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The representation of curves by their square root velocity func-
tions (SRVF) provides a useful and computationally effective way
to make a metric space out of the set of all absolutely continu-
ous curves modulo reparametrization. The first part of this paper
establishes some important theoretical properties of this method,
proving the completeness of this metric space, characterizing the
exact nature of the closed orbits under reparametrization, and
proving the existence of optimal matchings between pairs of curves,
provided that at least one of the two curves is piecewise linear.

The second part of the paper develops a computational algo-
rithm that produces a precise optimal matching between any two
piecewise linear curves in R

N , with respect to the SRVF frame-
work. This method is demonstrated on several examples.
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1. Introduction

In [7] and other related papers, Srivastava et al. introduced a new method
for analyzing the shapes of absolutely continuous functions [0, 1] → R

N . By
“shape” we mean that under this analysis, two such functions are considered
equivalent if they only differ by a reparametrization, i.e., by composition
with a diffeomorphism [0, 1] → [0, 1]. The method is based on producing
a bijection between the set of absolutely continuous functions (starting at
the origin) and L2(I,RN ), and then transferring the L2 metric back to the
set of absolutely continuous functions. The L2 function corresponding to a
given absolutely continuous function is called its square root velocity function
(SRVF), and the general method is referred to by the same name. The
result is a complete metric on the space of absolutely continuous functions
starting at the origin. Furthermore, with respect to this metric, the group
of diffeomorphisms acts by isometries. This makes it possible to mod out
L2(I,RN ) by an appropriate group of reparametrizations, resulting in a
quotient space that is also a complete metric space.

The SRVF metric and the corresponding quotient construction have
proved quite useful for analyzing shapes of functions and curves for sev-
eral reasons:

• The metric has a compelling geometric interpretation as an elastic
metric (see [7]), under which optimal deformations minimize a combi-
nation of bending and stretching.

• It provides a very effective solution to the classical problem of aligning
two functions R → R by warping their domains. (See Tucker et al.
[10].)

• It can easily be adapted to a method of comparing closed curves, which
comprise a complete subspace of the metric space of all curves. These
closed curves are especially important because they occur as outlines
of images. (See [7].)

• With some modifications, it can effectively be adapted to the analysis
of curves up to affine transformation. (See Bryner et al. [2].)

A fundamental problem that arises in the implementation of this method
is the “optimal matching” problem: Given two functions I → R

N , determine
reparametrizations of these functions that achieve the infimum of the dis-
tance between the two corresponding orbits under the reparametrization
group. Finding such an optimal matching is important not only because it
results in a precise computation of the distance between two orbits, but also
because it allows one to find shortest geodesics in the quotient space. Until
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recently, we did not know whether such a pair of optimal reparametrizations
always exists! However, Martins Bruveris has recently informed us that he
has proved that if both curves are of class C1, an optimal matching always
does exist, and he has also produced pairs of highly irregular curves for which
an optimal matching does not exist. In most previous implementations, a
solution to this optimal matching problem has been approximated using a
dynamic programming algorithm (once again, see [7]).

The current paper has two primary goals: (1) to establish the theoret-
ical underpinnings of the SRVF method, especially the delicate quotient
construction referred to above and (2) to exhibit an algorithm that provides
a precise solution to the optimal matching problem for continuous piecewise
linear functions. The set of piecewise linear functions is very useful because
it is the simplest way of interpolating functions for which we have only a
finite set of data points, and because it is dense in the space of absolutely
continuous functions with respect to the SRVF metric.

There is considerable literature on similar methods for analyzing curves.
For example in Younes et al. [12] a representation of planar curves is used
that is similar to SRVF, but involves the complex square root of the velocity
(as opposed to the SRVF method, which only takes the square root of the
magnitude of the velocity). This method results in a beautiful way of han-
dling closed curves, but does not generalize easily to curves in R

N . Also, in
[12], only smooth curves are considered, which means that the resulting quo-
tient space is not a complete metric space. Sundaramoorthi et al. consider
a similar metric on the space of smooth planar curves in [9].

In Bauer et al. [1], a whole family of metrics on planar curves is consid-
ered, which includes both the SRVF metric and the metric in [12] as special
cases. However, this paper also does not generalize to curves in R

N .
In Daniel Robinson’s unpublished doctoral dissertation [4], a precise

matching algorithm is introduced for PL functions I → R, but it does not
easily generalize to PL functions I → R

N . Some of the theoretical material
from Section 2 is also adapted from [4].

In [6], Sharon and Mumford introduced a very interesting way of analyz-
ing the shapes of planar simple closed curves. In their method, each curve
is represented by a “fingerprint”, which is a diffeomorphism S1 → S1 that
is uniquely determined up to right composition with fractional linear trans-
formations (thinking of S1 as the boundary of the unit disc in the complex
plane). They put a geometric structure on these cosets of diffeomorphisms
using the Weil-Petersson metric, and demonstrate the existence of unique
geodesics between shapes using this method. One might ask how the SRVF
metric on the space of planar curves is related to the Sharon-Mumford metric
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and, alternatively, whether the SRVF metric could give a different method
for calculating geodesics in the space of “fingerprint” cosets, which, by lift-
ing, could be thought of as maps [0, 2π] → [0, 2π]. The short answer is that
since these two metrics are obtained by such different methods, there is
probably little relation between them! It would certainly be interesting to
study this question more deeply. Since the SRVF metric is invariant with
respect to right composition, it could be used to put a Riemannian metric
on the set of cosets of diffeomorphisms, but we have not investigated the
properties of geodesics that could be obtained by this method. The SRVF
method as presented in this paper has the advantage that it is much easier
computationally to go back and forth between parametrized curves and their
SRVFs than it is to go back and forth between shapes and their fingerprint
diffeomorphisms.

The main advances in the current paper are as follows:

• A rigorous development of the SRVF metric.
• A careful development of the quotient of L2(I,RN ) by the group of
reparametrizations; this includes a characterization of the closed orbits
involved in the construction.

• A description and implementation of an algorithm that gives a precise
solution to the matching problem for PL curves, a class of curves that
is dense in the space of all absolutely continuous curves.

One issue that this paper does not address, is the action of the group of
rotations, O(N,R), on the space of absolutely continuous curves. This part
of the theory is easier because it involves a linear action by a compact finite
dimensional Lie group, and there are straightforward analytic methods for
handling it (see Srivastava et al. [7] for details on how to do this).

The contents of this paper are as follows: In Section 2, we define the
square root velocity function (SRVF) of an absolutely continuous function
I → R

N , and we define the group Γ of reparametrizations; we also define a
monoid Γ̃ that contains Γ. In Sections 3 and 4 we prove that the closure of
each orbit under Γ can be expressed as an orbit under Γ̃. This is important
since, if we wish our quotient space to inherit a metric, the orbits must be
closed sets. (In Section 3, this theorem is proved for functions I → R, while
in Section 4 it is generalized to functions I → R

N .) In Section 5, we begin
to focus on piecewise linear functions, which comprise a dense subset of the
set of all absolutely continuous functions with respect to the SRVF metric.
In particular, we prove that if we are given two orbits [q1] and [q2] under
the action of Γ̃, and if at least one of these orbits contains the SRVF of a
piecewise linear function, then there exist orbit representatives that realize
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the minimum distance between these orbits. (Such a pair of orbit represen-

tatives is called an optimal matching of the two orbits.) We also prove that

if both of these orbits contain the SRVFs of PL functions, then this optimal

pair of orbit representatives can be chosen to be the SRVFs of PL functions.

In Section 6, we begin our discussion of how to produce an optimal matching

between PL functions, setting up some basic terminology. In Section 7, we

prove a theorem establishing certain properties that an optimal matching

between PL functions must have. In Section 8, we give a precise algorithm

for producing an optimal matching between two PL functions, based on

the theorem proved in Section 7. Section 9 gives a few examples of optimal

matchings produced by the algorithm described in Section 8.

We thank our colleague Dan Oberlin for several helpful conversations.

2. Basic quotient construction for curves in R
N

In this paper, we consider absolutely continuous functions I → R
N , where

I = [0, 1]. A function f : [a, b] → R is absolutely continuous if and only

if it has a derivative f ′ almost everywhere, f ′ is Lebesgue integrable, and

for all t ∈ I, f(t) = f(0) +
∫ t
0 f ′(u) du. (This is not the usual definition

of absolute continuity, but it is well known to be equivalent to the usual

definition; see, for example, Theorems 11, p. 125 and Theorem 14, p. 126 of

[5].) Let AC0(I,R
N ) denote the set of absolutely continuous functions I →

R
N with the property that f(0) = 0. We want to compare these functions

up to reparameterization. In other words, given f and g in AC0(I,R
N ), we

want to consider them as equivalent if there exists a “nice” homeomorphism

γ : I → I such that f ◦ γ = g. If they are not equivalent, we would like

a quantitative measure of how far from being equivalent they are. Let Γ

denote the group of functions γ : I → I which have the following three

properties: (1) γ is absolutely continuous, (2) γ(0) = 0 and γ(1) = 1, and

(3) γ′(t) > 0 almost everywhere. Γ is a group under composition. Clearly,

Γ acts on AC0(I,R
N ) from the right by composition. We would like to

make the quotient set AC0(I,R
N )/Γ into a metric space in a reasonable

way. There are two important issues to overcome here. The first is that to

get a reasonable metric on a quotient space, it helps if the group acts by

isometries. The second is that the orbits should be closed sets. We tackle

these one at a time.

Before we turn to these two issues, it will be helpful to define a monoid

containing Γ. Let Γ̃ be the set of functions γ : I → I satisfying (1) γ is

absolutely continuous, (2) γ(0) = 0 and γ(1) = 1, and (3) γ′(t) ≥ 0 almost
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everywhere. Note that Γ̃ is a monoid, and also acts on AC0(I,R
N ) from the

right by composition.

We now describe a way to understand the action of Γ̃ (and, therefore,
Γ) as an action by isometries. To do this, begin by defining a function V :
R
N → R

N by

V (x) =

⎧⎨
⎩

x√
|x|

for x �= 0

0 for x = 0

Denote by L2(I,RN ) the space of square integrable functions I → R
N ,

with standard L2 inner product denoted by 〈q1, q2〉 and distance function de-
fined by d(q1, q2) =

√
〈q1 − q2, q1 − q2〉. Define a function Q : AC0(I,R

N ) →
L2(I,RN ) by Q(f) = V ◦ f ′. It’s easy to see that Q is bijective (this is
proved in [4]); in fact given a function q ∈ L2(I), we can define f(t) =∫ t
0 q(u)|q(u)| du, and then verify that Q(f) = q.

