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Metric curvatures and their applications I

Emil Saucan
∗

We present, in a natural, developmental manner, the main types
of metric curvatures and investigate their relationship with the
notions of Hausdorff and Gromov-Hausdorff distances, which by
now have been widely adopted in the fields of Imaging, Vision and
Graphics. In addition we present a number of applications to the
fields above, as well as to Communication Networks and Regge
Calculus. Further connections with such established notions as ex-
cess and fatness are also investigated. While the present paper
represents essentially a survey, a number of possible applications
are presented here for the first time, for instance to a numerically
feasible quantification of a notion of quasi-flatness of manifolds,
with applications in Imaging; and to the introduction of curva-
tures, in particular the Lipschitz-Killing curvature measures, for
almost Riemannian manifolds, with a view to their usage in Regge
Calculus, as well as in Graphics. Further directions of study are
also suggested.

1. Introduction

This paper represent the first of a series of two articles dedicated (as their
very title indicates) to the exploration of Metric Geometry and some of its
diverse applications, mainly (but not only) in Imaging, Graphics and all the
spectrum of related fields lying, so to say, in between those two.

To this end, we first have to make clear what we mean by “Metric Ge-
ometry”. Understanding this concept essentially reduces to answering the
following two basic questions: “What Geometry?” and “Why metric?”. We
begin by answering the first of these questions

1.0.0.1. What geometry? A brief answer to this first question would be
“Metric Differential Geometry”, but of course this further specification only
invites the questions “Why Differential Geometry?” and, yet again, “Why
metric?”... We answer by giving a brief answer to the second question:
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1.0.0.2. Why metric? The main reason of choosing the metric approach is
that it represents, so to say, a minimalistic perspective, where no supple-
mentary smoothness or structure is imposed upon a given geometric object.
We believe, therefore, that this makes it an approach ideally suited for the
study of the various structures and problems encountered in computer Sci-
ence in general, and in Graphics, Imaging and Vision in particular and that,
moreover, this “Hypotheses non fingo”1 attitude is not only philosophically
correct, it also is ideally suited for the intelligence of Digital Spaces. We
shall try and augment this brief, vague argument with examples drawn from
Wavelet Theory (and practice), DNA Microarray Analysis and Imaging.

We can now turn, in some more detail, to the first question:

1.0.0.3. Why differential geometry? To answer this question, one must in-
fer first that there is another kind of Metric Geometry. Indeed, there exists
a quite extensive (and, we might add, most impressive) literature on Met-
ric Geometry and its connections to Computer Science, see [19], [62], [60],
[1] to mention just a very few samples out of an extremely extensive liter-
ature. However, we do not feel satisfied with this “linear”, or “first order
Geometry”. To explain this, we could emphasize the essential importance
of “second order Geometry”, or succinctly, the Geometry of curvature in
Graphics and Imaging. This inevitably invites the next question:

1.0.0.4. Why curvature? We could explain in laborious detail why curva-
ture is extremely important for theoretical ends, as well as for applications
in Manifold Learning. However, we prefer not doing either of these things
here, but rather referring the reader to [97] for the first issue, and to [90]
and [89] for the second.

Instead, we believe (precisely as we did when writing the introduction to
[83]) that the best answer is that given by R. Brooks [23]: “The fundamen-
tal notion of differential geometry is the concept of curvature”, and that,
in truth, it can be stated (only slightly exaggerating) that the subject of
Differential Geometry is the study of curvature.

In fact, one can go even further and ask the more fundamental question

1.0.0.5. “Why geometry?” We shall not even begin to explore the impor-
tance of Geometry and geometrical thinking in Graphics, Imaging, etc., since
we sincerely hope that the potential reader is fully aware and convinced of
this, and since, moreover, the sequel of this paper is filled with instances
galore of geometric reasoning and its applications.

1I. Newton, “Philosophiae Naturalis Principia Mathematica”, 1687.
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In the end, as so many other things, this reduces to a matter of taste, or
esthetics, so to say.2 Therefore, we should make clear that we find Geometry
beautiful and enticing, not only because it represents the language in which
the visual, perceivable Universe “speaks” to us, but also – and this may per-
haps appear as a seemingly paradoxical motivation – it is inherently difficult:
Indeed, as V. I. Arnold pointed out so poignantly, “Our brain has two halves:
one is responsible for the multiplication of polynomials and languages, and
the other half is responsible for orientation of figures in space and all the
things important in real life. Mathematics is geometry when you have to use
both halves.” [63]. It is precisely this inherent difficulty of combining spatial
intuition with the algebraic (ultimately symbolic or lexical) manipulation
of sometimes long and convoluted formulas that makes geometry both hard
for most of us and (therefore?!..) more intriguing and interesting. This is
precisely the reason why “while all of us have an intuitive concept of the
difference between straight and curved, it is surprisingly difficult to make
the intuition precise”([23]).

A few words regarding the organization of the material: The first section
is dedicated, befittingly, to the most basic notions and results regarding the
Geometry of metric spaces, in principal the Gromov-Hausdorff convergence,
since it plays an essential, even if at times background role in the sequel.
Section 2 is dedicated to the introducing of our “main character”, namely
curvature. This is done hierarchically, first for curves, then for surfaces, fol-
lowed by various types of curvatures for higher dimensional manifolds. In
contrast to what is perhaps more common (and too our one approach in
[83]), as far as dimensions 1 and 2 are concerned, instead of concentrating
all the theoretical material in a separate section, we chose to present, imme-
diately after the classical definition of each type of curvature, its analogue –
or rather, as we shall see immediately – its analogues, followed immediately
by some direct, immediate applications (even if some will be only sketched
here). For dimensions higher or equal 3, we have chosen the more traditional
way of concentrating the whole theoretical material together with that cov-
ering the lower dimensions and reserve the introduction of their metrical
counterparts for the remainder of the sections. The reason for doing this is
the fact that these higher dimensional metric analogues are far from clas-
sical and are, in fact, quite new, some being presented here, at least in a
unified fashion, for the first time. This is done in the last section. We have
chosen the apparently counterintuitive path of first discussing the metric

2As everyone is aware of the fact that, for instance, mathematicians refer to a
proof as being “beautiful”.
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version of the less well-known Lipschitz-Killing curvatures, and only later,
in the second paper, on returning to the metric Ricci curvature and flow
(as well on some more recent developments regarding further connections
between various types of metric and related curvatures). The reason for this
choice resides in the fact that it turns out it is far more easier to perform
the first task, that follows almost immediately from the consideration of an
important class of triangulations that we also discuss in detail, namely the
so called thick triangulations.

Before we proceed to the main part of the exposition, a few cautionary
and clarifying words are in order: The reader might be aware of (or shortly
become so) of the previous book-chapter on curvature (including metric one)
[83] that I wrote some time back. However, I would like to make clear that
the present endeavor is not, in any way, a copy or even a simple extension of
that work. While, to be sure, in certain parts similarities exist (after all, the
subject matter is partially common and, moreover, basic Differential Geom-
etry has remained, essentially the same!...) there are many new directions
and results (some of them quite recent [93], [48], [6]), that do not appear
in the previous work in question. Neither does the material here reduce to
a “cut-and-paste” operation of the more applications-oriented article [97],
nor even of the much earlier paper [80] that represents, in a way, the fore-
runner off all the subsequent developments just mentioned.3 In fact, some
of the material here, particularly the one in Section 4, is new, at least in the
different view of classical fields and the connections between them, that are
pointed out here for the first time (at least as far as we are aware of).

However, we may say that the present exposition represents the fruit (not
fully ripen yet, to be sure!...) of a natural and continuous growth processes
fuelled by our steady and ever developing interest in the multifaceted and
malleable metric curvatures and their various applications.

Moreover, we must caution the reader that he might find the exposition
uneven in style, pace and content: The tone of the presentation may appear
at times loquacious and at other times quite terse. This represents, at least
in part, a natural consequence of the format, goals and space restrictions:
On the one hand, this is intended to be an introductory overview, thence the
perhaps overly didactic tone, mainly in the second and third sections. On
the other hand, as already mentioned, new material is presented, meaning
not only that clarity has to cede its place for the benefit of compactness

3Actually, [80] represents the place in literature where the use in Graphics and
Imaging of the metric approach (including the Gromov-Hausdorff convergence and
related notions and results) is advocated for the first time (at least to the best of
our knowledge).
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of the presentation, but also that some (quite advanced at times) notions
can be only mentioned or, at best, be sketchily introduced. While all effort
was made to make the text as introductory and self contained as possible, I
am quite aware that, unfortunately, this goal is far from being attained in a
number of places... Still, whenever possible, I opted for the more pedagogical
discourse, in an attempt to “bridge the gap between the two halves”. To these
words of apology it is only natural to recommend some basic (text-)books
to which the reader is referred too in case any background or complemen-
tary is needed: [13] for a encyclopedic source in (quite advanced at times)
Differential Geometry, [24] for Metric Geometry, as well as [65] and [56] for
Differential and PL Topology, respectively.

2. The Gromov-Hausdorff distance

We bring below only a few rudiments of Metric Geometry, not only because
we wish to restrict ourselves to those aspects that are necessary to us in
the sequel and to conform to the space restrictions, but also because we can
hardly compete, in any sense, with the excellent, authoritative presentation
in [24], to say nothing about the original [43]. (Needless to say, both these
texts are warmly recommended to the reader who wishes to expand and
deepening his knowledge regarding the subjects touched in this section.)

We begin by introducing the classical Hausdorff distance (metric):

Definition 2.1. Let (X, d) be a metric space and let A,B ⊆ X. We define
the Hausdorff distance between A and B as:

(2.1) dH(A,B) = inf{r > 0 |A ⊂ Ur(B), B ⊂ Ur(A)} ,

where Ur(A) is the r-neighborhood of A, Ur(A) =
⋃

a∈ABr(a).

Another equivalent way of defining the Hausdorff distance is as follows:

(2.2) dH(A,B) = max{sup
a∈A

d(a,B), sup
b∈B

d(b, A)} .

In general dH is only a semi-metric,4 however it becomes a proper metric
if we restrict ourselves to an important class of subsets. More precisely, we
have the following result

Proposition 2.2. Let (X, d) be a metric space. Then dH is a metric on the
set M(X) of closed subsets of X.

4i.e. dH(X,Y ) does not necessarily imply that X = Y .
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Moreover, the space (M(X), dH) inherits some important properties of
(X, d):

Theorem 2.3.
(a) If X is complete, then M(X) complete.
(b) (Blaschke) If X is compact, then M(X) compact.

(For proofs, see [24], pp. 253–254.)
It is only natural to extend the Hausdorff metric to non-compact spaces.

For this, we proceed along the following basic guide-lines: We want to obtain
the maximum distance dGH that satisfies the two conditions below:

1. dGH(A,B) ≤ dH(A,B), for any A,B ⊂ X (i.e. sets that are close as
subsets of a given metric space X will still be close as abstract metric
spaces);

2. X is isometric to Y iff dGH(X,Y ) = 0.

The sought definition is then the following one:

Definition 2.4. Let X,Y be metric spaces. Then the Gromov-Hausdorff
distance between X and Y is defined by:

(2.3) dGH(X,Y ) = inf dZH(f(X), g(Y )) ;

where the infimum is taken over all metric spaces Z in which both X and
Y can be isometrically embedded and over all such isometric embeddings.

Remark 2.5. In fact, it suffices to consider embeddings f into the disjoint
union X

∐
Y of the spaces X and Y . X

∐
Y is made into a metric space by

defining
(2.4)

d(x, y) =

{
infz∈X∩Y {dX(x, z) + dY (z, y)} , (x ∈ X) and (y ∈ Y ) ;
∞ , X ∩ Y = ∅ .

The following notion is not only important for theoretical ends (see, e.g.
[43]), it is also highly relevant to our applicative purposes (in Graphics,
Vision, etc.)

Definition 2.6. Let (X, d) be a metric space, and let A ⊂ X. A is called
an ε-net iff d(x,A) ≤ ε, for all x ∈ X.

It should be evident, from the definition and the preparatory words
preceding it, that the approximation of spaces by ε-nets will represent one of
the main topics in the sequel. We begin by citing the following fundamental
result:
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Theorem 2.7. dGH is a finite metric on the set of isometry classes of
compact metric spaces.

Remark 2.8. It is most alluring (see [21], [22]) to make appeal to the Gromov-
Hausdorff distance between subsets of R3 (usually triangular meshes), for
Graphics and Imaging goals (such as shape comparison, registration, etc.).
However, this is a fallacy, since the Gromov-Hausdorff distance between two
sets is not achieved by their embeddings in any Euclidean space. This was
pointed out by Gromov, in [43], immediately after introducing his modifi-
cation of the classical Hausdorff metric, via a simple example (see Remark
(c), p. 72): Let X be an equilateral triangle of edge 1, and let Y be a point.
Then dGH(X,Y ) = 1/2, although the Hausfdorff distance between their em-
beddings in R2, hence between their embeddings in any Rn, must satisfy the
inequality dR

n

GHX,Y ) >
√
3/3.

Since, moreover, computational issues also arise when trying to compute
the Gromov-Hausdorff distances, between, say, two large triangular meshes,
one is forced, in practice, to compute the computation of the simple Haus-
dorff distance, which it is not, itself, without certain complications (see e.g
[32] and the bibliography therein).

In addition, ε-nets in compact metric spaces have the following impor-
tant property:

Proposition 2.9. Let X, {Xn}∞n=1 be compact metric spaces. Then Xn−→GH
X

iff for all ε > 0, there exist finite ε-nets S ⊂ X and Sn ⊂ Xn, such that
Sn−→GH

S and, moreover, |Sn| = |S|, for large enough n.

The importance of the proposition above does not reside solely in the fact
that compact metric spaces can be approximated by finite ε-nets (after all,
just the existence of some approximation by such sets is hardly surprising),
but rather in the fact that, as we shall shortly see, it assures the convergence
of geometric properties of Sn to those of S, as Xn−→GH

X. A very important –
and extremely significant for us here – consequence is that of the intrinsic
metric i.e. the metric induced by a length structure (i.e. path length) by a
metric on a subset of a given metric space. (The motivating example, both
in the theoretical setting and for this study is that of surfaces in R3.)

Moreover, the sequence {Sn}n≥1 of ε-nets corresponds to the situation
encountered frequently in practice, where in many instances one has to
approximate a smooth object (manifold), having a finite number of fixed
(“sampling”) point, by a sequence of PL (metric, discrete) approximations,
having also a fixed set of “marked” points that also converge to the “sam-
ples” chosen on the target manifold.
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Proposition 2.9 can also be reformulated in an equivalent, but less con-

cise and elegant manner that is, on the other hand, far more useful in con-

crete instances as well as being more familiar for the Applied Mathematics

community:

Proposition 2.10. Let X,Y be compact metric spaces. Then:

(a) If Y is a (ε, δ)-approximation of X, then dGH(X,Y ) < 2ε+ δ.

(b) If dGH(X,Y ) < ε, then Y is a 5ε-approximation of X.

Recall that ε-δ-approximations are defined as follows:

Definition 2.11. Let X,Y be compact metric spaces, and let ε, δ > 0.

X,Y are called ε-δ-approximations (of each-other) iff: there exist sequences

{xi}Ni=1 ⊂ X and {yi}Ni=1 ⊂ Y such that

(a) {xi}Ni=1 is an ε-net in X and {yi}Ni=1 is an ε-net in Y ;

(b) | dX(xi, xj)− d(yi, yj) | < δ for all i, j ∈ {1, ..., N}.

An (ε, ε)-approximation is called, for short an ε-approximation.

Amongst metric spaces, those whose metric d is intrinsic, are called

length spaces and are of special interest in Geometry. The following theorem

shows that length spaces are closed in the Gromov-Hausdorff topology:

Theorem 2.12. Let {Xn}∞n=1 be length spaces and let X be a complete

metric space such that Xn−→GH
X. Then X is a length space.

Using the language of ε-approximations one can prove the following the-

orem and corollary, that are of paramount importance, not only for the goals

of this overview, but in a far more extensive and powerful context (see e.g.

[43] and [24]):

Theorem 2.13 (Gromov). Any compact length space is the GH-limit of a

sequence of finite graphs.

The proof of the theorem above is constructive and thus potentially

adaptable for practical applications (especially in Graphics, Imaging and

related fields). Because of this reason we bring it below:

Proof. Let ε, δ (δ 
 ε) small enough, and let S be a δ-net in X. Also, let

G = (V,E) be the graph with V = S and E = {(x, y) | d(x, y) < ε}. We

shall prove that G is an ε-approximation of X, for δ small enough (more

precisely, for δ < ε2

4diam(X)).
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But, since S is an ε-net both in X and in G, and since dG(x, y) ≥
dX(x, y), it is sufficient to prove that:

dG(x, y) ≤ dX(x, y) + ε .

Let γ be the shortest path between x and y, and let x1, ..., xn ∈ γ, such
that n ≤ length(γ)/ε (and dX(xi, xi+1) ≤ ε/2). Since for any xi there exists
yi ∈ S, such that dX(xi, yi) ≤ δ, it follows that dX(yi, yi+1) ≤ dX(xi, xi+1)+
2δ < ε.

