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Surface based shape analysis plays a fundamental role in com-
puter vision and medical imaging. In this work, we proposes a
novel method for shape classification of brain’s hippocampus us-
ing Wasserstein distance based on optimal mass transport theory.
In comparison with the conventional method based on Monge-
Kantorovich theory, our proposed method employs Monge-Brenier
theory for the computation of the optimal mass transport map,
which remarkably ameliorates the efficiency by reducing computa-
tional complexity from O(n2) to O(n). Using the conformal map-
ping, our method maps the metric surface with disk topology to
the unit planar disk, which pushes the area element on the surface
to the disk and incurs the area distortion. A probability measure is
then determined by this area distortion. Given any two probabil-
ity measures on two surfaces, our method is capable of obtaining
a unique optimal mass transport map between them. The trans-
portation cost of this optimal mass transport defines the Wasser-
stein distance between two surfaces, which intrinsically measures
the dissimilarities between surface based shapes and thus can be
used for shape classification. Experimental results on surface based
hippocampal shape analysis demonstrates the efficiency and effi-
cacy of our proposed method.

1. Introduction

The past decades have witnessed a remarkable growth of interest and re-
search efforts in surface representations for 3D shape analysis. Some of con-
ventional methods focus on mathematical morphology [20], medical axis [5]
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and volume measurements [21]. More recently, surface based methods, such
as conformal mapping based shape analysis using Ricci flow [29], surface
matching [30] and anatomical morphometry analysis [15], have also attracted
increasing interest and attention. In this paper, we cope with a challenging
problem of 3D shape analysis and classification [23, 4, 3]. Some of related
research works employ landmark-based descriptor, medial axes, and defor-
mation field. Some of others utilize surface-based shape classification meth-
ods and brain morphometry [25, 24, 14]. To address the 3D shape classi-
fication problem by following the same spirit of surface based method, we
propose a Wasserstein distance method based on Monge-Brenier optimal
mass transport (OMT) theory for shape classification of brain’s hippocam-
pus in epilepsy. Our method first employs conformal mapping to map the
metric surface with disk topology to the unit planar disk, and then acquire
the probability measure by the induced area distortion. By computing an
unique optimal mass transport map between two surfaces equipped with
two probability measures, we can obtain the optimal transportation cost
which defines the Wasserstein distance between two surfaces. This Wasser-
stein distance can intrinsically measure the dissimilarities between surface
based shapes, and thus can be employed for shape classification.

Contributions To the best of our knowledge, this work is the first one to
propose a novel shape classification method usingWasserstein distance based
on Monge-Brenier theory for studying hippocampus of brain. We enumerate
contributions of this work as follows:

• proposes a novel shape classification method using Wasserstein dis-
tance based on optimal mass transport theory.

• demonstrates the potential of our method on the discriminative anal-
ysis of hippocampal shape in epilepsy.

The remainder of this paper is organized as follows. Section 2 reviews
related works of 3D shape analysis and classification. Section 3 briefly in-
troduces the theoretic background of Optimal Mass Transport theory and
Wasserstein distance. Section 4 gives the algorithmic implementation details
for optimal mass transport map and computation of Wasserstein distance,
followed by experimental results in Section 5.

2. Previous work

2.1. Shape classification

Shape classification and brain morphometry studies have obtained exten-
sive research interest in shape analysis and medical imaging fields in the
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past decades. A surface-based representation and classification technique
was studied for hippocampal shape analysis in [25] based on fine-scale spher-
ical harmonic expansion. A new framework for 3D surface object classifica-
tion using spherical harmonic parameterization and point distribution model
was presented in [26]. In [24], shape were represented by computing the his-
togram of pairwise diffusion distances between all points. A novel method
called compact Shape-DNA was proposed in [14] to describe the shape of a
triangular surface mesh for shape comparison and classification.