Since Γ̃ acts on AC0(I,R
N ) and Q : AC0(I,R

N ) → L2(I,RN ) is bijec-
tive, we can define an action of Γ̃ on L2(I,RN ) in a unique way to make Q
equivariant. In fact, it is easy to verify that the corresponding right action
of Γ̃ on L2(I,RN ) is given by (q ∗ γ)(t) = q(γ(t))

√
γ′(t). Furthermore, this

action of Γ̃ on L2(I,RN ) is by isometries since

〈q1 ∗ γ, q2 ∗ γ〉 =
∫ 1

0
q1(γ(t))

√
γ′(t)q2(γ(t))

√
γ′(t) dt

=

∫ 1

0
q1(γ(t))q2(γ(t))γ

′(t) dt =

∫ 1

0
q1(u)q2(u) du = 〈q1, q2〉.

Note that for the second to last equality, we relied on integration by
substitution, which is valid because γ is absolutely continuous. This is one
important reason for insisting that our reparameterization functions are
absolutely continuous. Thus, we replace our study of the action of Γ̃ on
AC0(I,R

N ) by the study of the corresponding action of Γ̃ on L2(I,RN ),
which is an action by linear isometries. In what follows we will be interested
both in the action of Γ̃, and in the restricted action of Γ. Note to the reader:
Our definition of “action by isometries” is simply that for all γ ∈ Γ̃ and for
all q1, q2 ∈ L2(I,RN ), 〈q1 ∗ γ, q2 ∗ γ〉 = 〈q1, q2〉. While this equation implies
that the map L2(I,RN ) → L2(I,RN ) induced by each γ is injective, it does
not imply that it is surjective. For example, suppose that γ ∈ Γ̃ is constant
on some subinterval of I. Then for all q ∈ L2(I,RN ), q ∗ γ = 0 on this same
subinterval. Of course, for γ ∈ Γ, the induced map is bijective, since Γ is a
group.
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Denote by U(I,RN ) the unit sphere {q ∈ L2(I,RN ) :
∫ 1
0 |q(t)|2 dt = 1}.

This corresponds to the set of functions in AC0(I,R
N ) having arc length 1,

since if Q(f) = q, it follows that |f ′(t)| = |q(t)|2, and the arclength of f can

be written as
∫ 1
0 |f ′(t)| dt. U(I,RN ) is an invariant subset of L2(I,RN ) under

the action of Γ̃, as is the sphere of any radius centered at 0 in L2(I,RN ).
If we wish to compare two curves in a way that is invariant to rescaling, a
natural way to do this is to rescale both of them to have unit length before
comparing them. Hence, we sometimes concentrate on the action of Γ̃ on
U(I,RN ).

U(I,RN ) is an infinite dimensional submanifold of L2(I,RN ). If we think
of it as a Riemannian manifold, using the L2-inner product as a Riemannian
metric, then the geodesics are the arcs of great circles, where by “great circle”
we mean the intersection of U(I,RN ) with any 2-dimensional linear subspace
of L2(I,RN ). The corresponding (geodesic) distance function between any
q1 and q2 in U(I,RN ) is given by cos−1(〈q1, q2〉). Note that Γ and Γ̃ act on
U(I,RN ) by isometries.

We now return our attention to the action of Γ on L2(I,RN ). Given
q ∈ L2(I,RN ), let qΓ denote the orbit of q under Γ, and let L2(I,RN )/Γ
denote the set of all these orbits. Define a function ρ : (L2(I,RN )/Γ) ×
(L2(I,RN )/Γ) → R by ρ(q1Γ, q2Γ) = inf(γ1,γ2)∈Γ×Γ d(q1 ∗ γ1, q2 ∗ γ2) =
infγ∈Γ d(q1, q2 ∗ γ). The last equality follows from the fact that Γ acts by
isometries. As usual, it’s easy to show that ρ is symmetric, satisfies the tri-
angle inequality and is non-negative. However, it’s also easy to find examples
where q1Γ �= q2Γ, but ρ(q1Γ, q2Γ) = 0. The reason for this is that the orbits
are not closed sets, so all you have to do is choose q2 to be in the L2-closure
of q1Γ, but not in the orbit itself, in order to create such an example.

For example, define γ̃ ∈ Γ̃ by

γ̃(t) =

{
2t for t < .5

1 for t ≥ .5

While γ̃ /∈ Γ, we now construct a sequence {γn} in Γ such that {
√

γ′n}
approaches

√
γ̃′ in the L2 sense. To do this, let

γn(t) =

{
(2− 1

n)t for 0 ≤ t ≤ .5

(1− 1
n) +

1
n t for .5 < t ≤ 1

Now, let q0(t) ≡ c denote a constant function, where c ∈ R
N is any

nonzero vector. For each γ ∈ Γ, (q0 ∗ γ)(t) =
√

γ′(t)c. Then
√
γ̃′c /∈ q0Γ,
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but
√
γ̃′c is a limit point of q0Γ because each

√
γ′nc is in the orbit q0Γ, and

clearly
√

γ′nc →
√
γ̃′c with respect to the L2 norm. Hence q0 ∗ γ̃ �∈ q0Γ, but

q0 ∗ γ̃ is in the closure of q0Γ.

Lemma 1. Assume q1 and q2 are elements of L2(I,RN ). Then ρ(q1Γ, q2Γ) =
0 if and only if q1Γ and q2Γ have the same closure in L2(I,RN ).

Proof. Suppose ρ(q1Γ, q2Γ) = 0. Then there exist sequences {γn} and {γ̃n}
in Γ such that limn→∞ d(q1∗γn, q2 ∗ γ̃n) = 0. Because Γ acts by isometries, it
follows that limn→∞ d(q1, q2 ∗ γ̃nγ−1

n ) = 0, proving q1 is in the closure of q2Γ.
Since there was nothing special about the orbit representatives we chose,
and the argument is symmetric, if follows that each orbit is in the closure
of the other; hence, q1Γ and q2Γ have the same closure. The other direction
is obvious and we omit it.

Because of this lemma, the closure of an orbit is a union of orbits; if we
define a binary relation on L2(I,RN ) by stipulating that q1 ∼ q2 means that
q1Γ and q2Γ have the same closure, then ∼ is an equivalence relation. Let
S(I,RN ) = L2(I,RN )/ ∼. Henceforth, we will use the symbol [q] to denote
the point in S(I,RN ) corresponding to the closure of the orbit qΓ. We will
loosely refer to this as the “orbit” of q, even though it is actually a closed-up
orbit. It is easily verified that our distance function d on L2(I,RN ) induces
a metric, which we also call d, on S(I,RN ), defined by

d([q1], [q2]) = inf
w1∈[q1],w2∈[q2]

d(w1, w2)

and this metric induces the quotient topology.
We now prove a theorem giving a general form for elements of L2(I,RN ).

Theorem 1. Let q ∈ L2(I,RN ). Then q can be written in a unique way as
q = w ∗ γ where γ ∈ Γ̃ and w ∈ L2(I,RN ) has the property that |w(t)| is
constant a.e. for t ∈ I.

Proof. By Theorem 4.1 of [8], every absolutely continuous function on a
closed interval is rectifiable, and by Theorem 4.3 of the same book, every rec-
tifiable function has a constant speed parametrization, with the reparametriz-
ing function being absolutely continuous. Since for every q ∈ L2(I,RN ),
there is an absolutely continuous function f such that q = Q(f), our lemma
follows immediately.

We now wish to focus on a particular subset of S(I,RN ). We define a
function q : I → R

N to be a step function if we can express I as a finite
disjoint union of subintervals on each of which q is constant. Since we will
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only use this concept for L2 functions, we don’t care what happens at the
endpoints of each subinterval. It is a well-known fact (Prop. 10, p.151 of
[5]) that the step functions are dense in L2(I,RN ). We define S(I,RN )st ⊂
S(I,RN ) to be the set of all equivalence classes that contain at least one
step function. We see immediately that S(I,RN )st is dense in S(I,RN ).
Furthermore, under our bijection Q between AC0 and L2, the step functions
in L2 correspond to the piecewise linear functions (with finitely many pieces)
in AC0.

Later in this paper, we will prove that given two elements [q] and [w] of
S(I,RN ), if at least one of them is in S(I,RN )st, then there exist elements
q̃ ∈ [q] and w̃ ∈ [w] such that d(q̃, w̃) = d([q], [w]). We will also prove that
if both [q] and [w] are in S(I,RN )st, then q̃ and w̃ can both be chosen to
be step functions. As a result, it will follow that S(I,RN )st is a geodesically
convex subset of S(I,RN ), in the sense that given [q] and [w] in S(I,RN )st,
there exists a minimal geodesic in S(I,RN ) joining [q] to [w] that lies entirely
in S(I,RN )st.

3. Orbit structure in S(I,R)

In this section, we will specialize to the case N = 1, so all of our functions
are scalar valued instead of vector valued. In this case, Γ ⊂ AC0(I,R),
and Q(Γ) ⊂ U(I,R). In fact, Q(Γ) = {q ∈ U(I,R) : q(t) > 0 a.e.}. To
see this, we refer to Exercise 3.21 on page 82 of [3], which states that a
continuous, strictly increasing function u : [a, b] → R has an absolutely
continuous inverse if and only if the set on which its derivative vanishes
has measure 0. It is then immediate that the closure of Q(Γ) in U(I,R) is
{q ∈ U(I,R) : q(t) ≥ 0 a.e.}. Note that this last set is equal to Q(Γ̃). Hence,
the closure of Q(Γ) in U(I,R) is Q(Γ̃).

We begin by examining the simplest orbit in U(I,R). Let q0 ≡ 1 denote
the constant function. What can we say about the orbit [q0]?

Lemma 2. [q0] = Cl(Q(Γ)) = {g ∈ U(I,R) : for all t ∈ I, g(t) ≥ 0 a.e.} =
Q(Γ̃).

Proof. Given γ ∈ Γ, it’s immediate that (q0 ∗γ)(t) =
√

γ′(t) = Q(γ)(t). The
lemma then follows immediately from the previous paragraph.

Corollary 1. Given any g1 ∈ U(I,R) and g2 ∈ U(I,R) satisfying g1(t) ≥ 0
a.e. and g2(t) ≥ 0 a.e., there is a sequence {γn} in Γ such that g1 ∗ γn → g2
in the L2 metric.

Proof. Since g1 and g2 are both elements of Cl(Q(Γ)) = [q0], it follows that
[g1] = [g2] = [q0]. The corollary follows immediately.
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Let us think of q0 ≡ 1 as the “north pole” of U(I,R), and −q0 ≡
−1 as the “south pole”. Then the “upper hemisphere” is {g ∈ U(I,R) :∫ 1
0 g(t) dt ≥ 0}, the “lower hemisphere” is {g ∈ U(I,R) :

∫ 1
0 g(t) dt ≤ 0},

and the “equatorial sphere” is {g ∈ U(I,R) :
∫ 1
0 g(t) dt = 0}.

We next note that [q0] is completely contained in the upper hemisphere,

and in fact does not intersect the equatorial sphere. That’s because if∫ 1
0 g(t)2 dt = 1 but

∫ 1
0 g(t) dt ≤ 0, then it is clear that there must be a

set of measure greater than zero on which g(t) < 0.

