STRIPPING AND CONJUGATION IN THE MOD *p* STEENROD ALGEBRA AND ITS DUAL

DAGMAR M. MEYER

(*communicated by Hvedri Inassaridze*)

Abstract

Let *p* be an odd prime and *A[∗]* the mod *p* Steenrod algebra. We study the technique known as "stripping" applied to A^* and derive certain conjugation formulas both for *A[∗]* and its dual, generalising work of J. H. Silverman for $p = 2$ ("Conjugation and excess in the Steenrod algebra", *Proc. Am. Math. Soc.* **119** (1993), no.2, 657 – 661; "Hit polynomials and conjugation in the dual Steenrod algebra", *Math. Proc. Camb. Philos. Soc.* **123** (1998), no.3, 531 – 547) to the case of an odd prime.

1. Introduction and statement of results

In this note we study the technique known as "stripping" applied to the mod *p* Steenrod algebra *A[∗]* , where *p* is an *odd* prime, and use the results obtained to prove certain conjugation formulas both in *A[∗]* and its dual. This generalises work of Judith Silverman carried out in [**S1**] and $\textbf{[S3]}$ for $p = 2$ to the case of an odd prime. More precisely, our results concern Steenrod operations which lie in the sub-Hopf algebra *P [∗]* of *A[∗]* which is generated by the reduced power operations $P(i)$, $i \geq 1$, in dimensions $|P(i)| = 2i(p-1)$. We use the convention $P(0) := 1$.

Of particular interest are the Steenrod operations in *P [∗]* which are of the form

*k−*1

$$
P[k; f] := P(p^{k-1}f) \cdot P(p^{k-2}f) \cdot \ldots \cdot P(pf) \cdot P(f)
$$

where $k \geq 1$ and $f \geq 0$. Note that P[1; *f*] is just P(*f*). Being a sub-Hopf algebra, \mathcal{P}^* inherits the canonical anti-automorphism χ of \mathcal{A}^* ; following notation introduced in [**WW**], we write $\hat{\theta}$ instead of $\chi(\theta)$. In particular, $\hat{P}(a) = \chi(P(a))$ and $\hat{P}[k; f] = \chi(P[k; f]).$

For $m \geqslant 0$ we define

$$
\gamma(m):=\sum_{i=0}^{m-1}p^i.
$$

Our first main result is an explicit conjugation formula for $P[k; f]$ in certain special cases. It generalises Thm. 3.1 in [**S1**] to odd primes:

Theorem 4.6 For all positive integers s, t and c with $1 \leq c \leq p$ the following conjugation *formula holds:*

$$
\hat{P}[s; c\gamma(t)] = (-1)^{stc} P[t; c\gamma(s)]
$$

The main result concerning conjugation in the dual *P[∗]* is a conjugation formula for certain elements $\mathcal{X}_I(k)$, which are defined in Section 5. This formula is the mod p analogue of

During the preparation of this article the author was supported by a "bourse post-doctorale Alfred Kastler" of the French Ministry of Foreign Affairs.

Received 11 October 1999; published on 24 January 2000.

¹⁹⁹¹ Mathematics Subject Classification: 55S10

Key words and phrases: stripping, conjugation, Steenrod algebra, antiautomorphism

c 2000, Dagmar M. Meyer. Permission to copy for private use granted.

Prop. 5.5 in [**S3**]. A special case states that modulo monomials of length strictly greater than *k* the operations $\hat{\xi}_i^{\gamma(k)}$ and $(-1)^{ik}\xi_k^{\gamma(i)}$ $\chi_k^{\gamma(i)}$ coincide up to a certain error term; the conjugate of the error term is a sum of monomials of length strictly greater than *i*:

Theorem 5.6 *Let* $i, k > 0$ *. Modulo monomials of length* $> k$ *we have*

$$
\hat{\xi}_i^{\gamma(k)} \equiv (-1)^{ik} \xi_k^{\gamma(i)} - \sum_{\mathrm{Id}_k \neq \tau \in \mathfrak{S}(k)} \mathrm{sign}(\tau) \prod_{j=0}^{k-1} \hat{\xi}_{i+\tau(j)-j}^{p^j}.
$$

Here $\mathfrak{S}(k)$ *denotes the symmetric group acting on* $\{0, 1, 2, \ldots, k-1\}$ *and* $\xi_r := 0$ *for* $r < 0$ *. In particular, if* $f < \gamma(k+1)$ *is a non-negative integer then*

$$
\hat{\xi}_k^{\gamma(i)} \cap P[i; f] = (-1)^{ik} \xi_i^{\gamma(k)} \cap P[i; f] = (-1)^{ik} P[i; f - \gamma(k)],
$$

where we use the notation $y \cap$ *for the stripping operation* $D(y)$ *.*

The ideas underlying the proofs of the results in this paper are similar to those of their mod 2 counterparts in [**S1**] and [**S3**]. However, getting down to the details we note two major differences that appear in the odd-primary case: first of all, in just about every formula we prove there are some signs involved, and secondly (in Section 4) we have to deal with mod *p* binomial coefficients which appear as non-trivial coefficients in our formulas. These difficulties cause the generalisation of the mod 2 results to be not quite as straightforward as it may seem at first glance.

Both Thm. 4.6 and Thm. 5.6 are essential ingredients for the work carried out in [**M**]. There the Steenrod operations $P[k; f]$ are studied further; in particular the excess of these operations is determined. In fact, that project was one of the main motivations for the work on the problems discussed in the present paper.

Acknowledgements: I would like to thank Judith Silverman for many helpful comments on the subject of this paper, in particular for supplying the elegant proof of Lemma 4.4 which is reproduced here. I also thank Ken Monks for pointing out to me the work of Ismet Karaca on related problems and for sending me copies of [**Ka2**], [**Ka3**].

2. Preliminaries

Let S denote the additive monoid of sequences of non-negative integers almost all of which are 0, with componentwise addition. We write 0_S for the trivial element. Throughout we shall use capital letters to denote sequences in *S* and small letters for their coordinates; e.g. $S =$ (s_1, s_2, \ldots) . If *S* has $s_i = 0$ for $i > L$, we write *S* as (s_1, s_2, \ldots, s_L) . The *degree* of an element $S \in \mathcal{S}$ is defined to be $|S| = \sum_{i \geq 1} s_i (p^i - 1)$, its length as $\text{len}(S) = \min\{i \geq 0 \mid s_j = 0 \ \forall j > i\},$ and its *excess* as $ex(S) = \sum_{i \geq 1} s_i$. It will be convenient to adjoin an extra element $*$ to *S* with the property that $* + x = x + * = *$ for all $x \in S \cup \{*\} = : S^*$. We also define sequences $B(j)$ for any $j \in \mathbb{Z}$: if $j \geq 0$ then $B(j)$ is the sequence with $b(j)_i := \delta_{ij}$, if $j < 0$ we set $B(j) := *$.

There are many interesting bases for *A[∗]* and hence for *P ∗* ; the most important and most commonly used are the basis of admissible monomials ("admissible basis") and the Milnor basis. Recall that the monomial $P(a_1) \cdot \ldots \cdot P(a_n)$ with $a_n > 0$ is *admissible* if $a_r \geq pa_{r+1}$ for all $1 \leq r \leq n$; we also define $P(0) = 1$ to be admissible. The admissible basis of \mathcal{P}^* can be parameterised in terms of the numbers $s_i = a_i - pa_{i+1}$; that is, given a sequence $S \in \mathcal{S}$ of length $n > 0$, we define the admissible element $E[S] := P(a_1) \cdot \ldots \cdot P(a_n)$ by setting $a_n = s_n$ and $a_i = pa_{i+1} + s_i$ for $1 \leq i \leq n-1$. We also set $E[0_{\mathcal{S}}] := P(0) = 1$. For example, if $S = (0, \ldots, 0, f)$ has length *k* then $E[S] = P(p^{k-1}f) \cdot \ldots \cdot P(f) = P[k; f]$.