Therefore, (for δ < ε/4), there exists an edge e ∈ G, e = yiyi+1. From
this we get the following upper bound for dG(x, y):

dG(x, y) ≤
n∑

n=0

dX(yi, yi+1) ≤
n∑

n=0

dX(xi, xi+1) + 2δn

But n < 2 length(γ)/ε ≤ 2diam(X)/ε. Moreover: δ < ε2/4 diam(X). It
follows that:

dG(x, y) ≤ dX(x, y) + δ
4diam(X)

ε
< dX(x, y) + ε .

Thus, for any ε > 0, there exists a graph an ε-approximation of X by a
graph G, G = Gε. Hence Gε−→ε X.

In fact, one can infer the more stronger (and useful in applications)

Corollary 2.14. Let X be a compact length space. Then X is the Gromov-
Hausdorff limit of a sequence {Gn}n≥1 of finite graphs, isometrically embed-
ded in X.

Remark 2.15. Some care still should be paid when using the theorem above.
Indeed:

1. If Gn
→
εX, Gn = (Vn, En). If there exists N0 ∈ N such that

(∗) |En| ≤ N0, for all n ∈ N ,

then X is a finite graph.
2. If condition (∗) is replaced by:

(∗∗) |Vn| ≤ N0, for all n ∈ N ,

then X will still be always a graph, but not necessarily finite.
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Remark 2.16. In fact, one can strengthen the result of Theorem 2.13. Indeed,
it was shown by Cassorla [26] that compact inner metric spaces can be, in
fact, Gromov-Hausdorff approximated by smooth surfaces that, moreover,
are embedded in R3. The significance for Graphics and Imaging of this result
is evident and it is not lost on Cassorla, either: It shows that one can, in fact,
visualize in R3 (up to some predetermined but arbitrarily small error) any
compact inner metric space. This is a truly surprising fact. Unfortunately, it
usually happens with “gifts”, it comes at a price: The genus of the approx-
imating surfaces can not remain bounded. (So, in effect, to obtain a good
approximation even of a simple space, via the method given in the theorem’s
proof, one has to increase the topological complexity of the approximating
surface.)

Note that there is no geometric (curvature) restriction on the approxi-
mating surfaces. In fact, the author also states – in what represents a seem-
ingly still unpublish result – that one can approximate the given spaces with
a series of smooth surfaces having Gaussian curvature bounded from above
by −1. However, this cames at the price of loosing the embeddability in R3

of the approximating surfaces. We shall address the problem of Gromov-
Hausdorff approximating, under curvature control, of surfaces by surfaces
in the next paper of the series, by presenting a result of Brehm and Kühnel,
as well as our own extension [93] of their result to the metric curvatures (see
the following section) context.

Before concluding this remark, we should add a few words regarding
Cassorla’s proof, especially so since, as we mentioned above, it may prove
to be useful for visualization purposes: He begins by constructing an ap-
proximation by graphs, following Gromov, then he considers the (smooth)
boundaries of canonical tube neighborhoods (or, in other words, he builds
the smooth surfaces having as axes (or nerve) the graph constructed previ-
ously). Since we shall encounter a very similar construction, but rather more
precise, in the proof of Brehm and Kühnel theorem, we do not elaborate here
anymore on Cassorla’s one.

Remark 2.17. For more (and far-reaching) results regarding both the
Gromov-Hausdorff approximations of metric spaces graphs, as well as that
by surfaces and other “nicer” spaces, see [43], 3.32.–3.34.12+

.

2.0.0.6. The Lipschitz distance We bring briefly here few facts about an-
other type of distance between metric spaces, that is closely related to the
Hausdorff distance but may prove more easy to compute in many situations,
namely the Lipschitz distance. (We do not elaborate more on this theme be-
cause we do make appeal to it in the sequel. For further details see [43], [24]
or, for a “digest” somewhat more detailed than this one, [80].)
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This definition of the Lipschitz distance is based upon a very simple
(that is to say: very intuitive, motivated by routine, every day physical
measurements) idea: It measures the relative difference between metrics,
more precisely it evaluates their ratio. That is to say that the metric spaces
(X, dX), (Y, dY ) are close (to each other) iff there exists a homeomorphism

f : X
∼→ Y , such that dY (f(x),f(y))

dX(x,y) ≈ 1, for all x, y ∈ X.

Technically, we give the following

Definition 2.18. Let (X, dX), (Y, dY ) be metric spaces. Then the Lipschitz
distance between (X, dX) and (Y, dY ) is defined as:

(2.5) dL(X,Y ) = inf
f:X

∼→Y
f bi−Lip.

logmax (dilf, dilf−1)

where the dilatation dilf of f is defined as follows:

Definition 2.19. Let (X, dX), (Y, dY ) be metric spaces. Given a Lipschitz
map f : X → Y , the dilatation dilf of f is defined as

(2.6) dil f = sup
x 	=y∈X

dY (f(x), f(y))

dX(x, y)
.

We have the following important result (analogous to Proposition 2.2):

Proposition 2.20. The Lipschitz distance dL is a proper distance on the
space of isometry classes of compact metric spaces.

(This means, in particular, that dL(X,Y ) = 0 iff X and are are isometric
(not only homeomorphic) – a fact of clear importance in any applicative
setting.)

Remark 2.21. The following facts are very important in understanding the
Lipschitz distance and its relationship with the Gromov-Hausdorff metric:

1. Notice that in the definition of dL(X,Y ) one presumes the existence of
homeomorphisms between X and Y , that are supposed, moreover, to
be bi-Lipschitz. In the absence of such homeomorphisms one defines
the Lipschitz distance between X and Y as dL(X,Y ) = ∞. It follows
that the Lipschitz distance is not suited for measuring the distance
between spaces that are not homeomorphic (a fact that one should
keep in mind in applications).

2. The Lipschitz topology is stronger than the Gromov-Hausdorff one,
therefore convergence in dL implies the convergence in dGH (but, in
general, not the other way around).
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3. Since the computation of the Gromov-Hausdorff distance between two

given metric spaces necessitates the construction of a new, “universal”

one, the actual computation can be quite problematic even in simple

cases. A way of circumventing this obstruction is by making appeal,

as in the definition of the Lipschitz metric, to a (properly defined)

notion of distortion. However, in this case, instead of unctions one

makes appeal to the more general notion of correspondence – for further

details see, again, [43], [24] and, for a very brief summary, [80].

4. Both of the metrics introduced above have their respective drawbacks:

The Lipschitz metric presumes that the spaces are homeomorphic

(since otherwise their distance infinite, hence unable to encode any

further information); while the Gromov-Hausdorff distance is not, in

general, finite if the spaces are not bounded (which is also quite re-

strictive, not just for geometric ends, but in Imaging also). Therefore,

one is induced to combine the two metrics into a single one, such that

each of the basic metrics “blurs” the defects of the other one. This is

done in a rather standard manner5 as follows:

Definition 2.22. The Gromov-Hausdorff-Lipschitz distance between

two metric spaces X and Y is defined as:

(2.7) dGHL(X,Y ) = dGH(X,X1) + dL(X1, Y1) + dGH(Y1, Y )

where X1, Y1 are arbitrary given metric spaces.

For further details and many beautiful applications of this metric the

reader is advised to consult [43], 3.C., and we contend ourselves with

concluding this “detour” with the following (suggestive, as far as all

kinds applications are concerned) definition:

Definition 2.23. Two metric spacesX, Y are said to be quasi-isometric

iff dGHL(X,Y ) < ∞.

Remark 2.24. As we mentioned above, in many instances it is more easy to

measure the Lischitz distance, rather than the Hausdorff (hence also than the

Gromov-Hausdorff) one. It is only natural, therefore, that people looked into

its applications into Graphics and Imaging – see [20]. Again, we suggested

this previously in [80].

5For other applications of this method in the construction of new metrics from
old ones, see [116].
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3. Curvatures – a primary

We begin our overview of curvature, both in its classical (smooth) and metric
avatars, with the basic – and motivating (one might say “inspirational”) 1-
dimensional case:

3.1. Curves

We start with the basic

3.1.1. The classical (smooth) case The definition of curvature for
plane curves is based upon the classical (indeed, the idea goes back to An-
cient Greece) notion of curvature of a circle: K ≡ 1/R, where R denotes the
radius of the circle. More precisely, the curvature of the curve at the point
p is the curvature of the “best fitting” circle to γ at p (and, of course, the
curvature of a straight line is zero). It can be described as the circle that
separates between the two families of circles tangent at p and having centers
on the normal to the curve in the point p, those of greater radius lying on
one side of the curve, and those of smaller radius on the other. Clearly, due
to continuity arguments, the “best fitting” circle itself “cuts” the curve, i.e.
part of the curve will be contained in the interior, and part in the exterior
of the circle (except as such critical points like, for instance, the vertices of
an ellipse).6 This however is a rather elusive property, in the sense that it is
not readily computable. Therefore, following Newton (1665), we define the
osculatory circle as the limit of circles that have 3 common points with the
curve. If the curve γ ⊂ R2 is the image of the function c : I = [0, 1] → R2,
then the osculatory circle at γ0 = c(t0) is defined as:

C(γ0) = Cγ(γ0) = lim
γ1,γ2→γ0

C(γ0, γ1, γ2)

= lim
t1,t2→t0

C(t0, t1, t2) ; γi = γ(ti) , i = 1, 2 .

Of course, the curvature κγ(γ0) of γ at γ0 is defined to be as 1/R
(
C(γ0)

)
,

where R
(
C(γ0)

)
is the radius of C(γ0) (see Figure 1). This – namely the fact

that the smaller the radius, the “benter” is the circle – is a quite intuitive
idea; just recall Saint Exupery’s Little Prince on his planet. Moreover, even
in (meta-) mathematics it was used by Soddy in his “Kiss Precise” on the
formula for the computation the radii of 4 circles tangent to each other (see,
for instance, [30], p. 15). (Also, by letting R go to infinity, it also fits the
convention of lines having zero curvature.)

6The author wishes to thank Slava Matveev for reminding him of this fact.
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Figure 1: The osculatory circle. Note that the depicted case represents a
“nice” critical point. In general the osculating circle will “cut” the curve.

It is not difficult to prove that the osculatory circle satisfies, indeed, the
maximality property mentioned above (see, e.g. [111]).

Moreover, its elements, i.e. radius and center, are easily computable if the
curve is given by a Ck-parameterization, k ≥ 2. More precisely, the radius of
curvature RC = R

(
C(γ0)

)
and the center of curvature OC = R(C(γ0)) of γ

at γ0 are respectively given by: RC = ||C′(t0)||3
||C′(t0)×C′′(t0)|| , OC = γ0+R

(
C(γ0)

)
n0,

where n0 denotes the normal to γ at the point γ0. (Here “|| · ||” denotes the
Euclidean norm on R2.)

However, it should be stressed already here that, at least in sophomoric
philosophy, “curvature is the second derivative”. In a weak sense this is cor-
rect, and we shall encounter the second derivative, in its many guises, fur-
ther along, when discussing higher dimensional phenomena. Unfortunately,
curves not always come with a specific parametrization, this being the case
in various applications, such as those encountered in Graphics, Imaging, etc.
where no such parametrization is to be presumed, since real-world objects
do not come equipped with a “ready-made” parametrization, nor is it, in
general, possible – let alone easy – to find one. This is one of the reasons
– and, for us, the main reason – one is driven to consider such generalized
notions of curvature, as the metric ones we concentrate in the present book-
chapter. (The other reason is, of course, the purely mathematical drive of
extending notions to more-and-more general spaces.)

However, one should not through out the baby together with the bath-
water, as the saying goes, and in a sense, the dictum above remains correct,
for a good notion of “abstract” curvature – be it metric, combinatorial,
discrete, etc. – should still recapture some essential properties of the second
derivative7 (as we shall, indeed, see in the sequel).

3.1.2. Metric curvatures The simplest and most direct way of defining
curvature of curves in a metric space is to closely mimic the definition of

7or, more correctly, “a” second derivative – see below.
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the osculatory circle by first defining the (metric) curvature of triangles (or
triples of points), by defining the curvature K(T ) of a triangle T to be just
1/R(t), where R(T ) is the radius of the circle circumscribed to the triangle.
This is easily done by using some elementary high-school formulas (again,
see [30]), as follows:

Definition 3.1 (Menger curvature). Let (M,d) be a metric space, and let
p, q, r ∈ M be three distinct points. Then:

KM (p, q, r)(3.1)

=

√
(pq + qr + rp)(pq + qr − rp)(pq − qr + rp)(−pq + qr + rp)

pq · qr · rp ;

is called the Menger curvature of the points p, q, r. (Here and throughout
this section the distance between the points p, q is denoted, for brevity, by
pq, etc.)

To define the Menger curvature at a given point on a curve, one passes
to the limit (precisely like in the classical osculatory circle definition):

Definition 3.2. Let (M,d) be a metric space and let p ∈ M be an accumu-
lation point. We say that M has at p Menger curvature κM (p) iff for any
ε > 0, there exists δ > 0, such that for any triple of points p1, p2, p3, satisfy-
ing d(p, pi) < δ, i = 1, 2, 3; the following inequality holds: |KM (p1, p2, p3)−
κM (p)| < ε.

One could object that, in the smooth setting, one only needs two points
to converge to a third, fixed one, hence one could simplify accordingly
Menger’s definition of curvature as follows:

Definition 3.3 (Alt curvature). Let (M,d) be a metric space and let p ∈
M be an accumulation point. Then M is said to have at the point p Alt
curvature κA(p) iff the following limit exists

(3.2) κA(p) = lim
q,r→p

K(p, q, r) ;

where K(p, q, r) = 1/R and R is the circumradius of the triangle of vertices
p, q, r.

However, it turns out that Alt’s curvature is, in fact, a more general
notion then Menger’s curvature. Since the generality in question applies to
rather esoteric spaces, and since, on the other hand, Menger’s curvature
proved to be strong enough to deal (quite efficiently) with such problems
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as finding estimates (obtained via the Cauchy integral) for the regularity of
fractals and the flatness of sets in the plane (see [69]), it’s generality seems
to suffice for the (interested) mathematical community. Still, at least in the
majority practical instances, the two types of curvatures coincide. The most
notable – and important – instance is that of the Euclidean plane, where
this equivalence (that prompted Alt’s idea) is used more then once to find
different interpretations of curvature (see, for instance, [111], [55], [31]).

Unfortunately, both κM (p) and κA(p) suffer from the same imperfec-
tion: since they are both modeled closely after the Euclidean Plane, they
convey this Euclidean type of curvature upon the space they are defined
on. To address this problem, another notion of metric curvature that does
not closely mimic R2, therefore is better fitted for generalizations (e.g. for
the metrization of graphs – see [97]), has been developed by Haantjes [51],
adapting to metric spaces an idea introduced by Finsler in his PhD Thesis:

Definition 3.4 (Haantjes curvature). Let (M,d) be a metric space and let
c : I = [0, 1]

∼→ M be a homeomorphism, and let p, q, r ∈ c(I), q, r �= p.
Denote by q̂r the arc of c(I) between q and r, and by qr line segment from
q to r.

Then c has Haantjes (or Finsler-Haantjes) curvature κH(p) at the point
p iff:

(3.3) κ2H(p) = 24 lim
q,r→p

l(q̂r)− d(q, r)(
l(q̂r)

)3 ;

where “l(q̂r)” denotes the length – in the intrinsic metric induced by d – of
q̂r.

Figure 2: Haantjes curvature (of an arc).
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Remark 3.5. Alternatively, since for points/arcs where Haantjes curvature

exists, l(q̂r)
d(q,r) → 1, as d(q, r) → 0 (see [51]), κH can be defined (see, e.g. [57])

by

(3.4) κ2H(p) = 24 lim
q,r→p

l(q̂r)− d(q, r)(
d(q, r))

)3 ;

In applications it is this alternative form of the definition of Haantjes
curvature that will prove to be more malleable, as we shall illustrate shortly.

Note that, while highly intuitive and definable for a very large class of
curves in general rather metric spaces, this definition of curvature would
remain nothing more than a nice exercise in esoteric pastime, were it not for
the following result:

Theorem 3.6. Let γ ∈ C3 be smooth curve in R3 and let p ∈ γ be a
regular point. Then the metric curvature κH(p) exists and equals the classical
curvature of γ at p.

Simply put, for smooth curves in the Euclidean plane (or space), Haant-
jes curvature coincides with the standard (differential) notion, proving that,
it represents, indeed, a proper generalization of the classical concept of cur-
vature.

3.1.2.1. Curvature’s comparison The question of the relationship between
the two basic types of curvatures considered above, namely those proposed
by Menger and Haantjes, respectively, arise naturally. Apparently, the Haan-
tjes Curvature is a much more restricted notion than the Menger Curvature,
since it applies only to rectifiable curves (contradicting to some extent the
observation above regarding Menger curvature’s essentially Euclidean na-
ture). However, it turns out that the existence of κM in a point of a (“nice
enough”) space implies that the space in question is, locally, a rectifiable
arc, hence κH is also definable at that point. More precisely, we have the
following theorem due to Pauc [70]:

Theorem 3.7 (Pauc). Let (X, d) be a metric continuum, and consider p ∈
X. If κM (p) exists, then X is a rectifiable arc in a neighbourhood of p.