We now observe that even though [q0] does not intersect the equatorial

sphere, it does contain points arbitrarily close to the equatorial sphere! To

see this, let 0 < ε < 1, and define gε ∈ U(I,R) by

gε(t) =

{
1/
√
ε for t < ε

0 for t ≥ ε

and define vε ∈ U(I,R) by

vε(t) =

⎧⎨
⎩
√

1−ε
ε for t < ε

−
√

ε
1−ε for t ≥ ε.

Clearly, gε ∈ [q0], vε is in the equatorial sphere, and d(gε, vε) =
√

2− 2
√
1− ε,

which can be made as small as desired by taking ε small.

The next lemma will calculate the distance between two specific orbits,

and will provide actual orbit representatives that realize this distance.

Remark 1. Since Γ and Γ̃ act by isometries on L2(I,RN ), it follows that

minimizing the distance between orbit representatives of [q] and [w] is equiv-

alent to maximizing their L2 inner products.

Lemma 3. Suppose the unit interval is expressed as a disjoint union of

measurable sets, I = A ∪ B, where A is assumed to have measure a. (For

purposes of visualization, the reader may want to keep in mind the case in

which A and B are simply subintervals of I.) Define

w(t) =

{
1 for t ∈ A

−1 for t ∈ B.

Then d([q0], [w]) =
√

2− 2
√
a, and this distance is realized by the orbit
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representatives w ∈ [w] and qA ∈ [q0], where we define

qA(t) =

{
1/
√
a for t ∈ A

0 for t ∈ B.

Proof. First, it’s easily verified that
∫ 1
0 w(t)q(t) dt =

√
a (implying d(q, w) =√

2− 2
√
a). So we just need to prove that this is the maximum over all repre-

sentatives of [q0]. In what follows, the key step will be the Cauchy Schwarz in-
equality, which states that for arbitrary f and g in L2(A), |

∫
A f(t)g(t) dt| ≤(∫

A f(t)2 dt
)1/2 (∫

A g(t)2 dt
)1/2

.
Continuing with the proof, choose an arbitrary q ∈ [q0]. Then calculate

∫ 1

0
q(t)w(t) dt =

∫
A
q(t)w(t) dt+

∫
B
q(t)w(t) dt.

Clearly
∫
B q(t)w(t) dt ≤ 0 since q(t) ≥ 0 and w(t) ≤ 0 on B. By

Cauchy Schwarz,
∫
A q(t)w(t) dt ≤ 1 · √a. These two bounds imply that∫ 1

0 q(t)w(t) dt ≤ √
a.

We remark that since geodesics in L2(I,RN ) are straight lies, it is easy
to write down a specific shortest geodesic from qA to w in the lemma above.
It’s also easy to verify that the image of this geodesic in S(I,R) is a geodesic
(in fact, a shortest geodesic) in this quotient space, according to the usual
definition of geodesic used in metric spaces:

Definition: A geodesic in S(I,R) is a continuous function α : [0, L] →
S(I,R) with the property that there exists a positive number K such that
for all s ∈ [0, L], there exists ε > 0 such that for all t1, t2 ∈ (s−ε, s+ε)∩[0, L],
d(α(t1), α(t2)) = K|t2 − t1|.

Some fundamental problems regarding geodesics in S(I,R) are: (1) Given
any two points in S(I,R) is there a geodesic joining them? Is there a shortest
geodesic? Can we find this geodesic in some reasonable way, for some rea-
sonable set of points in S(I,R)? In Lemma 3, we found a precise description
of the shortest geodesic between the particular orbit [q0] ∈ S(I,R), and any
orbit of the form [w], where w has the form

w(t) =

{
1 for t ∈ A

−1 for t ∈ B.

However, in Theorem 1, we proved that every element of U(I,R) can be
uniquely expressed as w ∗ γ, where w is of the form described above and
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γ ∈ Γ̃. (In fact, we proved a more general version of this for U(I,RN )).
Hence, we now know that for every orbit [q] ∈ U(I,R), there is a unique
shortest geodesic in S(I,R) joining [q] to the particular orbit [q0], and in
fact we have given a precise description of that geodesic.

Lemma 4. Let 0 ≤ a < b ≤ 1 and suppose q and w are two elements of
U(I,R) with the following three properties:

1. For all t ∈ (a, b), q(t) ≥ 0 and w(t) ≥ 0.

2.
∫ b
a q(t)2dt =

∫ b
a w(t)2dt.

3. For all t �∈ (a, b), q(t) = w(t).

Then [q] = [w].

Remark 2. We may replace condition (1) by the assumption that for all
t ∈ (a, b), q(t) ≤ 0 and w(t) ≤ 0, and the Lemma still holds, with the same
proof.

Proof. By Corollary 1, there is a sequence {λn} of absolutely continuous
homeomorphisms [a, b] → [a, b] with the property that λ−1

n (0) has measure
0, such that in L2([a, b]), q ∗ λn → w. (Note that in the proof of Corollary 1
it makes no difference that we have changed the interval from I to [a, b] and

changed the value of
∫ b
a q(t)2dt =

∫ b
a w(t)2dt from 1 to whatever it is.) Then

for each n, extend λn to γn ∈ Γ, by extending it as the identity outside [a, b].
It is then clear that in L2(I), q ∗ γn → w.

Lemma 5. Let q ∈ L2(I,R). Then [q] ∈ S(I,R)st if and only if there is
a finite sequence 0 = t0 < t1 < · · · < tn = 1 such that for each j, either
q(t) ≥ 0 for all t ∈ [tj−1, tj ] (a.e.), or q(t) ≤ 0 for all t ∈ [tj−1, tj ] (a.e.).

Proof. First, suppose there exists a finite sequence 0 = t0 < t1 < · · · <
tn = 1 such that for each j, either q(t) ≥ 0 for all t ∈ [tj−1, tj ], or q(t) ≤ 0
for all t ∈ [tj−1, tj ]. Then, by successive applications of Lemma 4 we can
find a new function in [q] that is constant on each [tj−1, tj ]. It follows that
[q] ∈ S(I,R)st.

On the other hand, suppose [q] ∈ S(I,R)st. Let w be a step function in
[q]. It follows that there exists a sequence {γi} in Γ such that w ∗ γi → q in
U(I,R) with respect to the L2 metric. Because of this convergence in L2,
we may choose a subsequence of {γi} such that w ∗ γi → q a.e. Since w is
a step function, we can find a sequence 0 = t0 < t1 < · · · < tn = 1 such
that w is constant on each interval (tj−1, tj). For each j ∈ {1, . . . , n − 1}
and i = 1, 2, 3, . . . , let tj,i = γ−1

i (tj). By compactness of I, we can replace
the sequence {γi} by a subsequence with the property that for each fixed
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j0, the sequence {tj0,i} converges to a number t̃j0 ∈ I, as i → ∞. Now, fix

j ∈ {1, . . . , n}. We will show that either q(t) ≥ 0 a.e. or q(t) ≤ 0 a.e. for

t ∈ (t̃j−1, t̃j). WLG, assume that w(t) ≥ 0 on (tj−1, tj). Let t̃ ∈ (t̃j−1, t̃j). By

definition of the action of Γ, we know that w∗γi(t) ≥ 0 for all t ∈ (tj−1,i, tj,i).

Choose an ε > 0 such that there exists an N such that for all i > N ,

(t̃ − ε, t̃ + ε) ⊂ (tj−1,i, tj,i). It follows that for all i > N , w ∗ γi(t) ≥ 0

on (t̃ − ε, t̃ + ε). Since w ∗ γi → q a.e., it follows that q(t) ≥ 0 almost

everywhere in (t̃j−1− ε, t̃j+ ε). Thus, we have shown that every t̃ ∈ (t̃j−1, t̃j)

has a neighborhood on which q(t) ≥ 0 a.e. Since a countable number of

these neighborhoods cover (t̃j−1, t̃j), it follows that q(t) ≥ 0 a.e. in (t̃j−1, t̃j).

Thus, we have produced a finite sequence {t̃j} such that on each (t̃j−1, t̃j),

either q(t) ≥ 0 a.e. or q(t) ≤ 0 a.e.

Lemma 6. Let q1, q2 ∈ L2(I,R), and assume that [q1], [q2] ∈ S(I,R)st.
Then there exist step functions w1 ∈ [q1] and w2 ∈ [q2] such that d(w1, w2) ≤
d(q1, q2).

Proof. It suffices to find step functions w1 ∈ [q1] and w2 ∈ [q2] such that

〈w1, w2〉 ≥ 〈q1, q2〉. By applying Lemma 5 to q1 and q2 and then taking the

union of our finite ti-sequences, we obtain a single finite sequence 0 = t0 <

· · · < tn = 1 such that for each i = 1, . . . , n, both q1 and q2 have constant

sign on [ti−1, ti]. By “constant sign”, we mean that on this interval either

q1(t) ≥ 0 a.e. or q1(t) ≤ 0 a.e., and either q2(t) ≥ 0 a.e. or q2(t) ≤ 0 a.e. We

now alter q1 and q2 on each of these subintervals in the following way.

1. If q1 and q2 have the same sign on [ti−1, ti], then on this interval simply

replace q1 by the constant function which has the same sign and square

integral as q1. Do the same for q2.

2. If q1 and q2 have different signs on [ti−1, ti], then replace q1 on this

interval by a function that is constant on the first half of the interval,

zero on the second half of the interval, and has the same sign and

square integral on [ti−1, ti] as q1 does. Replace q2 on this interval by a

function that is zero on the first half of the interval, constant on the

second half, and has the same sign and square integral as q2 has on

[ti−1, ti].

Call the resulting functions w1 and w2. By performing these replace-

ments one subinterval at a time, we see by Lemma 4 that [w1] = [q1] and

[w2] = [q2]. Furthermore, by the Cauchy Schwarz inequality, we see that

on each subinterval [ti−1, ti] where we performed alteration (1),∫ ti
ti−1

w1(t)w2(t)dt ≥
∫ ti
ti−1

q1(t)q2(t)dt. For each interval where we performed
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alteration (2), the same inequality holds, since
∫ ti
ti−1

w1(t)w2(t)dt = 0, while∫ ti
ti−1

q1(t)q2(t)dt ≤ 0. This completes the proof of the lemma.

Lemma 7. Suppose for each n, fn : I → R is an L2 function, and f : I → R

is also L2. Suppose that fn → f in the L2 norm. Assume that for each n, we

are given an an in I such that
∫ an

0 (fn)
2 = 1 for all n. Furthermore, suppose

that an → a in I. Then
∫ a
0 f2 = 1.

Proof. By passing to a subsequence, we can assume that fn → f a.e. in I.

Next, recall a variant of the dominated convergence theorem: if |kn| ≤ hn,

kn → k a.e., hn → h a.e., and
∫ 1
0 hn →

∫ 1
0 h < ∞, then

∫ 1
0 kn →

∫ 1
0 k. Since

|‖fn‖2 − ‖f‖2| ≤ ‖fn − f‖2, it follows that
∫ 1
0 f2

n →
∫ 1
0 f2. Taking kn =∣∣f2

n − f2
∣∣, k = 0, hn = f2

n+f2, and h = 2f2, it follows that
∫ 1
0

∣∣f2
n − f2

∣∣ → 0.