For the Milnor basis of *P ∗* consider the dual Hopf algebra *P∗*. This is a polynomial algebra over \mathbb{F}_p on generators ξ_i ($i \geq 1$) in dimension $2(p^i-1)$; we use the convention $\xi_0 := 1$. For

 $S \in \mathcal{S}$ we write $\xi[S]$ for the monomial $\prod_{i\geqslant1}\xi_i^{s_i}$. In particular, $\xi[B_j] = \xi_j$ for any $j \geqslant 0$. The Milnor basis of \mathcal{P}^* itself is the basis dual to the basis of \mathcal{P}_* consisting of all the monomials *ξ*[*S*] with $S \in S$; the element dual to ξ [*S*] will be denoted by *M*[*S*].

We further set $M[*] = 0 = E[*]$ and $\xi[*] = 0$, and we adopt the convention that $M[S] =$ $0 = E[S]$ and $\xi[S] = 0$ if *S* is a finite sequence of integers which does *not* belong to *S*, i.e. with at least one negative entry. In particular, $\xi_i := 0$ if $i < 0$.

For any $S \in \mathcal{S}$ we define length and excess of the monomial $\xi[S]$ as len(*S*) and $2ex(S)$ respectively. Likewise, for the admissible and the Milnor basis we define

$$
\text{len}_E(E[S]) := \text{len}(S) =: \text{len}_M(M[S]),
$$

$$
\text{ex}_E(E[S]) := 2\text{ex}(S) =: \text{ex}_M(M[S]).
$$

More generally, suppose θ is any homogeneous element of \mathcal{P}^* with a basis representation given by $\theta = \sum_{i=1}^{n} \alpha_i B[S_i]$, where *B* stands for either *E* or *M*. Then we set

$$
\operatorname{len}_B(\theta) := \max_i \{\operatorname{len}_B(B[S_i])\} = \max_i \{\operatorname{len}(S_i)\}
$$

$$
\operatorname{ex}_B(\theta) := \min_i \{\operatorname{ex}_B(B[S_i])\} = 2 \min_i \{\operatorname{ex}(S_i)\}.
$$

The excess of any operation θ in \mathcal{P}^* can also be defined as $ex(\theta) := \min\{n | \theta(\iota_n) \neq \theta\}$ $0 \in H^*(K(\mathbb{Z}/p,n);\mathbb{F}_p)$, where $\iota_n \in H^*(K(\mathbb{Z}/p,n);\mathbb{F}_p)$ is the fundamental class. In fact, all the different definitions of excess that we have given coincide (cf. [**Kr**]); in particular $\operatorname{ex}_E(\theta) = \operatorname{ex}(\theta) = \operatorname{ex}_M(\theta).$

By [**Mi**], the change-of-basis matrix in each dimension between the admissible and the Milnor basis is upper triangular with diagonal entry ± 1 , if for both bases we use the order induced by the right-lexicographical order on *S*. From this it follows that for any $S \in \mathcal{S}$ we have $\text{len}_E(M[S]) = \text{len}_E(E[S]) = \text{len}(S)$ and $\text{len}_M(E[S]) = \text{len}_M(M[S]) = \text{len}(S)$, and one easily sees that this implies $\text{len}_M(\theta) = \text{len}_E(\theta)$ for any $\theta \in \mathcal{P}^*$. Henceforth we denote this common value simply by $len(\theta)$.

3. Stripping in *P ∗*

3.1. Recollections about the stripping technique

Much recent progress on problems related to the structure of the Steenrod algebra has been made by applying a tool that has become known as "stripping technique" (for a detailed account see [**W**]). This technique applies to any Hopf algebra, so in particular to the cocommutative, connected Hopf algebra *P ∗* .

Let Δ^* denote the diagonal map of \mathcal{P}^* and \langle , \rangle the inner product. We consider the natural action of the dual Hopf algebra \mathcal{P}_* on \mathcal{P}^* which is given for each $\xi \in \mathcal{P}_*$ by

$$
D(\xi): \mathcal{P}^* \; \xrightarrow{\; \; \Delta^* \; } \; \mathcal{P}^* \otimes \mathcal{P}^* \; \xrightarrow{\mathrm{id} \otimes \langle \xi, \, \rangle} \; \mathcal{P}^* \, ;
$$

this action satisfies

$$
\langle \xi \cdot \psi, \theta \rangle = \langle \psi, D(\xi) \theta \rangle \tag{1}
$$

for all $\psi \in \mathcal{P}_*, \theta \in \mathcal{P}^*$. The operation $D(\xi) : \mathcal{P}^* \longrightarrow \mathcal{P}^*$ is called "stripping by ξ " and can be considered as a kind of cap-product. For this reason the notation

$$
D(\xi)\theta =: \xi \cap \theta
$$

has become customary.

For the reader's convenience we now recall some important properties of the stripping operation (cf. [**S2**]):

Let Δ_{*} denote the product of \mathcal{P}_{*} and ϕ_{*} the comultiplication; the canonical anti-automorphism of \mathcal{P}_* will again be denoted by χ , with $\chi(y) = \hat{y}$. In what follows let $\phi_*(y) = \sum y' \otimes y''$ and $\Delta^*(\theta) =: \sum \theta' \otimes \theta''$. We write \mathcal{D} for the \mathbb{F}_p -vector space with basis $\{D(\xi[S]) | S \in \mathcal{S}\}.$

The maps
$$
\chi : \mathcal{P}_* \longrightarrow \mathcal{P}_*
$$
, $\Delta_* : \mathcal{P}_* \otimes \mathcal{P}_* \longrightarrow \mathcal{P}_*$ and $\phi_* : \mathcal{P}_* \longrightarrow \mathcal{P}_* \otimes \mathcal{P}_*$ induce maps
\n
$$
\chi : \mathcal{D} \longrightarrow \mathcal{D}, \quad D(y) \mapsto D(\hat{y})
$$
\n
$$
\Delta_* : \mathcal{D} \otimes \mathcal{D} \longrightarrow \mathcal{D}, \quad D(y_1) \otimes D(y_2) \mapsto D(y_1 \cdot y_2)
$$
\n
$$
\phi_* : \mathcal{D} \longrightarrow \mathcal{D} \otimes \mathcal{D}, \quad D(y) \mapsto \sum D(y') \otimes D(y'').
$$

Proposition 3.1. *The following formulas hold:*

1. $(y_1 + y_2) \cap \theta = y_1 \cap \theta + y_2 \cap \theta$ *2.* $(y_1 \cdot y_2) \cap \theta = (y_2 \cdot y_1) \cap \theta = y_1 \cap (y_2 \cap \theta) = y_2 \cap (y_1 \cap \theta)$ *3.* $y \cap (\theta_1 \cdot \theta_2) = \sum (y' \cap \theta_1) \cdot (y'' \cap \theta_2)$ $\hat{y} \cap (\theta_1 \cdot \theta_2) = \sum (\widehat{y''} \cap \theta_1) \cdot (\widehat{y'} \cap \theta_2)$ *5.* $\hat{y} \cap \hat{\theta} = \widehat{y \cap \theta}$

 \Box

3.2. Stripping in the Milnor basis and in the admissible basis

The effect of stripping by an element $y \in \mathcal{P}_*$ on a Milnor basis element can easily be described by writing *y* as a sum of basis elements $\xi[R]$. In fact, recall that the comultiplication ∆*[∗]* of *P ∗* is determined by the formula

$$
\Delta^*\big(M[S]\big) = \sum_{S'+S''=S} M[S] \otimes M[S'']
$$

([**Mi**]). From this and the definition of stripping one easily sees that

$$
\xi[R] \cap M[S] = M[S - R].
$$

In particular, stripping does not increase length.