Corollary 3.8. Let (X, d) be a metric arc. If κM (p) exists at all points
p ∈ X, then X is rectifiable.

So, existence of one of the said curvatures assures the existence of the
other (one of the implications being trivial). Moreover, it turns out that, in



274 Emil Saucan

fact, the two definitions coincide, whenever then are both applicable, as the
following theorem shows:

Theorem 3.9 (Haantjes). Let γ be a rectifiable arc in a metric space (M,d),
and let p ∈ γ. If κM and κH exist, then they are equal.

This allows us to freely use any one of them, according to the specific
requirements of a certain application. (However, as we have indicated above,
we find Haantjes curvature to be far more flexible and adaptable to the
modeling of various practical problems.)

3.1.2.2. Geodesics’ characterization Another natural question is, whether
another role of curvature in Differential Geometry, namely characterization
of geodesics segments, via geodesic curvature (see, e.g. [13]) can be recap-
tured by metric curvatures. The answer is positive, at least for a large class
of metric spaces, as the following theorem of Haantjes [52] shows:

Theorem 3.10. Let (X, d) be a metric space and let γ ⊂ X be a ptolemaic
arc (in the induced metric). γ is a geodesic segment if κH(p) = 0, for any
p ∈ γ.

(We do not dwell here into the definition of ptolemaic metric spaces,
since this would take us too far afield, and we refer the reader to [17] or
[18].)

Given Theorem 3.9, one can formulate the results above also in terms of
Menger curvature. (A direct proof is also available – see, e.g. [17].)

3.1.2.3. Curvature and excess A notion of metric geometry that has been
proven to be flexible and efficient, in many mathematical contexts, not least
in the study of the Global Geometry of Manifolds (see, e.g., [44], [45] and
the bibliography therein), is the one of excess:

Definition 3.11 (Excess). Given a triangle8 T = �(pxq) in a metric space
(X, d), the excess of T is defined as

(3.5) e = e(T ) = d(p, x) + d(x, q)− d(p, q).

A local version of this notion was introduced (seemingly by Otsu [67]),
namely the local excess (or, more precisely, the local d-excess):

(3.6) ed(X) = sup
p

sup
x∈B(p,ρ)

inf
q∈S(p,ρ)

(e(�(pxq)) ,

8not necessarily geodesic
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where ρ ≤ rad(X) = infp supq d(p, q), (and where B(p, ρ), S(p, ρ) stand –
as they usually do – for the ball and respectively sphere of center p and
radius ρ).

In addition, global variations of this quantity have also been defined:

(3.7) e(X) = inf
(p,q)

sup
x

(e(�(pxq)) ,

and, the so called global big excess (see [67]):

(3.8) E(X) = sup
q

inf
p
sup
x

(e(�(pxq)) .

(Of course, in all practical settings, “sup” and “inf” replace “max” and
“min” respectively, for all the instances above.)

Evidently, (local) excess and content are closely related notions, since
the geometric “content”, so to say, of the notion of local excess being that,
for any x ∈ B(p, d), there exists a (minimal) geodesic γ from p to S(p, d)
such that γ is close to x. To be more precise, using a simplified notation and
discarding (for convenience/simplicity) the normalizing constant “24”, one
has the following relation between the two notions:

(3.9) κ2H(T ) =
e

d3
,

where ρ = ρ(p, q), and where by the curvature of a triangle T = T (pxq)
we mean the curvature of the path p̂xq. Thus Haantjes curvature can be
viewed as a scaled version of excess. Keeping this in mind, one can define
also a global version of this type of metric curvature, namely by defining,
for instance:

(3.10) κ2H(T ) =
e

ρ3
,

or

(3.11) κ2H(X) =
e(X)

diam3(X)
,

as preferred.
Of course, one can proceed in the “opposite direction”, so to speak, and

express the proper (i.e. point-wise) Haantjes curvature via the definition
(3.6) of local excess, as

(3.12) κ2H(x) = lim
ρ→0

e(x).
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Remark 3.12. The metric curvatures discussed above were, unfortunately,
largely forgotten for a long period of time. As already mentioned, Menger’s
curvature made, rather recently, quite a “revival” in Analysis. Sadly, this
can not be said about the Haantjes curvature (even though, in many practi-
cal applications, it is the more adjustable and useful of the two). Still, there
is a ray of light, out of this darkness, so to say: Modern (and more “tight”)
versions of it (and of Menger’s curvature) are devised in the modern litera-
ture [4], in conjunction with the extensively used notion of Alexandrov space
(see below).

We prefer the classical versions of these types of curvatures, i.e the
Menger and Haantjes curvatures, to their more modern counterparts, for
a number of (related) reasons:

• They are simpler and far more intuitive, thence conducive towards
applications;

• They are more ready to lend themselves to discretization, hence admit
easy and direct “semi-discrete” (or “semi-continuous”) versions, as the
one presented in Section 3.1.3 above;

• They are applicable to more general spaces, fact that represents a
further incentive in their application in discrete (i.e. Computer Science
driven) settings;

• While the Alexander-Bishop variants are more “tight”, so to say, they
coincide with their classical counterparts on all but the most esoteric
spaces;

• No apriori knowledge of the global geometry of the ambient space (i.e.
Alexandrov curvature) is presumed, nor is it necessary to first deter-
mine the curves of constant curvature (see [4]) in order to compute
these curvatures; furthermore

• They are easy to compute in a direct fashion, at least in the discrete
setting (at least amongst those discrete versions we encountered).

3.1.3. Metric curvatures – applications As already noted, Haantjes
curvature lend itself naturally to a various applications and, indeed, we
have applied it to a number of practical problems, which we briefly review
here.

3.1.3.1. Imaging The most obvious of the applications of the metric cur-
vatures discussed above is as approximations to principal curvatures (see
Section 3.2.1), hence the computation of Gauss and mean curvature, of tri-
angulated (polyhedral) surfaces, and their manifold uses in Imaging, Graph-
ics and related fields. While computing them point-wise (pixel-wise) and
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without additional filtering for images gives only mediocre results (see [97],

Figure 8), using larger neighborhoods (masks) improves the approximation

(see Figure 3 below). Here an average Haantjes curvature is computed, de-

fined as κAvg = (κMax(pix) − κmin(pix))/κMax(pix), where first curvature

is computed in 4 directions, namely horizontal, vertical and two diagonal

directions κh, κv, κd1
, κd2

. (The specific average considered here was inspired

by the standard Image Processing definition of the contrast C(I) of an image

I, C(I) = (IMax − Imin)/IMax.) The computation of the average Haantjes

curvature for images, on a range of increasing neighbourhoods is intertwined

with our next application:

Figure 3: The average Haantjes curvature κAvg of a natural image (above),
computed locally (below, left), and on 5× 5 windows (below, right).

Computing principal curvatures, mainly κMax, using either Haantjes or

Menger curvature has yet another use in Imaging, more precisely in Med-

ical Imaging, where the flattening with controlled distortion of (noisy, in

many cases) images is an important task in certain applications. To this

end, we have shown – using a theoretical result of Gehring and Väisälä

[38] – that “patches” of triangular (polygonal) meshes can be mapped quasi-

conformally and, indeed, quasi-isometrically on the plane, as long as the nor-

mal n to the given PL surface S does not deviate, on any simply connected

region (patch) U ⊆ S, “too much” from an initial value n0 (see [98]). Note
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that quasi-conformal mappings, are, indeed, as their name implies “almost
preserving” angles (for the proof in the 2-dimensional case, see [3]. Recall
also that quasi-isometric mappings are defined as follows:

Definition 3.13. Let D ⊂ Rn be a domain. A homeomorphism f : D → Rn

is called a quasi-isometry (or a bi-lipschitz mapping), if there exists 1 ≤ C <
∞ such that

(3.13)
1

C
|p1 − p2| ≤ |f(p1)− f(p2)| ≤ C|p1 − p2| , for all p1, p2 ∈ D;

where “| · |” denotes the standard (Euclidean) metric on Rn.
C(f) = min{C | f is a quasi−isometry} is called the minimal distortion

of f (in D).

(In the definition above we have restricted ourselves solely to the setting
relevant here.)

In our adaptation of Gehring and Väisälä’s theoretical result, from
smooth surfaces to triangular meshes, we had to make a choice of the nor-
mal and of a tangent plane at a vertex of the triangulation; which we did by
choosing (as it is common in Graphics) n0 to be the mean of the normals to
the faces adjacent to the considered vertex. The choice of the starting point
(which determines the size of the patch U) was shown to be best done by
considering the Gaussian curvature, more precisely its (classical by now, see
e.g. [55], [49]) discretization as angular defect. (For details, including precise
algorithms and examples, see [98].)

This somewhat empiric approach can be made rigorous by making appeal
to results of Semmes (see [43], Appendix B and the relevant bibliography
within). Technically put, the deviation of the normal to a surface S can be
controlled by the || · || norm:

(3.14) ||n||∗ = sup
x∈S,R>0

1

|B(x,R) ∩ S|

∫
|B(x,R)∩S|

|n(y)− nx,R|dy ,

where nx,R is the normal mean on B(x,R) ∩ S, that is

(3.15) nx,R =
1

|B(x,R) ∩ S|

∫
B(x,R)∩S

n(y)dy .

The geometric condition we seek is expressed using ||n||∗ via

Definition 3.14. Sd is called a chord-arc surface with small constant
(CASSC) if
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(i) ||n||∗ ≤ ε, and
(ii)

(3.16) sup
x∈S,R>0

sup
y∈B(x,R)∩S

1

R
| < x− y, nx,R > | ≤ ε1 .

Indeed, condition (3.16) of the preceding definition takes place iff for any
x ∈ S and for all R > 0, the set B(x,R)∩S remains close to the hyperplane
through x normal to nx,R. Formally, there exist a hyperplane H = Tnx,R

such that, for any y ∈ B(x,R) ∩ S the following holds:

(3.17) d(y, Tnx,R
) ≤ ε2R .

In metric terms we can formulate the following equivalent definition:

Definition 3.15. The surface S is called ε-flat if

(3.18) l(γ) ≤ (1 + ε)|x− y| ,

and

(3.19) (1− ε′)AreaEucl(B
2(R)) ≤ |B(x,R)∩S| ≤ (1+ ε′)AreaEucl(B

2(R)) ,

R being as above.

Note that a surface being ε-flat represents a stronger statement than
the simple quasi-isometry condition (3.18), due to the low area distortion
expressed by condition (3.19).

Remark 3.16. Note that all the definitions and conditions above can be triv-
ially extended to higher dimensions (only “Area” being replaced by “Vol”,
of course).

As expected, the deviation of the normal (hence flatness) can controlled
by curvature, more precisely if S has “small curvature in the mean”, i.e. if

(3.20)

∫
S
(kMax(x))

2dx = ||kMax||L2 < δ ,

for small δ, then S is ε-flat.

Remark 3.17. As above one can extend, mutatis mutandis, this condition to
any dimension.

Remark 3.18. Condition (3.20) is, in fact, stronger that ε-flatness, because
it requires higher order derivatives.
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Remark 3.19. Condition (3.20) is scale invariant.

For a surface to have small curvature in the mean does not just imply

mere ε-flatness; in fact condition implies (see [114]) that there exists a (1+η)-

bilipschitz parameterization of M , where η = η(δ), and where η → 0, when

δ → 0.

It follows, therefore, that using metric curvatures (Haantjes or Menger)

provides us with a powerful tool for flattening and bilipschitz parametriza-

tion of noisy and “rough” data.

Another immediate application stems from Theorem 3.10, namely using

Haantjes curvature, “en lieu” of geodesic curvature, to determine geodesics

on triangular (polygonal) meshes. (Some promising first experiments have

already been undertaken.)

3.1.3.2. Wavelets While perhaps unexpected, the connection between scale

and curvature (more specific Haantjes curvature) is quite evident, once one

is willing to notice and accept it. Indeed, consider the generic PL wavelet

ϕ in Figure 4 below, and let ÂE be the arc of curve between the points A

and E, and let d(A,E) is the length of the line-segment AE. Then

(3.21) l(ÂE) = a+ b+ c+ d ; d(A,E) = e+ f.

Using the alternative formula for the Haantjes curvature (3.4), the fol-

lowing discretization of the Haantjes curvature is, therefore, natural:

(3.22) κ2H(ϕ) = 24[(a+ b+ c+ d)− (e+ f)]/(e+ f)3.

In addition to the total curvature of the wavelet ϕ, one can also compute

the “local” curvatures of the partial wavelets ϕ1 = ÂBC and ϕ2 = ĈDE,

Figure 4: A generic PL wavelet.
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that is the curvatures at the “peaks” B and D:

(3.23) κ2H(B) = 24(a+ b− e)/e3 ,

and

(3.24) κ2H(D) = 24(c+ d− f)/f3 ,

as well as the mean curvature of these peaks:

(3.25) HH(ÂE) = [κH(B) + κH(D)]/2.

Even though these variations may prove to be useful in certain applica-

tions, we believe that the correct approach, in the sense that it best corre-

sponds to the scale of the wavelet, would be to compute the total curvature

of ϕ. Of course, there is nothing special about PL wavelets (except their sim-

plicity) and one can compute the Haantjes curvature for the Haar scaling

function and wavelet, as well as for other, smooth families of wavelets (see

[103], [6]). The connection scale-curvature for a number of families of curves,

as well as some general estimates, were given in [103], [6]. (Note also that,

via the principal curvatures of a surfaces, one can extend the scale-curvature

duality to curvaturelets, ridgelets and shearlets, as well [103].)

A first application of this connection is presented in [6], where the scale-

curvature connection is employed to texture analysis and segmentation in

images (see, for example, Figure 5 as well as [6]). In addition, in both papers

mentioned above, an automatic scale detection is suggested (as well as the

obvious use of wavelet curvature as edge detector).

More important than any specific application, is the fact that the scale-

curvature duality allows for a first bridging, even if only a partial one, of the

gap between the two basic, largely non-intersecting, approaches prevalent in

Image Processing and related fields: The geometric one, that is closely re-

lated to the Graphics community philosophy; and the more classical, Fourier

Analysis/Wavelets driven one. In fact, it is quite natural to replace the

vaguely defined (but intuitively clear) concept of “scale”, to the classical,

well defined one of “curvature”, by formally defining scale by means of the

Haantjes curvature, at least in the purely theoretical setting. This is more

relevant in the context of 2-dimensional (as well, of course, as higher dimen-

sional ones), nonseparable signals, where a proper notion of scale is far less

intuitive then in the 1-dimensional, classical, case.
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Figure 5: Texture segmentation of an urban landscape image (above): Aver-
age Haantjes curvature (bottom, left) and the texture segmentation of image
(bottom, right), using 7 scales.

3.1.3.3. DNA microarray analysis Given that combinatorial curvature at

a vertex v of a graph G, i.e.

(3.26) C(v) =
2#T

ρ(v)(ρ(v)− 1)
,

where #T denotes the number of triangles with vertex v and ρ(v) denotes

the degree of the vertex v, can also be expressed in metric terms as

(3.27) C(v) = 2− < d(v) >,

where < d(v) > denotes the mean distance (in the combinatorial metric)

from v; we have generalized, in [96], the by now common combinatorial

curvature, both to vertex and edge weighted graphs, using a discretization

of the Haantjes curvature, to obtain a more geometric discrete curvature

for weighted graphs. Our first suggested application was for clustering, with

specific applications in DNA micro-array analysis, but other uses are also

natural (see the paragraph below).
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3.1.3.4. Other applications Given the proven versatility of Haantjes cur-
vature, it is not difficult to contemplate its use in various other settings
other than those mentioned above. Amongst these, we mention some ob-
vious one, such as Pattern Recognition (via clustering, for instance), more
general Manifold Learning applications (also in conjunction with other met-
ric invariants of [44], [45]); routing (e.g. hole detection) in Communication
Networks (using the metric curvature characterization of geodesics); Infor-
mation Geometry; etc. (Some of these directions represent work in progress
with David Gu and Jie Gao.)

3.1.3.5. Menger curvature in pattern recognition We have concentrated on
the applications of Haantjes curvature, since we find it to be conceptually
more flexible. However, given the equivalence between Haantjes and Menger
curvatures on rectifiable metric arcs, one can apply Menger curvature as
well in most of the instances mentioned above (with the exception of the
application to wavelets where the discretization considered makes direct ap-
peal to the definition of Haantjes curvature. However, we mention here an
application [39] to Pattern Recognition of Menger curvature per se, or rather
of the Menger curvature measure:

(3.28) μ(T ) = μp(T ) =
∑
T∈T

κpM (T )(diamT )2 ,

for some p ≥ 1, where κM (T ) denotes the Menger curvature (of the triangle
T ). (For the specific application and further details, see [39].)