We now compute

∣∣∣∣
∫ an

0
f2
n −

∫ a

0
f2

∣∣∣∣ =
∣∣∣∣
∫ an

0
(f2

n − f2)−
∫ a

an

f2

∣∣∣∣ ≤
∫ 1

0
|f2

n − f2|+
∫ a

an

f2.

The first of these terms was proved to approach 0 at the end of the last para-

graph; the second approaches 0 by the absolute continuity of the integral,

since an → a.

Lemma 8. Suppose q and w are elements of L2(I,R), and assume that

0 = t0 < t1 < · · · < tn = 1 is a sequence such that for each i both of the

following statements are true:

• either q(t) ≥ 0 for t ∈ [ti−1, ti] a.e. or q(t) ≤ 0 for t ∈ [ti−1, ti] a.e.

and

•
∫ ti
ti−1

q(t)2dt > 0.

Then w ∈ [q] if and only if there exists a sequence 0 = t̃0 < t̃1 < · · · < t̃n = 1

such that for each i, both of the following statements are true:

• either q(t) ≥ 0 for t ∈ [ti−1, ti] a.e. and w(t) ≥ 0 for t ∈ [t̃i−1, t̃i] a.e.

or q(t) ≤ 0 for t ∈ [ti−1, ti] a.e. and w(t) ≤ 0 for t ∈ [t̃i−1, t̃i] a.e. and

•
∫ t̃i
t̃i−1

w(t)2dt =
∫ ti
ti−1

q(t)2dt.

Proof. We omit the proof; it is basically the same as the proof of Lemma 5,

but uses Lemma 7 to keep track of the square integrals.

Lemma 9. Let q ∈ L2(I,R). Then qΓ̃ ⊂ [q].
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Proof. We will prove this first for step functions, and then extend by density
to all of S, so we start by assuming that q is a step function, and let γ̃ ∈ Γ̃. Let
0 = t0 < t1 < · · · < tn = 1 be the finite set of points at which q(t) changes
values. For each i, choose t̃i ∈ I such that γ̃(t̃i) = ti. Letting w(t) = q ∗ γ̃(t),
it follows from integration by substitution that the hypotheses of Lemma 8
are satisfied. Hence, w ∈ [q], which completes the proof for q a step function.

Now, let q ∈ L2(I,R) be arbitrary, and let γ̃ ∈ Γ̃. Let ε > 0 be given.
By density, choose a step function v ∈ U(I,R) such that d(q, v) < ε/3. By
the previous paragraph, we know that v ∗ γ̃ ∈ [v]; this means we can choose
γ ∈ Γ such that d(v ∗ γ, v ∗ γ̃) < ε/3. By the triangle inequality, and the fact
the Γ̃ acts by isometries, we then conclude that

d(q ∗ γ̃, q ∗ γ) ≤ d(q ∗ γ̃, v ∗ γ̃) + d(v ∗ γ̃, v ∗ γ) + d(v ∗ γ, q ∗ γ) < ε,

which completes the proof of the current lemma.

Define a function w ∈ U(I,R) to be in standard form if it is of the form
described in Lemma 3, i.e.,

w(t) =

{
1 for t ∈ A

−1 for t ∈ B

where I = A ∪B is a partition of I into two disjoint measurable sets.

Lemma 10. Suppose q and w are both in standard form, and q �= w in L2

(i.e., the set {t ∈ I : q(t) �= w(t)} has measure greater than 0). Then w �∈ [q].

Proof. First we make a simple calculation. Let 0 < a < U , and define
p : [0, U ] → R by p(t) =

√
ta +

√
(U − t)(U − a). Then p(t) has a unique

maximum at p(a) = U ; in fact p′(t) > 0 for t < a and p′(t) < 0 for t > a.
This is an easy Calc I exercise!

Since q and w are both in standard form, we have two partitions I =
A ∪B and I = C ∪D such that

q(t) =

{
1 for t ∈ A

−1 for t ∈ B

and

w(t) =

{
1 for t ∈ C

−1 for t ∈ D.

Let μ denote Lebesgue measure. The remainder of the proof will consist of
considering the two cases μ(A) �= μ(C) and μ(A) = μ(C).
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Case 1: Assume μ(A) �= μ(C). Suppose γ ∈ Γ, and let Ã = γ−1(A) and
B̃ = γ−1(B). Using integration by substitution, we see that

∫
Ã(q∗γ(t))2dt =∫

A(q(t))
2dt = μ(A) and

∫
B̃(q∗γ(t))2dt =

∫
B(q(t))

2dt = μ(B). Now compute:

∫ 1

0
q ∗ γ(t)w(t)dt =

∫
Ã∩C

q ∗ γ(t)w(t)dt+
∫
Ã∩D

q ∗ γ(t)w(t)dt

+

∫
B̃∩C

q ∗ γ(t)w(t)dt+
∫
B̃∩D

q ∗ γ(t)w(t)dt

≤
∫
Ã∩C

q ∗ γ(t)w(t)dt+
∫
B̃∩D

q ∗ γ(t)w(t)dt

since on Ã ∩ D and B̃ ∩ C, q ∗ γ and w have opposite signs, so these two
terms make a negative contribution to the integral. However, by the Cauchy
Scharz inequality,

∫
Ã∩C

q ∗ γ(t)w(t)dt ≤
√∫

Ã∩C
(q ∗ γ(t))2dt

√∫
Ã∩C

(w(t))2dt

≤
√∫

Ã
(q ∗ γ(t))2dt

√∫
C
(w(t))2dt =

√
μ(A)μ(C).

Similarly, ∫
B̃∩D

q ∗ γ(t)w(t)dt ≤
√

μ(B)μ(D).

Combining these with the last inequality gives∫ 1

0
q ∗ γ(t)w(t)dt ≤

√
μ(A)μ(C) +

√
μ(B)μ(D)

=
√

μ(A)μ(C) +
√

(1− μ(A))(1− μ(C))

Since we are assuming here that μ(A) �= μ(C), it follows from the calculation
we made at the beginning of this proof that this upper bound is strictly less
than 1. Also, this upper bound is independent of which element γ ∈ Γ we
chose. Since 〈q ∗ γ, w〉 has an upper bound that is strictly less than 1 on the
orbit qΓ, it follows that d(q ∗ γ, w) has a lower bound that is greater than
zero on this orbit. This finishes the proof in Case 1; we have shown that if
μ(A) �= μ(C), then w �∈ [q].

Case 2: Assume μ(A) = μ(C) = U (so μ(B) = μ(D) = 1− U).
Let f, g ∈ AC0 be the absolutely continuous functions satisfying Q(f) =

q and Q(g) = w. Since Q is a bijection, f �= g, so there exists z ∈ I such
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that f(z) �= g(z). By definition of Q, f(z) = μ(A∩ [0, z])−μ(B ∩ [0, z]) and

g(z) = μ(C ∩ [0, z])− μ(D ∩ [0, z]). Since z = μ(A ∩ [0, z]) + μ(B ∩ [0, z]) =

μ(C∩ [0, z])+μ(D∩ [0, z]), we may conclude that μ(A∩ [0, z]) �= μ(C∩ [0, z]);

without loss of generality, let’s assume μ(A∩ [0, z]) < μ(C∩ [0, z]) and hence

μ(B ∩ [0, z]) > μ(D ∩ [0, z]).

Let γ ∈ Γ be arbitrary.

Compute:

〈q ∗ γ, w〉 =
∫ 1

0
q ∗ γ(t)w(t)dt =

∫ z

0
q ∗ γ(t)w(t)dt+

∫ 1

z
q ∗ γ(t)w(t)dt

≤
∫
[0,z]∩(Ã∩C)

q ∗ γ(t)w(t)dt+
∫
[0,z]∩(B̃∩D)

q ∗ γ(t)w(t)dt

+

∫
[z,1]∩(Ã∩C)

q ∗ γ(t)w(t)dt+
∫
[z,1]∩(B̃∩D)

q ∗ γ(t)w(t)dt

where this inequality follows because on the parts of the interval we left out,

the contribution of the integrand is negative. Continuing by the Cauchy

Schwarz inequality:

≤
√∫

[0,z]∩(Ã∩C)
(q ∗ γ(t))2dt

√∫
[0,z]∩(Ã∩C)

w(t)2dt

+

√∫
[0,z]∩(B̃∩D)

(q ∗ γ(t))2dt
√∫

[0,z]∩(B̃∩D)
w(t)2dt

+

√∫
[z,1]∩(Ã∩C)

(q ∗ γ(t))2dt
√∫

[z,1]∩(Ã∩C)
w(t)2dt

+

√∫
[z,1]∩(B̃∩D)

(q ∗ γ(t))2dt
√∫

[z,1]∩(B̃∩D)
w(t)2dt

≤
√∫

[0,z]∩Ã
(q ∗ γ(t))2dt

√∫
[0,z]∩C

w(t)2dt

+

√∫
[0,z]∩B̃)

(q ∗ γ(t))2dt
√∫

[0,z]∩D
w(t)2dt

+

√∫
[z,1]∩Ã

(q ∗ γ(t))2dt
√∫

[z,1]∩C
w(t)2dt
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+

√∫
[z,1]∩B̃

(q ∗ γ(t))2dt
√∫

[z,1]∩D
w(t)2dt

=

√∫
[0,γ(z)]∩A

q(t)2dt

√∫
[0,z]∩C

w(t)2dt

+

√∫
[0,γ(z)]∩B)

q(t)2dt

√∫
[0,z]∩D

w(t)2dt

+

√∫
[γ(z),1]∩A

q(t)2dt

√∫
[z,1]∩C

w(t)2dt

+

√∫
[γ(z),1]∩B

q(t)2dt

√∫
[z,1]∩D

w(t)2dt

=
√

μ([0, γ(z)] ∩A)μ([0, z] ∩ C) +
√

μ([0, γ(z)] ∩B)μ([0, z] ∩D)

+
√

μ([γ(z), 1] ∩A)μ([z, 1] ∩ C) +
√

μ([γ(z), 1] ∩B)μ([z, 1] ∩D)

=
√

μ([0, γ(z)] ∩A)μ([0, z] ∩ C) +
√

μ([0, γ(z)] ∩B)μ([0, z] ∩D)

+
√

(U − μ([0, γ(z)] ∩A))(U − μ([0, z] ∩ C))

+
√

(1− U − μ([0, γ(z)] ∩B))(1− U − μ([0, z] ∩D)).

Reversing the order of the middle two terms gives

=
√

μ([0, γ(z)] ∩A)μ([0, z] ∩ C)(1)

+
√

(U − μ([0, γ(z)] ∩A))(U − μ([0, z] ∩ C))

+
√

μ([0, γ(z)] ∩B)μ([0, z] ∩D)

+
√

(1− U − μ([0, γ(z)] ∩B))(1− U − μ([0, z] ∩D)).