Determining the effect of $D(\xi[R])$ on a given admissible monomial is more involved. More generally, let $P(a_1) \cdots P(a_n)$ be any (not necessarily admissible) monomial in P^* . For $n \geq k$, we define $V_{n,k}$ to be the set of all sequences (v_1, \ldots, v_n) in which the non-zero elements form exactly the subsequence $(p^{k-1}, \ldots, p, 1)$. For example, $\mathcal{V}_{3,2}$ consists of $(0, p, 1)$, $(p, 0, 1)$, and $(p, 1, 0)$. For $n < k$, we define $\mathcal{V}_{n,k} := \emptyset$.

Proposition 3.2. *With this notation*

$$
\xi_k \cap \big(P(a_1) \cdot \ldots \cdot P(a_n) \big) = \sum_{V \in \mathcal{V}_{n,k}} P(a_1 - v_1) \cdot \ldots \cdot P(a_n - v_n).
$$

Proof. The proof is analogous to that of Prop. 3.1 in [**S3**]. Alternatively, see [**CWW**, Section 2]. \Box

We note the following consequences:

- **Corollary 3.3.** *1. If* $\theta \in \mathcal{P}^*$ *has length n, then* $\xi[S] \cap \theta = 0$ *for any* $S \in \mathcal{S}$ *of length greater than n*; *in particular* $\xi_k \cap \theta = 0$ *for any* $k > n$.
	- 2. If $P(a_1) \cdot \ldots \cdot P(a_k)$ *is admissible of excess 2e, then*

$$
\xi_k \cap (P(a_1) \cdot \ldots \cdot P(a_k)) = P(a_1 - p^{k-1}) \cdot P(a_2 - p^{k-2}) \cdot \ldots \cdot P(a_k - 1),
$$

which is again admissible and has excess $2e - 2$ *. Consequently, if* $R = (r_1, \ldots, r_k) \in S$ *,* $then \xi_k \cap E[R] = E[(r_1, \ldots, r_{k-1}, r_k - 1)].$

3. In particular,

$$
\xi_k \cap P[k; f] = P[k; f - 1] \quad and \quad \hat{\xi}_k \cap \hat{P}[k; f] = \hat{P}[k; f - 1],
$$

Homology, Homotopy and Applications, vol. 2, No. 1, 2000 5

where the second equation follows from Prop. 3.1(5).

 \Box

The next thing we determine is the action of $D(\xi[R])$ on a given element $\theta \in \mathcal{P}^*$. By [**Mi**], conjugation in \mathcal{P}_* is determined by

$$
\hat{\xi}_k = \sum_{\alpha \in \text{Part}(k)} (-1)^{l(\alpha)} \prod_{i=1}^{l(\alpha)} \xi_{\alpha_i}^{p^{\sigma_i(\alpha)}}
$$
(2)

where α runs through all ordered partitions $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_{l(\alpha)})$ of *k*, $l(\alpha)$ is the length of the partition α , and $\sigma_i(\alpha)$ is the partial sum $\sum_{j=1}^{i-1} \alpha_j$.

Consequences 3.4. *1. The excess of* $\xi_k = \xi[B_k]$ *is 2 for any k, so the summand with the largest excess in formula (2) is the monomial corresponding to the partition* α *of length* $l(\alpha) = k$ *with* $\alpha_i = 1$ *for* $1 \leq i \leq k$ *, i.e. the summand*

$$
(-1)^k \prod_{i=1}^k \xi_1^{p^{i-1}} = (-1)^k \xi_1^{\gamma(k)}
$$

which has excess $2\gamma(k)$ *. Hence stripping by* $\hat{\xi}_k$ *reduces excess by no more than* $2\gamma(k)$ *. 2. Since* $\xi_l \cap P(f) = 0$ *for all* $l > 1$ *, we have*

$$
\hat{\xi}_k \cap P(f) = (-1)^k \xi_1^{\gamma(k)} \cap P(f)
$$

=
$$
\begin{cases} (-1)^k P(f - \gamma(k)) & \text{if } f \ge \gamma(k) \\ 0 & \text{otherwise.} \end{cases}
$$

3.3. Stripping P[Λ ; *f*] **by** $\hat{\xi}_k^j$
We will be mostly concerned with the special Steenrod operations P[Λ ; *f*]. Therefore we take a closer look at the action of the stripping operations $D(\hat{\xi}_k^j)$ on these elements.

Lemma 3.5. For any θ in \mathcal{P}^* we have

$$
\hat{\xi}_k \cap \left(P[2; f] \cdot \theta \right) = P(pf) \cdot \left(\hat{\xi}_k \cap \left(P(f) \cdot \theta \right) \right).
$$

Proof. The proof is analogous to the proof of Lemma 4.4 in [**S2**]: recall that the comultiplication in \mathcal{P}_* is given by

$$
\phi_*(\xi_k) = \sum_{j=0}^k \xi_{k-j}^{p^j} \otimes \xi_j \tag{3}
$$

.

([**Mi**]). Hence by Prop. 3.1(3) we obtain

$$
\hat{\xi}_k \cap (\mathbf{P}[2; f] \cdot \theta) = \mathbf{P}(pf) \cdot (\hat{\xi}_k \cap (\mathbf{P}(f) \cdot \theta)) + \sum_{j=1}^k (\hat{\xi}_j \cap \mathbf{P}(pf)) \cdot (\hat{\xi}_{k-j}^{p^j} \cap (\mathbf{P}(f) \cdot \theta))
$$

Cons. 3.4(2) implies that $\hat{\xi}_j \cap P(pf) = -\hat{\xi}_{j-1}^p \cap P(pf-1)$, thus

$$
\sum_{j=1}^{k} (\hat{\xi}_j \cap P(pf)) \cdot (\hat{\xi}_{k-j}^{p^j} \cap (P(f) \cdot \theta))
$$

=
$$
-\sum_{j=1}^{k} (\hat{\xi}_{j-1}^{p} \cap P(pf - 1)) \cdot ((\hat{\xi}_{(k-1)-(j-1)}^{p^{j-1}})^{p^{j-1}} \cap (P(f) \cdot \theta))
$$

=
$$
-\hat{\xi}_{k-1}^{p} \cap (P(pf - 1) \cdot P(f) \cdot \theta).
$$

But by the Adem relations $P(pf - 1) \cdot P(f) = 0$, which proves the claim. \Box

The following more general result is now easily proved by induction on Λ , the case $\Lambda = 2$ being given by Lemma 3.5:

Proposition 3.6. *For* $\Lambda \geq 2$ *and any* θ *in* \mathcal{P}^* *we have*

$$
\hat{\xi}_k \cap \left(P[\Lambda; f] \cdot \theta \right) = P[\Lambda - 1; pf] \cdot \left(\hat{\xi}_k \cap (P(f) \cdot \theta) \right).
$$

Finally, we investigate what happens if we strip $P[\Lambda; f]$ by $\hat{\xi}_k$ a total of *j* times. We note that only the right-most *j* places are affected:

Proposition 3.7. *Suppose* $\Lambda > j \geqslant 1$ *. Then*

$$
\hat{\xi}^j_k \cap P[\Lambda; f] = P[\Lambda - j; p^j f] \cdot (\hat{\xi}^j_k \cap P[j; f]).
$$

Proof. The proof is by induction on *j*, starting with $j = 1$ where the result is provided by Prop. 3.6. \Box

4. Conjugation formulas for *P ∗*

In this section we establish some useful formulas involving conjugation of elements in *P ∗* . In particular, we determine the simple formula for $\overline{P}[s; c\gamma(t)]$ with $1 \leqslant c \leqslant p$ that was announced in the introduction.

Suppose that *y* is a non-negative integer. We use the notation $\alpha_i(y)$ for the coefficient of p^i in the *p*-adic expansion of *y*, i.e. $y =: \sum_{i \geq 0} \alpha_i(y) p^i$.