3.2. Surfaces

Precisely as in the 1-dimensional case, we first introduce the notion of cur-
vature in the classical (smooth) case, then we pass to its generalizations to
metric space setting.

3.2.1. The classical (smooth) case We have introduced in the previ-
ous subsection the notion of osculatory circle and we have remarked that it
admits further generalizations. One would expect that it would work partic-
ularly well for one of the most immediate generalization of plane curves, i.e.
for surfaces in R3. Unfortunately, this idea, however nice and natural, does
not work for surfaces – the osculatory sphere (introduced first by Fuss, in
1829) can not be used to define a notion of curvature for surfaces (see 7 (b)
to intuitively understand the obstruction).
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Figure 6: The Normal Mapping.

The next natural idea, which was the one in use before the seminal work
of Gauss, is to “cut” the surface in all possible directions (by “dissecting”
the surfaces with normal planes) and to define curvature for the surfaces S
via the curvatures of the resulting sections (curves). However, the idea above
is far from satisfactory, at least at first view, since there exist infinitely many
directions and it is hard to ascertain in what way do the sectional curvatures
represent the curvature of the surface. We shall see presently how Gauss this
quandary, too.

However, his approach was different and revolutionary.9 His most in-
spired idea was to define curvature as a measure of a surface from “being
straight” or equivalently, a measure of how much a surface has to be bent
in order to obtain a certain standard surface, i.e. the unit sphere S2. Gauss
achieved this by considering the normal mapping ν : S → S2 (see Figure 6).
Then the Gauss curvature of S at p is defined as:

(3.29) K(p) = KS(p) = lim
diam(R)→0

Area(ν(R))

Area(R)

where R is a simple region, p ∈ R ⊂ S.

A sign is attached to K(p) in a natural way – see Figure 7 below.

Remark 3.20. Note that the same basic idea is also applicable for plane
curves10 – see, e.g. [111], for details and the historical development of this

9It is worthwhile pausing in order to mention that Gauss came up with the new
insight after abandoning Mathematics for a while (feeling dissatisfied with it and
with his achievements) and working for a while in a “high-tech” job of a period,
namely in cadastral mensuration and gaining – as we shall see – new geometric
insights.

10Of course, in this case, arc length (or angle measure) replaces area.
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Figure 7: Gauss’ Curvature Definition: (a) K(p) > 0 and (b) K(p) < 0.

ideas and, in particular, “the state of the art” before Gauss, and his far-
reaching, revolutionary role in the development of Differential Geometry.

But Gauss did more than this. In particular he proved the following
formula:

(3.30) K(p) = kminkMax,

where kmin and kMax are the minimal, respective maximal normal curvatures
of the surface S at the point p (see Figure 8). Recall that the normal cur-
vature of γ ⊂ S in the direction v at a point p is defined as: κv(p) = κγ(p),
where γ = S ∩ P , and where P is a plane such that P ⊥ Tp(S) and such
that γ′ ‖ v. Here Tp(S) denotes the tangent plane to S at p.

This formula is unfortunately – since it is neither immediate nor natural
– employed as the definition of the Gauss curvature. (And, we might add,
due to its simplicity, tends to induce in many students a lack of curiosity and
motivation for deeper geometric understanding.) It should be remembered,
therefore, that Gauss defined curvature via area and then proved Formula
3.30. (Again, see [111] for the history of Gauss’ discovery.)

Before we proceed further, let us note that both definitions of surface
curvature considered above render themselves to generalization and applica-
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Figure 8: Principal curvatures on a smooth surface.

tion (fact which we shall exploit to our advantage in the sequel). However,
the original geometric idea of Gauss is the one that will provide us in Section
3.2.2 with an extension of the notion of curvature to rather abstract spaces
(and in a manner that is also useful in applications).

The reader will recall that, in the case of curves, “curvature equals second
derivative” and surely will ask herself or himself whether this is not the case
also for surfaces? This is a most legitimate question, whenever a second
derivative exists, i.e. in the classical case of smooth surfaces, i.e. of class
Ck, k ≥ 2, (which certainly deserves special attention).

Let U = int(U) be an open set and let f : U ⊆ R2 → R3 be a smooth
function (i.e. f ∈ Ck, k ≥ 2). Then the expression of K in local coordinates
is:

(3.31) K =
eg − f2

EG− F 2
;

where

(3.32) E = fu · fu , F = fu · fv , G = fv · fv ;

and

(3.33) e =
det(fu, fv, Fuu)√

EG− F 2
, f =

det(fu, fv, Fuv)√
EG− F 2

, g =
det(fu, fv, Fvv)√

EG− F 2
;

where fu = ∂ f/∂ u, etc. and “·” denotes the scalar product.

The matrices If =
(

E F
F G

)
and IIf =

(
e f
f g

)
are called the first, respec-

tively the second fundamental form of S.

The reason we brought wasn’t merely to make a point for the “curvature
equals the second derivative” assertion. It certainly is intended to have an
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“educational” aspect, too, so to say. By this we mean that formulas such as
the ones above (and like (3.34) below) should make the case for the need
for a more intuitive, (geo-)metric approach to curvature. This aspect will be
emphasized, inevitably, even more in the discussion regarding curvature(s)
for higher dimensional manifolds. In addition to their motivational advan-
tage, we can put to use such formulas to formulate a deep and important
result of Gauss. But first, we need to bring the following (quite frightening!)
formula (the so called Frobenius formula):11

K =− 1

4(EG− F 2)2

∣∣∣∣∣∣
E Eu Ev

F Fu Fv

G Gu Gv

∣∣∣∣∣∣(3.34)

− 1√
EG− F 2

(
∂

∂v

Ev − Fu√
EG− F 2

− ∂

∂u

Fv −Gu√
EG− F 2

)
;

where Fu = ∂ F/∂ u, etc.
Assuredly Frobenius formula is daunting enough to convince almost any-

one that a metric approach might be preferable. However, it is more impor-
tant than that, as we shall show presently. But first, we need a few more
preparatory observations: Note that IIf depends on the position of S in
space (see e.g. [31], p.154), i.e. upon the specific embedding considered.
Therefore, the problem with the definition of K given by formula (3.31) is
that it is dependent upon IIf , hence upon the specific embedding of S in
R3, thus its relevance as an intrinsic geometric invariant of the surface S
appears to be limited, to say the least. A property is called intrinsic iff it
depends solely upon the the first fundamental form of the surface, hence it
is invariant under local isometries. For example, mean curvature

(3.35) K(p) =
kmin + kMax

2
,

is not an intrinsic property (see, e.g. [13]). However, since Frobenius’ formula
shows K is independent of IIf , immediately implies:

Theorem 3.21 (Gauss’ Theorema Egregium (“The Remarkable Theorem”)).
Gaussian curvature is intrinsic.

How important – and surprising – this result is, can be inferred from the
name Gauss himself gave it: “Theorema Egregium” (i.e. “The Remarkable
Theorem”). We shall expand on this important theorem it (or rather its

11See [17], p. 365. A variety of similar formulas exist, see e.g. proof, [111], p. 112.
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relevance and applications) in a number of occasions in the sequel. For now
we only mention here that a fitting Theorema Egregium analogue has been
developed for the PL standard version of Gaussian curvature [55], [75], [8],
[9]. Let us only add that, in more than one sense, a “proper” notion of cur-
vature should be intrinsic hence, after introducing a new type of curvature,
one should try an prove a fitting parallel to Theorema Egregium.

3.2.1.1. Another approach: the Bertrand-Diguet-Puiseaux formulas The
formulas we selected give simple geometric interpretation to Gaussian cur-
vature, that will be employed herein and on which we focus. They relate to
the circumference (respective area) of a small circle on a surface (or geodesic
circle – for the precise definition see, e.g. [31], p. 287).

Theorem 3.22 (Bertrand-Diguet-Puiseaux [16], 1848). Let S be a surface
in R3, p ∈ S and let ε > 0. Denote by C(p, ε), B(p, ε) the geodesic circle,
respective the geodesic ball of center p and radius ε > 0. Then:

(3.36) lengthC(p, ε) = 2πε− π

3
K(p)ε3 + o(ε3) ,

and

(3.37) areaB(p, ε) = πε− π

12
K(p)ε4 + o(ε4) .

Hence:

(3.38) K(p) = lim
ε→0

3

π

2πε− lengthC(p, ε)

ε3
= lim

ε→0

12

π

πε2 − areaB(p, ε)

ε4

(For a proof see e.g. [58], pp. 104–105, or [31], pp. 292 and 294.)
In their usual appearance in a standard Differential Geometry text-book,

this formulas have only a limited, restricted importance. However, “a stick
points in two opposite directions”, therefore both these formulas can be used
as new, alternative definitions of (Gauss) curvature!.. This is relevant in a
more “abstract” setting, where an easily discretizable formulation would be
useful (such as in Geometric Group Theory). We shall, however, make good
use of the first formula as an intuitive way of understanding curvature in
higher dimensions (and finding expressive, relevant definitions of curvature
in more general spaces) – see below.

3.2.2. Wald curvature As we have mentioned above – and as it will
become more clear in the recurring discussion on this theme, mainly in
Section 4 – the efficiency of Menger and Haantjes curvature to approximating
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curvature of manifolds of dimension ≥ 2 is rather limited, to say nothing
about the their theoretical limitations (e.g. in proving relevant analogues of
classical theorems, e.g. the Gauss-Bonnet Theorem).

Therefore we concentrate here, as well as in the last two sections, on
another, more powerful approach. By “powerful” we mean not only that it
is very flexible and thus facilitates various theoretical, as well as practical
applications (see [48], [93]); nor merely that it allows us to obtain power-
ful theoretical results; but also that it integrates perfectly (one is almost
tempted to say “ideally”) with the general metric scheme detailed in Sec-
tion 2, and particularly so with the Gromov-Hausdorff convergence (see [94],
as well as our sequel paper [100]).

Instead of using principal curvatures (on whom limitations we already
elaborated), the approach in question rather goes back to Gauss’ original
method of defining surface curvature by comparison to a standard, model
surface (i.e. the unit sphere in R3). It was Wald’s idea [117], [118] to use more
types of gauge surfaces and to restrict oneself to the study of the minimal
geometric figure that allows this comparison.

Definition 3.23. Let (M,d) be a metric space, and let Q = {p1, ..., p4} ⊂
M , together with the mutual distances: dij = dji = d(pi, pj); 1 ≤ i, j ≤ 4.
The set Q together with the set of distances {dij}1≤i,j≤4 is called a metric
quadruple.

Remark 3.24. Metric quadruples can be defined in a slightly more abstract
manner, without the aid of the ambient space: a metric quadruple being a
4 point metric space, i.e. Q =

(
{p1, ..., p4}, {dij}

)
, where the distances dij

verify the axioms for a metric.

We need to introduce some further notation, before being able to pass
to the next definition: Sκ denotes the complete, simply connected surface
of constant Gauss curvature κ (or space form), i.e. Sκ ≡ R2, if κ = 0;
Sκ ≡ S2√

κ
, if κ > 0; and Sκ ≡ H2√

−κ
, if κ < 0. Here Sκ ≡ S2√

κ
denotes the

sphere of radius R = 1/
√
κ, and Sκ ≡ H2√

−κ
stands for the hyperbolic plane

of curvature
√
−κ, as represented by the Poincaré model of the plane disk

of radius R = 1/
√
−κ .

Definition 3.25. The embedding curvature κ(Q) of the metric quadruple
Q is defined to be the curvature κ of the gauge surface Sκ into which Q can
be isometrically embedded. (See Figure 9.)

We can now define the Wald curvature [117], [118] (or, more precisely,
its modification due to Berestovskii [11]):
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Figure 9: Isometric embedding of a metric quadruple in S2√
κ
(left) and H2√

κ

(right) .

Definition 3.26. Let (X, d) be a metric space. An open set U ⊂ X is called
a region of curvature ≥ κ iff any metric quadruple can be isometrically
embedded in Sm, for some m ≥ k. A metric space (X, d) is said to have
Wald-Berestovskii curvature ≥ κ iff any x ∈ X is contained in a region
U = U(x) of curvature ≥ κ.

Remark 3.27. Clearly, in the context of polyhedral surfaces, the natural
choice for the set U required in Definition 3.26 is the star of a given vertex
v, that is, the set {evj}j of edges incident to v. Therefore, for such surfaces,
the set of metric quadruples containing the vertex v is finite.

Equipped with this quite simple and intuitive choice for U (and in in
analogy with Alexandrov spaces – see also Section 5.2 below) it is quite
natural to consider, for PL surfaces, the following definition of the Wald
curvature K(v) at the vertex v:

KW (v) = min
vi,vj ,vk∈Lk(v)

Kijk
W (v) ,

where Kijk
W (v) = κ(v; vi, vj , vk), and where Lk(v) denotes the link of the

vertex v – see Footnote 11 below.12

12Recall that the link lk(v) of a vertex v is the set of all the faces of St(v)
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Note that here we consider the (intrinsic) PL distance between vertices.

The embedding curvature at a point can now be defined naturally as a
limit. However, we need first yet another preparatory definition:

Definition 3.28. (M,d) be a metric space, let p ∈ M and let N be a
neighbourhood of p. Then N is called linear iff N is contained in a geodesic
curve.

Definition 3.29. Let (M,d) be a metric space, and let p ∈ M be an ac-
cumulation point. Then M has (embedding) Wald curvature κW (p) at the
point p iff

1. Every neighbourhood of p is non-linear;
2. For any ε > 0, there exists δ > 0 such that if Q = {p1, ..., p4} ⊂ M

and if d(p, pi) < δ , i = 1, ..., 4; then |κ(Q)− κW (p)| < ε.

Remark 3.30. Even if the basic idea of embedding curvature is, in fact, quite
natural, one should take care when trying to employ it directly, since there
are a number of “surprises” that arise:

1. If one uses the second (abstract) definition of the metric curvature of
quadruples, then the very existence of κ(Q) is not assured, as it is
shown by the following

Counterexample 3.31. The metric quadruple of lengths

d12 = d13 = d14 = 1; d23 = d24 = d34 = 2

admits no embedding curvature.

2. Any linear quadruple is embeddable, apart from the Euclidean plane,
in all hyperbolic planes (i.e. of any strictly negative curvature), as well
as in infinitely many spheres (whose radii are sufficiently large for the
quadruple to be realized upon them).

3. Moreover, even if a quadruple has an embedding curvature, it still
may be not unique (even if Q is not linear); as it is illustrated by the
following examples:

Example 3.32. (a) For each κ > 0, each neighbourhood of any point
p ∈ Sκ contains a non-degenerate quadruple that is also isomet-
rically embeddable in R2. (For the proof see [17], pp. 372-373).

that are not incident to v. Here St(v) denotes the closed star of v, i.e. the smallest
subcomplex (of the given simplicial complexK) that contains St(v), namely St(v) =
{σ ∈ St(v)} ∪ {θ | θ � σ}, where St(v) denotes the star of v, that is the set of all
simplices that have v as a face, i.e St(v) = {σ ∈ K | v � σ}.
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(b) The quadruple Q of distances d13 = d14 = d23 = d24 = π, d12 =
d34 = 3π/2 admits exactly two embedding curvatures: κ1 =

1
2 and

κ2 ∈
(
1
4 ,

4
9

)
. (See [18].)

However, for “nice enough” metric spaces – i.e. spaces that are locally
“plane like” – the embedding curvature exists and it is unique. Moreover –
and this represents a fact that is highly significative and quite relevant for
our ends – this embedding curvature coincides with the classical Gaussian
curvature.

Definition 3.33. A metric quadruple Q = Q(p1, p2, p3, p4), of distances
dij = dist(pi, pj), i = 1, ..., 4, is called semi-dependent (or a sd-quad, for
brevity), iff 3 of its points are on a common geodesic, i.e. there exist 3
indices, e.g. 1,2,3, such that: d12 + d23 = d13.

One of the main advantages of sd-quads resides in the following result:

Proposition 3.34. An sd-quad admits at most one embedding curvature.

A classification criterion (due to Berestkovskii [11], see also [74], Theo-
rem 18) for embedding curvature possibilities in the general case also exists:

Theorem 3.35. Let M , Q be as above. Then one and only one of the
following assertion holds:

1. Q is linear.
2. Q has exactly one embedding curvature.
3. Q can be isometrically embedded in some Sm

κ , m ≥ 2; where κ ∈ [κ1, κ2]
or (−∞, κ0], where Sm

κ ≡ Rm, if κ = 0; Sm
κ ≡ Sm√

κ
, if κ > 0; and

Sm
κ ≡ Hm√

−κ
, if κ < 0. Moreover, m = 2 iff κ ∈ {κ0, κ1, κ2}. (Here

Sm√
κ
denotes the m-dimensional sphere of radius R = 1/

√
κ, and Hm√

−κ

stands for the m-dimensional hyperbolic space of curvature
√
−κ, as

represented by the Poincaré model of the ball of radius R = 1/
√
−κ) .

