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Surface parameterization plays a fundamental role in geometric
modeling and processing. Surface Ricci flow deforms the Rieman-
nian metric proportional to the curvature, such that the curvature
evolves according to a diffusion-reaction process, and converges to
the target curvature. Surface Ricci flow is a powerful tool to de-
sign Riemannian metrics from user-prescribed curvatures. In dis-
crete setting, there are several schemes, which can be unified to a
coherent framework.

Conventional discrete surface Ricci flow method is vulnerable to
mesh quality. For a given target curvature and a low quality mesh,
the method may encounter degeneracy. In general, it is difficult to
analyze the existence of the solution to the conventional unified
Ricci flow. This greatly prevents the unified Ricci flow from large-
scale real applications.

In the current work, in order to conquer this problem, we pro-
pose the dynamic unified Ricci flow method. The novel method
updates the triangulation during the flow, such that the triangula-
tion is always power Delaunay. In theory, dynamic Ricci flow guar-
antees the existence of solutions to the flow with target curvatures
satisfying Gauss-Bonnet condition; in practice, the dynamic Ricci
flow is much more robust than conventional method. Our experi-
mental results demonstrate the efficiency, efficacy and robustness
of the dynamic Ricci flow method.

1. Introduction

Hamilton introduced Ricci flow for the purpose of proving Poincaré con-
jecture and studying 3-manifold topology. Ricci flow deforms the Rieman-
nian metric of a manifold, such that the curvature evolves according to a
diffusion-reaction process, and eventually becomes the metric inducing the
target Gaussian curvature. Recently, surface Ricci flow has found many ap-
plications in a broad range of fields in both engineering and medicine. To
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name but a few, parameterization in graphics [24], deformable surface reg-
istration in vision [43], manifold spline construction in geometric modeling
[16] and cancer detection in medical imaging [42]. The survey [41] cover more
real applications.

1.1. Classical surface Ricci flow

Suppose (S,g) is a surface with a Riemannian metric. One can choose a
special local parameter, the so-called isothermal coordinates (x, y), such that
the metric is represented as

g(x, y) = e2u(x,y)(dx2 + dy2).

Under the iso-thermal coordinates, the Gaussian curvature can be computed
in a very succinct form,

K(x, y) = −Δgu = − 1

e2u(x,y)

(
∂2

∂x2
+

∂2

∂y2

)
u(x, y).

The Gauss-Bonnet theorem claims that the total Gaussian curvature is
a topological invariant,∫

S
KdAg +

∫
∂S

kgds = 2πχ(S),

where kg is the geodesic curvature of the boundary points, χ(S) is the Euler
characteristics of S. Suppose g and ḡ are two Riemannian metrics of a
topological surface S, we say that they are conformal equivalent to each
other, if there exists a function u : S → R, such that

ḡ = e2ug.

The Gaussian curvatures induced by them are related by the Yamabe equa-
tion,

K̄ = e−2u (K −Δgu) .

Ricci flow deforms the Riemannian metric conformally, namely, g(t) =
e2u(t)g(0), where u(t) : S → R is the conformal factor. The normalized Ricci
flow can be written as

(1)
du(t)

dt
=

2πχ(S)

A(0)
−K(t).



Dynamic unified surface Ricci flow 33

Figure 1: Conformal mapping preserves infinitesimal circles, the facial sur-
face (a) is conformally mapped to the disk (b). General diffeomorphism maps
infinitesimal ellipses to infinitesimal circles, from frame (c) to frame (d).

where A(0) is the initial surface area. Hamilton [22] and chow [8] proved
the convergence of surface Ricci flow. In practice, one can prescribe a target
curvature K̄, and use Ricci flow to find the unique Riemannian metric ḡ
inducing K̄,

du(t)

dt
= K̄ −K(t).

Furthermore, surface Ricci flow is the negative gradient flow of the Ricci
energy. Ricci energy can be minimized by convex optimization efficiently.
Hence, Ricci flow has become a powerful tool for designing Riemannian
metrics using prescribed curvatures, which has great potential for many
applications in engineering fields.