The following lemma will be needed for the proof of Prop. 4.3.

Lemma 4.1. *Suppose that k, l, c, m and e are non-negative integers with*

- *1.* $k > l$, *2.* $1 \leq c \leq p-1$ *,*
- *3.* $m < p^{k-1}$,
- *4.* $m \equiv 0 \mod p^l$.

Then the following relation mod p holds:

$$
\begin{pmatrix} c(p^k - p^l) + e \\ pm \end{pmatrix} \equiv -\sum_{i=1}^c \binom{c}{i} \binom{c(p^k - p^l) + e}{pm + ip^l} + \binom{e}{pm + cp^l} \tag{4}
$$

Proof. The proof relies on the fact that mod *p* we have the relation $\binom{x}{y} \equiv \prod$ *i*>0 $\binom{\alpha_i(x)}{\alpha_i(y)}$. There are three cases: (I) $\alpha_l(e) = c$, (II) $0 \leq \alpha_l(e) \leq c - 1$, and (III) $c + 1 \leq \alpha_l(e) \leq p - 1$. If we are in case (I) then the first term on the right of (4) is 0 and

$$
\begin{pmatrix} c(p^k - p^l) + e \\ pm \end{pmatrix} \equiv \begin{pmatrix} e \\ pm + cp^l \end{pmatrix}
$$

as required.

If we are in case (II) then the second term on the right of (4) is zero and so we have to show that

$$
\begin{pmatrix} c(p^k - p^l) + e \ p m \end{pmatrix} \equiv - \sum_{i=1}^c \binom{c}{i} \begin{pmatrix} c(p^k - p^l) + e \ p m + i p^l \end{pmatrix},
$$

i.e. that

$$
1 \equiv -\sum_{i=1}^{c} {c \choose i} {p - c + \alpha_l(e) \choose i}
$$

for $0 \leq \alpha_l(e) \leq c-1$. Setting $a := p - c + \alpha_l(e)$ this amounts to showing that

$$
\sum_{i=0}^c \binom{c}{i} \binom{a}{i} \equiv 0
$$

for all $p - c \leq a \leq p - 1$. In order to show this equivalence, note that

$$
\sum_{i=0}^{c} {c \choose i} {a \choose i} \equiv \sum_{i=0}^{c} {c \choose i} {a \choose a-i} \equiv {c+a \choose c} \tag{5}
$$

as one sees by considering the coefficient of x^c in the binomial expansion of $(x + 1)^{c+a}$ $(x+1)^c(x+1)^a$. Now the claim follows since $\binom{c+a}{c} \equiv 0$ for $p-c \leqslant a \leqslant p-1$. Case (III) is similar. \Box

We will need the following multiplication formulas:

Lemma 4.2. *Let u and v be non-negative integers. Then*

$$
P(u) \cdot \hat{P}(v) = (-1)^{v} \sum_{R} \binom{|R| + \text{ex}(R)}{pu} M[R]
$$
\n
$$
(6)
$$

and

$$
\hat{\mathbf{P}}(u) \cdot \mathbf{P}(v) = (-1)^u \sum_{R} \begin{pmatrix} \text{ex}(R) \\ v \end{pmatrix}_p M[R] \tag{7}
$$

where the sum ranges over all sequences R *in* S *with* $|R| = (p-1)(u+v)$ *and* $\binom{1}{p}$ *denotes mod p binomial coefficients.*

Proof. The proof of (6) can be found in $[G]$. The other equality, (7), can be extracted from $[\textbf{Ka1}]$.

Remark. In [**Ka1**], our Lemma 4.2 is stated (wrongly) without any minus signs. Unfortunately, Karaca does not explicitly say what his definition of $\hat{P}(u)$ is. Instead, for the special Milnor basis elements $M[(0, \ldots, 0, r_t = p^s)] =: P_t^s$ he defines $\overline{P_t^s}$ as $(-1)^s \chi(P_t^s)$. Since there exists a basis of \mathcal{P}^* which consists of certain monomials in elements of the form P_t^s , it is possible to figure out what the expression $\hat{P}(u)$ should mean according to Karaca's definition, assuming that $\widehat{P}_t^s \cdot \widehat{P}_u^v := \widehat{P}_u^s \cdot \widehat{P}_t^s$. However, doing this translation one easily sees that there should be some non-trivial coefficients in his formula. The correct result can nevertheless easily be deduced from the argument given in [**Ka1**].

After these preparations we are in a position to prove the following "hat-passing formula", which is a slightly generalised odd prime version of the formula given in [**S1**, Lemma 2.3]:

Proposition 4.3. *Suppose that k, l, c, m and n are non-negative integers with*

1. $k > l$, *2.* $1 \leq c \leq p-1$, *3.* $m + n = cp^{l}\gamma(k - l)$, *4. m < p^k−*¹ *, 5.* $m \equiv 0 \mod p^l$.

We use the convention $\hat{P}(s) := 0$ *if* $s < 0$ *. Then for* $l = 0$ *we have*

$$
P(m) \cdot \hat{P}(n) = (-1)^{c} \hat{P}(m+n-pm-c) \cdot P(pm+c)
$$

and for l > 0 *we have*

$$
P(m) \cdot \hat{P}(n) = \sum_{i=1}^{c} (-1)^{i+1} {c \choose i}_p P(m + ip^{l-1}) \cdot \hat{P}(n - ip^{l-1}) + (-1)^{c} \hat{P}(m + n - pm - cp^{l}) \cdot P(pm + cp^{l}).
$$

Proof. In order to see that for $l = 0$ only one term in the expression for $P(m) \cdot \hat{P}(n)$ appears, note that $|R| = (p-1)c\gamma(k) = c(p^k - 1)$, so that by applying Equation (6) in Lemma 4.2 we obtain

$$
P(m) \cdot \hat{P}(n) = (-1)^n \sum_{|R| = c(p^k - 1)} \binom{c(p^k - 1) + \text{ex}(R)}{pm} M[R].
$$

Now recall that $ex(R) = \sum$ *i*>1 *r*_{*i*}. Dividing $|R|$ by $(p-1)$ and substituting $ex(R) - \sum$ *i*>2 *rⁱ* for *r*¹ we have

$$
c\gamma(k) = \frac{|R|}{p-1} = \sum_{i \geq 1} r_i \gamma(i) = \exp(R) + \sum_{i \geq 2} r_i p \gamma(i-1).
$$

Thus we see that $ex(R) \equiv c \mod p$. Now we apply Lemma 4.1 with $e = ex(R)$; we have just seen that we are always in case (I) so that

$$
\begin{pmatrix} c(p^k - 1) + \operatorname{ex}(R) \\ pm \end{pmatrix} \equiv \begin{pmatrix} \operatorname{ex}(R) \\ pm + c \end{pmatrix}
$$

.

Equation (7) in Lemma 4.2 now implies that

$$
P(m) \cdot \hat{P}(n) = (-1)^n \sum_{|R| = c(p^k - 1)} {c(p^k - 1) + ex(R) \choose pm} M[R]
$$

= $(-1)^c (-1)^{m+n-pm-c} \sum_{|R| = c(p^k - 1)} {ex(R) \choose pm + c} M[R]$
= $(-1)^c \hat{P}(m + n - pm - c) \cdot P(pm + c).$

The formula for $l > 0$ easily follows from Lemma 4.1, carefully keeping track of any minus signs that enter into the formula. \Box

In order to arrive at the simple description of $\hat{P}[s; c\gamma(t)]$ that will be obtained in Theorem 4.6 we need yet another lemma. The elegant proof given here, due to Judith Silverman, is a nice application of the "stripping technique" discussed in Section 3 and replaces the original, more complicated proof which didn't use stripping at all.

Lemma 4.4. *Let c and l be positive integers with* $1 \leqslant c \leqslant p-1$ *. Then* $P(c\gamma(l)) \cdot P(a p^{l-1}) = 0$ *for any a which satisfies* $p - c \leq \alpha_0(a) \leq p - 1$.