4. There exist no m and k such that Q can be isometrically embedded in
Sm
κ .

3.2.2.1. Wald and Gauss curvatures comparison Again, as in the case of
1-dimensional metrizations of curvature (namely the Menger and Haantjes
curvatures) one wishes to confirm that, indeed, Wald’s curvature is a proper
metrization of the classical (smooth) notion, and not just a mathematical
“recreation”, empty of any meaningful geometric content. In Applied Mathe-
matics/Computer Science terms, one has to convince himself (and others!...)
that this new, metric curvature can function as a discretization of the smooth
notion. Fortunately, such a result does exists:
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Theorem 3.36 (Wald [118]). Let S ⊂ R3, S ∈ Cm, m ≥ 2 be a smooth
surface. Then, given p ∈ S, κW (p) exists and κW (p) = K(p), where K(p)
denotes the Gaussian curvature at p.

In addition, Wald proved that the following partial reciprocal theorem
also holds:

Theorem 3.37. Let M be a compact and convex metric space. If κW (p)
exists, for all p ∈ M , then M is a smooth surface and κW (p) = K(p), for all
p ∈ M .

3.2.2.2. Computation of Wald curvature I: formula The allure of Wald
curvature does not reside in its intuitive simplicity, but also that it comes
endowed, so to say, with a simple formula for its actual computation:13

(3.39)

κ(Q) =

⎧⎪⎪⎨⎪⎪⎩
0 if D(Q) = 0 ;

κ, κ < 0 if det(cosh
√
−κ · dij) = 0 ;

κ, κ > 0 if det(cos
√
κ · dij) and

√
κ · dij ≤ π

and all the principal minors of order 3 are ≥ 0;

where dij = d(xi, xj), 1 ≤ i, j ≤ 4, and D(Q) denotes the so called Cayley-
Menger determinant:

(3.40) D(x1, x2, x3, x4) =

∣∣∣∣∣∣∣∣∣∣
0 1 1 1 1
1 0 d212 d213 d214
1 d212 0 d223 d224
1 d213 d223 0 d234
1 d214 d224 d234 0

∣∣∣∣∣∣∣∣∣∣
.

The formula above might appear mystifying but, in fact, it has a very
simple geometric justification based on the fact14 that

(3.41) D(p1, p2, p3, p4) = 8
(
V ol(p1, p2, p3, p4)

)2
,

where V ol(p1, p2, p3, p4) denotes the (un-oriented) volume of the parallelepi-
ped determined by the vertices p1, ..., p4 (and with edges −−→p1p2,

−−→p1p3,
−−→p1p4).

This implies immediately

13This is in stark contrast with the Alexandrov (comparison) curvature (see be-
low), at least in its usual presentation.

14proved by Cayley in his very first mathematical paper [27] (published while he
was still making his living as a lawyer!...)
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Proposition 3.38. The points p1, ..., p4 are the vertices of a non-degenerate
simplex in R3 iff D(p1, p2, p3, p4) �= 0̇.

Evidently, this means also that the opposite assertion also holds, namely
that a simplex of vertices p1, ..., p4 is degenerate, i.e. isometrically embed-
dable in the plane R2 ≡ S0 .

It is not hard deduce that the expressions appearing in Formula (3.40) for
the cases where κ �= 0 represent the equivalents of D(Q) in the hyperbolic,
respective spherical cases, using the well known fact, that, in the spherical
(resp. hyperbolic) metric, the distances dij are replaced by cos dij (resp.
cosh dij). However, the proof of this fact, as well for the analogous formulas
and results in higher dimension are far too encumbering for this restricted
exposition, so we have no choice but to advise the reader to consult [17].

Remark 3.39. A stronger result along these lines also exists. We formulate
it – for convenience and practicality – for the case n = 3, only. However it
is readily generalized to any dimension. (For proofs and further details, see
[17].)

Theorem 3.40. Let dij > 0 , 1 ≤ i, j ≤ 4 , i �= j. Then there exists a simplex
τ = T (p1, ..., p4) ⊆ R3, such that dist(xi, xj) = dij , i �= j; iff D(pi, pj) <
0 , (∀) {i, j} ⊂ {1, ..., 4} and D(pi, pj , pk) > 0 , (∀) {i, j, k} ⊂ {1, ..., 4}; where,
for instance,

D(p1, p2) =

∣∣∣∣∣∣
0 1 1
1 0 d212
1 d212 0

∣∣∣∣∣∣
and

D(p1, p2, p3) =

∣∣∣∣∣∣∣∣
0 1 1 1
1 0 d212 d213
1 d212 0 d223
1 d213 d223 0

∣∣∣∣∣∣∣∣ ;
etc...

It turns out that one can further relax the conditions of the previous
theorem to obtain

Proposition 3.41. Let dij > 0 , 1 ≤ i, j ≤ 4 , i �= j. Then there exists a
simplex τ = τ(p1, ..., p4) ⊆ R3, such that dist(xi, xj) = dij , i �= j; iff
D(p1, p2, p3, p4) �= 0 and signD(p1, p2, p3, p4) = +1 .

In fact, one can generalize the results above to characterize the embed-
ding curvature in terms of the angles of the model triangles. For this, we
need first some further preliminaries:
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Figure 10: The angles ακ(xi, xj , xl) (right), induced by the isometric embed-
ding of a metric quadruple in S2√

κ
(left).

Let Q = {x1, x2, x3, x4} be a metric quadruple and let Vκ(xi) be defined
as follows:

(3.42) Vκ(xi) = ακ(xi;xj , xl) + ακ(xi;xj , xm) + ακ(xi;xl, xm)

where xi, xj , xl, xm ∈ Q are distinct, and κ is any number (see Figure 10).

We can now state the sought characterization of Wald-Berestovskii in
terms of angle sum:

Proposition 3.42 ([74], Theorem 23). Let (X, d) be a metric space and let
U ∈ X be an open set. U is a region of curvature ≥ κ iff Vκ(x) ≤ 2π, for
any metric quadruple {x, y, z, t} ⊂ U .

Remark 3.43. The presence of angles in result above raises two issues re-
garding the role of angles in metric geometry:

1. From the practical (applications oriented) point of view, the propo-
sition above shows that, in fact, the metric approach to curvature is
essentially equivalent to the combinatorial (angle-based) one, as far
as polyhedral surfaces (in R3) are considered.15 In particular, as far

15This holds, of course, up to the specific type of convergence for the metric and
combinatorial curvature, i.e pointwise and in measure, respectively.
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as approximations of smooth surfaces in R3 are concerned, both ap-
proaches converge to the classical Gauss curvature.) Of course, the
metric approach is far more general, since it is applicable to a very
large class of metric spaces (see discussion at the end of this section).

2. From a more viewpoint, Proposition 3.42 shows that a “purely metric”
(i.e. angle independent) approach is not truly possible for, even if “pure
metric”’ formulas can be devised, the angles are also always “hidden
in the substrate”. (See also the discussion above regarding the applica-
tions of thick triangulations and metric curvatures to Regge calculus.)
We might add that one can express (at least in the Euclidean case)
the Cayley-Menger determinant in terms of (face or, alternatively, di-
hedral) angles incident to a vertex (see [17], p. 344).

3.2.2.3. Computation of Wald curvature II: approximation Unfortunately,
using Formula (3.39) for the actual computation of κ(Q) is highly prob-
lematic, since the equations involved are – apart from the Euclidean case
– transcendental, therefore not solvable, in general, using elementary meth-
ods. In addition, they display certain numerical instability when solved using
computer assisted methods. (See [80], [97] for a more detailed comments and
some numerical results.)

We should also remark that Formula (3.39) implies that, in practice,
a renormalization might be necessary for some of the vertices of positive
Wald-Besetkovskii curvature, which represents yet another hindrance in it
use.

It is therefore fortunate that a good approximation result, due to Robin-
son [79] exists. Not only does his result give a rational formula for approx-
imating κ(Q) and provide good error estimates, it also solves one other
problem inherent in the use of the Wald curvature, namely the possible lack
of uniqueness of the computed curvature. The way one circumvents this
problem and the other pitfalls of Formula (3.39) is to make appeal to the
simpler geometric configuration of sd-quads:

Theorem 3.44 ([79]). Given the metric semi-dependent quadruple Q =
Q(p1, p2, p3, p4), of distances dij = d(pi, pj), i, j = 1, ..., 4; the embedding
curvature κ(Q) admits a rational approximation given by:

(3.43) K(Q) =
6(cos�02 + cos�02

′)

d24
(
d12 sin

2(�02) + d23 sin
2(�02′)

)
where: �02 = �(p1p2p4) , �02

′ = �(p3p2p4) represent the angles of the
Euclidian triangles of sides d12, d14, d24 and d23, d24, d34 , respectively.
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Moreover the absolute error R satisfies the following inequality:

(3.44) |R| = |R(Q)| = |κ(Q)−K(Q)| < 4κ2(Q)diam2(Q)/λ(Q) ,

where λ(Q) = d24(d12 sin�02+d23 sin�02
′)/S2, and where S = Max{p, p′};

2p = d12 + d14 + d24 , 2p
′ = d32 + d34 + d24.

Since we have presented in detail the proof of the theorem above both in
[80] and in [97], we do not bring it here also, but rather refer the interested
reader to either of these articles (and, of course, to Robinson’s original paper
[79]). We do, however, would like to underline that basic idea of the proof is
to emulate, in a general metric setting, the original way of defining Gaussian
curvature – in this case, rather than accounting for the area distortion, one
measures the curvature by the amount of “bending” one has to apply to
a general planar quadruple so that it may be “straightened” to a triangle
�(p1p3p4), with p2 lying on the edge p1p3 – i.e. isometrically embedded as
a sd-quad – in some Sκ.

Remark 3.45. In special cases (e.g. when d12 = d32, etc.) simpler formulas
are obtained en lieu of (3.43) – see [79], or [80], [97].

Of course, one is entitled to ask himself weather Formula (3.43) (or its
variations mentioned above) is truly efficient in applications. The following
example, due to Robinson himself, suggests that, at least in some cases, the
actual computed error is far smaller then the one given by Formula (3.44).

Example 3.46 ([79]). Let Q0 be the quadruple of distances d12 = d23 =
d24 = 0.15, d14 = d34 and of embedding curvature κ = κ(Q0) = 1. Then
κS2 < 1/16 and K(Q0) ≈ 1.0030280, whereas the error computed using
formula (3.44) is |R| < 0.45.

For some experimental results and comparison to other metric curva-
tures for images, see [97]. We wish, however, to emphasize here that the
results therein do comply to the expectations arising from the following
(quite expected) theorem:

Theorem 3.47. Let S be a smooth (differentiable) surface. Then, for any
point p ∈ S:

KG(p) = lim
n→0

K(Qn) ;

for any sequence {Qn} of sd-quads that satisfy the following conditions:

Qn → Q = �p1pp3p4 ; diam(Qn) → 0 .
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Sketch of Proof. Recall that the Gaussian curvature KG(p) at a point p is
given by:

KG(p) = lim
n→0

κ(Qn) ;

where Qn → Q = �p1pp3p4 ; diam(Qn) → 0. But, if Q is any sd-quad,
then κ2(Q)diam2(Q)/λ(Q) < ∞. Moreover, |R| is small if Q is not close to
linearity. In this case |R(Q)| ∼ diam2(Q), for any given Q (see [79]). The
theorem now follows easily.

Remark 3.48. The convergence assured by Theorem 3.47 is not just in the
sense of measures and errors of different signs do not simply cancel each
other. Indeed, sign(κ(Q)) = sign(K(Q)), for any metric quadruple Q.

3.2.2.4. Wald curvature and isometric embeddings Proposition 3.38 and
Remark 3.39 rise the most general problem of the existence of isometric
embeddings of metric metric spaces into gauge spaces. While in its full gen-
erality this is, of course, an untenable problem, we are interested in the much
more restricted, but important in our context (Graphics, Imaging, Mathe-
matical Modeling, etc.), problem of isometric embedding of PL surfaces
in R3.

A first result in this direction is a criterion for the local isometric embed-
ding of polyhedral surfaces in R3, akin to the classical Gauss fundamental
(compatibility) equation in the classical differential geometry of surfaces,
that we first proved in [90]. Namely, given a vertex v, with metric curvature
KW (v), the following system of inequalities should hold:

(3.45)

⎧⎨⎩
maxA0(v) ≤ 2π;
α0(v; vj , vl) ≤ α0(v; vj , vp) + α0(v; vl, vp), for all vj , vl, vp ∼ v;
Vκ(v) ≤ 2π;

Here

(3.46) A0 = max
i

V0 ;

“∼” denotes incidence, i.e. the existence of a connecting edge ei = vvj and, of
course, Vκ(v) = ακ(v; vj , vl)+ακ(v; vj , vp)+ακ(v; vl, vp), where vj , vl, vp ∼ v,
etc.

Note that the first two inequalities represent the (extrinsic) embedding
condition, while the third one represents the intrinsic curvature (of the PL
manifold) at the vertex v.

For details and a fitting global embedding criterion see [90].
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Remark 3.49. Possible applications include those fields where isometric em-
bedding of finite metric spaces is relevant, such as Communication Networks,
Graphics Imaging and Vision, Elastic membranes, Protein folding, Genetics
(e.g when functional distance between genes is of interest) and Manifold
Learning.

Remark 3.50. In Formula 3.45 the correct definition of the open neighbour-
hood of a vertex is essential (see the relevant discussion in Section 1).

Remark 3.51. As far as the possible (non-theoretical) applications of Wald
curvature are concerned, one could define (see [94]), in analogy with the
Menger curvature measure (see (3.28) above) a Wald curvature measure:

(3.47) μW (v) = KW (v) ·Area(St(v)),

where St(v) denotes the star of the vertex v.
The applications of the Wald measure would be similar to those of the

Meger measure, with the potential for uses in more general settings (e.g.
cloud of points).

3.3. Higher dimensions I: basic definitions

The treatment of metric curvature in higher dimensions should, if we fol-
lowed the same logic as above, belong here. However, this does not represent
a classical “state of the art”, but it rather covers new developments that rep-
resent (mostly) our(the authors) own ideas and results.

In higher dimensions there is far less clear what “curvature” should be
(or mean); we shall presently begin to understand wherefrom the problems
stems. In consequence, we can’t even begin to hope that we can make an
exhaustive list of curvatures. Therefore we bring below only the mere es-
sentials (that also prove to be the most important for the understanding of
phenomenology in dimension ≥ 3). Still, apart from these, we shall encounter
later on yet another curvature (or rather another family of curvatures). How-
ever, these will appear only as an application of basic ideas and the tools
we introduce in this section (and the following ones).

The most natural and intuitive idea to define curvature of higher di-
mensional manifolds would be, of course, to try and mimic the principal
curvatures approach to Gaussian curvature. More precisely, one would be
tempted to look at the Gaussian curvatures of all 2-dimensional sections
of an n-dimensional manifold. Unfortunately, there are n principal curva-
tures, and the symmetric polynomials do not convey sufficient (nor simple
enough) geometric information. Moreover, even after symmetries reduce this
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to “only” n2(n2 − 1)/12, for n ≥ 3 there are clearly to many numbers to
deal with and a simple, geometric interpretation is highly needed. Even
apart from the considerations above, this shouldn’t come as great surprise:
Recall that Gauss revolutionary idea was to define curvature via the normal
mapping and area, in order to avoid the very pitfalls of “sections” by normal
planes, and only proved Formula 3.30 as a consequence of his far reaching
definition.

While we shall see shortly that not everything is lost in this approach,
for more theoretically robust definitions we need the (quite technical) notion
of (Riemannian) curvature tensor. However, before defining it, we have to
introduce some notations:

In the reminder of this section, Mn denotes an n-dimensional Ck-Rie-
mannian manifold, k ≥ 2, which we may presume, by Nash’s theorem [66], to
be isometrically embedded in RN , for some N sufficiently large. Analogously
to the notation for surfaces, let Tp(M

n) denote the tangent space at the point
p ∈ Mn, and let T⊥

p (Mn) stand be the orthogonal complement of Tp(M
n) in

Tp(R
N ), i.e. Tp(M

n)⊕ T⊥
p (Mn) = Tp(R

N ). Then Mn can be locally written

as the graph of a function f : Tp(M
n) → T⊥

p (Mn).

3.3.1. The curvature tensor

Definition 3.52. Let Mn and f be as above, and let p ∈ Mn ⊂ RN . The
bilinear form IIp : Tp(M

n) → T⊥
p (Mn)

(3.48) IIp(M
n) = (βij)1≤i,j≤n

where βij = ∂2f/∂ xi∂ xj , 1 ≤ i, j ≤ n ; is called the second fundamental
tensor of Mn at the point p.

The Riemannian curvature tensor (at a point p) is defined as the tensor
of 2× 2-minors of IIp(M

n), i.e.:

(3.49) Rijkl = βikβjl − βjkβil .

Remark 3.53. Riemannian curvature is not intrinsic.