1.2. Discrete surface Ricci flow

Conformal metric deformation transforms infinitesimal circles to infinitesi-
mal circles as shown in Fig. 1. Intuitively, one approximates the surface by
a triangulated polyhedron (a triangle mesh), covers each vertex by a disk of
finite size (a cone), and deforms the disk radii preserving the combinatorial
structure of the triangulation and the intersection angles among the circles.
This deformation simulates the smooth conformal mapping with very high
fidelity. Rodin and Sullivan [33] proved that if the triangulation of a simply
connected planar domain is subdivided infinite times, the induced discrete
conformal mappings converge to the smooth Riemann mapping. The dis-
crete version of surface Ricci flow was introduced by Chow and Luo in [9]
in 2003. It is based on the circle packing method.

For the purpose of computation, smooth surface Ricci flow theory has
been systematically generalized to the discrete setting. Historically, many
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Figure 2: Robustness Test: A human facial surface is obtained by a 3D scan-
ner, the simplification produces large number of obtuse angles. Conventional
Ricci flow algorithm fails of parameterizing the mesh, whereas the dynamic
Ricci flow method succeeds.

schemes of discrete surface Ricci flow have been invented. The discrete sur-

face can be constructed by gluing Euclidean triangles isometrically along

their edges. There are 6 schemes, tangential circle packing, Thurston’s circle

packing, inversive distance circle packing, discrete Yamabe flow, virtual ra-

dius circle packing and mixed type scheme. All these schemes can be unified

to a consistent framework, namely the unified discrete surface Ricci flow [].

In practice, 3D acquisition devices produce dense point clouds, which

are triangulated and simplified. The mesh simplificaiton algorithms purpose

high compression rate and high fidelity, and ignore the shapes of triangles,

and may produce meshes with large number of obtuse angles and skinny

triangles. Such low quality meshes cause numerical instability. The conven-

tional Ricci flow algorithm is vulnerable to triangulations with low qualities.

Ricci flow deforms the edge lengths of a triangle mesh, it is possible that dur-

ing the flow, the triangle inequality doesn’t hold on some faces of the mesh,

then the flow breaks down. In general, for inversive distance circle packing

scheme or discrete Yamabe flow schemes, it is unclear how to verify whether

the solution to the Ricci flow for a target curvature exists or not. The lack of

theoretic foundation for the solution existence and the vulnerability to the

low quality meshes prevent Ricci flow from applications in real world. Fig-

ure 2 shows one scanned human facial surface, after simplification using the

method in [], the quality of the triangulation is low, and conventional Ricci

flow breaks down in the computation process. In contrast, dynamic Ricci

flow can handle the mesh without any difficulty, and produce the conformal

mapping result as shown in the last frame.
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Figure 3: Uniformization for closed surfaces by Ricci flow.

1.3. Contributions

This work has following contributions:

1. This work proposes the dynamic unified surface Ricci flow framework,

during the flow, the Riemannian metric evolves driven by the curva-

ture, the connectivity is updated accordingly, such that the triangula-

tion is always weighted Delaunay.

2. In theory, dynamic Ricci flow guarantees the existence and the unique-

ness of the solutions to the flow. For any target curvature, satisfying

Gauss-Bonnet condition, the discrete conformal metric exists and is

essentially unique.

3. In practice, dynamic Ricci flow greatly improves the robustness to

mesh quality, target curvature and topological type. This converts

Ricci flow from a pure theory to a mature and reliable tool for real

applications.

The paper is organized as follows: section 2 briefly reviews the most

related theoretic works. Section 3 introduces the unified framework for dif-

ferent schemes of discrete surface Ricci flow, which covers 18 schemes in

total. Section 4 gives computational algorithm. Experimental results are re-
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ported in section 5, different schemes are systematically compared. The work
concludes in section 6, future directions are discussed.

2. Previous works

Discrete surface Ricci flow The theoretic development of discrete surface
Ricci flow has a long history. Koebe pioneered the idea of spherical circle
packing in the 1930s in [25]. Andreev further developed the theory in 1970s
[3, 4]. Thurston generalized their results to Euclidean (or a hyperbolic) cir-
cle packing on a triangulated closed surface with prescribed intersection an-
gles in [37] for the purpose of studying low dimensional topology. Thurston
conjectured that discrete conformal mapping induced by the circle packing
converges to the conventional Riemann mapping by subdividing the trian-
gulations to infinite levels. Rodin and Sullivan [33] proved the conjecture
in 1980s. Chow and Luo [9] bridged circle packing and surface Ricci flow
in 2000s. The uniqueness (rigidity) of the solution to Ricci flow based on
Thurston’s circle packing was proved by He Marden-Rodin [31], Colin de
Verdiére [10], He [23], Thurston [37], Chow-Luo [9] and Stephenson [36].