Proof. The lemma is proved by downward induction on *c*. We start with the case $c = p - 1$ so that $1 \leq \alpha_0(a) \leq p-1$. Then by the Adem relations we have

$$
P(pl - 1) \cdot P(apl-1)
$$

=
$$
\sum_{z=0}^{pl-1} (-1)^{pl - 1 + z} {pl-1 - 2 \choose pl-1 - pz} P(pl - 1 + apl-1 - z) \cdot P(z).
$$

We show that the mod *p* binomial coefficients appearing in this formula are all 0. First consider the case $z = 0$: since $1 \leq a_0(a) \leq p-1$ we have $0 \leq a_{l-1}((p-1)ap^{l-1}-1) \leq p-2$, but $\alpha_{l-1}(p^l-1) = p-1$ and so $\binom{(p-1)ap^{l-1}-1}{p^l-1} \equiv 0$. On the other hand, if $z \neq 0$ then there exists some index j_0 with $0 \leq j_0 \leq l-2$ such that $1 \leq z_{j_0} \leq p-1$ but $z_j = 0$ for all $0 \leq j < j_0$. Hence $1 \leq \alpha_{j_0}((p-1)z) = p - z_{j_0} \leq p-1$ and so $0 \leq \alpha_{j_0}((p-1)(ap^{l-1}-z)-1) \leq p-2$. But $\alpha_{j_0}(p^l-1-pz)=p-1$ and so again $\binom{(p-1)(ap^{l-1}-z)-1}{p^l-1-pz}\equiv 0.$

Now let $1 \leqslant c < p-1$ and suppose that the lemma has been shown to be true for all \hat{c} with $c < \hat{c} \leq p-1$. Choose *a* with $p-c \leq \alpha_0(a) \leq p-1$ (which implies $p-(c+1) \leq \alpha_0(a-1) \leq p-1$ and $p - (c + 1) \le \alpha_0(a) \le p - 1$. The lemma for $c + 1$ guarantees that

$$
P((c+1)\gamma(l)) \cdot P(ap^{l-1}) = 0 \tag{8}
$$

and

$$
P((c+1)\gamma(l)) \cdot P((a-1)p^{l-1}) = 0.
$$
 (9)

Using Equation (3), Prop. 3.1(4) and Cons. 3.4(2) we strip Equation (8) by $\hat{\zeta}_l$ to obtain

$$
0 = \hat{\xi}_l \cap [P((c+1)\gamma(l)) \cdot P(ap^{l-1})]
$$

= $[\hat{\xi}_l \cap P((c+1)\gamma(l))] \cdot P(ap^{l-1})$
+ $\sum_{i=0}^{l-1} [\hat{\xi}_i \cap P((c+1)\gamma(l))] \cdot [\hat{\xi}_{l-i}^{p^i} \cap P(ap^{l-1})]$
= $(-1)^l P(c\gamma(l)) \cdot P(ap^{l-1}) + E,$ (10)

where *E* is defined to be the big sum in (10). It remains to show that $E = 0$. We fix *i* with $1 \leq i \leq l-1$ and observe that for any $b \geq 0$ we have

$$
\hat{\xi}_{l-i}^{p^i} \cap P(b) = (-1)^{l-i} P(b - p^i \gamma(l-i)) = -\hat{\xi}_{l-i-1}^{p^i} \cap P(b - p^{l-1}).
$$

Setting $b = ap^{l-1}$, we find that *E* can be rewritten as

$$
E = -\sum_{i=0}^{l-1} \left[\hat{\xi}_i \cap P((c+1)\gamma(l)) \right] \cdot \left[\hat{\xi}_l^{p^i} - 1 \cap P((a-1)p^{l-1}) \right]
$$

= $-\hat{\xi}_{l-1} \cap \left[P((c+1)\gamma(l)) \cdot P((a-1)p^{l-1}) \right].$ (11)

But by (9), the product in (11) is 0. Consequently $E = 0$ as desired. \Box

The next lemma establishes the basis of induction for Theorem 4.6.

Lemma 4.5. *Let c be an integer with* $1 \leq c \leq p-1$ *. Then*

$$
\hat{P}(c\gamma(s)) = (-1)^{sc} P[s;c].
$$

Proof. The case $s = 1$ is clear: by [Mi] we have

$$
\hat{P}(c) = (-1)^c \sum_{|Q| = c(p-1)} M[Q] = (-1)^c P(c),
$$

and in general

$$
\hat{P}(c\gamma(s)) = (-1)^{c\gamma(s)} \sum_{|Q| = c(p^s - 1)} M[Q].
$$
\n(12)

By induction and Equation (6) we obtain

$$
(-1)^{sc}P[s;c] = (-1)^{sc}P(p^{s-1}c) \cdot P[s-1;c]
$$

= $(-1)^{c}P(p^{s-1}c) \cdot \hat{P}(c\gamma(s-1))$
= $(-1)^{c\gamma(s)} \sum_{|R|=c(p^s-1)} { |R| + \exp(R) \choose cp^s} M[R],$

so that by (12) it only remains to show that $\binom{|R|+\exp(R)}{cp^s} \equiv 1$ for all *R* with $|R| = c(p^s - 1)$. It follows directly from the definitions that $0 \leqslant \exp(R) \leqslant \frac{|R|}{p-1} = c\gamma(s)$. On the other hand it is easy to see that the sequence $(0, \dots, 0, r_s = c)$ is of excess *c* and that this is the minimal excess of any sequence in *S* of degree $c(p^s-1)$. The inequality $c \leqslant \text{ex}(R) \leqslant c\gamma(s)$ now implies that

$$
cp^{s} \leq |R| + \operatorname{ex}(R) \leq cp\gamma(s) = cp^{s} + cp^{s-1} + \dots + cp
$$

so that indeed $\binom{|R| + \operatorname{ex}(R)}{cp^{s}} \equiv 1$ for all R with $|R| = c(p^{s} - 1)$.

Finally we can prove the conjugation formula announced earlier on, which is a slightly generalised mod *p* version of [**S1**, Theorem 3.1]. The proof is similar to the one in the mod 2 case.

Theorem 4.6. For all positive integers *s*, *t* and *c* with $1 \leq c \leq p$ the following conjugation *formula holds:*

$$
\hat{P}[s; c\gamma(t)] = (-1)^{stc} P[t; c\gamma(s)]
$$

Proof. We first prove the theorem for $1 \leq c \leq p-1$. The case $c = p$ will follow from the case $c = 1$ by a stripping argument.

The proof for $1 \leqslant c \leqslant p-1$ is by induction on *t*. The basis of induction (i.e. the case $t=1$ or equivalently $s = 1$) has been established in Lemma 4.5. So let us assume that $t > 1$, $s > 1$ and that the theorem has been shown to be true for all $1 \leq \hat{t} \leq t-1$, all *s* and also for $\hat{t} = t$, all $1 \leqslant \hat{s} \leqslant s - 1$. We begin with the following remark:

Remark. *Under the above assumptions the following is true:*

For all non-negative integers a with $p - c \leq \alpha_0(a) \leq p - 1$ *and for all* $1 \leq l \leq s$ *we have*

$$
\hat{P}(ap^{l-1}) \cdot P[l; c\gamma(t)] = 0.
$$

We prove this result as follows: we have

$$
\hat{P}(ap^{l-1}) \cdot P[l; c\gamma(t)] = \chi[\hat{P}[l; c\gamma(t)] \cdot P(ap^{l-1})],
$$

which by induction equals

$$
(-1)^{tlc}\chi\big[\mathbf{P}[t;c\gamma(l)]\cdot\mathbf{P}(ap^{l-1})\big] = (-1)^{tlc}\chi\big[\mathbf{P}[t-1;pc\gamma(l))\big]\cdot\mathbf{P}(c\gamma(l))\cdot\mathbf{P}(ap^{l-1})\big].
$$

But by Lemma 4.4 the expression $P(c\gamma(l)) \cdot P(ap^{l-1})$ vanishes. This proves the remark.