It is quite probable that the reader is already convinced that, in the
words of Gromov, “the curvature tensor of a Riemannian manifold is a lit-
tle monster of (multi)linear algebra whose full geometric meaning remains
obscure” ([42], p.10). If not yet, then its further appearances in the sequel
will persuade him that the need for more geometric methods is quite strin-
gent.
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3.3.2. Sectional curvature The sections approach to curvature men-
tioned above is encoded in the notion of the (quite properly and evidently
called) sectional curvature:

Definition 3.54. Let p ∈ Mn, and let Π ⊂ Tp(M
n) be a 2-dimensional

plane, and let S = Mn ∩
(
Π⊕ T⊥

p (Mn)
)
. Then dimS = 2 and we define

K(Π) = Kp(S), where Kp(S) represents the Gauss curvature of S at the
point p.

Of course, if n = 2, K reduces to the classical Gauss curvature, thus
fully justifying not only its name, but also its the notation.

We should make clear that we didn’t introduce the curvature tensor for
not: Indeed, there is a close connection between sectional curvature and the
Riemannian curvature tensor, as can be seen from the following formula:

(3.50) K(Π) =
∑

1≤i,j,k,l≤n

Rijkl xixjxkxl ;

where {xh}1≤h≤n is an orthonormal base of Tp(M
n).

Moreover, it is easy to show by direct computations that knowledge of
K(M) on all tangent planes is equivalent to knowing the curvature tensor
(see, e.g. [34], pp. 94–95). This shows why the sectional approach to curva-
ture (in dimension ≥ 3) leads, at least in some sense, to a “geometrical dead-
end”: it is essentially equivalent to Gromov’s algebraic “little monster”...

Given the very definition of sectional curvature, it will come as no sur-
prise that an analogue (and slight generalization) of the Bertrand-Diguet-
Puiseaux formula (3.36) is given by:

Proposition 3.55.

(3.51) lengthC(p, ε, α) = αε− α

3 sin2 α
K(p)ε3 + o(ε3) ,

where C(p, ε, α) denotes the arc of length α of C(p, ε). In particular, for
α = 2π (and n = 2) one gets the Bertrand-Diguet-Puiseaux formula in its
classical form.

Thus sectional curvature (hence the curvature tensor) measure the de-
fect of Mn from being locally Euclidean. This is done at the 2-dimensional
level as a measure of the divergence of two geodesics starting from a common
point, as a function of the initial angle made by the geodesics (or, equiva-
lently, by their tangents at the starting point). In fact, Mn is flat (i.e. locally
Euclidean) iff K ≡ 0. In addition, if K ≡ k0, where k0 is a constant, then
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Figure 11: The geometric interpretation of sectional curvature ensuing from
the Bertrand-Diguet-Puiseaux: Sectional curvature measures the divergence
rate of two geodesics staring from a common point, as a function of the
initial angle made by the geodesics. (After [12].)

Mn is locally isometric to the simply connected space of constant sectional
curvature.

Remark 3.56. Recall the adagio equating curvature with second derivative.
Given the analogous fact for the Gaussian curvature, it is easy to see that,
in fact, K behaves like a second derivative – more precisely as the Hessian –
of the metric g (see [13], p. 267).

Moreover, if one is willing to restrict himself to the scope of “testing”,
another more flexible and extremely useful notion of curvature presents itself:

3.3.3. Ricci curvature Formally Ricci curvature is defined as the con-
traction of the Riemannian curvature tensor:

Definition 3.57. Let v ∈ TpM
n be a unit vector. The Ricci curvature in

the direction v is defined (in local coordinates) as:

(3.52) Ricij =
∑
i

Rijil

From the definition above and from the relationship between the Rie-
mannian curvature tensor and sectional curvature (see above), it follows
that:

(3.53) Ric(v) = Ric(v,v) =

n∑
i=2

K(v,xi) =

n∑
i=2

R(v,xi,v,xi) ,

where {v,x1 , . . . ,xn−1} represents an orthonormal base of TpM
n.
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Figure 12: Ricci curvature as defect of the manifold from being locally Eu-
clidean in various tangential directions (after [12]). Here dω denotes the
n-dimensional solid angle in the direction of the vector v, Ω(α) the (n− 1)-
volume generated by geodesics of length ε in dω, and Ric(v) the Ricci cur-
vature in the direction v.

Moreover, let Π =< v,w > denote the plane spanned by v and w. Then
the following holds:

(3.54) v · Ric(v) = n− 1

Vol
(
Sn−2

) ∫
w∈Tp(Mn), w⊥v

K(< v,w >) ;

that is the Ricci curvature represents an average of sectional curvatures.

Remark 3.58. The curvature-as-second-derivative leitmotif has its Ricci
“avatar” so to say, too. Without entering into the technical details, one
should keep in mind that Ricci curvature “should be thought as the Lapla-
cian of g”.16

Theorem 3.59 ([54]). Let Mn be as above. Denote by dα the n-dimensional
solid angle in the direction of the vector v ∈ Tp(M

n) and by ω(α) the (n−1)-
volume generated by geodesics of length ε in dα. Then:

(3.55) Vol
(
ω(α)

)
= dα εn−1

(
1− Ric(v)

3
ε2 + o(ε2)

)
.

Remark 3.60. See also [43] (pp. 316-319), [40], [116], for various generaliza-
tion of the result above. Also, for applications see [46], [116], [86].

3.3.4. Scalar curvature We conclude with the least flexible (and expres-
sive) of the basic, essential curvatures, namely the scalar curvature. This is
defined as the trace of the Ricci curvature:

16[73], p.30. For further technical details see, e.g., [73].
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Definition 3.61 (Scalar Curvature).

(3.56) scal =
∑
i

Ricii .

It follows immediately from the definition that, for any orthonormal basis
{x1, . . . ,xn} of Tp(M

n), the following analogue of Formula (3.54) holds:

(3.57) scal = 2
∑

1≤i<j≤n

K(< xi,xj >) =
n(n− 1)

Vol
(
Π
) ∫

Π∈P
K(Π) ;

where P represents the collection of 2-planes in Tp(M
n).

Note that, as the name suggests, scalar curvature is, indeed, a scalar
(as opposed to sectional and Ricci curvatures that are tensors). However, it
is important to make the following observation, not least because we shall
make appeal to it in the sequel:

Remark 3.62. In dimension n = 2 all the curvatures above (sectional, Ricci,
scalar) essentially coincide and, in fact, so do, in dimension, n = 3, Ricci
curvature and sectional curvature. (More precisely formulas can be found,
for instance, in [73], [113].)

As expected, this curvature also admits an analogue of the second
Bertrand-Diguet-Puiseaux formula:

Theorem 3.63 ([38], p. 166).

(3.58) VolB(p, ε) = ωnε
n

(
1− 1

6(n+ 2)
scal(p)ε2 + o(ε2)

)
;

where ωn denotes the volume of the unit ball in Rn.

That is, scalar curvature measures the defect of the manifold from being
locally Euclidean at the level of volumes of small geodesic balls.

3.4. Higher dimensions II: Lipschitz-Killing curvatures

Given a Riemannian manifold Mn, the Lipschitz-Killing curvatures of Mn

are defined as follows:

Rj(Mn) =
1

(n− j)!2jπj/2(j/2)!

∑
π∈Sn

(−1)ε(π)Ωπ(1)π(2) ∧ · · · ∧ Ωπ(j−1)π(j)∧
(3.59)

∧ ωπ(j+1) ∧ · · · ∧ ωπ(n) ,
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where Ωπ(j−1)π(j) are the curvature 2-forms and ωkl denote the connection
1-forms, and they are interrelated by the structure equations:

(3.60)

{
dωk = −

∑
i ωkl ∧ ωl ,

dωkl = −
∑

i ωki ∧ ωil +Ωkl .

where {ωk} is the dual basis of {ek} . Moreover, the integral
∫
Mn R

j is also
known as the integrated mean curvature (of order j).

Remark 3.64. While the expression (3.59) above might appear daunting17, in
low dimensions Lipschitz-Killing curvatures are, in fact, quite familiar: R0 ≡
volume and R2 ≡ scalar curvature. Moreover, Rn ≡ Gauss-Bonnet-Chern
form, (for n = 2k).

We also have the following expression of the Lipschitz-Killing curvatures:
(3.61)

Rj(Mn) =
1

Area(Sn−j−1)

∫
Mn−1

Sn−j−1(k1(x), k2(x), . . . , kn−1(x))dHn−1 ,

where Mn−1 = ∂Mn, dHn−1 denotes the (n − 1)-dimensional Hausdorff

measure, and where the symmetric functions Sj are defined by:

(3.62) Sj

(
k1(x), k2(x), . . . , kj−1(x)

)
=

∑
1≤ki1≤kik

≤j−1

ki1(x) · · · kik(x) ,

k1(x), k2(x), . . . , kn−1(x) being the principal curvatures – see e.g. [121].

Remark 3.65. Formula 3.61 above shows why the Lipschitz-Killing curva-
tures are also called the total mean curvatures (and the “Sj”-s are called
the mean curvatures (of order j). It also suggests a quite direct method of

obtaining a local (point-wise) version.

In a similar manner (but technically slightly more complicated), one can
define the associated boundary curvatures (or mean curvatures) Hj which
are curvature measures on ∂Mn: Let {ek}1≤k≤n be an orthonormal frame

for the tangent bundle TMn of Mn, such that, along the boundary ∂Mn,
en coincides with the inward normal. Then, for any 2k + 1 ≤ j ≤ n, we
define

(3.63) Hj =
∑
k

Ωj,k ,

17and rightly so!...
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where

Ωj,k =cj,k
∑

π∈Sn−1

(−1)ε(π)Ωπ(1)π(2) ∧ · · · ∧ Ωπ(2k−1)π(2k) ∧ ωπ(2k+1),n ∧ · · ·
(3.64)

· · · ∧ ωπ(j−1),n, ωπ(j) ∧ · · · ∧ ωπ(n−1) ,

and

(3.65) cj,k =

⎧⎨⎩ (−1)k
(
2jπ

j−1

2 k!
(
j−1
2 − k

)
!(n− j)!

)−1
, j = 2p+ 1

(−1)k
(
2k+

j

2π
j

2k!(j − 2k − 1)!(n− j)!
)
, j = 2p .

These curvatures measures are normalized by imposing the condition
that:

(3.66)

∫
Tn−j×Mj

Rj +

∫
Tn−j×∂Mj

Hj = χ(M j)VolTn−j ,

for any flat Tn−j .

Remark 3.66. As expected, in view of the similar elucidation of the Lipschitz-
Killing curvatures, the low dimensional boundary curvatures also have quite
familiar interpretations: H1 ≡ area boundary, H2 ≡ mean curvature for
inward normal (as expected given the generic names for these Hj-s), etc.

4. Thick triangulations and the approximation of
curvatures

This section is dedicated to a notion that appears, under many guises and
in different – covert as well as overt – manners, again and again in many
theoretical and applied settings, both in Mathematics (e.g. in Quasiregular
Mappings Theory and Geometric Measure Theory), as well as Graphics and
Imaging, namely that of “thick triangulation”, and (some of) its connections
with Metric Differential Geometry. (For applications in Geometric Function
Theory, see e.g. [115], [71], [84], [86] and, for the relationship between fat
triangulations, Geometric Function Theory and Discrete Differential Geom-
etry, see [105], [98].)

4.1. Thick triangulations

We begin with the basic definition, as introduced in [29]:
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Definition 4.1. Let τ ⊂ Rn; 0 ≤ k ≤ n be a k-dimensional simplex. The
thickness ϕ of τ is defined as being:

(4.1) ϕ = ϕ(τ) = inf
σ�τ

dimσ = j

V olj(σ)

diamj σ
.

The infimum is taken over all the faces of τ (including τ itself), σ � τ , and
Volj(σ) and diamσ stand for the Euclidian j-volume and the diameter of σ
respectively. (If dimσ = 0, then Volj(σ) = 1, by convention.) A simplex τ is
ϕ0-thick, for some ϕ0 > 0, if ϕ(τ) ≥ ϕ0. A triangulation (of a submanifold of
Rn) T = {σi}i∈I is ϕ0-thick if all its simplices are ϕ0-thick. A triangulation
T = {σi}i∈I is thick if there exists ϕ0 ≥ 0 such that all its simplices are
ϕ0-thick.

As already noted, the definition of fatness given above is that introduced
in [29]. One reason for doing this is to preserve the “unity of style”, so to say:
since we heavily rely, at least in the first part, on the results and techniques
of [29], we find only fitting that we used, at least in the beginning, the same
definition as that of Cheeger et al. However, they also prove in the same
paper the following result that gives a more intuitive interpretation on the
notion of thickness of simplices as a function of their dihedral angles in all
dimensions:

Proposition 4.2 ([29]). There exists a constant c(k) that depends solely
upon the dimension k of τ such that

(4.2)
1

c(k)
· ϕ(τ) ≤ min

σ<τ
�(τ, σ) ≤ c(k) · ϕ(τ) ,

and

(4.3) ϕ(τ) ≤ V olj(σ)

diamj σ
≤ c(k) · ϕ(τ) .

Here �(τ, σ) denotes the (internal) dihedral angle. While intuitively sim-
ple, the formal definition18 of this notion requires some technical prelimi-
naries:

Definition 4.3. A simplicial cone Ck ⊂ Rk ⊂ Rn, is defined as: Ck =
⋂k

j = 1

Hj ,

where Hj are open half spaces in general position, such that 0 ∈ Hj , j =
1, . . . , k.

Lk−1 = Ck
⋂

Sn−1 is called a spherical simplex.

18For an alternative definition, see [109] IV. 2, IX. 15.
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Definition 4.4. Consider the simplices σk < τm, and let p ∈ σk. Define the

normal cone: C⊥(σk, τm) = {−→px |x ∈ τm, −→px⊥σk}, where −→px denotes the

ray through x and base-point p.

The spherical simplex L(σk, τm) associated to C⊥(σk, τm) is called the

link of σk in τm.

Remark 4.5. C⊥(σk, τm) does not depend upon the choice of p.

We are now to formally define the notion of dihedral angle, as follows:

Definition 4.6. The (internal) dihedral angle �(τk, σm) of σ in τ is the

normalized volume of L(σk, τm), where the normalization is such that the

volume of Sn−1 equals 1, for any n ≥ 2.

A few remarks are mandatory at this point: Note first that condition

(4.2) is just the expression of thickness as a function of dihedral angles in

all dimensions. This fact warrants a number of observations:

• Using the dihedral angle approach in assuring the “aspect ratio” of a

triangular mesh is commonly used in Computational Geometry, Com-

puter Graphics and related fields, to ensure that the constituting tetra-

hedra are not to “flat” or too “slim”, in particular that no “slivers”’

appear (see, e.g. [4], [32], [35]).

• The condition under scrutiny shows that thickness is hierarchical, in

the sense that for a simplex to be thick, all its lower dimensional faces

have to be thick. This is also transparent from condition 4.3 and we

shall discuss this fact again shortly, from a different point of view.

• The dihedral angle definition appears to be very promising in view

of some quite recent developments (e.g. [5], [10], [33], [78]) of Regge

calculus [77]. Indeed, it seems that, from the Theoretical Physics, it

has quite a number of advantages. However, it falls short from Regge’s

original goal, as stated in [77], for a purely metric gravity (both clas-

sical and quantum). Moreover, from the mathematicians point of view

it also lacks the kind of “symmetry” one usually strives for, since it

makes appeal to both angles and distances (e.g. in the “fattening”

technique (using ε-moves) – see [29]). More importantly, one strives

for the most general possible setting, thus one looks for the possible

extensions of the results of [29] (and, in consequence, of the present

paper) to as “general” metric spaces. Therefore, a purely metric ap-

proach for all aspects of the problem, including fatness, is desirable

and we shall discuss it in detail below.
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Similarly, condition (4.3) expresses fatness as given by “large area/
diameter” (or “volume/diameter”) ratio. Diameter is important since fat-
ness is independent of scale. Note, again, the hierarchic property of fatness
as expressed by this condition.

Moreover, even the defining condition of thickness (4.1) lacks this purely
metric aspect. Indeed, while volume and edge lengths of a Euclidean simplex
(or, for that matter, in any space form) are closely related, in a general met-
ric space no volume is apriorily postulated. (Admittedly, one can attempt
a fitting definition for metric measure spaces [86], but this has only limited
purely mathematical applications and, furthermore, it also departs from the
purely metric approach.19) Fortunately, this fault is easy to amend, using the
so generalized (n-dimensional) Cayley-Menger determinant, that expresses
the volume of the n-dimensional Euclidean simplex σn(p0, p1, . . . , pn) of ver-
tices p0, p1, . . . , pn as a function of its edges dij , 0 ≤ i < j ≤ n:

(4.4) D(p0, p1, . . . , pn) =

∣∣∣∣∣∣∣∣∣∣∣

0 1 1 · · · 1
1 0 d201 · · · d21n
1 d210 0 · · · d21n
...

...
...

. . .
...

1 d2n0 d2n1 · · · 0

∣∣∣∣∣∣∣∣∣∣∣
;

namely

(4.5) Vol2(σn(p0, p1, . . . , pn)) =
(−1)n+1

2n(n!)2
D(p0, p1, . . . , pn) .