Now there are two possibilities to consider: Either γ(z) ≤ z or γ(z) ≥ z.
Case (i): Assume γ(z) ≤ z. In this case μ([0, γ(z)]∩A) ≤ μ([0, z]∩A) <

μ([0, z] ∩ C).
By the observations about p(t) and p′(t) made in the first paragraph of

this proof, we conclude that the sum of the first two summands of expression
1 is bounded above by√

μ([0, z] ∩A)μ([0, z] ∩ C) +
√

(U − μ([0, z] ∩A))(U − μ([0, z] ∩ C))

and that this bound is strictly less than U . Also, by the first paragraph of
this proof, the sum of the third and fourth summands of expression 1 is
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bounded above by 1− U . As a result, in Case (i), we have an upper bound
for 〈q∗γ, w〉 which is strictly less than 1, and is independent of γ ∈ Γ (except
for the condition that γ(z) ≤ z).

Case (ii): Assume γ(z) ≥ z. In that case, μ([0, γ(z)] ∩ B) ≥ μ([0, z] ∩
B) > μ([0, z] ∩D). Then, by the observations about p(t) and p′(t) made in
the first paragraph of this proof, we conclude that the sum of the third and
fourth summands of expression 1 is bounded above by√

μ([0, z]∩B)μ([0, z]∩D)+
√

(1−U −μ([0, z]∩B))(1−U −μ([0, z]∩D)).

and that this bound is strictly less than 1− U . Also, by the first paragraph
of this proof, the sum of the first two summands of expression 1 is bounded
above by U . Hence, in Case (ii), we also have an upper bound for 〈q ∗ γ, w〉
which is strictly less than 1, and is independent of γ ∈ Γ (except for the
condition that γ(z) ≥ z).

Taking the greater of these two upper bounds, we have an upper bound
for 〈q ∗γ, w〉 that is strictly less than 1 and is completely independent of the
choice of γ ∈ Γ. As a result, we have a lower bound for d(q ∗ γ, w) that is
strictly greater than 0 and is completely independent of γ ∈ Γ. This proves
that w �∈ [q], and completes the proof of Lemma 10.

Let SF (I,R) = {q ∈ U(I,R) : q is in standard form.} By the unique ar-
clength parametrization theorem quoted earlier (Theorem 1), we can express
U(I,R) as a disjoint union as follows:

U(I,R) =
∐

w∈SF
wΓ̃

By Lemma 9, qΓ̃ ∈ [q] for each q ∈ SF . By Lemma 10, if q, w ∈ SF and
q �= w, then q �∈ [w]. It follows that [q] ∩ [w] = ∅ and therefore qΓ̃ ∩ [w] = ∅.
By the disjoint union above, since [w] ∩ qΓ̃ = ∅ for all q ∈ SF where q �= w,
it follows that [w] ⊂ wΓ̃. Combined with Lemma 9, this proves the following
theorem.

Theorem 2. For all w ∈ SF , [w] = wΓ̃.

Corollary 2. If q ∈ L2(I,R), and q−1(0) has measure 0, then [q] = qΓ̃.

Proof. First, assume that q ∈ U(I,R). By Theorem 1, we can write q =
w ∗ γ = (w ◦ γ)

√
γ′, where γ ∈ Γ̃ and |w(t)| = 1 for almost all t ∈ I. Since

q−1(0) has measure 0, it follows that {t ∈ I : γ′(t) = 0} has measure 0,
so γ ∈ Γ. Hence, we can write w = q ∗ γ−1 and, therefore, [q] = [w] =
wΓ̃ = qγ−1Γ̃ = qΓ̃, since γ−1Γ̃ = Γ̃. For q �∈ U(I,R), the result also follows,
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since multiplication by a constant nonzero scalar is a homeomorphism that
commutes with the action of Γ̃.

4. Orbit structure in S(I,RN)

In this section, we will extend Theorem 2 and Corollary 2 from L2(I,R) to
L2(I,RN ). This has a few more technical difficulties than one might expect;
hence it gets its own section. Just as in the case of N = 1, we define w ∈
U(I,RN ) to be in standard form if |w(t)| = 1 for t ∈ I a.e. Let SF (I,RN ) be
the subset of U(I,RN ) consisting of functions in standard form. By Theorem
1, we can express U(I,RN ) as the disjoint union

(2) U(I,RN ) =
∐

w∈SF (I,RN )

wΓ̃.

We define q ∈ L2(I,RN ) to be a step function if we can express I as a
finite union of disjoint sub-intervals in such a way that q is constant on each
of these subintervals. Again, we don’t care what happens at the endpoints
of the subintervals since q is only well-defined almost everywhere.

Lemma 11. For all q ∈ L2(I,RN ), qΓ̃ ⊂ [q].

Proof. The proof follows the same lines as Lemma 9, with some minor ad-
justments. We first prove the lemma for step functions, then extend by
density to all of U(I,RN ).

Let q ∈ U(I,RN ) be a step function, and let γ ∈ Γ̃. Choose 0 = t0 <
t1 < · · · < tn = 1 such that q is constant on each interval (tk, tk+1).
Choose 0 = s0 < s1 < · · · < sn = 1 so that γ(sk) = tk for each k =
0, 1, . . . , n. For each k, define γk = γ|[sk−1,sk]. Clearly, for each k, the func-

tion
√

γ′k is an element of the sphere of radius
√
tk − tk−1 centered at 0

in L2[sk−1, sk]. Another element of this sphere is the constant function
wk(t) =

√
(tk − tk−1)/(sk − sk−1). For j = 1, 2, 3, . . . , let {wk,j} be any se-

quence of functions along the geodesic arc from wk to
√

γ′k in this sphere such

that limj→∞wk,j =
√

γ′k in L2[sk−1, sk]. Note that for each j, wk,j(s) > 0
for all s ∈ [sk−1, sk]. Finally, define γk,j(s) = tk−1 +

∫ s
sk−1

(wk,j(u))
2 du for

all s ∈ [sk−1, sk]. Clearly, for all k and j, γk,j is an absolutely continuous,
monotone homeomorphism from [sk−1, sk] to [tk−1, tk]. For each j, define
γj : I → I by setting γj(s) = γk,j(s) for all s ∈ [sk−1, sk]. Clearly, γj ∈ Γ
for all j. Assuming that q(t) = ck on [tk−1, tk], it follows that on [sk−1, sk],

q ∗ γj(s) =
√

γ′k,j(s)ck = wk,j(s)ck. By definition of wk,j , it follows that in
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L2[sk−1, sk], limj→∞ q ∗ γk,j = limj→∞wk,jck =
√

γ′kck = q ∗ γ. Since this
limit holds in each subinterval separately, it must hold in L2(I). Thus, we
have produced a sequence γj in Γ such that q ∗ γj → q ∗ γ, which proves
the lemma for step functions. The extension from step functions to general
elements of L2(I,RN ) is exactly the same as in the proof of Lemma 9, so we
omit it.

Next, we want to prove that for all functions w ∈ U(I,RN ) that are
in standard form, [w] ∈ wΓ̃. Such a function w can vanish only on a set of
measure zero; however, each component function of w may vanish on a set of
measure greater than zero. In order to make our proof run more smoothly,
it is helpful to prove that given such a w, we can rotate it (using a matrix
in O(n,R)) to obtain a new function in U(I,RN ) with the property that all
of its component functions vanish only on a set of measure zero. The next
few lemmas prove that such a rotation exists.

Lemma 12. Let q : I → R
N (where n ≥ 1) be an L2 function with the

property that q−1(0) has measure 0. Then there exist N pairwise orthogonal
(N−1)-dimensional linear subspaces of RN , which we denote by H1, . . . , HN ,
with the property that q−1(Hk) has measure zero for k = 1, . . . , N .

Proof. First, we note that there exist at most countably many lines l through
the origin in R

N with the property that q−1(l) has nonzero measure. To see
this, note that as l varies over all lines through the origin of RN , the sets
q−1(l − {0}) are disjoint from each other. But it follows that for all but
a countable set of these lines, the set q−1(l − {0}) has measure 0. This
is because I cannot contain an uncountable collection of pairwise disjoint
subsets, all with measure greater than 0. (The proof of this is easy: Let C
denote a collection of pairwise disjoint measurable subsets of I. For each
integer n > 0, define the subcollection Cn ⊂ C by Cn = {C ∈ C : μ(C) > 1

n}.
Clearly, the cardinality of Cn is at most n. The subcollection of C consisting
of all sets of measure greater than 0 is just the union of these sets Cn, which
is countable.) It follows that for all but a countable set of lines l through the
origin in R

N , μ(q−1(l)) = μ(q−1(l − {0})) = 0. Note that this last equation
used the fact that μ(q−1(0)) = 0.

We now construct a sequence 0 ⊂ P1 ⊂ P2 ⊂ · · · ⊂ PN−1 of linear
subspaces of RN , such that for each k, Pk has dimension k and μ(q−1(Pk)) =
0. We construct this sequence inductively. In the first paragraph of this proof,
we showed that there exists a line l through the origin such that q−1(l) has
measure 0. Let P1 be any such l. For the inductive step, assume we have
already constructed 0 ⊂ P1 ⊂ · · · ⊂ Pk satisfying the conditions, where
k < N − 1. Choose an orthonormal basis {u1, . . . , uk} of Pk. Let u and v be
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any orthogonal pair of unit vectors, both in the orthogonal complement of
Pk in R

N . For each real number θ ∈ [0, π), let Sθ to be the linear span of
{u1, . . . , uk, (cos θ)u + (sin θ)v}. Clearly the subsets of RN in the collection
{Sθ − Pk}θ∈[0,π) are pairwise disjoint, and hence the subsets of I in the
collection {q−1(Sθ − Pk)}θ∈[0,π) are also pairwise disjoint. It follows that
for all but a countable set of θ ∈ [0, π), μ(q−1(Sθ − Pk)) = 0. But since
μ(q−1(Pk)) = 0, we know that μ(q−1(Sθ)) = μ(q−1(Sθ − Pk)) = 0 for all
but a countable set of θ. Choosing one of these θ, we then set Pk+1 = Sθ,
completing the inductive step of the construction of our sequence 0 ⊂ P1 ⊂
P2 ⊂ · · · ⊂ PN−1.