Now we get back to the proof of the theorem: by induction we obtain

$$
\hat{P}[t; c\gamma(s)] = \chi(P[t-1; c\gamma(s)]) \cdot \chi(P(p^{t-1}c\gamma(s))) \n= (-1)^{(t-1)sc} P[s; c\gamma(t-1)] \cdot \hat{P}(p^{t-1}c\gamma(s)).
$$
\n(13)

We claim that for $1 \leq d \leq s$ the following formula holds:

$$
P[d; c\gamma(t-1)] \cdot \hat{P}(p^{t-1}c\gamma(s)) = (-1)^{dc}\hat{P}(p^{t+d-1}c\gamma(s-d)) \cdot P[d; c\gamma(t)]
$$

Proof of the claim: for $d = 1$ we have to show that

$$
P(c\gamma(t-1)) \cdot \hat{P}(p^{t-1}c\gamma(s)) = (-1)^{c}\hat{P}(p^{t}c\gamma(s-1)) \cdot P(c\gamma(t)).
$$

This follows immediately from Prop. 4.3 with $m = c\gamma(t-1)$, $n = p^{t-1}c\gamma(s)$, $k = t + s - 1$ and *l* = 0. So suppose that $2 \le d \le s$, assuming that the claim has been proved for all $1 \le d \le d$. Then using induction we obtain

$$
P[d; c\gamma(t-1)] \cdot \hat{P}(p^{t-1}c\gamma(s))
$$

= $P(p^{d-1}c\gamma(t-1)) \cdot P[d-1; c\gamma(t-1)] \cdot \hat{P}(p^{t-1}c\gamma(s))$
= $(-1)^{(d-1)c}P(p^{d-1}c\gamma(t-1)) \cdot \hat{P}(p^{t+d-2}c\gamma(s-d+1)) \cdot P[d-1; c\gamma(t)].$

Again, we apply Prop. 4.3, this time to the first two terms, with the parameters $m = p^{d-1}c\gamma(t -$ 1), $n = p^{t+d-2}c\gamma(s-d+1)$, $k = t+s-1$ and $l = d-1$. We deduce that

$$
P(p^{d-1}c\gamma(t-1)) \cdot \hat{P}(p^{t+d-2}c\gamma(s-d+1))
$$

=
$$
\sum_{i=1}^{c} (-1)^{i+1} {c \choose i}_p P(p^{d-1}c\gamma(t-1) + ip^{d-2}) \cdot \hat{P}((p^{t+d-2}c\gamma(s-d+1) - ip^{d-2})
$$

+
$$
+ (-1)^{c}\hat{P}(p^{t+d-1}c\gamma(s-d)) \cdot P(p^{d-1}c\gamma(t)).
$$

By the remark, the terms in the big sum vanish upon multiplication with $P[d-1; c\gamma(t)]$ from the right, and so we arrive at

$$
P[d; c\gamma(t-1)] \cdot \hat{P}(p^{t-1}c\gamma(s))
$$

= $(-1)^{dc}\hat{P}(p^{t+d-1}c\gamma(s-d)) \cdot P(p^{d-1}c\gamma(t)) \cdot P[d-1; c\gamma(t)]$
= $(-1)^{dc}\hat{P}(p^{t+d-1}c\gamma(s-d)) \cdot P[d; c\gamma(t)]$

which proves the claim.

Setting $d = s$ and substituting back into expression (13) yields

$$
\hat{P}[t;c\gamma(s)] = (-1)^{(t-1)sc} P[s;c\gamma(t-1)] \cdot \hat{P}(p^{t-1}c\gamma(s))
$$

=
$$
(-1)^{tsc} P[s;c\gamma(t)]
$$

which finishes the proof of the theorem for $1 \leq c \leq p-1$.

There remains the case $c = p$. We strip the formula

$$
\hat{P}[s; \gamma(t+1)] = (-1)^{s(t+1)} P[t+1; \gamma(s)]
$$

(this is the case $c = 1$ with $t + 1$ instead of *t*) by $\hat{\xi}_s$, and by Cor. 3.3(3) we obtain

$$
\hat{P}[s; p\gamma(t)] = \hat{\xi}_s \cap \hat{P}[s; \gamma(t+1)]
$$

$$
= (-1)^{s(t+1)} \hat{\xi}_s \cap P[t+1; \gamma(s)]
$$

which by Cons. $3.4(2)$ and Prop. 3.6 equals

$$
(-1)^{s(t+1)}P[t; p\gamma(s)] \cdot (\hat{\xi}_s \cap P(\gamma(s))) = (-1)^{s(t+1)}P[t; p\gamma(s)] \cdot (-1)^s P(0)
$$

=
$$
(-1)^{st}P[t; p\gamma(s)].
$$

This completes the proof of the theorem. **□**

We observe the following:

Corollary 4.7. Let *s*, *t* and *c* be non-negative integers with $s \geq 1$ and $1 \leq c \leq p$. Then *the operations* $\hat{P}[s; c\gamma(t)]$ *have length exactly t independently of s and c. More generally, if* $\gamma(t) \leq f \leq \gamma(t+1)$ *then the operations* $\hat{P}[s; f]$ *are all of length exactly t, independently of s.*

Proof. For $t \geq 1$ the first statement is an immediate consequence of Theorem 4.6; for $t = 0$ the statement is trivial. The second statement follows since stripping operations cannot increase length (cf. Section 3.2). \Box

5. Conjugation formulas for *P[∗]*

We now turn to conjugation in the dual Steenrod algebra. Let $\mathfrak{S}(k)$ be the symmetric group with identity Id_k acting on $\{0, 1, 2, \ldots, k-1\}$. For $\tau \in \mathfrak{S}(k)$ and $i \geq 0$ we define

$$
Z_i(k; \tau) := \sum_{j=0}^{k-1} p^j B(i + \tau(j) - j),
$$

$$
X_i(k; \tau) := \xi[Z_i(k; \tau)] = \prod_{j=0}^{k-1} \xi_{i+\tau(j)-j}^{p^j},
$$

and

$$
\mathcal{X}_i(k) := \sum_{\tau \in \mathfrak{S}(k)} \operatorname{sign}(\tau) \, X_i(k; \tau) \, .
$$

Observation 5.1. $Z_i(k; \text{Id}_k) = \gamma(k)B(i)$ and $X_i(k; \text{Id}_k) = \xi_i^{\gamma(k)}$.

We will need the following lemma:

Lemma 5.2. *For* $k \ge 1$ *we have* $\mathcal{X}_1(k) = (-1)^k \hat{\xi}_k$ *.*

Proof. The proof is by induction on *k*. Let $k = 1$, then $\mathcal{X}_1(1) = \xi_1 = -\hat{\xi}_1$, so the assertion is true in this case. Now suppose the statement has been shown to be true for all $1 \leq k \leq k$. Note that if $X_1(k; \tau) \neq 0$ then necessarily $\tau(j) \geq j-1$ for all *j*. So if $X_1(k; \tau) \neq 0$ then define *l* by $l = \tau^{-1}k - 1$. If $l = k - 1$ then we obtain a cycle decomposition of τ as $(k - 1)\sigma$ for some $\sigma \in \mathfrak{S}(k-1)$. If $l \neq k-1$ then we obtain $\tau(k-1) = k-2, \tau(k-2) = k-3, \ldots, \tau(l+1) = l$. so that τ has a cycle decomposition as $(k-1, k-2, \ldots, l)\sigma$ for some $\sigma \in \mathfrak{S}(l)$. In any case we have

$$
X_1(k;\tau) = X_1(l;\sigma) \cdot \xi_{k-l}^{p^l}.
$$

So for $0 \leq l \leq k-1$ let $\mathfrak{S}_l(k) = \{ \tau \in \mathfrak{S}(k) | \tau(l) = k-1 \}$; obviously $\mathfrak{S}(k) = \bigcup \mathfrak{S}_l(k)$. Then by induction

$$
\mathcal{X}_1(k) = \sum_{l=0}^{k-1} \sum_{\tau \in \mathfrak{S}_l(k)} \operatorname{sign}(\tau) \, X_1(k; \tau)
$$