2.2. Optimal mass transport

In the past decades, numerous research works have investigated optimal mass
transport problem. A image registration and warping method was proposed
using optimal mass transport [19], which is based on a partial differential
equation approach to the minimization of the L2 Kantorovich–Wasserstein
under a mass preservation constraint. A texture mapping method based
on optimal mass transport was presented in [13]. This approach first com-
puted an angle-preserving mapping and then corrected it using the mass
transport procedure derived via a certain gradient flow. To deal with 2D
shape reconstruction and simplification problem, [11] presented a novel op-
timal transport driven approach, where the input point was approximated
by a simplicial complex considered as a sum of uniform measures. For image
processing, [10] devised a novel method by converting capacity-constrained
Voronoi tessellation into an optimal transport problem, and exploited the
variational nature of this formulation to design an efficient optimization
technique of point distributions via constrained minimization in the space
of power diagrams. In brain morphological study and visualization, [27] pro-
posed an area-preserving mapping method computed using a optimal mass
transport, and applied this method to cortical surface classification for recog-
nition of Alzheimer’s Disease.

3. Theoretic background

This section briefly introduces the theoretic background of Optimal Mass
Transport theory and Wasserstein distance. We refer readers to a classical
textbook [18] for conformal geometry, the seminal papers [22] on optimal
transport map with Kantorovich’s method, and [17] for more detailed proofs
of the proposed method.

3.1. Optimal mass transport

Monge [6] raised the optimal mass transport problem in the 18th century.
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Definition 3.1 (Optimal Mass Transport). Suppose (X,μ), (Y, ν) are met-
ric spaces with probability measures, which have the equal total mass

∫
X μdx=∫

Y νdy. A map T : X → Y is measure preserving, if for any Boreal set B ⊂
Y , μ(T−1(B)) = ν(B). Given a transportation cost function c : X×Y → R,
find the measure preserving map T : X → Y that minimizes the total trans-
portation cost

(1) C(T ) :=
∫
X
c(x, T (x))dμ(x).

The problem of finding a map T minimizing Eqn. 1 (such that ν = T�μ ),
has been first studied by Monge [6] in the 18th century. At the end of 1980’s,
Brenier [7] has proved that there is a convex function f : X → R, and the
optimal mass transport map T (x) is given by the gradient map x → ∇f(x).

3.2. Discrete optimal mass transport

Suppose μ has compact support on X. Define Ω = Supp μ = {x ∈ X|μ(x) >
0}, and assume Ω is a convex domain in X. The space Y is discretized to
Y = {y1, y2, · · · , yk} with Dirac measure ν =

∑k
j=1 νjδ(y − yj). We define

a height vector h = (h1, h2, · · · , hk) ∈ R
k, consisting of k real numbers. For

each yi ∈ Y , we construct a hyperplane defined on X,

(2) πi(h) : 〈x, yi〉+ hi = 0.

We define a piece-wise linear convex function

(3) uh(x) =
k

max
i=1

{〈x, yi〉+ hi},

We denote its graph by G(h), which is an infinite convex polyhedron with
supporting planes πi(h). The projection of G(h) induces a polygonal parti-
tion of Ω,

(4) Ω =

k⋃
i=1

Wi(h),

where each cell Wi(h) is the projection of a facet of the convex polyhedron
G(h) onto Ω,

(5) Wi(h) = {x ∈ X|uh(x) = 〈x, yi〉+ hi} ∩ Ω.
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Figure 1: Discrete optimal mass transport map with Brenier’s approach.

This partition is equivalent to a power diagram, denoted as D(h), as ex-

plained in [17]. The area of Wi(h) is given by

(6) wi(h) =

∫
Wi(h)

μ(x)dx.

The convex function uh on each cell Wi(h) is a linear function πi(h),

therefore, the gradient map

(7) ∇uh : Wi(h) → yi, i = 1, 2, · · · , k.

maps each Wi(h) to a single point yi. The discrete OMT with Brenier’s

approach is shown in Figure 1.

The following theorem plays a fundamental role for discrete optimal

mass transport theory.

Theorem 3.1. Given a convex domain Ω ⊂ R
n, with measure density μ :

Ω → R, and a discrete point set Y = {y1, · · · , yk} with discrete measures ν =

{ν1, · · · , νk}. Suppose
∑k

j=1 νj =
∫
Ω μ, νj > 0. Then there must exist a height

vector h = {h1, · · · , hk} unique up to translations, such that the convex

function Eqn. 3 induces the cell decomposition of Eqn. 4. The following

area-preserving constraints are satisfied for all cells,

(8)

∫
Wi(h)

μ(x)dx = νi, i = 1, 2, · · · , k.
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Furthermore, the gradient map grad uh optimizes the following trans-
portation cost

(9) C(T ) :=
∫
Ω
|x− T (x)|2μ(x)dx.