Thurston’s circle packing scheme was generalized to inversive distance
circle packing by Bowers-Stephenson [7, 36]. The local rigidity and global
rigidity of inversive distance circle packing were proved by Guo [20] and Luo
[28] respectively.

Discrete Yamabe flow was introduced by Luo in [27]. Springborn, Schrö-
der and Pinkall discovered the explicit formula of the energy function [35].
Glickenstein [11, 12] generalized the discrete Yamabe flow to 3-dimensional
piecewise flat manifolds. Bobenko-Pinkall-Springborn introduced a geomet-
ric interpretation to Euclidean and hyperbolic Yamabe flow using the volume
of generalized hyperbolic tetrahedron in [5]. Discrete Yamabe flow on hyper-
bolic surfaces with boundary has been studied by Guo in [19]. The existence
of the solution to Yamabe flow with topological surgeries has been proved
recently in [17] and [15].

Glickenstein [13] and Zhang [44] unified all the existing schemes in a
coherent theoretic framework, and introduced novel schemes, such as virtual
radius circle packing [41, 44] and mixed type circle packing [41, 14, 44].

Variational principle Colin de Verdiére [10] first discovered the variational
approach to circle packing. Since then, many works on variational principles
on circle packing or circle pattern have appeared. For example, see Brägger
[39], Rivin [32], Leibon [26], Chow-Luo [9], Bobenko-Springborn [6], Guo-
Luo [21], and Springborn [34]. Variational principles for polyhedral surfaces
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were studied systematically in Luo [29]. Many energy functions are derived

from the cosine law and its derivative [30].

Discrete uniformization Recently, the existence of the solutions to dynamic

discrete Yamabe flow has been proved by Gu et al. for Euclidean and hy-

perbolic background geometries in [17] and [15] respectively. The theoretic

results have been applied to establish the uniformization theorem for poly-

hedral surfaces.

3. Theoretic background

This section systematically introduces the framework for dynamic unified

discrete surface Ricci flow. The theory is based on variational principle on

discrete surfaces utilizing the derivative cosine law [30]. The fundamental

concepts and basic schemes can be found in [29] and the chapter 4 in [41].

3.1. Fundamental concepts

In practice, smooth surfaces are usually approximated by discrete surfaces.

Discrete surfaces are represented as two dimensional simplicial complexes

which are manifolds.

Definition 1 (Triangular Mesh). Suppose Σ is a two dimensional simplicial

complex; furthermore, it is also a manifold. Namely, for each point p of Σ,

there exists a neighborhood of p, U(p), which is homeomorphic to the whole

plane or the upper half plane. Then Σ is called a triangular mesh.

If U(p) is homeomorphic to the whole plane, then p is called an interior

point; if U(p) is homeomorphic to the upper half plane, then p is called a

boundary point.

The fundamental concepts from smooth differential geometry, such as

Riemannian metric, curvature and conformal structure, are generalized to

the simplicial complex, respectively.

In the following discussion, we use Σ = (V,E, F ) to denote the mesh

with vertex set V , edge set E and face set F . A discrete surface is with

Euclidean background geometry if it is constructed by isometrically gluing

triangles in E
2.

Definition 2 (Discrete Riemannian Metric). A discrete metric on a trian-

gular mesh is a function defined on the edges, l : E → R
+, which satisfies the



38 Wei Chen et al.

Figure 4: Discrete curvatures of an interior vertex and a boundary vertex.

triangle inequality: on each face [vi, vj , vk], li, lj , lk are the lengths of edges
against vi, vj , vk respectively,

li + lj > lk, lj + lk > li, lk + li > lj .

A triangular mesh with a discrete Riemannian metric is called a discrete
metric surface.

The discrete Gaussian curvature is defined as angle deficit, as shown in
Fig. 4.