=
$$
\sum_{l=0}^{k-1} \xi_{k-l}^{p^l} \cdot \sum_{\sigma \in \mathfrak{S}(l)} (-1)^{k-1-l} \operatorname{sign}(\sigma) \, X_1(l; \sigma)
$$

=
$$
(-1)^{k-1} \sum_{l=0}^{k-1} \xi_{k-l}^{p^l} \cdot \hat{\xi}_l = (-1)^k \hat{\xi}_k ,
$$

where in the last line we used Milnor's recursive formula for the anti-automorphism. \Box

In analogy to [**S3**] we make the following more general definitions:

Definition 5.3. *For* $k \ge 1$ *, let* $\mathcal{I}(k)$ *be the set of non-decreasing sequences* $(i_0, i_1, \ldots, i_{k-1})$ *of positive integers. For* $\tau \in \mathfrak{S}(k)$ *and* $I \in \mathcal{I}(k)$ *we define*

$$
Z_I(k; \tau) := \sum_{j=0}^{k-1} p^j B(i_{\tau(j)} + \tau(j) - j),
$$

$$
X_I(k; \tau) := \xi[Z_I(k; \tau)] = \prod_{j=0}^{k-1} \xi_{i_{\tau(j)} + \tau(j) - j}^{p^j},
$$

and

$$
\mathcal{X}_I(k) := \sum_{\tau \in \mathfrak{S}(k)} \operatorname{sign}(\tau) \, X_I(k; \tau) \, .
$$

We further define

$$
P_I(k; \tau) := \sum_{j=0}^{k-1} p^{j+i_0} B(i_{\tau(j)} + \tau(j) - (j + i_0)),
$$

\n
$$
R_I(k; \tau) := \xi [P_I(k; \tau)] = \prod_{j=0}^{k-1} \xi_{i_{\tau(j)} + \tau(j) - (j + i_0)}^{p^{j+i_0}},
$$

and

$$
\mathcal{R}_I(k) := \sum_{\tau \in \mathfrak{S}(k)} \operatorname{sign}(\tau) R_I(k; \tau).
$$

Observations 5.4. *1.* If $I = (i, i, \ldots, i) \in \mathcal{I}(k)$ is a constant sequence then we obtain $Z_I(k;\tau) = Z_i(k;\tau)$ and consequently $X_I(k;\tau) = X_i(k;\tau)$. Moreover, for such a sequence *I* and $\tau \neq \mathrm{Id}_k$ *we have* $P_I(k; \tau) = *$ *and consequently* $\mathcal{R}_I(k) = R_I(k; \mathrm{Id}_k) = 1$ *.*

2. If $I = (i_0, i_1, \ldots, i_{k-1}) \in \mathcal{I}(k)$ and $i_0 > 1$ let $I[-1]$ denote the sequence $(i_0 - 1, i_1 \mathcal{I}(k, \ldots, i_{k-1} - 1) \in \mathcal{I}(k)$. Then $\mathcal{R}_I(k) = (\mathcal{R}_{I[-1]}(k))^p$.

Theorem 5.5. Let $k \geq 1$. Then $\hat{\mathcal{X}}_I(k) \equiv (-1)^{i_0 k} \xi_k^{\gamma(i_0)} \cdot \hat{\mathcal{R}}_I(k)$ modulo monomials of length *> k.*

Proof. First recall that we have the following expression for $\hat{\mathcal{X}}_I(k)$:

$$
\hat{\mathcal{X}}_I(k) = \sum_{\rho \in \mathfrak{S}(k)} \text{sign}(\rho) \prod_{j=0}^{k-1} \hat{\xi}_{i_{\rho(j)} + \rho(j) - j}^{p^j}
$$

$$
= \sum_{\rho \in \mathfrak{S}(k)} \text{sign}(\rho) \hat{\xi}_{i_{\rho(0)} + \rho(0)} \cdot \prod_{j=1}^{k-1} \hat{\xi}_{i_{\rho(j)} + \rho(j) - j}^{p^j}
$$

.

Applying Milnor's recursive formula for the anti-automorphism we obtain

$$
-\hat{\xi}_{i_{\rho(0)}+\rho(0)} \equiv \sum_{n=1}^{k} \xi_n \cdot \hat{\xi}_{i_{\rho(0)}+\rho(0)-n}^{p^n}
$$

modulo monomials of length $> k$. So we have

$$
\hat{\mathcal{X}}_I(k) \equiv -\sum_{n=1}^k \sum_{\rho \in \mathfrak{S}(k)} sign(\rho) \xi_n \cdot \hat{\xi}_{i_{\rho(0)} + \rho(0)-n}^{p^n} \cdot \prod_{j=1}^{k-1} \hat{\xi}_{i_{\rho(j)} + \rho(j)-j}^{p^j}.
$$

For each $\rho \in \mathfrak{S}(k)$ we define ρ' by

$$
\rho'(l) = \begin{cases} \rho(0) & \text{if } l = k - 1 \\ \rho(l+1) & \text{if } 0 \leq l \leq k - 2. \end{cases}
$$

Note that $sign(\rho) = (-1)^{k-1} sign(\rho')$. So

$$
\hat{\mathcal{X}}_I(k) \equiv (-1)^k \sum_{n=1}^k \sum_{\rho' \in \mathfrak{S}(k)} sign(\rho') \xi_n \cdot \hat{\xi}_{i_{\rho'(k-1)} + \rho'(k-1)-n}^{p^n} \cdot \prod_{l=0}^{k-2} \hat{\xi}_{i_{\rho'(l)} + \rho'(l)-(l+1)}^{p^{l+1}}
$$

modulo monomials of length $> k$.

For the proof of the theorem, we fix *k* and use induction on i_0 . First suppose that $i_0 = 1$. Then

$$
\xi_k \cdot \hat{\mathcal{R}}_I(k) = \sum_{\tau \in \mathfrak{S}(k)} \text{sign}(\tau) \, \xi_k \cdot \hat{\xi}_{i_{\tau(k-1)} + \tau(k-1) - k}^{p^k} \cdot \prod_{j=0}^{k-2} \hat{\xi}_{i_{\tau(j)} + \tau(j) - (j+1)}^{p^{j+1}}
$$

so that

$$
\hat{\mathcal{X}}_I(k) - (-1)^k \xi_k \cdot \hat{\mathcal{R}}_I(k) \n\equiv (-1)^k \sum_{n=1}^{k-1} \sum_{\rho' \in \mathfrak{S}(k)} sign(\rho') \xi_n \cdot \hat{\xi}_{i_{\rho'(k-1)} + \rho'(k-1) - n}^{p^{n-1}} \cdot \prod_{l=0}^{k-2} \hat{\xi}_{i_{\rho'(l)} + \rho'(l) - (l+1)}^{p^{l+1}}.
$$
\n(14)

It can easily be verified that the summand in (14) associated to *n* and ρ' is the negative of the term associated to *n* and ρ'' where

$$
\rho''(l) = \begin{cases}\n\rho'(l) & \text{if } l \neq n-1 \text{ and } l \neq k-1 \\
\rho'(n-1) & \text{if } l = k-1 \\
\rho'(k-1) & \text{if } l = n-1\n\end{cases}
$$

(note that $\text{sign}(\rho') = -\text{sign}(\rho'')$). So the difference $\hat{\mathcal{X}}_I(k) - (-1)^k \xi_k \cdot \hat{\mathcal{R}}_I(k)$ vanishes modulo monomials of length $> k$ and the theorem holds for $i_0 = 1$.