The existence and uniqueness was first proven by Alexandrov [1] us-
ing a topological method; the existence was also proven by Aurenhammer,
Hoffmann and Aronov [2], the uniqueness and optimality was proven by
Brenier [7]. Recently, Gu et al. [17] gives a novel proof for the existence and
uniqueness based on the variational principle, which leads to the computa-
tional algorithm directly.

Define the admissible space of height vectors:

H0 :=

{
h|

k∑
j=1

hj = 0 and

∫
Wi(h)

μ > 0, ∀i = 1, · · · , k,
}
.

Then define the energy E(h),

(10) E(h) =

∫
Ω
uh(x)μ(x)dx−

k∑
i=1

νihi.

or equivalently

(11) E(h) =

∫ h

0

k∑
i=1

wi(η)dηi −
k∑

i=1

νihi + C,

where C is a constant. Consider the shape bounded by the graph G(h), the
horizontal plane {xn+1 = 0} and the cylinder consisting of vertical lines
through ∂Ω, the volume of the shape is given by the first term.

The gradient of the energy is given by

(12) ∇E(h) = (w1(h)− ν1, · · · , wk(h)− νk)
T ,

Suppose the cells Wi(h) and Wj(h) intersects at an edge eij = Wi(h) ∩
Wj(h) ∩ Ω, then the Hessian of E(h) is given by

(13)
∂2E(h)

∂hi∂hj
=

{ ∫
eij

μ(x)dx

|yj−yi| Wi(h) ∩Wj(h) ∩ Ω 
= ∅
0 otherwise

.
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The following theorem lays down the theoretic foundation of our OMT
map algorithm.

Theorem 3.2 (Discrete Optimal Mass Transport [17]). If Ω is convex, then
the admissible space H0 is convex, so is the energy (Eqn. 10). Moreover, the
unique global minimum h0 is an interior point of H0. And the gradient map
(Eqn. 7) induced by the minimum h0 is the unique optimal mass transport
map, which minimizes the total transportation cost (Eqn. 9).

The proof of Theorem 3.2 is reported in [17]. Due to the convexity of
the volume energy Eqn. 10, the global minimum can be obtained efficiently
using Newton’s method. Comparing to Kantorovich’s approach, where there
are O(n2) unknowns, this approach has only O(n) unknowns.

3.3. Wasserstein metric space

Suppose (M,g) is a Riemannian manifold with a Riemannian metric g.

Definition 3.2 (Wasserstein Space). Let Pp(M) denote the space of all
probability measures μ’s on M with finite pth moment, where p ≥ 1. Suppose
there exists some point x0 ∈ M that

∫
M d(x, x0)

pdμ(x) < +∞, where d is
the geodesic distance induced by g.

Given two probability μ and ν in Pp, the Wasserstein distance between
them is defined as the transportation cost induced by the optimal mass
transport map T : M → M ,

Wp(μ, ν) := inf
T#μ=ν

(∫
M

d(x, T (x))pdμ(x)

) 1

p

.

The following theorem plays a fundamental role for the current work.

Theorem 3.3. The Wasserstein distance Wp is a Riemannian metric of
the Wasserstein space Pp(M).

Detailed proof can be found in [28].

4. Algorithms

This section gives the algorithmic implementation details for optimal mass
transport map (OMT-Map) generation using our new variational frame-
work. Based on the OMT-Map algorithm, we introduce the computation for
conformal Wasserstein distance between surfaces.
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4.1. Optimal Mass Transport Map (OMT-Map) Algorithm

Assume Ω is a convex planar domain with measure density μ. P = {p1, · · ·, pk}
is a point set with measure ν = {ν1, · · · , νk}, such that

∫
Ω μ(x)dx =

∑k
i=1 νi.

According to the discussion in previous section, the OMT-Map can be
obtained by minimizing the convex energy in Eqn. 10. In practice, the energy
can be optimized using Newton’s method, which requires the computation
of the energy gradient using Eqn. 12, and the Hessian matrix using Eqn. 13.
The method is straightforward, but the initialization and the step length
selection need to be specially addressed.