(Similar expressions for the Hyperbolic and Spherical simplex also exist, see,
e.g. [17], [18]. However, we do not bring them here, not least because they
are far too technical for this limited exposition; suffice therefore to add that
they essentially reproduce the proof given in the Euclidean case, taking into
account the fact that, when performing computations in the spherical (resp.
hyperbolic) metric, one has to replace the distances dij by cos dij (resp.
cosh dij) – see [18] for the full details.)

Evidently, the Cayley-Menger determinant makes sense for any metric
(n+1)-tuple, i.e. for any metric metric space with n+1 points p0, p1, . . . , pn
and mutual distances dij , 0 ≤ i ≤ j ≤ n.

As implicitly mentioned above, the definition of thickness as given by
Definition 4.1 is only one of the (many) existing ones. An alternative one,

19even if such an approach is, in the light of the literature mentioned above, less
useful in Physics than previously believed
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given solely in terms of distances, is given in [115]. Tukia’s fatness20 of a

simplex σ = σ(p0, . . . , pn) can be written as

(4.6) ϕT (σ) = max
π

δ(p0, . . . , pn)

diamσ
,

where δ = δ(p0, . . . , pn) = dist(pi, Fi), where Fi denotes the (n− 1)-dimen-

sional face (of σ) opposite to pi, and where the maximum is taken over all the

permutations π of 0, . . . , n. In other words, δ represents the maximal height

hMax from the vertices of σ to its (n−1)-dimensional faces (or facets). Note

that this definition of thickness can also be used, for instance, for Hyperbolic

simplices (as, indeed, Tukia did).

Since the diameter of a simplex is nothing but the longest edge lMax,

that is diamσ = max0≤i<j≤n dij = max1≤m≤n(n+1)/2 lm, Tukia’s definition of

thickness is, clearly, purely metric. It is true that the expression of ϕT is not

given solely in terms of the distances between the vertices (of σ), however

it is easy to remedy this by computing hi – the distance from pi to the face

Fi, using the classical and well known formula:

(4.7) Vol(σ) =
1

n
hiArea(Fi)

and then expressing the volume of Fi using the fitting Cayley-Menger de-

terminant, where we denoted the (n − 1)-volume by “Area”. (One has to

proceed somewhat more carefully for the case, say, of Hyperbolic simplices,

but we are not concerned here with this case.)

Peltonen’s definition – see [71] – is, perhaps the easiest to express, even

not if the simplest for actual computation, as she defines fatness (of a sim-

plex) as:

(4.8) ϕP (σ) =
r

R
,

where r denotes the radius of the inscribed sphere of σ (inradius) and R

denotes the radius of the circumscribed sphere of σ (circumradius). The

problem with this approach is that it is not given – explicitly, that is –

in terms of the lengths of the edges of the simplex. Again, this does not

represent a serious inconvenience, since, given a simplex σ = σ(p1, . . . , pn),

20In fact he defines the reciprocal quantity which he calls flatness and denotes
by F (σ).
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the circumradius R is given by the following formula:

(4.9) R = −1

2

Δ(p1, . . . , pn)

D(p1, . . . , pn)
,

where

(4.10) Δ(p1, . . . , pn) =

∣∣∣∣∣∣∣∣∣
0 d212 · · · d21n
d221 0 · · · d21n
...

...
. . .

...
d2n1 d2n2 · · · 0

∣∣∣∣∣∣∣∣∣ .
Moreover, the inradius r can be computed quite simply using the fact

(akin to formula (4.7)) that

(4.11) Volσn =
1

n

n+1∑
1

Area(Fi) ,

and expressing again Area(Fi) as a function of its edges.
On the other hand, the equivalence of Tukia’s and Peltonen’s defini-

tions follows using Peltonen’s computation of the hi-s (and diamσ), which is
given – inter alia – in [71]. However, the proof requires additional notations
and definitions as well as some quite extensive technical details. Therefore,
we refer the reader to the original paper of Peltonen where the connection
between ϕP and h (hence ϕ,ϕT ) is given (even if not quite explicitly).

Munkres’ definition is, for the specific case of Euclidean simplices21,
somewhat of a compromise between Cheeger’s and Tukia’s ones:

(4.12) ϕM =
dist(b, ∂σ)

diamσ
,

where b denotes the barycenter of σ and ∂σ represents the standard notation
for the boundary of σ (i.e the union of the (n − 1)-dimensional faces of σ).
From the considerations above (and from [65], Section 9) it follows that
for the Euclidean case, this definition of thickness is also equivalent to the
previous ones.

Remark 4.7. Fu [37] also introduces a definition of fatness that (up to the
quite different notation) is identical to that of [29], when restricted to in-
dividual simplices. However, for triangulations, his definition exceeds, in

21But only in this case, as it represents a generalization of the Euclidean case
for general simplices (as befitting Differential Topology goals).
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general, the one given in [29], due to the fact that Fu discards, in his use
of fatness, the requirement that the approximations become arbitrarily fine
(see also Remark 4.12 above).

Remark 4.8. Of course, there exists a (well know) duality between the spher-
ical distances and dihedral angles, as expressed by the Gram determinant
(see, e.g. [59] and the references therein), but unfortunately this duality does
not hold precisely in the case that we are interested in, that is constant sec-
tional curvature K ≡ 0, so we do not discuss it here. Let us note only the
fact that this type of analysis involves a generalization of the Cayley-Menger
determinant.

To complete the circle – so to say – we should emphasize that, given the
dihedral angles and the areas of the (n−1)-faces of the Euclidean (piecewise
flat) triangulation, one can calculate the edge lengths. For example, one can
devise explicit computations for the case important in Ricci calculus, i.e.
4-simplices, minus a number of so called “dangerous configurations”, (and
implicit ones for the general case) in [33]. (A related formula – explicit for
the 3-dimensional case – this time involving the Cayley-Menger determinant,
can be found in [18], p. 344.)

4.1.1. Thickness, metric curvature and excess The connection be-
tween thickness and excess is quite obvious: A 2-simplex is thick iff it its
excess is bounded away from 0. Note, however, that one can not assert that
higher dimensional simplices are thick iff all their 2-dimensional faces are. In-
deed, one can easily construct, for example, 3-dimensional tetrahedra with
regular base and the other faces congruent to each other and having the
common vertex at ε distance from the barycenter of the base.

We do not explore here the full depth of the interconnections between
these three concepts (namely thickness, metric curvature and excess), and
we postpone such analysis for further research except the case of princi-
pal curvatures which we shall investigate in some detail in the next section.
However, we can not mention in this context the (by now classical) Abresch-
Gromoll Theorem [2], that connects, in the Riemannian setting, between
thickness (or rather “slimness” – it’s very opposite), excess and Ricci cur-
vature. (For a fitting version for PL manifolds, see [95] as well as the sequel
article [100].)

It is also important to underline the fact that, to obtain good approxima-
tions of curvatures of PL manifolds, one needs, in fact, to start with trian-
gulations having principal metric curvatures – see discussion in Section 4.4
below. (The other requirement is, of course, the metric approximation being
arbitrarily fine, that is that the mesh of triangulation converges to zero.)
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Remark 4.9. The transparency, so to say, of the connection of Haantjes
curvature with the notion of excess, thence to fatness, as detailed above,
represents yet another reason why, for our geometric ends, we prefer it in
lieu of the better known Menger curvature.

4.2. Curvatures’ approximation

The approximation theory of Lipschitz-Killing curvatures (hence, by Re-
marks 3.64 and 3.66 of such basic quantities as volume, scalar curvature,
mean (inward) curvature of the boundary) rests on the by now classical
work of Cheeger et al. [29], the basic result therein being

Theorem 4.10 ([29]). Let Mn be a compact Riemannian manifold, with
or without boundary, and let Mn

i be a sequence of fat PL (piecewise flat)
manifolds, that are secant approximations of Mn, converging to Mn in the
Hausdorff metric. Denote by R and Ri respectively, the Lipschitz-Killing
curvatures of Mn, Mn

i . Then Ri → R in the sense of measures.

Remark 4.11. 1. One can fatly triangulate the smooth manifold Mn and
obtain the desired approximation results for curvatures using directly
and explicitly the intrinsic metric, not just PL (Euclidean) approxi-
mations [77], [29] – see also Section 4.3 below, in particular Formulas
(4.18), (4.19) and Remark 4.25.

2. As noted above, Theorem 4.10 is given essentially in terms of the
intrinsic geometry of Mn. A similar characterization of the curvature
measures in terms of the extrinsic geometry (of embeddings in Rn) is
given in [37].

Remark 4.12. The condition that the triangulation necessarily becomes ar-
bitrarily fine is, in fact, too strong if the manifold contains large flat regions.
(A motivational example, widely noted and exploited in Computer Graph-
ics, is that of a round cylinder in R3.) Also, we have noted in [84], [101]
the need and possibility of a triangulation with variable density of vertices,
adapting to curvature. (Recall also that in [37] the hypothesis in the defi-
nition of fatness requiring that the mesh of the triangulation converges to
zero is discarded).

Remark 4.13. A similar result for the Einstein tensor, was obtained by
Bernig – see [15] and the references within. Recall that, in the smooth case,
the Einstein tensor is defined as

E =
scal

2
g − Ric.
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The quest (indeed, the need) for fat triangulations as a prerequisite for
Theorem 4.10, is hardly surprising, in view of the characterization of fat
triangulations as being precisely those triangulations having dihedral angles
bounded from below (Proposition 4.2) and in view of the following expression
of the Lipschitz-Killing curvatures in terms of dihedral angles (see [29] for
the proof):

Rj =
∑
σn−j

{
1− χ

(
L(σj)

)
+
∑
l

�(σn−j , σn−j+i1) · · ·�(σn−j+i1−1 , σn−j+i1)·
(4.13)

·
[
1− χ

(
L(σn−j+il)

)] }
Vol(σn−j) ,

where L(σj) denotes the (spherical) link of σj , and �(σi, σj) is the internal
dihedral angle of σi < σj ; �(σi, σj) = Vol

(
L(σi, σj), where the volume is

normalized such that Vol(Sn) = 1, for any n. (See [29] for further details.)
(Here χ, Vol denote, as usual, the Euler characteristic and volume of σk,
respectively.)

We can further exploit (and enhance) Theorem 4.10 if provided with a
results ensuring the existence of thick triangulations. One such result is

Theorem 4.14 ([81]). Let Mn be a connected, oriented n-dimensional (n ≥
2) submanifold of RN (for some N sufficiently large), with boundary, having
a finite number of compact boundary components, and such that one of the
following condition holds:

(i) Mn is of class Cr, 1 ≤ r ≤ ∞ , n ≥ 2;
(ii) Mn is a PL manifold and n ≤ 4;
(iii) Mn is a topological manifold and n ≤ 3.

If the boundary components admit fat triangulations of fatness ≥ ϕ0,
then there exist a global fat triangulation of Mn.

Remark 4.15. In fact, the conditions on the compactness and boundedness of
the boundary components in the theorem above are too strong, as indicated
by the results in [82], [84], where the theorem above was shown to hold also
for (hyperbolic) manifolds with infinitely many boundary components (as
well as for more general spaces). The role of the conditions in question is to
exclude certain “pathological” cases.

Moreover, given the triangulation results of [65], [29] for manifolds with-
out boundary, the following (important in the sequel) corollary follows im-
mediately:
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Corollary 4.16 ([81]). Let Mn be a Riemannian manifold satisfying the
conditions in the statement of Theorem 4.14 above.

Then Mn admits a fat triangulation.

Remark 4.17. For a similar earlier result see [25], as well as [7].22

The immediate differential geometric consequence of Theorems 4.10 and
4.14, as well as Corollary 4.16 – where by “immediate” we mean here that
it can be directly inferred by applying the methods of [29] – is the following:

Theorem 4.18. Let N = Nn−1 be a not necessarily connected manifold,
such that N = ∂M,M = Mn, where Mn is, topologically, as in the statement
of Theorem 4.14.

(i) If M,N are PL manifolds, then the Lipschitz-Killing curvature mea-
sures of N can be extended to those of M . More precisely, there exist
Lipschitz-Killing curvature measures R = {Rj} on M̄ = M ∪N , such
that R|N = RN and R|M = RM , except on a regular (arbitrarily small)
neighbourhood of N , where RN , RM denote the curvature measures of
N,M respectively.

(ii) If M,N are smooth manifolds, then the same holds, but only in the
sense of measures.

Remark 4.19. Here it is important to recall that Rj |∂Mn = Hj and, in the
case of PLmanifolds, it represents the contribution of the (n−j)-dimensional
simplices that belong to the boundary. (For an explicit formula, see any of
the formulas (3.23), (3.38) or (3.39) of [29].)

Remark 4.20. In view of the previous Remark, Theorem 4.18 above can
be considered, in a sense, as the “reverse” of the result of [29], Section 8,
regarding the convergence of the boundary measures.

4.2.1. An alternative approach A different, quite natural, approach
to the approximations of curvatures of smooth manifolds by the discrete
curvature of PL (piecewise flat) approximations stems from Formula 3.61.
Here one regards the relevant edges of a fine enough triangulation both as
the principal vectors (i.e. principal directions ×Kmin, respectively kMax).
Let us examine the feasibility of this method of approximating curvatures:

1. For PL manifolds, this approach would be somewhat naive, if applied
directly, as it gives only approximative results. (This is a consequence
of the fine interplay between the necessity of ensuring the fatness of the

22The author is indebted to Marc Troyanov for bringing to his attention Attie’s
work [7].
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triangulation, simultaneously with a good sampling of the direction in
the tangential plane (or rather cone) – see [87].) One can overcome this
obstacle by using an extension of the notion of principal curvatures
to a far larger class of geometric objects than mere smooth or even
PL manifolds (see, e.g. [121]), by passing to the so called generalized
principal curvatures. Unfortunately, in order that we may be able to
present even very succinctly this tool stemming from Federer’s classical
work [36], we have to introduce additional of technical definitions and
notations.
Let X be an arbitrary set in some RN and let Xε denote the ε-
neighbourhood of X. Then, for for small enough ε > 0, ∂Xε is a
C1,1-hypersurface.23 More precisely, ε has to be strictly smaller than
the reach of X,

(4.14) reach(X) = sup{r > 0 | ∀y ∈ Xr , ∃! x ∈ Xnearest to y} ,

Moreover, the reach itself has to be strictly positive.
It follows that ∂Xε admits principal curvatures (in the classical sense)
kεi (x + n) at almost any point p = x + n, where n denotes the nor-
mal unit vector (at x). Define the generalized principal curvatures
by: κi(ε,n) = limε→0 k

ε
i (x+ n). Then κi(ε,n) exist HN−1-a.a. (x,n).

(Here H denotes again the Hausdorff measure.)
Using this generalization of principal curvatures, one can retrieve a
proper analogue of Formula 3.61, namely

Cj(X,B) =

∫
nor(X)

1B

N−1∏
i=1

1√
1 + κi(x,n)2

SN−1−j(κ1(x,n), · · ·

(4.15)

· · · , κN−1(x,n))dHN−1(x,n) ,

where Cj(X,B) denote the so called Lipschitz-Killing curvature mea-
sures (see [121] and the bibliography therein for details), B being a
bounded Borel set in RN , and nor(X) denotes the (unit) normal bundle
of X:

(4.16) nor(X) = {(x,n) ∈ ∂X × SN−1 |n ∈ Nor(X,x)},
23In general, ∂Xε is a (N − 1)-dimensional manifold with Lipschitz outer unit

normal field, for any ε ∈ (0, reach(X)), where the definition of reach is given in
(4.14) – see [36].
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where Nor(X,x) = {n ∈ SN−1 | < n, v >≤ 0, v ∈ Tan(X,x))} is the
normal cone (to X at the point x ∈ T ), dual to the tangent cone (to
X at the point x ∈ T ).
Using the convergence properties of the generalized principal curva-
tures and of the Lipschitz-Killing curvature measures (again, see [121]
and the bibliography therein), the result now follows along the lines of
the second part of our first proof of the theorem.

Remark 4.21. The idea of passing to a smooth (enough) surface close to
the original given data set is a common one in Imaging and Graphics,
even though the precise method presented above is not the standard
one and appears, perhaps, to be rather technical. Moreover, this ap-
proach is similar in concept (even though based on a very different
mathematical apparatus) to the one based on smoothings, approach
that will be employed extensively in the sequel.

2. The case of smooth manifolds follows easily by following the same
scheme as in the main approach in [29].

4.3. A generalization: almost Riemannian manifolds

Theorems 4.14 and 4.18 above admit generalizations (see also Remark 4.25
below), of which we bring here a rather direct one. We begin with the fol-
lowing definition (cf. [106]):

Definition 4.22. A metric space (M,d) is called an almost Riemannian
space iff

1. M is a smooth manifold;
2. There exists a (smooth) Riemannian metric g on M and a constant

C0 > 0, such that, for any x ∈ M , there exists a neighbourhood U(x),
such that

(4.17) C−1
0 d(y, z) ≤ distg(y, z) ≤ C0d(y, z) ,

for all y, z ∈ U(x).