Definition 3 (Discrete Gauss Curvature). The discrete Gauss curvature
function on a mesh is defined on vertices, K : V → R,

(2) K(v) =

{
2π −

∑
jk θ

jk
i , v �∈ ∂M

π −
∑

jk θ
jk
i , v ∈ ∂M

,

where θjki ’s are corner angle at vi in the face [vi, vj , vk], and ∂M represents
the boundary of the mesh.

The discrete Gaussian curvature are determined bu tje discrete Rieman-
nian metric via cosine law,

(3) l2i = l2j + l2k − 2ljlk cos θi.

The Gauss-Bonnet theorem still holds in the discrete case.

Theorem 4 (Discrete Gauss-Bonnet Theorem). Suppose Σ is a triangular
mesh with Euclidean background metric. The total curvature is a topological
invariant,

(4)
∑
v �∈∂Σ

K(v) +
∑
v∈∂Σ

K(v) = 2πχ(Σ),

where χ is the Euler characteristic number, and K is the Gauss curvature.
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Figure 5: Power distance.

3.2. Power Delaunay triangulation

Definition 5 (Power Distance). Suppose p and q are two points in R
2, p is

associated with a power weight h, then the power distance from q to (p, h)
is defined as

(5) power(q,p) := |p− q|2 + h.

Power Voronoi diagram and power Delaunay triangulation are direct
generalizations of Voronoi diagram and Delaunay triangulation. Figure 5
shows a common case, where the point p is associated with a circle with
radius r. The power weight h equals to −r2. From point q draw a tangent
line to the circle (p, r), the power equals to the square of the distance from
q to the tangent point.

Definition 6 (Power Voronoi Diagram). Given a set of discrete points with
power weights P = {(p1, h1), (p2, h2), · · · , (pk, hk)}, the power Voronoi di-
agram of P is a polygonal cell decomposition

R
2 =

k⋃
i=1

Wi, Wi = {q ∈ R
2|pow(pi,q) ≤ pow(pj ,q), ∀1 ≤ j ≤ k}.

Definition 7 (Power Delaunay Triangulation). Given a set of discrete points
with power weights P = {(p1, h1), (p2, h2), · · · , (pk, hk)}, the power Delau-
nay triangulation is the dual to the power Voronoi diagram: if Wi ∩Wj �= ∅
in the power Voronoi diagram, then there is an edge connecting pi and pj

in the power Delaunay triangulation.

Figure 6 shows the power Voronoi Diagram and the dual power Delaunay
triangulation.

Definition 8 (Power Center). Given three weighted points (pi, hi), (pj , hj)
and (pk, hk), the power center o is the unique point with equal power to
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Figure 6: Power Delaunay triangulation and power Voronoi diagram.

Figure 7: Construct power Delaunay triangulation by edge flipping.

these three points.

pow(pi, o) = pow(pj , o) = pow(pk, o)

As shown in Figure 7, if two circles (pi, ri) and (pj , rj) intersects, then
the equi-power line is the common chord of the two circles. The intersection
between two equi-power lines is the power center of the triangle. If all three
circles are disjoint, then there is a unique circle (o, r) orthogonal to all of
them, the center o is the power center, r2 is the power from the center to
every vertex.
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In fact, as shown in Figure 6, the vertices in power Voronoi diagram are

the power centers of the triangles in power Delaunay triangulation. Each

edge [vi, vj ] in Delaunay triangulation is adjacent to two triangles [vi, vj , vk]

and [vj , vi, vl], the corresponding power centers are ok and ol respectively.

The oriented edge [ol,ok] is the edge in the Voronoi diagram, dual to the ori-

ented edge [vi, vj ] in the triangulation. The triangulation is power Delaunay,

if and only if

pow(ok,pk) ≤ pow(ok,pl), pow(ol,pl) ≤ pow(ol,pk).

Equivalently, the triangulation is power Delaunay, if and only if for each

interior edge [vi, vj ],

(vj − vi)× (ok − ol) > 0.

One can obtain the power Delaunay triangulation by edge flipping operations

as shown in Figure 7. One can iteratively check all the interior edges; if one

edge is not power Delaunay then flip it, until all edges are power Delaunay.

This simple algorithm can produce power Delaunay triangulation effectively.