Initialization By translating and scaling, P could be inside Ω, P ⊂ Ω.
At the beginning, we set each power weight hi to be 0, namely h = 0,
and compute the power diagram D(P,h) and the Delaunay triangulation
T (P,h). In this scenario, D(P,h) is a conventional voronoi diagram.

Step Length Selection Suppose at the k-th step in the optimization,
the power weight vector is hk, and all Voronoi cells Wi(h

k) are non-empty.

Algorithm 1 Optimal Mass Transport Map (OMT-Map)

Input: A convex planar domain with measure (Ω, μ); a planar point set with

measure (P, ν), νi > 0,
∫
Ω
u(x)dx =

∑k
i=1 νi; a threshold ε.

Output: The unique discrete OMT-Map f : (Ω, μ) → (P, ν).

Scale and translate P , such that P ⊂ Ω.
h ← (0, 0, · · · , 0).
Compute the power diagram D(h),
Compute the dual power Delaunay triangulation T (h),
Compute the cell areas w(h) = (w1(h), · · · , wk(h)).
repeat

Compute ∇E(h) using Eqn. 12.
Compute the Hessian matrix using Eqn. 13.
λ ← 1
h ← h− λH−1∇E(h).
Compute D(h), T (h) and w(h)
while ∃wi(h) == 0 do

h ← h+ λH−1∇E(h).
λ ← 1/2λ
h ← h− λH−1∇E(h).
Compute D(h), T (h) and w(h).

end while
until ‖∇E‖ < ε.
return f : Ω → P , Wi(h) → pi,i = 1, 2, · · · , k.
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Then the Hessian matrix Hk in Eqn. 13 is positive definite on the hyper-
plane {h|

∑
i hi = 0}. At the k+ 1-step, we set the step length parameter λ

as 1, and update the power weight vector

(14) hk+1 = hk − λH−1
k ∇E(hk).

Then we compute the power diagram D(P,hk+1). If any Voronoi cell
Wi(h

k+1) disappears, then the Hessian matrix Hk+1 will be degenerated.
In this case, we shrink the step length parameter λ to be half, λ ← 1

2λ.
Then we recompute hk+1 using the formula in Eqn. 14 and test again. We
repeat this procedure, until all Voronoi cells in D(P,hk+1) are non-empty.
Algorithm 1 gives the implementation details.

4.2. Conformal Wasserstein distance

The OMT-Map algorithm can also be generalized to compute the Wasser-
stein distance between two surfaces. Given two topological disk surfaces
(M1, g1, p1, q1) ∈ S, (M2, g2, p2, q2) ∈ S with total area π, where S is the
normalized marked metric space. p1 and p2 are correspondent interior mark-
ers, and q1 and q2 are correspondent boundary markers. We first compute
the conformal maps φ1 : M1 → D1 and φ2 : M2 → D2, where D1 and D2 are
the unit planar disks with Euclidean metric dx2 + dy2, such that φ(p1) =
φ(p2) = (0, 0) and φ(q1) = φ(q2) = (1, 0). Then we construct a convex planar
domain (Ω, μ) from D1, where μ is computed by μ(s,g) := e2λ(x, y)dx ∧ dy.

Algorithm 2 Computing Wasserstein Distance

Input: Two topological disk surfaces (M1, g1, p1, q1), (M2, g2, p2, q2). p1 and p2
are correspondent interior markers, and q1 and q2 are correspondent boundary
markers.
Output: The Wasserstein distance between M1 and M2.

1. Scale and normalize M1 and M2 such that the total area of each surface is π.
2. Compute the conformal maps φ1 : M1 → D1 and φ2 : M2 → D2, where D1

and D2 are the unit planar disks with Euclidean metric dx2 + dy2, such that
φ(p1) = φ(p2) = (0, 0) and φ(q1) = φ(q2) = (1, 0).
3. Construct a convex planar domain (Ω, μ) from D1, where μ is computed by
μ(s,g) := e2λ(x, y)dx ∧ dy.
4. Discretize D2 into a planar point set with measure (P, ν), where ν is computed
by νi =

1
3

∑
[vi,vj ,vk]∈M area([vi, vj , vk]).