We now prove Lemma 12 by induction. It is trivially true for N = 1.
Assume the lemma has been proved for functions I → R

N−1, and now
suppose we are given an L2 function q : I → R

N such that q−1(0) has
measure 0. Using the last paragraph, construct a sequence 0 ⊂ P1 ⊂ P2 ⊂
· · · ⊂ PN−1 of linear subspaces of R

N , such that for each k, Pk has dimension
k and μ(q−1(Pk)) = 0. We are now going to make an adjustment to PN−1.
Let {u, v} be an orthonormal basis of the orthogonal complement of PN−2

in R
N . For each θ ∈ [0, π), let Bθ be the hyperplane spanned by PN−2 and

the vector (cos θ)u + (sin θ)v, and let lθ be the orthogonal complement of
Bθ in R

N . Since we know that q−1(PN−2) has measure zero, we can argue
just as in the last paragraph to show that for all but a countable set of
θ ∈ [0, π), q−1(Bθ) has measure zero. Similarly, for all but a countable set of
θ, q−1(lθ) has measure 0. Since the union of two countable sets is countable,
it follows that we can choose a θ0 ∈ [0, π) such that both q−1(Bθ0) and
q−1(lθ0) have measure 0. Set HN = Bθ0 and set l = lθ0 . Define q̃ : I → HN

by q̃ = Π ◦ q, where Π denotes orthogonal projection R
N → HN . Clearly,

q̃−1(0) = q−1(l) has measure 0. Also, since projection decreases norms, q̃ is
still L2. By the induction hypothesis, we can find a pairwise orthogonal set
of N − 1 subspaces of HN , which we will denote by H̃1, . . . , H̃N−1, each of
dimension n − 2, such that q̃−1(H̃k) has measure 0 for k = 1, . . . , N − 1.
Now define Hk = H̃k ⊕ l for each k = 1, . . . , N − 1. Clearly, H1, . . . , HN

comprise a set of N pairwise orthogonal (N − 1)-dimensional subspaces of
R
N . Also, for k = 1, . . . , N − 1, q−1(Hk) = q̃−1(H̃k) has measure 0. Since

we already know that q−1(HN ) has measure 0, this completes the proof of
Lemma 12.

Let us think of the elements of RN as column vectors, so if q ∈ L2(I,RN ),
we can write q(t) = (q1(t), . . . , qN (t))′, where the “prime” denotes the ma-
trix transpose. Then the group of orthogonal matrices O(N,R) acts on R

N ,
AC0(I,R

N ), L2(I,RN ) and U(I,RN ) from the left in the obvious way. Fur-
thermore, this action on L2(I,RN ) preserves the L2 inner product, and
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hence takes U(I,RN ) to itself. It also commutes with the bijection Q :
AC0(I,R

N ) → L2(I,RN ) defined earlier in this paper. In addition, the left
actions of O(N,R) on AC0(I,R

N ), L2(I,RN ) and U(I,RN ) commute with
the right actions of Γ and Γ̃ on all three of these spaces.

Lemma 13. Suppose q ∈ L2(I,RN ), where we write q(t) = (q1(t), . . . ,
qN (t))′, and assume that q−1(0) has measure zero. Then there exists a matrix
A ∈ O(N,R), such that if we define q̃(t) = (q̃1(t), . . . , q̃N (t))′ by q̃(t) =
Aq(t), then q̃−1

k (0) has measure 0 for all k = 1, . . . , N .

Proof. By Lemma 12, we can chooseN pairwise orthogonal (N−1)-dimensio-
nal linear subspaces of RN , which we denote by H1, . . . , HN , with the prop-
erty that q−1(Hk) has measure zero for k = 1, . . . , N . For each k, let uk ∈ R

N

be a unit vector orthogonal to Hk. Clearly, {u1, . . . , uN} forms an orthonor-
mal basis for R

N . Let {e1, . . . , eN} denote the standard basis for R
N . Let

A ∈ O(N,R) be the unique matrix satisfying Auk = ek for all k. Define
q̃(t) = (q̃1(t), . . . , q̃N (t))′ by q̃(t) = Aq(t). By definition of A, it is immediate
that q̃−1

k (0) = q̃−1(e⊥k ) = q−1(u⊥k ) = q−1(Hk) has measure zero.

Lemma 14. Suppose q ∈ L2(I,R) satisfies μ(q−1(0)) = 0. Also, assume
that {τk} is a sequence in Γ̃, and τ ∈ Γ̃. If limk→∞ q ∗ τk = q ∗ τ (with
respect to the L2 metric), then for all t ∈ I, limk→∞ τk(t) = τ(t).

Proof. First, we observe that it suffices to prove the lemma under the addi-
tional assumption that |q(t)| = 1 for almost all t ∈ I. For, suppose we have
already completed the proof under this extra assumption. By Theorem 1, we
know that we can write q = w∗γ where |w(t)| is constant for almost all t ∈ I
and γ ∈ Γ̃. Since we are assuming that μ(q−1(0)) = 0, it follows that γ ∈ Γ,
since γ̇(t) = 0 only for t in a set of measure 0. Now, since we are assuming
that limk→∞ q ∗ τk = q ∗ τ , it follows that limk→∞w ∗ (γτk) = w ∗ (γτ) in L2.
By the version of the lemma that we are assuming to be proved, it follows
that for all t ∈ I, limk→∞ γ(τk(t)) = γ(τ(t)). Since γ ∈ Γ is continuous and
bijective, so is γ−1, hence we conclude that for all t ∈ I, limk→∞ τk(t) = τ(t).

So we now prove the lemma with the assumption that |q(t)| = 1 for
almost all t ∈ I. Assume that limk→∞ q ∗ τk = q ∗ τ with respect to the L2

metric. We proceed by contrapositive. Suppose there exists a t0 for which
limk→∞ τk(t0) �= τ(t0). (This includes the possibility that limk→∞ τk(t0) does
not exist.) Therefore, there exists ε > 0 such that for all M > 0, there exists
a k > M with |τk(t0)−τ(t0)| > ε. Consider a τk such that |τk(t0)−τ(t0)| > ε.
There are two cases.

Case 1: Suppose τk(t0) < τ(t0)− ε. Compute 〈q ∗ τk, q ∗ τ〉 =∫ 1

0
(q ∗ τk)(t)(q ∗ τ)(t)dt =

∫ t0

0
(q ∗ τk)(t)(q ∗ τ)(t)dt
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+

∫ 1

t0

(q ∗ τk)(t)(q ∗ τ)(t)dt

≤

√∫ t0

0
(q ∗ τk)(t)2dt

√∫ t0

0
(q ∗ τ)(t)2dt

+

√∫ 1

t0

(q ∗ τk)(t)2dt

√∫ 1

t0

(q ∗ τ)(t)2dt

(by Cauchy Schwarz)

=

√∫ τk(t0)

0
q(t)2dt

√∫ τ(t0)

0
q(t)2dt+

√∫ 1

τk(t0)
q(t)2dt

√∫ 1

τ(t0)
q(t)2dt

(integrating by substitution)

=
√

τk(t0)
√

τ(t0) +
√

1− τk(t0)
√

1− τ(t0)

(using |q(t)| = 1 for almost all t ∈ I).
By the calculation at the beginning of the proof of Lemma 10, this last

quantity is less than√
τ(t0)− ε

√
τ(t0) +

√
1− (τ(t0)− ε)

√
1− τ(t0)

which, in turn, is less than 1. Define Mε =
√

τ(t0)− ε
√

τ(t0) +√
1− (τ(t0)− ε)

√
1− τ(t0). So in Case 1, we have shown that 〈q∗τk, q∗τ〉 <

Mε < 1.
Case 2: Suppose τk(t0) > τ(t0)+ ε. We skip the very similar details; the

end result is that we produce an mε such that 〈q∗τk, q∗τ〉 < mε < 1. Letting
θε = min{

√
2− 2Mε,

√
2− 2mε} > 0, we see that d(q ∗ τk, q ∗ τ) > θε > 0. It

follows that q ∗ τk �→ q ∗ τ in the L2 metric, which proves the contrapositive
and completes the proof of the lemma.

Theorem 3. Let q : I → R
N be any L2 function such that |q(t)| = 1 for

almost all t ∈ I. Then [q] = qΓ̃.

Proof. By Lemma 11, we only need to prove that [q] ⊂ qΓ̃.
Since O(N,R) acts on L2(I,RN ) by isometries and this action commutes

with the action of Γ̃, we may assume by Lemma 13 that for each i = 1, . . . , N ,
q−1
i (0) has measure 0. Suppose v ∈ [q]; then there exists a sequence {γk} in
Γ such that limk→∞ q∗γk = v (with respect to the L2 metric). It follows that
for each i = 1, . . . , N , limk→∞ qi∗γk = vi. For each i, we can write qi = wi∗σi,
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where σi ∈ Γ̃ and wi(t) = ±1 for almost all t, by Theorem 1. Then for each
i, limk→∞wi ∗ (σiγk) = vi. Since wiΓ̃ = [wi] is a closed set, it follows that
there exists γ̃i ∈ Γ̃ such that vi = wi ∗ γ̃i. Now, since qi(t) = (wi ∗ σi)(t)
vanishes only on a set of measure 0, it follows that σ̇i(t) also vanishes on a
set of measure 0. Hence, σi ∈ Γ. Hence, we may write wi = qi ∗ σ−1

i , where
σ−1
i ∈ Γ. Therefore, vi = qi ∗ (σ−1

i γ̃i), where σ−1
i γ̃i ∈ Γ̃. Letting τi = σ−1

i γ̃i,
we have now proven that if v ∈ [q], then for each i, we can write vi = qi ∗ τi,
where each τi ∈ Γ̃. All that is left to prove is that τ1 = · · · = τn; it will then
follow that v = q ∗ τ where τ = τ1 = · · · = τN . However Lemma 14 implies
immediately that for each t ∈ I, τi(t) = limk→∞ γk(t), which implies that
τ = τ1 = · · · = τn. This completes the proof of the theorem.

Corollary 3. If q ∈ L2(I,RN ), and q−1(0) has measure 0, then [q] = qΓ̃.

The proof is the same as that of Corollary 2, so we omit it.

Corollary 4. If q1, q2 ∈ U(I,RN ), then d([q1], [q2]) ≤
√
2.

Proof. Define two elements γ1, γ2 ∈ Γ̃ as follows:

γ1(t) =

{
0 for 0 ≤ t ≤ .5

2t− 1 for .5 < t ≤ 1

γ2(t) =

{
2t for 0 ≤ t ≤ .5

1 for .5 < t ≤ 1

Then an easy computation shows that 〈q1 ∗ γ1, q2 ∗ γ2〉 = 0, so d(q1 ∗ γ1, q2 ∗
γ2) =

√
2. The corollary follows.

For U(I,R), it’s interesting to note that this maximum distance is actu-
ally achieved by [q1] and [q2], where q1(t) ≡ 1 and q2(t) ≡ −1. It is also true
that these are the only two points in the image of U(I,R) in S(I,R) that
achieve this maximum distance! This follows from the material in Sections
7 and 8 for step functions, and then for arbitrary functions by the fact that
the step functions are dense.