The proof for general *I* is similar. By induction we can assume that the statement is true for $(i_0 - 1, i_1 - 1, \ldots, i_k - 1) = I[-1]$. By Observation 5.4(2)

$$
\xi_k^{\gamma(i_0)} \cdot \hat{\mathcal{R}}_I(k) = \left(\xi_k^{\gamma(i_0-1)} \cdot \hat{\mathcal{R}}_{I[-1]}(k)\right)^p \cdot \xi_k
$$

which modulo terms of length $> k$ is

$$
\begin{split}\n&\equiv \left((-1)^{k(i_0-1)}\hat{\mathcal{X}}_{I[-1]}(k)\right)^p \cdot \xi_k \\
&= (-1)^{k(i_0-1)}\xi_k \cdot \sum_{\tau \in \mathfrak{S}(k)} \text{sign}(\tau) \prod_{j=0}^{k-1} \hat{\xi}_{i_{\tau(j)}-1+\tau(j)-j}^{p^{j+1}} \\
&= (-1)^{k(i_0-1)} \sum_{\tau \in \mathfrak{S}(k)} \text{sign}(\tau) \xi_k \cdot \hat{\xi}_{i_{\tau(k-1)}+\tau(k-1)-k}^{p^k} \cdot \prod_{j=0}^{k-2} \hat{\xi}_{i_{\tau(j)}+\tau(j)-(j+1)}^{p^{j+1}}.\n\end{split}
$$

Now one can define ρ'' as before and proceed as in the case $i_0 = 1$ in order to establish the inductive step. \Box

An especially interesting formula arises from Theorem 5.5 if we set $I = (i, i, \ldots, i)$, a constant sequence:

Theorem 5.6. *Let* $i, k > 0$ *. Modulo monomials of length* $> k$ *we have*

$$
\hat{\xi}_i^{\gamma(k)} \equiv (-1)^{ik} \xi_k^{\gamma(i)} - \sum_{\text{Id}_k \neq \tau \in \mathfrak{S}(k)} \text{sign}(\tau) \prod_{j=0}^{k-1} \hat{\xi}_{i+\tau(j)-j}^{p^j}.
$$

In particular, if $0 \leq f < \gamma(k+1)$ *then*

$$
\hat{\xi}_k^{\gamma(i)} \cap P[i; f] = (-1)^{ik} \xi_i^{\gamma(k)} \cap P[i; f] = (-1)^{ik} P[i; f - \gamma(k)].
$$

Proof. The first part follows immediately from Theorem 5.5 and Observation 5.4(1), so it only remains to prove the second statement. By the part already proved we have the following equality:

$$
\hat{\zeta}_i^{\gamma(k)} \cap \hat{P}[i; f] = (-1)^{ik} \xi_k^{\gamma(i)} \cap \hat{P}[i; f] - \Big(\sum_{\mathrm{Id}_k \neq \tau \in \mathfrak{S}(k)} \mathrm{sign}(\tau) \prod_{j=0}^{k-1} \hat{\zeta}_{i+\tau(j)-j}^{p^j}\Big) \cap \hat{P}[i; f]
$$

Now observe that for any $\mathrm{Id}_k \neq \tau \in \mathfrak{S}(k)$ the product $\prod_{j=0}^{k-1} \xi_{i+1}^{p^j}$ i^{p^2} _{*i*+*τ*(*j*)−*j* is of length strictly} greater than *i*, so for any such τ we get

$$
\Big(\prod_{j=0}^{k-1} \hat{\xi}_{i+\tau(j)-j}^{p^j}\Big) \cap \hat{P}[i;f] = \chi \Big[\Big(\prod_{j=0}^{k-1} \xi_{s+\tau(j)-j}^{p^j}\Big) \cap P[i;f]\Big] = 0.
$$

Using Cor. 3.3(3) we thus obtain $\hat{\xi}_i^{\gamma(k)} \cap \hat{P}[i; f] = \hat{P}[i; f - \gamma(k)] = (-1)^{ik} \xi_k^{\gamma(i)} \cap \hat{P}[i; f]$. The claim now follows by application of $(-1)^{ik}\chi$ to this formula. \Box

Finally, we note that Theorem 5.5 provides us with useful information regarding the behaviour of the stripping operations $D(\hat{\mathcal{X}}_I(k))$:

Corollary 5.7. *1.* If $\text{len}(\theta) < k$, then $\hat{\mathcal{X}}_I(k) \cap \theta = 0$ for all $I \in \mathcal{I}(k)$.

- 2. If $\text{len}(\theta) = k$, then $\hat{\mathcal{X}}_I(k) \cap \theta = (-1)^{i_0 k} \hat{\mathcal{R}}_I(k) \cap (\xi_k^{\gamma(i_0)} \cap \theta)$.
- *3. In particular,* $\hat{\mathcal{X}}_I(k) \cap P[k; f] = (-1)^{i_0 k} \hat{\mathcal{R}}_I(k) \cap P[k; f \gamma(i_0)].$

Proof. This follows immediately from the theorem by invoking Prop. 3.1 and Cor. 3.3. □

References

- **[CWW]** D. P. Carlisle, G. Walker and R. M. W. Wood. The intersection of the admissible basis and the Milnor basis of the Steenrod algebra. *J. Pure Appl. Algebra* **128** (1998), no.1, 1–10
- **[G]** A. M. Gallant. Excess and conjugation in the Steenrod algebra. *Proc. Amer. Math. Soc.* **76** (1979), no.1, 161–166
- [Ka1] I. KARACA. The nilpotence height of P_t^s for odd primes. *Trans. Amer. Math. Soc.* **351** (1999), no.2, 547–558
- **[Ka2]** I. Karaca. On the action of Steenrod operations on polynomial algebras. *Turkish J. Math.* **22** (1998), no.2, 163–170
- **[Ka3]** I. Karaca. Conjugation in the mod *p* Steenrod algebra and its dual. *(preliminary version, oct. 1998)*
- **[Kr]** D. Kraines. On excess in the Milnor basis. *Bull. London Math. Soc.* **3** (1971), 363–365
- **[M]** D. M. Meyer. Hit polynomials and excess in the mod *p* Steenrod algebra. *(pr´epublication num´ero 1999-19, Universit´e Paris–Nord)*
- **[Mi]** J. Milnor. The Steenrod algebra and its dual. *Ann. of Math. (2)* **67** (1958), 150–171
- **[S1]** J. H. Silverman. Conjugation and excess in the Steenrod algebra. *Proc. Am. Math. Soc.* **119** (1993), no.2, 657–661
- **[S2]** J. H. Silverman. Stripping and conjugation in the Steenrod algebra. *J. Pure Appl. Algebra* **121** (1997), no.1, 95–106
- **[S3]** J. H. Silverman. Hit polynomials and conjugation in the dual Steenrod algebra. *Math. Proc. Camb. Philos. Soc.* **123** (1998), no.3, 531–547
- **[WW]** G. WALKER AND R. M. W. WOOD. The nilpotence height of Sq^{2^n} . Proc. Am. *Math. Soc.* **124** (1996), no.4, 1291–1295
- **[W]** R. M. W. Wood. Problems in the Steenrod algebra. *Bull. London Math. Soc.* **30** (1998), no.5, 449–517

This article may be accessed via WWW at http://www.rmi.acnet.ge/hha/ or by anonymous ftp at ftp://ftp.rmi.acnet.ge/pub/hha/volumes/2000/n1/n1.(dvi,ps,dvi.gz,ps.gz)

Dagmar M. Meyer dagmar@math.univ-paris13.fr meyerd@member.ams.org

LAGA, Institut Galilée, Univ. Paris-Nord