3.3. Unified circle packing metrics

Definition 9 (Circle Packing Metric). Suppose Σ = (V,E, F ) is a triangle

mesh with spherical, Euclidean or hyperbolic background geometry. Each

vertex vi is associated with a circle with radius γi. The circle radius function

is denoted as γ : V → R>0; a function defined on the vertices ε : V →
{+1, 0,−1} is called the scheme coefficient ; a function defined on edges

η : E → R is called the discrete conformal structure coefficient. A circle

packing metric is a 4-tuple (Σ, γ, η, ε), the edge length is determined by the

4-tuple and the background geometry.

In the smooth case, changing a Riemannian metric by a scalar function,

g → e2ug, is called a conformal metric deformation. The discrete analogy to

this is as follows.

Definition 10 (Discrete Conformal Equivalence). Two circle packing met-

rics (Σk, γk, ηk, εk), k = 1, 2, are conformally equivalent if Σ1 = Σ2, η1 = η2,

ε1 = ε2. (γ1 may not equals to γ2.)

The discrete analogy to the concept of conformal factor in the smooth

case is
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Figure 8: Tangential circle packing, Thurston’s circle packing and inversive
distance circle packing schemes, and the geometric interpretations to their
Ricci energies.

Definition 11 (Discrete Conformal Factor). Discrete conformal factor for
a circle packing metric (Σ, γ, η, ε) is a function defined on each vertex u :
V → R,

(6) ui = log γi

Definition 12 (Circle Packing Schemes). Suppose Σ = (V,E, F ) is triangle
mesh with spherical, Euclidean or hyperbolic background geometry. Given
a circle packing metric (Σ, γ, η, ε), for an edge [vi, vj ] ∈ E, its length lij is
given by

(7) l2ij = 2ηije
ui+uj + εie

2ui + εje
2uj .

The schemes are named as follows:

Scheme εi εj ηij

Tangential Circle Packing +1 +1 +1
Thurston’s Circle Packing +1 +1 [0, 1]
Inversive Distance Circle Packing +1 +1 > 0
Yamabe Flow 0 0 > 0
Virtual Radius Circle Packing -1 -1 > 0
Mixed type {−1, 0,+1} {−1, 0,+1} > 0

Fig. 8 and Fig. 9 illustrate all the schemes with for discrete surfaces with
Euclidean background geometry.
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Figure 9: Yamabe flow, virtual radius circle packing and mixed type schemes,
and the geometric interpretations to their Ricci energies.

Remark 13. From the definition, the tangential circle packing is a special
case of Thurston’s circle packing; Thurston’s circle packing is a special case
of inversive distance circle packing. In the following discussion, we unify all
three types as inversive distance circle packing.

3.4. Discrete surface Ricci flow

Definition 14 (Discrete Surface Ricci Flow). A discrete surface with S
2,

E
2 or H2 background geometry, and a circle packing metric (Σ, γ, η, ε), the

discrete surface Ricci flow is

(8)
dui(t)

dt
= K̄i −Ki(t),

where K̄i is the target curvature at the vertex vi.

The target curvature must satisfy certain constraints to ensure the ex-
istence of the solution to the flow, such as Gauss-Bonnet equation Eqn. 4,
but also some additional ones described in [37], [31] and [9], for instances.

The discrete surface Ricci flow has exactly the same formula as the
smooth counter part Eqn. 1. Furthermore, similar to the smooth case, dis-
crete surface Ricci flow is also variational: the discrete Ricci flow is the
negative gradient flow of the discrete Ricci energy.

Definition 15 (Discrete Ricci Energy). A discrete surface with S
2, E2 or H2

background geometry, and a circle packing metric (Σ, γ, η, ε). For a triangle
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[vi, vj , vk] with inner angles (θi, θj , θk), the discrete Ricci energy on the face
is given by

(9) Ef (ui, uj , uk) =

∫ (ui,uj ,uk)

θidui + θjduj + θkduk.

The discrete Ricci energy for the whole mesh is defined as

(10) EΣ(u1, u2, · · · , un) =
∫ (u1,u2,··· ,un) n∑

i=1

(K̄i −Ki)dui..

From definition, we get the relation between the surface Ricci energy
and the face Ricci energy

(11) EΣ =

n∑
i=1

(K̄i − 2π)ui +
∑
f∈F

Ef .

The Hessian matrix of the energy has intuitive geometric interpretation.