5. Optimal matching for step functions I → R
N

Given two elements [w1] and [w2] of S(I,RN ), it is a basic problem to calcu-
late the distance between them and to find a minimal geodesic joining them,
if such a geodesic exists. The most straightforward way to do this is to find
elements q1 ∈ [w1] and q2 ∈ [w2] such that d(q1, q2) = d([w1], [w2]). In this
section, we will prove that if [w1] and [w2] are elements of S(I,RN ), and at
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least one of them is an element of Sst(I,R
N ), then there exist q1 ∈ [w1] and

q2 ∈ [w2] such that d(q1, q2) = d([w1], [w2]). We will also prove that if both

[w1] and [w2] are elements of Sst(I,R
N ), then these representatives q1 and

q2 can both be taken to be step functions. We begin with a lemma.

Lemma 15. Let q ∈ L2(I,RN ), and let w : I → R
N be a constant map,

w(t) = w0. Express I as a disjoint union of two measurable sets, I = A∪B,

where A = {t ∈ I : q(t) · w0 ≥ 0} and B = {t ∈ I : q(t) · w0 < 0}.
Then

sup
q̃∈[q],w̃∈[w]

〈q̃, w̃〉 =
√∫

A
(q(t) · w0)2dt.

If q(t) · w0 = 0 almost everywhere on I, then this supremum is 0, and is

realized by any q̃ ∈ [q] and w̃ ∈ [w]. If it is not true that q(t) ·w0 = 0 almost

everywhere on I, then this supremum is realized by q̃ = q and w̃ = w ∗ γ,

where γ(t) =
∫ t
0 F (u)du, and F (u) is defined by

F (u) =

{
0 for u ∈ B

(q(u)·w0)2∫
A
(q(u)·w0)2du

for u ∈ A

Proof. Since qΓ is dense in [q] and wΓ is dense in [w] and the group Γ acts

by isometries, it follows that

sup
q̃∈[q],w̃∈[w]

〈q̃, w̃〉 = sup
λ∈Γ,γ∈Γ

〈q ∗ λ,w ∗ γ〉 = sup
γ∈Γ

〈q, w ∗ γ〉 = sup
γ∈Γ̃

〈q, w ∗ γ〉.

Let γ ∈ Γ be arbitrary. Then

〈q, w ∗ γ〉 =
∫
I
q · (w ∗ γ) =

∫
I
(q(t) · w0)

√
γ′(t)dt

=

∫
A
(q(t) · w0)

√
γ′(t) +

∫
B
(q(t) · w0)

√
γ′(t)

The integral over B is clearly bounded above by 0, since q(t) · w0 ≤ 0 for

t ∈ B. The integral over A can be bounded using the Cauchy Schwarz

inequality to yield:

≤
√∫

A
(q(t) · w0)2dt

√∫
A
γ′(t)dt ≤

√∫
I
(q(t) · w0)2dt,
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where the last step uses the fact that
∫
A γ′(t)dt ≤

∫
I γ

′(t)dt = 1. A straight-
forward calculation shows that the upper bound is actually achieved by the
γ defined in the statement of the lemma.

We will need a slightly altered form of Lemma 15. We state it as a
corollary.

Corollary 5. Suppose H, J , and K are finite closed intervals in R; denote
by L(J) the length of J . Let q ∈ L2(H,RN ), and let w : J → R

N be a
constant map, w(t) = w0. Then

sup
λ,γ

〈q ∗ λ,w ∗ γ〉 =
√∫

A
(q(t) · w0)2dt

√
L(J)

where the supremum is taken over all λ : K → H and γ : K → J such that
λ and γ are absolutely continuous, onto, and weakly increasing, and A is the
subset of H on which the function q(t) · w0 is non-negative. Furthermore,
this supremum is actually realized by an appropriate choice of λ and γ.

Proof. We omit the details of this routine proof. The idea is just to trans-
form each of the three intervals into I using linear bijections, and then use
integration by substitution and apply Lemma 15.

Theorem 4. Let [q] ∈ S(I,RN ) and [w] ∈ Sst(I,R
N ). Then there exist

q̃ ∈ [q] and w̃ ∈ [w] such that d(q̃, w̃) = d([q], [w]).

Proof. Assume our orbit representatives q and w correspond to unit speed
parametrized curves, so that |q(t)| and |w(t)| are constant (a.e.) in I. (These
representatives exist by Theorem 1.) It follows from this that w is a step
function. This is because, since [w] ∈ Sst(I,R

N ), w can only assume a finite
sequence of different directions. Since its magnitude is constrained to be
constant everywhere, it follows that w assumes only a finite sequence of
different values. Hence, there exists a finite sequence of real numbers 0 =
s0 < s1 < · · · < sk = 1 and corresponding finite sequence w1, w2, . . . , wk of
vectors in R

N such that for all j ∈ {1, . . . , k}, w(t) = wj for all t ∈ (sj−1, sj).
Define a set T ∈ R

k+1 by T = {(t0, . . . , tk) : 0 = t0 ≤ t1 ≤ t2 ≤ · · · ≤ tk =
1}. Clearly T is compact. Now define a function M : T → R by

M(t0, . . . , tk) =

k∑
j=1

√∫ tj

tj−1

(q(t) · wj)2dt
√

sj − sj−1.

This function is obviously continuous as a function of (t0, . . . , tk); since T
is compact, M attains a maximum at some element (t̃0, . . . , t̃k) ∈ T . Let
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M̃ = M(t̃0, . . . , t̃k). We will show first that there exists q̃ ∈ [q] and w̃ ∈ [w]
such that M̃ = 〈q̃, w̃〉; we will then show that it is the maximum possible
value of all such inner products. This will complete the proof of the theorem.

Fix j ∈ {1, . . . , k}. In order to apply Corollary 5, let H = [t̃j−1, t̃j ],
J = [sj−1, sj ], and K = [ j−1

k , j
k ]. Then Corollary 5 tells us that there exist

λj : K → H and γj : K → J (where λj and γj are onto and absolutely
continuous) such that

∫
K
((q|H) ∗ λj)(u) · ((w|J) ∗ γj)(u)du =

√∫ tj

tj−1

(q(t) · wj)2dt
√

sj − sj−1,

and that this integral is the maximum possible over all such λj and γj .
Since for each j, λj(

j−1
k ) = λj−1(

j−1
k ) and γj(

j−1
k ) = γj−1(

j−1
k ), it follows

that we can glue together the λj ’s to form a single λ̃ : I → I and can also
glue together the γj ’s to form a single γ̃ : I → I such that 〈q ∗ λ̃, w ∗ γ̃〉 =
M̃ . This shows that M̃ is realized as an inner product of a pair of orbit
representatives.

We now show that M̃ gives the maximum value of the inner product, for
all orbit representatives. Suppose q̃ ∈ [q] and w̃ ∈ [w]. By Corollary 3, there
exist λ ∈ Γ̃ and γ ∈ Γ̃ such that q̃ = q ∗ λ and w̃ = w ∗ γ. Since γ is onto,
for each j we can choose uj ∈ γ−1(sj), and let tj = λ(uj). It follows that for
each j, λ([uj−1, uj ]) = [tj−1, tj ], and γ([uj−1, uj ]) = [sj−1, sj ]. By Corollary
5, we may conclude that∫ uj

uj−1

((q|[tj−1, tj ]) ∗ λ)(u) · ((w|[sj−1, sj ]) ∗ γ)(u)du

≤
√∫ tj

tj−1

(q(t) · wj)2dt
√

sj − sj−1.

Summing over all j then gives∫ 1

0
(q ∗ λ)(u) · (w ∗ γ)(u)du ≤ M(t0, . . . , tk) ≤ M̃.

Since maximizing the L2 inner product is the same as minimizing the dis-
tance, this completes the proof of the theorem.

Theorem 5. If q, w ∈ L2(I,RN ) are both step functions, then there exist
piecewise linear functions λ, γ ∈ Γ̃ such that

〈q ∗ λ,w ∗ γ〉 = sup
q̃∈[q],w̃∈[w]

〈q̃, w̃〉.
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Proof. In the statement of Lemma 15, note that if q is a step function, then
the function we integrate to get γ is also a step function. It follows that γ
is piecewise linear. In Corollary 5 (still assuming that q is a step function),
the reparametrizing functions are obtained from the ones in Lemma 15 by
composing with linear functions; hence the reparametrizing functions are
still piecewise linear. Finally, in Theorem 4, the optimal reparametrizing
functions are obtained by gluing together reparametrizing functions of the
type formed in Corollary 5; gluing together piecewise linear functions results
in more piecewise linear functions.

6. Preliminaries on finding a precise optimal matching for
piecewise linear functions

Let f1 and f2 be two continuous, piecewise linear functions I → R
N and let

q1, q2 ∈ L2(I,RN ) be their SRVFs. We will develop an algorithm which will
produce a pair of optimal representatives for [q1] and [q2], i.e., L

2 functions
q̃1 ∈ [q1] and q̃2 ∈ [q2] such that d(q̃1, q̃2) = d([q1], [q2]). Assume that q1
and q2 have the property that the set on which each of them vanishes has
measure 0. (If this is not true, than we can replace them by elements of [q1]
and [q2] that have this property, using Theorem 1.) According to Theorem 3,
these optimal representatives will be of the form q̃1 = q1∗γ1 and q̃2 = q2∗γ2,
where γ1, γ2 ∈ Γ̃. We call such a pair (γ1, γ2) an optimal matching for f1, f2
(or for q1, q2).

Since f1 and f2 are piecewise linear, we know that there are subdivisions
0 = s0 < s1 < · · · < sm = 1 and 0 = t0 < t1 < · · · < tn = 1 such that
f1 is linear on each subinterval [si−1, si] and f2 is linear on each subinterval
[tj−1, tj ]. As a result, we know that q1 is constant on each open interval
(si−1, si) and q2 is constant on each (tj−1, tj). In general, q1 and q2 are
not defined on the endpoints of these intervals, since f1 and f2 are not
differentiable at these endpoints. For each i = 1, . . . ,m, let ui = q1((si−1, si))
and for each j = 1, . . . , n, let vj = q2((tj−1, tj)). We then define an n × m
matrix W , called the weight matrix, by Wij = ui · vj . (The dot product here
is the ordinary inner product in R

N .)
A matching of f1 and f2 is any pair of reparametrizations γ1, γ2 ∈ Γ̃.

Such a pair represents a matching in the sense that for each z ∈ I, the
point f1(γ1(z)) on the curve parametrized by f1 is “matched” to the point
f2(γ2(z)) on the curve parametrized by f2. Note that because γ1 and γ2 are
only weakly increasing, this matching does not give a 1-1 correspondence
between the points on these two curves. We can assemble γ1 and γ2 into a
single function γ : I → I × I defined by γ(z) = (γ1(z), γ2(z)). This function
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Figure 1: The grid.

can be thought of as a parametrized curve in I × I that starts at (0, 0)
and ends at (1, 1). Because γ1 and γ2 are weakly increasing, this curve can
only move vertically upward, horizontally to the right, or in some diagonal
direction towards the upper right. We define a vertex of I × I to be a point
of the form (si, tj), a horizontal gridline to be a line of the form t = tj
(i = 0, 1, . . . , n), and a vertical gridline to be a line of the form s = si
(j = 0, 1, . . . ,m). We define the ij-block, Gij , by Gij = [si−1, si]× [tj−1, tj ].
Because of the weakly increasing nature of γ1 and γ2, it is clear that γ

−1(Gij)
is always a closed subinterval of I. If γ is linear and non-constant on an
interval [a, b], we define the slope of γ on this interval to be the value of
γ′2/γ

′
1. On any such interval, this slope will be 0, positive, or ∞.
Given a matching γ, we define a segment of γ to be the restriction of γ

to some closed subinterval of I. We now define two specific types of segment.