The basic example of an almost metric space (beyond the trivial one
d ≡ g) is given by any smooth (Riemannian) manifold embedded in some
RN and d be the Euclidean distance in RN , d = distEucl, i.e. precisely the
setting which we are concerned: the secant approximation of an embedded
smooth manifold, with its Euclidean (ambient) metric is a almost Rieman-
nian manifold (relative, so to say, to the approximated smooth manifold).
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According to [106], this holds, in fact, for any C0 > 0, albeit at the price

of locality (i.e. the size of the neighbourhood U(x) depends very much on

the point x) and cannot be apriorily be asserted (and, in fact, on the large

scale, the to distance (geometries) might – and usually do – differ quite

widely). However, we can do a bit better, by requiring that the simplices

of the approximations are fat. Even if this requires some “preprocessing” of

the given manifold this can be done (this being the starting point of this

paper). Then, for any triangulation patch, we have the following estimates:

1. If M has no boundary, then, by [71]

(4.18)
3

4
dg(y, z) ≤ dEucl(y, z) ≤

5

3
dg(y, z) ;

2. If M has boundary, then, by [81]

(4.19)
3

4
dg(y, z)− f(θ)η∂ ≤ dEucl(y, z) ≤

5

3
dg(y, z) + f(θ)η∂M ;

where f(θ) is a constant depending on the θ = min {θ∂M , θintM} –

the fatness of the triangulation of ∂M and intM, respectively, and η∂
denotes the mesh of the triangulation

Even though in the general case we can not produce estimates as pre-

cise as (4.18) and (4.19) above, (4.17) still holds. Since Mn is a topological

manifolds, we can triangulate it (using Munkres’ classical results) and, fur-

thermore, we can pass from d(y, z) to distg and back in a controlled manner,

using (4.17), thus allowing us to apply the fattening techniques of [29].24 It

follows that Theorems 4.14 generalizes to almost Riemannian manifolds, and

we formalize this observation as

Theorem 4.23. Let (M,d) be an almost Riemannian manifold, where M

satisfies the conditions in the statement of Theorem 4.14. Then it admits a

fat triangulation.

Remark 4.24. Of course, one would also like to obtain a version of Theorem

4.18 adapted to almost Riemannian manifolds. However, this eludes us so

far, since even a proper definition of the Lipschitz-Killing curvatures of an

almost Riemannian manifold is not quite evident.

24The ε-moves employed in [29] show that only the metric properties suffice to
ensure fatness. (Recall also the discussion in Section 4 above.)
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Remark 4.25. Besides the slight generalization (and its applications) pre-
sented above, there exist other, perhaps more less immediate ones – see [84],
[86]. In particular, we noted the existence of fat triangulations of Lipschitz
manifolds. Since Alexandrov spaces are, by results of Perelman [72] and Otsu
and Shioya [68], Lipschitz manifolds a.e., fat triangulations of such objects,
and their differential geometric implications are certainly worth to explore,
especially the role of Alexandrov spaces in Graphics, Imaging, etc., and also
in Regge calculus – see Section 4.4.1 below and also [93], [93].

Note also that Semmes stresses that the condition in the definition of
almost Riemannian manifolds, of M being a topological manifold is far too
strong. We can still use Semmes’ original Definition 4.22 for PL (or polyhe-
dral) manifolds (at least in dimension n ≤ 4) by considering smoothings (see
[65]) and also considering, instead of the original PL (polyhedral) metric g,
its smoothing g̃ – see [93], [93] for details and another application of this
technique. (In fact, any topological manifold of dimension n ≤ 3, admits a
PL structure – see, e.g., [65] – therefore one can construct almost Rieman-
nian manifolds of dimension 2 and 3, by starting with a topological manifold
and considering, for example, the combinatorial metric on a compatible PL
structure, etc.)

Remark 4.26. While, as we have noted above, not all the differential geomet-
ric consequences of the existence of fat triangulations of almost Riemannian
manifolds are, at this point in time, accessible to us, this generalization is
not gratuitous, either. Indeed, the fact that PL manifolds – satisfying cer-
tain additional technical conditions (see [106]), that we do not bring here in
order not to deviate to much from the main ideas – are almost Riemannian
manifolds, shows that they also admit differential forms satisfying additional
properties – see [106], Theorems 17.3 and 17.10. This differential forms are
related to the construction of certain Lipschitz mappings that are connected,
in their turn, to the existence of sufficiently large families of curves connect-
ing two given points, with lengths not deviating too much from the distance
between the two points [106]. We shall investigate elsewhere the implica-
tions (and relevance) of the existence of such curves for PL manifolds [91].
However, we formalize the fact above as:

Proposition 4.27. Let (M,d) be a PL manifold. Then there exists on M
bounded measurable (resp. locally integrable) differential forms that satisfy
the conditions in [106], Theorem 17.3 (resp. [106], Theorem 1.10).

Moreover, given the following facts: (a) If {Pm}m∈N is a sequence of n-
dimensional polyhedral manifolds, converging, in secant approximation to
Mn ⊂ RN , then the convergence is also in the Lipschitz sense (see [37],
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Section 3); (b) Theorems Theorem 17.3 and 1.10 of [106] are proved using
solely properties of Lipschitz functions (with values in Sn), we formulate the
following conjecture, whose full proof we shall bring elsewhere [92]:

Conjecture 1. Let Mn ⊂ RN be a C1,1 compact manifold with boundary, and
let {Pm}m∈N be a sequence of fat PL (polyhedral) manifolds with boundary
closely inscribed25 in Mn, Hausdorff converging to Mn. Denote by θ0,m, θT,m,
Λ1,m and Λ2,m the bounded measurable, respectively locally integrable, dif-
ferential forms given by [106], Theorems 17.3 and 1.10, respectively. Then
θ0,m → θ0, θT,m → θT ,Λ1,m → Λ1,Λ2,m → Λ2, where θ0, θT ,Λ1,Λ2 are
bounded measurable, respectively locally integrable differential forms on Mn,
satisfying the conditions in [106], Theorems 17.3 and 1.10, respectively. Here
the convergence should be understood in the sense that it occurs only where
it makes sense, that is on the space of forms on the common set of {Pm}m∈N
and Mn, i.e. on the vertices of the polyhedral manifolds Pm.

As we have seen above, there are quite strong geometric facts than can
be asserted about almost Riemannian manifolds.

4.4. Applications

We investigate the applications of Theorem 4.18 to (a) the Regge calculus,
and (b) Computer Graphics and related fields.

4.4.1. Regge calculus Looking for the applications of the results above
in the context of Regge calculus [77], is only natural, given that the original
motivation of [29] (and its precursory, more Physics oriented, [28]) stemmed
precisely from therein. Indeed, as emphasized in [29], Gauss (scalar) curva-
ture K ≡ R2 and mean curvature H ≡ H2 are relevant to the Hilbert action
principle, thence to the derivation of the Einstein field equations.

4.4.1.1. An immediate consequence As we have already noted above, our
result represents a “reverse version” of a result of [29]. Its relevance to (Dis-
crete) General Relativity is accentuated by contemporary works such as
[107]. Indeed, our main result 4.18 has as a (rather simple) consequence
the possibility of extending the intrinsic the intrinsic differential structure
from the surface singularity to its interior, that is, starting from a horizon
of prescribed (and arbitrary) geometry, constructing an asymptotically flat
structure. This is possible not only for the immediate (rather trivial) case

25See [37], p. 179 for the precise definitions.
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of smooth singularities, e.g. Wheeler wormholes [119] (i.e. such that S � S2,
where S ⊂ ∂M3) that constituted an important motivational phenomenon in
Regge’s original paper [77], but also for the more interesting case of Wheeler
Foam [120], i.e. non-smooth singularities (for which topology and curvature
change with scale).26

4.4.1.2. Purely metric Regge calculus The Physical motivation of the study
of the curvatures convergence problem raises a few natural, interrelated,
questions:

Question 1. The PL spaces are still not the discrete metric spaces (lattices)
sought for in quantum field theory. Can one discard this restriction?

The answer turns out to be affirmative, as we indicate below, if one dis-
cards the angular defect approach in favor of working with metric curvatures

Question 2. Since Regge’s drive was to find a purely metric (discrete) for-
mulation of Gravity, the presence of angles in the Lipschitz-Killing curva-
tures is a bit “unesthetic”, as already stressed above. Hence: can one (non-
trivially) formulate Theorem 4.18 (and its consequences) solely in metric
terms?

Again, the answer to this question, as for the previous one, is positive.
Our suggested approach to its solution is, evidently, to make appeal yet once
again to formula (3.61) to express the curvature at a vertex by principal
curvatures (which is easy – and natural – to determine for a piecewise-
flat surface). Use then results of [18], Section 10 (see also Section 3.1.2)
above, to show that for piecewise-flat manifolds, using metric curvatures
(Menger and/or Haantjes) one can approximate well (in fact: as well as
desired) smooth (classical) curvature. In consequence one can compute the
Gauss and mean curvatures of piecewise-flat surfaces, with a clear and well
established importance in Graphics, etc. (See also the discussion in the next
section.)

However, these are only approximations with limited convergence prop-
erties – see [97], [80] for the metric curvatures aspect and also [112], [32],
amongst others, for the more general problem of approximating principal
curvatures. The problem is that, in order to ensure convergence for the

26An amusing (almost “Sci-Fi”) consequence of this result is the fact that it
allows for a continuous “gluing” of the geometry of the given “Universe”, across
the black-hole singularity (i.e. the common boundary), to the “Alternate Universe”,
without any distortion (hence without observable changes for an observer), except
on a arbitrarily small, symmetric tubular neighbourhood of the singularity.
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Cheeger et al. process, the triangulation has not only to converge in mesh
to 0, it also has to remain fat. However, to ensure a “good sampling” of the
directions on a surface (so to ensure good approximation of the principal cur-
vatures), one necessarily has to produce samplings whose edges directions
are arbitrarily dense in the tangent plane (cone) at a given point (vertex),
in contradiction with the previous fatness constraint. (Note, however, that
this problem does not exist if one is willing to be content with approximate
results, correct up to a predetermined error. One should also keep in mind
Remarks 4.12 and 4.7 regarding Fu’s work, as being pertinent to this issue.)

Moreover, given the fact (discussed above), that one can not increase as
desired the number of triangles adjacent to a vertex, there exist only a very
limited number of directions to “choose” from. Thus one is quite restricted
in adding new directions (thus to better “sample” the surface, so to say)
without negatively affecting the fatness of the triangulation.27

How to “get rid” of this problem?

• “Mix” the angles in the manner described in detail in [82], to obtain
angles whose measure is close to their mean (i.e. π/deg(v) – where
deg(v) denotes the number of triangles adjacent to the vertex v. (This
“trick” works if a smoothness condition (albeit, minimal) is imposed
on the manifold – it certainly holds for triangulated surfaces.)

• Add directions by considering the PL-quasi-geodesic and “normalize”
(by projection on the normal plane) – see [98], [97] and the references
therein for details and some numerical results.

• The approximation of principal curvatures being, as already noted
above, notoriously difficult – see [64] [112], [76], [32] – one seeks other,
perhaps less direct strategies. Such a method does, in indeed exist,
embodied by the generalized principal curvatures, as we have detailed
above. Passing to smooth surfaces allows for the use of a wide scale of
well developed and finely honed methods of Graphics and related fields.
Furthermore, it clearly compensates for its departure from the given
(data) set of discrete/geometric PL object by its generality whence its
applicative potential in a very general setting.

As we have seen above, we can compute the principal curvatures of
S via those of the smoother surface Sε, at least up to some infinitesimal
distortion. However, to determine the full curvature tensor, in the case of
higher dimensional manifolds, suffices to determine the Gauss curvature of

27In practice (Graphics, etc.) even angles π/12 are already problematically
small!...
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all the 2-sections (see observation above). So, for the full reconstruction of
the curvature tensor it is not necessary to determine the principal curvatures,
suffices to find the sectional curvatures. We shall show shortly how we this
can be done.

Remark 4.28. It is natural to ask the question whether it is possible to com-
pute the Lipschitz-Killing curvatures, starting from the defining Formula
(3.59), that is if one can compute the necessary curvature 2-forms and con-
nection 1-forms. The answer seems to be positive, even though, till recently
this was only a mainly theoretical possibility (see [110]). However, after the
appearance of the computational exterior differential calculus, introduced
by Gu [47] and Gu and Yau [49], and embraced and developed since then
by many others, this approach appears quite feasible, at least in dimensions
2 and 3.

Another related question is whether it is possible to determine other
important curvatures (e.g. Ricci and scalar) as well as the Lipschitz-Killing
curvatures, via the sectional curvatures, without appeal to principal curva-
tures (and Formula (3.61) or (4.15)28). We have tackled this problem in [48]
and presented a partial, possible solution and some of its consequences (see
also [100]).

4.4.2. Computer graphics Polygonal/polyhedral (mainly triangular/
tetrahedral) meshes are the basic representations of geometry, employed in a
plethora of related fields, such as Computer Vision, Image Processing, Com-
puter Graphics, Geometric Modeling and Manufacturing. Curvature analysis
of this type of data sets plays a major role in a variety of applications, such
as reconstruction, segmentation and recognition and non photorealistic ren-
dering (see the bibliography included in [61] for some of the vast – and ever
developing – literature on the subject).

It is perhaps needles to mention that many of the facts and techniques
discussed with regard to the Regge calculus are relevant in this context as
well. Amongst these we mention PL geodesics and Haantjes curvature for
the determination principal curvatures (see [61] for a discussion and [97] for
an implementation and some numerical results), “mixing” of the angles and,
certainly not the least, the PL metric Ricci curvature and flow.

Moreover, since, as already mentioned above, R0 ≡ volume, R2 ≡ scalar
curvatureand H1 ≡ area boundary, H2 ≡ mean curvature for inward nor-
mal, etc., there exists a relationship between the main subject of this paper
and the fields mentioned above. Indeed, one such connection was already

28or, (4.13), for that matter.
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mentioned in Remark 4.20 above. However the connection is deeper and
less trivial than this. Indeed, in Computer Graphics, Computer Aided Ge-
ometric Design, etc. it has become customary lately to compute so called
volumetric curvatures (see, e.g. [108]), and Graphics (see [50] and the bibliog-
raphy therein). This amounts, in fact, to the computation of the curvatures
(Gauss and mean) of surfaces evolving in time. We take this opportunity
to note that, while surely this approach has its merit and applications, a
proper “volumetric”, i.e. 3-dimensional curvature (measures), would entail
the computation of a namely sectional, scalar and Ricci curvatures. In all
fairness, we should add that, for Computer Graphics, where usually the
data is already embedded in R3, thus endowed with the Euclidean (flat)
geometry of the ambient space, such computations are, therefore, rather
meaningless.

Clearly, the metric approach to the computation of PL (and polyhedral)
manifolds considered above is more relevant in practice for the applicative
fields considered above. This is particularly true for 2-dimensional manifolds,
with further emphasis on the types of surface (square grids) traditionally
employed in Imaging, since, as we have already noted, the notion of Ricci
curvature for the dual complex and the one for the original (given) complex,
have the same geometric significance and even coincide, perhaps up to a
constant.

We conclude this section by noting that estimation of curvatures, mainly
of mean curvature, is also important (mostly via the Cahn-Hilliard equation)
in physically motivated applications – see, e.g. [53], amongst many others.

Remark 4.29. We can not conclude this section without pointing out that
the reverse connection between curvature and thickness of a triangulation
is well established. More precisely, to construct a thick triangulation of a
manifold, one chooses its vertices according to a (metric) sampling density
given by its curvature. This is, by now, a subject explored (and exploited)
in detail – see [71], [81], [85], [104], [88], [86], [101], [102].

5. Conclusion and future work

We have introduced the various metric curvatures, both for curves and sur-
faces and discussed their extensions and applications to the definition of
metric curvature for PL (and polyhedral) spaces, and we investigated the
relationship with – by now the well established in Graphics, Imaging and
Manifold Learning – notion of Gromov-Hausdorff convergence. We next pre-
sented a number of applications, especially in Imaging (e.g. via a metric
curvature for wavelets), but also for networks. In addition, we sketched a
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number of other possible applications, mainly to Graphics and Regge Cal-
culus, via metric versions of the Lipschitz-Killing curvatures, and proposed
a few more possible, related directions of study.

To be sure, there are still many details to be filled in and concrete im-
plementations to be made. Amongst these, we mention a possible “metric
Nash” embedding result with multiple applications in Complex Networks,
as well as an implementation of the metric Lipschitz-Killing in Graphics and
Manifold Learning and Regge Calculus. In this last application, of particular
interest would be a comparison with the simplicial Regge calculus of Alsing
et al. Amongst the most natural – and important – directions of further
study that present themselves, are the development of fitting Ricci flows for
the Wald curvature, with applications to Network Theory and practice, and
for piecewise flat manifolds, aimed for applications in Regge Calculus. In
this last instance, a problem that imposes itself, is the comparison of the
metric (Wald) flow and Alsing’s simplicial one.

We hope that the classical notions and results, their applications so far in
practice, as well as open problems, will present themselves a an interesting,
attractive and worthwhile pursuing field of study for other scientist in the
various relevant fields.
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