,i1,... ,ix—1)
of positive integers. For T € 6(k) and I € Z(k) we define

k—1
= ijB(i‘r(j) + T(j) —j) s
=0

Xi(k;7) = €[Z1 (ks 7)] Hgmw
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and

Xp(k) = sign(r) X;(k;7).
TeG (k)
We further define

k—1
Pr(k;7) =Y " B(iz() +7(5) = (j +io),
3=0

J+zo
Ry ( ) - E PI k T H€l7(7)+7(]) (+i0)

and
Rr(k) = Y sign(r) Ry(k;T).
TEG (k)
Observations 5.4. 1. If I = (i,i,...,i) € Z(k) is a constant sequence then we obtain

Zi(k; 1) = Zi(k;7) and consequently X (k;7) = X;(k; 7). Moreover, for such a sequence
I and T # 1dy, we have Pr(k;7T) = % and consequently Ri(k) = Ry(k;1d;) = 1.

2. If I = (ig,i1,-.. ,ik—1) € Z(k) and ip > 1 let I[-1] denote the sequence (i — 1,41 —
L,...,ig—1 — 1) € Z(k). Then Ri(k) = (Ry-1)(k))".

Theorem 5.5. Let k > 1. Then X;(k) = (—l)iﬂkfz(io) - R1(k) modulo monomials of length
> k.

Proof. First recall that we have the following expression for X’ 1(k):
k=1
. ] i
Xik) = > sien(o) [T€7 060
§=0

k—1
_ . -
= E sign(p) gip(o)+p(0) : H gfp(j)ﬂ(j),j
i=1

pEG (k)

Applying Milnor’s recursive formula for the anti-automorphism we obtain

A . Ap'n/
~Eir o0 = D& €L L o0)-n

n=1

modulo monomials of length > k. So we have

)= - Z Z sign(p) &n - zp<o>+p(0)—n H€Zp<;>+p(1) -3

n=1pe&S(k)

For each p € &(k) we define p’ by

oy f p(0) itl=k—1
p(l){p(l—i—l) i0<I<k—2

Note that sign(p) = (—1)*~!sign(p’). So

k—2 1
_ Z . p . 24
= g Slgn gt (h—1) TP (k=1)—n H £ip/(z)‘f‘P'(l)_(H'l)
n=1p' €S (k) 1=0

modulo monomials of length > k.



Homology, Homotopy and Applications, vol. 2, No. 1, 2000 14

For the proof of the theorem, we fix k and use induction on ig. First suppose that ig = 1.
Then

k—2
opit

~ . ok
G Ri(k) = ) Slgn(ﬂ@f'ffﬂkflw(k—l)—k'Hfm])wa) G+D)
Jj=

TEG (k)

so that
Xy (k) = (1) - fe(k)
k— k—2

n A 41
=( Z > s &, ey L€ o erar—ain - (14)

n=1p’'eS(k) =0

It can easily be verified that the summand in (14) associated to n and p’ is the negative of the
term associated to n and p” where

o (1) ifl#n—1landl#k—1
pPl)=<¢ p(n-1) ifl=k-1
Plk—1) ifl=n—1

(note that sign(p’) = —sign(p”)). So the difference X7 (k) — (—=1)*& - Ry(k) vanishes modulo
monomials of length > k and the theorem holds for ig = 1.

The proof for general I is similar. By induction we can assume that the statement is true
for (ip — 1,41 — 1,... ,ix — 1) = I[-1]. By Observation 5.4(2)

G Ri(k) = ("7 Rupy (k)" - &
which modulo terms of length > k is
= ((—)*E=D Xy (k)" - &

. p 41
:(—1)k(10 1)&. Z sign(r H Zrm 147(j)—

TES (k) 7=0

_ k(io—1 . pi Tt
=(=1) o) Z Slgn(T)gk.glf(k n+r(k—1)—k H 17—(7)+T —(3+1) "

TeS (k)
Now one can define p” as before and proceed as in the case 7o = 1 in order to establish the
inductive step. O
An especially interesting formula arises from Theorem 5.5 if we set I = (4,4,...,7), a

constant sequence:

Theorem 5.6. Let i,k > 0. Modulo monomials of length > k we have

§W=(*g — N sign(r Ham

Id,#7€6 (k)
In particular, if 0 < f < y(k+ 1) then
2y (2 . i k . i .
(0P S = (DRGNPl ) = (<)™Plis S~ (k)]
Proof. The first part follows immediately from Theorem 5.5 and Observation 5.4(1), so it

only remains to prove the second statement. By the part already proved we have the following
equality:

§U0PEf = (0O NPE - (3 st Hﬁm ) Pl

Id,#re6 (k)
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Now observe that for any Id; # 7 € &(k) the product H
greater than 4, so for any such 7 we get

(H%m ;)P [(Hﬁwm ,)nPlisfl] = 0.

Using Cor. 3.3(3) we thus obtain 57( N Pli; f] = Pli; f — (k)] = (fl)ikfz(i) N Pli; f]. The
claim now follows by application of (—1)%x to this formula. O

H_T(J) ; is of length strictly

Finally, we note that Theorem 5.5 provides us with useful information regarding the be-
haviour of the stripping operations D(X;(k)):

Corollary 5.7. 1. If len(f) < k, then X;(k)N 68 =0 for all T € Z(k).
2. If len(0) = k, then X;(k) N6 = (—1)*R (k) n (& o).
8. In particular, X;(k) N Plk; f] = (=1)*R (k) N P[k; f — ~(io)].

Proof. This follows immediately from the theorem by invoking Prop. 3.1 and Cor. 3.3. O
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