3.5. Geometric interpretation to Hessian

The interpretation in Euclidean case is due to Glickenstein [13] (Z. He [40]
in the case of circle packings) and illustrated in [41]. In the current work,
we build the connection to the Power Delaunay triangulation and power
voronoi diagram.

We only focus on one triangle [vi, vj , vk], with corner angles θi, θj , θk,
conformal factors ui, uj , uk and edge lengths lij for edge [vi, vj ], ljk for [vj , vk]
and lki for [vk, vi].

As shown in Fig. 8 and Fig. 9, the power of q with respect to vi is

pow(vi, q) = |vi − q|2 − εγ2i .

The power center o of the triangle satisifies

pow(vi, o) = pow(vj , o) = pow(vk, o).

The power circle C centered at o with radius γ, where γ = pow(vi, o).

Therefore, for tangential, Thurton’s and inversive distance circle packing
cases, the power circle is orthogonal to three circles at the vertices Ci, Cj

and Ck; for Yamabe flow case, the power circle is the circumcircle of the
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triangle; for virtual radius circle packing, the power circle is the equator of
the sphere, which goes through three points {vi + γ2i n, vj + γ2jn, vk + γ2kn},
where n is the normal to the plane.

Through the power center, we draw line perpendicular to three edges,
the perpendicular feets are wi, wj and wk respectively. The distance from
the power center to the perpendicular feet are hi, hj and hk respectively.
Then it can be shown easily that

(12)
∂θi
∂uj

=
∂θj
∂ui

=
hk
lk

,
∂θj
∂uk

=
∂θk
∂uj

=
hi
li
,
∂θk
∂ui

=
∂θi
∂uk

=
hj
lj
,

furthermore,

(13)
∂θi
∂ui

= −hk
lk

− hj
lj
,
∂θj
∂uj

= −hk
lk

− hi
li
,
∂θk
∂uk

= −hi
li

− hj
lj
.

These two formula induces the formula for the Hessian of the Ricci energy
of the whole surface. One can treat the circle packing (Σ, γ, η, ε) as a power
triangulation, which has a dual power diagram Σ̄. Each edge eij ∈ Σ has a
dual edge ē ∈ Σ̄, then one define the edge weight as

(14) wij =
|ēij |
|eij |

,

Here | · | represent the signed distance of an edge, if the edge eij is power
Delaunay, then the weight wij is non-negative; otherwise, the weight is neg-
ative. Hence

(15)
∂Ki

∂uj
=

∂Kj

∂ui
= wij ,

and

(16)
∂Ki

∂ui
= −

∑
j

wij .

Namely, the Hessian matrix of the Ricci energy is a discrete Laplace-Beltrami
matrix.

Suppose on the edge [vi, vj ], the distance from vi to the perpendicular
foot wk is dij , the distance from vj to wk is dji, then lij = dij + dji, and

∂lij
∂ui

= dij ,
∂lij
∂uj

= dji,

furthermore

d2ij + d2jk + d2ki = d2ik + d2kj + d2ji.

The existence of solution to the discrete Yambe flow has been proved in
a recent work [17].
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Theorem 16. Given a topological surface S, with vertex set V , and a flat

metric d with cone singularities at V , for any target curvature K̄ : V →
(−∞, 2π), satisfying Gauss-Bonnet condition, the dynamic discrete Yambe

flow will converge to the flat metric d̄ inducing K̄. Furthermore d̄ is unique

upto a scaling.

4. Computational algorithm

In this section, we explain the dynamic unified surface Ricci flow algorithm

1 in details.

Algorithm 1 Dynamic Unified Surface Ricci Flow
Require: The inputs include:

1. A triangular mesh Σ, embedded in E
3;

2. The circle packing scheme, ε ∈ {+1, 0,−1};
3. A target curvature K̄,

∑
K̄i = 2πχ(Σ) and K̄i ∈ (−∞, 2π).