5. With (Ω, μ) and (P, ν) as inputs of Algorithm 1, we compute the Optimal Mass
Transport map f : Ω → P , Wi(h) → pi, where pi ∈ P, i = 1, 2, · · · , k.
6. Wasserstein distance between M1 and M2 can be computed by Eqn. 15.
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And then we discretize D2 into a planar point set with measure (P, ν),
where ν is computed by νi =

1
3

∑
[vi,vj ,vk]∈M area([vi, vj , vk]). Using (Ω, μ)

and (P, ν) as inputs of Algorithm 1, we compute the Optimal Mass Trans-
port map f : Ω → P , Wi(h) → pi, where pi ∈ P, i = 1, 2, · · · , k. Therefore,
the Wasserstein distance between M1 and M2 can be computed by

(15) Wasserstein(μ, ν) =

k∑
i=1

∫
Wi

(x− pi)
2μ(x)dx

Algorithm 2 gives the implementation details.

5. Experiments

We implemented our algorithms using C++ on Windows platform, and all
the experiments were conducted on a laptop computer of Intel Core i7 CPU,
2.60GHz with 8GB memory. In order to evaluate the performance of our pro-
posed method, we compared our method with the method based on surface
area distortion, and the method based on the curvature difference. The clas-
sification was performed between epilepsy data group and normal control
group in a dataset of 40 hippocampuses, as shown in Table 1, where the
geometric properties of surfaces (e.g., number of vertices, edges, and faces)
were reported. The brain cortical surfaces (shown in Figure 2) and hip-
pocampus surfaces were reconstructed from MRI images by FreeSurfer [12].
The support vector machine (SVM) [9] was employed as the classifier in the
experiments, where the radial basis function (RBF) kernel was selected as

Table 1: Geometric properties of hippocampus surface

Surface Num. of Vertices Num. of Edges Num. of Faces
Control 10K 30K 20K
Epilepsy 10K 30K 20K

Figure 2: Lateral and medial views of brain cortical surfaces.
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Figure 3: Hippocampal surfaces and conformal mapping results. (a)–(b) left
and right hippocampus surfaces in normal control data group; (c)–(d) left
and right hippocampus surfaces in epilepsy data group; (e)–(h) correspond-
ing conformal mapping results.

the kernel function. We used C-SVM and selected C = 5 for cross valida-
tion. To report the average classification performance, we randomly selected
the training set each time and computed the average area under the curve
(AUC) of receiver operating characteristic (ROC) over 100 times.

One important step in our proposed method is to compute a confor-
mal mapping which maps the hippocampus surface onto the planar disk.
We first sliced the hippocampus surface along a geodesic curve between two
end points on the hippocampus surface, and then employed the holomorphic
one-form method [16] for conformal mapping of hippocampus surface onto
planar disk. Figure 3(a) and (b) show a representative pair of left and right
hippocampus surfaces in normal control group, and their conformal mapping
results are given in Figure 3(e) and (f), respectively. Figure 3(c) and (d) illus-
trate a representative pair of left and right hippocampus surfaces in epilepsy
data group, with their conformal mapping results shown in Figure 3(g) and
(h). To illustrate the angle preserving of the conformal mapping results, we
show the conformal texture mapping result using a checkerboard and circle
textures in Figure 4(a)–(d) and Figure 4(e)–(h), respectively. The texture-
coordinates are defined as the plane coordinates. One texture is a regular
checkerboard image and the other is an image with a collection of circles.
As observed in Figure 4, the right angles at each corner of checkerboard and
the circle shape are preserved.
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Figure 4: Conformal texture-mapping results. (a)–(d) conformal
checkerboard-texture mapping results of left and right hippocampus
surfaces in normal control and epilepsy data groups, respectively; (e)–(h)
conformal circle-texture mapping results of left and right hippocampus
surfaces in normal control and epilepsy data groups, respectively.

Previous work [8] indicates that the hippocampus is often the focus of
epileptic seizures. Epilepsy can cause some deformation on hippocampus of
the brain, which hence may result in shape dissimilarity between left and
right hippocampus. We hypothesize that our OMT-Map based Wasserstein
distance method, which intrinsically measures the dissimilarities between
shapes, may help early epilepsy detection. In our following experiments, we
computed the area distortion, curvature difference between registered left
and right hippocampal surfaces for each data in normal control data group
and in epilepsy data group. We then computed Wasserstein distance used in
our proposed method as above and demonstrated the classification perfor-
mance of our proposed method, in comparison to the other two methods.

Area Distortion In order to compute the area distortion between left and
right hippocampal surfaces, a Jacobian determinant J(v2) was computed for
each vertex v2 on the right hippocampal surface, where the corresponding
vertex on the left hippocampal surface is denoted as v1. Then the local
area distortion at v2 can be computed by max(J(v2), J

−1(v2)), where J
is approximated by the ratio between the measure μ(v2) and μ(v1), and
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Figure 5: Histograms of area distortion for comparison between control and
epilepsy data.

Figure 6: Histograms of curvature for comparison between control and
epilepsy data.

μ(vi) =
1
3

∑
jk Area([vi, vj , vk]). In Figure 5, the histogram of area distortion

shows that the pair of left and right hippocampal surfaces of the normal
control data produces less area distortions in comparison to the ones of the
epilepsy data.

Curvature Difference A convexity measure capturing the approxima-
tion of mean curvature was employed to compute the curvature map. We
computed the difference of curvature maps between the registered left and
right hippocampal surfaces. Given the curvature c1 of a vertex on the right
hippocampal surface and the curvature c2 of a corresponding vertex on the

left hippocampal surface, the curvature difference is denoted asmax( |c1||c2| ,
|c2|
|c1|).

As shown in Figure 6, the histogram of curvature difference demonstrates
that the pair of left and right hippocampal surfaces of the epilepsy data
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Figure 7: Measures in computation of Wasserstein distance. (a)–(b) measures
on left and right hippocampus surfaces in normal control group; (c)–(d)
measures on left and right hippocampus surfaces in epilepsy group.

Figure 8: Comparison of average ROC curves for three methods.

yields larger curvature difference, compared with the hippocampal surfaces
of the normal control data.

Wasserstein Distance Wasserstein distance is computed by measuring
the minimum transportation cost induced by the optimal mass transport
map between two surfaces, given two measures defined on two surfaces. Fig-
ure 7(a) and (b) show two measures on the left and the right hippocampal
surfaces of a normal control data. Figure 7(c) and (d) illustrate two mea-
sures on the left and the right hippocampal surfaces of a epilepsy data. Using
Algorithm 2, we can compute Wasserstein distance between two hippocam-
pus surfaces. To demonstrate the classification performance of our proposed
method, we employed SVM classifier to perform classification on a dataset
including normal control data and epilepsy data. Figure 8 show the classi-
fication results by ROC curves of three different methods. As observed in
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Figure 9: Comparison of average ROC curves between our method and the
combination of the other two methods.

Table 2: Average AUC value

Methods Average AUC value
Area Distortion 0.6948
Curvature Difference 0.7342
Curvature Difference + Area Distortion 0.7542
Wasserstein Distance 0.8834

Figure 8, our OMT-Map based Wasserstein distance method outperformed
the method based on surface area distortion, and the method based on
the curvature difference. To quantitatively measure the classification per-
formance, we computed the average AUC value corresponding to the ROC
curves in Figure 8. Table 2 shows that our proposed method achieved 0.8838
average AUC value, which demonstrated better classification performance,
in comparison with 0.6948 and 0.7342 average AUC values produced by
the other two methods. Furthermore, we compared our proposed method
with the combined curvature difference and area distortion based method.
Figure 9 demonstrates our proposed method still achieved better classifica-
tion performance, which was also evidenced by the less AUC value 0.7542
obtained by the curvature difference and area distortion based method.

6. Conclusion

In this work, a novel shape classification method for brain’s hippocampus
is proposed using Wasserstein distance based on optimal mass transport
theory. The algorithms for computation of optimal mass transport map,
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OMT-Map based area preserving mapping and computation of Wasserstein
distance are presented with details. Experimental evaluations on our pro-
posed OMT-Map based Wasserstein distance method demonstrated better
classification performance of our method. In the future, we will generalizes
our proposed method to surfaces with more general topology.
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