4. Step length δt
Ensure: A discrete metric conformal to the original one, which realizes the target

curvature K̄.
1: Initialize the circle radii γ, discrete conformal factor u and conformal structure

coefficient η, obtain the initial circle packing metric (Σ, γ, η, ε)
2: while maxi |K̄i −Ki| > threshold do
3: Compute the circle radii γ from the conformal factor u
4: Compute the edge length from γ and η
5: Compute the corner angle θjki from the edge length using cosine law
6: Compute the Power center of each face
7: Update the triangulation to be power Delaunay
8: Compute the vertex curvature K
9: Compute the edge weight, form the Hessian matrix H
10: Solve linear system Hδu = K̄ −K
11: Update conformal factor u ← u− δt× δu
12: end while
13: Output the result circle packing metric

Step 1. Initial circle packing (γ, η) Depending on different schemes, the ini-

tialization of the circle packing is different. The mesh has induced Euclidean

metric lij . For inversive distance circle packing, we choose

γi =
1

3
min
j

lij ,
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this ensures all the vertex circles are separated. For Yamabe flow, we choose
all γi to be 1. For virtual radius circle packing, we choose all γi’s to be 1.
Then γij can be computed using the lij formula Eqn. 7.

Step 2. Circle radii γ The computation for circle radii from conformal
factor uses the formula in Eqn. 6.

Step 3. Edge length l The computation of edge lengths from conformal
factor u and conformal structure coefficient η uses the formulae in Eqn. 7.

Step 4. Update triangulation We compute the power center of each face
using the current edge length, and perform edge swap to update the trian-
gulation to be weighted Delaunay.

Step 5. Corner angle θ The computation from edge length l to the corner
angle θ uses the cosine law formulae, Eqn. 3

Step 6. Vertex curvature K The vertex curvature is defined as angle deficit
in Eqn. 2

Step 7. Hessian matrix H We compute the power center of each face, and
then the edge weight using formula Eqn. 12 and form the Hessian matrix as
in Eqn. 13.

Step 8. Linear system If the Σ is with H
2 background geometry, then the

Hessian matrixH is positive define; else if Σ is with E
2 background geometry,

then H is positive definite on the linear subspace
∑

i ui = 0. The linear
system can be solved using any sparse linear solver, such as Eigen [18].

5. Experimental results

In this section, we report our experimental results for the proposed dynamic
unified discrete surface flow. We tested the robustness of the proposed algo-
rithm to low quality meshes, extremal target curvatures, complicated topolo-
gies, and tested the convergence speed.

5.1. Experimental environment

The dynamic unified Ricci flow algorithms are implemented using generic
C++ language on Windows platform. The computational time is tested on a
desktop computer with 2.00GHz CPU, 3.00G RAM. The algorithm depends
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on convex optimization by Newton’s method. The sparse linear systems are
solved using Eigen library [18].

Dynamic Ricci flow modifies the connectivity, such that the triangula-
tions could become complicated. Conventional halfedge data structure can
not support general triangulations. For example, in generalized triangula-
tion, the two end vertices of an edge may coincide, such as a triangulation of
a torus with a single vertex and three edges. Therefore, we have to use more
sophisticated dynamic halfedge data-structure. The current implementation
covers all schemes, and including inversive distance circle packing, Yam-
abe flow, virtual radius circle packing and mixed type schemes, for discrete
surfaces with Euclidean background geometry.

The geometric data sets are from the public databases, such as [1] and
[2]. The human face surfaces were scanned from a high speed and high
resolution, phase shifting scanner, as described in [38]. We thoroughly tested
our algorithm on a huge amount of various models, including different sizes
and topology types.

5.2. Robustness to low quality meshes

Human facial surfaces are obtained by a 3D scanning system. The initial
surface has dense samples, in order to reduce the storage, the raw geometric
data is simplified using various mesh simplification method. One popular
method is based on Hoppy’s progressive mesh, which reduce the geometric
complexity by edge collapsing. This method maximizes the compression ra-
tio, and minimizes the approximation error, but ignore the mesh quality. As
shown in Fig. 2, by zooming in the figure, we can see that the simplified
mesh has many skinny triangles and obtuse angles. Especially, along the
boundary of the surface, there are many vertices which are adjacent to a
single face. These factors makes the conventional Ricci flow method highly
unstable. We have tested conventional Ricci flow algorithms based on in-
versive circle packing, Yambe flow, virtual radius circle packing on the data
sets shown in Fig. 2, Fig. 10 and Fig. 11, none of them can handle all the
data sets. In contrast, the dynamic Ricci flow with the same schemes can
handle all of them, and produce accurate conformal parameterizations.

5.3. Robustness to extremal target curvatures

Given a target curvature K̄, it is difficult to verify if the solution to the
conventional Ricci flow exists or not. The theoretic uncertainty prevents the
method from practical applications, which require reliability. According to
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Figure 10: Robustness testing with low quality human facial surfaces.

Figure 11: Robustness testing with low quality human facial surfaces.

Theorem 16, if the target curvature satisfies Gauss-Bonnet condition and

is less than 2π, then the solution to the dynamic Ricci flow is guaranteed

to exist. This makes dynamic Ricci flow reliable and dependable. We tested

the robustness of the proposed method by setting some extremal target

curvatures, which concentrate all the curvatures on a few vertices. Figure 12
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Figure 12: Robustness testing with extremal target curvatures, which con-
centrate the total curvature on just 3 vertices.

shows several testing results, where we set the target curvature to be zeros
everywhere, except three boundary vertices. This maps the whole surface
onto a planar triangle. Dynamic Ricci flow can find the solution reliably,
whereas conventional Ricci flow heavily depends on the triangulation, and
the behavior is unpredictable.

Furthermore, we also tested our proposed algorithm on high genus sur-
faces. For a genus g > 0 surface, we concentrate all the curvature on a single
vertex v0, K(v0) = (4− 4g)π, and the target curvature is zero for any other
vertex. The dynamic Ricci flow can find the desired metric with many edge
swapping. Conventional Ricci flow method always encounters degenerated
faces during the flow.

5.4. Robustness to topological types

Dynamic Ricci flow can handle surfaces with all possible topological types.
Figure 3 shows our experimental results on closed surfaces with different
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Figure 13: Robustness testing with complicated topological types.

genus. Figure 13 shows the computational results for surfaces with bound-
aries. Conformal parameterization for poly-annulus is highly non-linear, and
challenging. With low mesh quality, conventional Ricci flow method is diffi-
cult to find the conformal mapping from the surface to the canonical planar
circle domain, such that all boundaries are mapped to Euclidean circles.
We tested the proposed dynamic Ricci flow algorithm for parameterizing
poly-annulus, with relatively low mesh quality, the method can compute the
conformal mapping straight-forwardly. This demonstrates the robustness of
the method to complicated topological types.

5.5. Convergence speed and efficiency

We further tested the efficiency of our proposed dynamic Ricci flow algorithm
on various models. The experimental results are summarized in Figure 14
and Table 1. The geometric complexity of the models in terms of vertex,
face and edge numbers are given in the table, the running time (seconds)
and the number of iterations are reported. The curvature threshold for the
difference between the current curvature and the target curvature is chose to
be 1e−8. From the table, it is clear that dynamic Ricci flow converges to the
desired metric after less than ten iterations. This experiment demonstrates
the fast convergence speed of dynamic Ricci flow method.

6. Conclusion

This work introduces a dynamic unified Ricci flow, which updates the con-
nectivity during flow to preserve the triangulation to be power Delaunay.
The unified framework improves the flexibility of Ricci flow; the dynamic
scheme makes the connectivity to adapt to the intrinsic Riemannian metric,
and therefore guarantees the existence of the solutions to the Ricci flow as
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Figure 14: Convergence speed and efficiency test.

Table 1: Convergence test

mesh V/F/E Genus Ricci Flow Dynamic Ricci
Flow (Sec/Iters)

lion 11489/22853/34341 0 invalid 12.068/6
Oni 12479/24855/37333 0 invalid 16.089/7
Pulley 12395/24790/37185 1 invalid 5.027/6
Rocker Arm 12442/24884/37326 1 invalid 5.037/5
Trim Star 12488/24976/37464 1 invalid 5.032/6
Bumpy Torus 12522/25044/37566 1 invalid 8.001/5
Rampant 49873/99746/149619 1 invalid 28.026/9

long as the target curvature satisfies Gauss-Bonnet condition. The dynamic

Ricci flow greatly improves the robustness, and is capable of handling meshes

with low qualities and complicated topologies. This makes the theoretic tool

useful and reliable for practical applications in real world.

In the future, we will generalize dynamic surface Ricci flow from Eu-
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clidean background geometry to hyperbolic background geometry, and ex-
plore discrete Ricci flow on high dimensional manifolds.
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