Definition of P-segment: (Note that this is a long definition! It includes
all the statements up until the definition of an N-segment.) A P-segment is
a restriction of γ to an interval [a, b] ⊂ I, which has the following properties:

1. γ|[a,b] is piecewise linear and injective.
2. γ(a) = (si0−1, tj0−1) and γ(b) = (si1 , tj1) are vertices, with i0 ≤ i1

and j0 ≤ j1, but for all z ∈ (a, b), γ(z) is not a vertex. Furthermore,
Wi0,j0 > 0 and Wi1,j1 > 0.

3. For all blocks Gij such that γ−1(Gij) ⊂ [a, b], the restriction of γ to
γ−1(Gij) is linear. We define Hi,j to be the slope of the segment as it
passes through Gi,j .

4. Suppose γ−1(Gij) = [c, d] ⊂ [a, b], where c < d. If Wij ≤ 0, then either
Hi,j = 0 or Hi,j = ∞. Visually, this says that the parametrized path
γ is either vertical or horizontal as it traverses Gij . More precisely, if
γ enters such a Gi,j through the left hand vertical edge, then Hij = 0,
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while if γ enters such a Gij through the lower horizontal edge, then
Hij = ∞. If Wij > 0, then Hi,j is not equal to either 0 or ∞.

To understand the remaining properties required of a P-segment, note
that it begins at the vertex (si0−1, tj0−1) and passes through the block Gi0,j0

in a linear fashion with slope Hi0,j0 , which is equal neither to 0 nor to ∞ by
the previous items. Up to reparametrization, the remaining portion of the
P-segment is completely determined by the initial vertex (si0−1, tj0−1), and
the initial slope as the segment passes through Gi0,j0 . To understand this
determination we will describe how the slope Hi,j is required to change as
the P-segment passes through a gridline from one block to another. First,
suppose the segment passes through a vertical gridline from Gi,j to Gi+1,j .
There are then three cases to consider:

1. Both Wi,j and Wi+1,j are greater than 0. Then the slopes are related
as follows:

(3)
Hi+1,j

Hi,j
=

(
Wi+1,j

Wi,j

)2

2. Wi+1,j ≤ 0. Then Hi+1,j = 0.
3. Wi,j ≤ 0 while Wi+1,j > 0. By one of the above conditions, we know

that Hi,j = 0. To determine Hi+1,j , we must find the largest value of
k ≤ i for which for which Wk,j > 0. (This corresponds to the last block
Gk,j that the segment passed through with non-zero slope.) Using this
value of k, Hi+1,j must then satisfy

(4)
Hi+1,j

Hk,j
=

(
Wi+1,j

Wk,j

)2

.

Now, suppose the segment passes through a horizontal gridline from Gi,j to
Gi,j+1. The three cases are completely analogous to the cases of the vertical
gridline:

1. Both Wi,j and Wi,j+1 are greater than 0. Then the slopes are related
as follows:

(5)
Hi,j+1

Hi,j
=

(
Wi,j

Wi,j+1

)2

2. Wi,j+1 ≤ 0. Then Hi,j+1 = ∞.
3. Wi,j ≤ 0 while Wi,j+1 > 0. By one of the above conditions, we know

that Hi,j = ∞. To determine Hi,j+1, we must find the largest value
of k ≤ j for which for which Wi,k > 0. (This corresponds to the last
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Figure 2: Left: P-segment. Right: N-segment (in red). (Color figure online.)

block Gi,k that the segment passed through with non-infinite slope.)
Using this value of k, Hi,j+1 must then satisfy

(6)
Hi,j+1

Hi,k
=

(
Wi,k

Wi,j+1

)2

.

This concludes the definition of a P-segment!
Definition of N-segment: An N-segment is a restriction of γ to an

interval [a, b] ⊂ I, which has the following three properties:

1. γ(a) = (si0 , tj0) and γ(b) = (si1 , tj1) are both vertices, with i0 ≤ i1 and
j0 ≤ j1.

2. The restriction of γ to
[
a, a+b

2

]
is linear and runs horizontally from

(si0 , tj0) to (si1 , tj0), while the restriction of γ to
[
a+b
2 , b

]
is also linear

and runs vertically from (si1 , tj0) to (si1 , tj1). For the special cases in
which i0 = i1 or j0 = j1, the entire N-segment is either vertical or
horizontal, respectively.

3. For γ|[a,b] to be an N-segment, there are also the following requirements
on certain weights: if i ∈ {i0 +1, . . . , i1} and j ∈ {j0, . . . , j1 +1}, then
Wi,j ≤ 0. Also, if i ∈ {i0, . . . , i1 + 1} and j ∈ {j0 + 1 . . . , j1}, then
Wi,j ≤ 0.

7. Statement and proof of main theorem

In this section, we state and prove our main result on a canonical form for
optimal matchings between piecewise linear curves.

Theorem 6. Let f1 and f2 be piecewise linear functions I → R
N . Then there

exists an optimal matching γ = (γ1, γ2) that has the following properties:

1. γ is a sequence of P-segments and N-segments; i.e., there exists a
partition {0 = u0 < u1 < · · · < uk = 1} such that for each i = 1, . . . , k,
γ|[ui−1,ui] is either a P-segment or an N-segment.
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2. γ does not contain two consecutive N-segments.
3. Suppose that γ|[u1,u2] and γ|[u3,u4] are both P-segments, and suppose

that either u2 = u3 or γ|[u2,u3] is an N-segment. Define (i1, j1) and
(i2, j2) by (si1 , tj1) = γ(u2) and (si2 , tj2) = γ(u3). Then the final slope
of γ|[u1,u2] and the initial slope of γ|[u3,u4] must be related as follows.
Let A = Wi1,j1 , B = Wi2+1,j2+1, C = Wi1,j2+1, and D = Wi2+1,j1.
Then Hi2+1,j2+1 = μ2Hi1,j1 where

4.

μ ∈

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
D2

AB , AB
C2

]
, if C > 0, D > 0[

0, AB
C2

]
, if D ≤ 0, C > 0[

D2

AB ,∞
]
, if D > 0, C ≤ 0

[0,∞] , if D ≤ 0, C ≤ 0

(7)

Note that the prescribed μ-interval is empty if CD > AB. In that
case, there cannot be an optimal matching with one P-segment ending
at (si1 , tj1) and the next P-segment beginning at (si2 , tj2).

Proof. We know by Theorem 5 that there exists a piecewise linear optimal
matching between f1 and f2. Choose such an optimal matching and call it
γ = (γ1, γ2) : I → I × I. We may assume that γ is injective by replacing
it by a constant speed reparametrization. Let V0, V1, . . . , VM be an ordered
list of all the vertices through which γ passes, starting with V0 = (0, 0) and
ending with VM = (1, 1). From this list, choose an arbitrary vertex Vi (with
i �∈ {0,M}). If either the portion of γ from Vi−1 to Vi, or the portion of γ
from Vi to Vi+1 passes through a point in the interior of some block Gk,l

with weight Wk,l > 0, then retain Vi in the list. If neither of these portions
of γ pass through such a point, then drop Vi from the list. Continue this
elimination process until no more vertices can be dropped. Renumber the
remaining vertices and revise the number M to reflect the number of vertices
remaining in the list. The remaining vertices now have the property that for
each i = 1, . . . ,M − 1, either the segment of γ from Vi−1 to Vi, or the
segment from Vi to Vi+1 passes through at least one point in the interior of
some block Gk,l with weight Wk,l > 0.

For each i = 0, . . . ,M − 1, consider the segment of γ from Vi to Vi+1.
There are two possibilities:

1. Type I: If this segment of γ passes through a point in the interior of
some block Gk,l with weight Wk,l > 0, we will prove that it can be
replaced by a P-segment without affecting the optimality, i.e., without
affecting the value of

∫ 1
0 (q1 ∗ γ1)(u) · (q2 ∗ γ2)(u)du.
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2. Type II: If this segment of γ does not pass through such a point,
then we will prove that it can be replaced by an N-segment, without
affecting the optimality, i.e., without affecting the value of

∫ 1
0 (q1 ∗

γ1)(u) · (q2 ∗ γ2)(u)du.

Lemma 16. Let v, w ∈ R
N be two vectors, and define two constant functions

q1 : [a, b] → R
N and q2 : [c, d] → R

N by q1(s) = v and q2(t) = w. Let α < β;
define γ1 : [α, β] → [a, b] to be the unique linear function such that γ1(α) = a
and γ1(β) = b and define γ2 : [α, β] → [c, d] to be the unique linear function

such that γ2(α) = c and γ2(β) = d. Then
∫ β
α (q1 ∗ γ1)(u) · (q2 ∗ γ2)(u)du =

(v · w)
√
b− a

√
d− c.

Proof. This is an easy calculation since (q1 ∗ γ1)(u) = v
√

(b− a)/(β − α)

and (q2 ∗ γ2)(u) = w
√

(d− c)/(β − α) are constant functions!

Lemma 17. Let v, w ∈ R
N be two vectors satisfying v · w > 0 and define

two constant functions q1 : [a, b] → R
N and q2 : [c, d] → R

N by q1(s) = v
and q2(t) = w. Let γ1 : [α, β] → [a, b] and γ2 : [α, β] → [c, d] be surjective
absolutely continuous functions with both γ′1(u) > 0 and γ′2(u) > 0 almost
everywhere for u ∈ [α, β]. Let γ̃1 and γ̃2 be the unique linear bijections
[α, β] → [a, b] and [α, β] → [c, d], respectively.

Then∫ β

α
(q1 ∗ γ1)(u) · (q2 ∗ γ2)(u)du ≤

∫ β

α
(q1 ∗ γ̃1)(u) · (q2 ∗ γ̃2)(u)du

= (v · w)
√
b− a

√
d− c.

Proof. The main tool here is the Cauchy-Schwarz inequality. Note that for
u ∈ [α, β], (q1 ∗ γ1)(u) =

√
γ′1(u)v and (q2 ∗ γ2)(u) =

√
γ′2(u)w. We then

compute:

∫ β

α
(q1 ∗ γ1)(u) · (q2 ∗ γ2)(u)du =

∫ β

α
v · w

√
γ′1(u)

√
γ′2(u)du

= v · w
∫ β

α

√
γ′1(u)

√
γ′2(u)du

≤ v · w

√∫ β

α
γ′1(u)du

√∫ β

α
γ′2(u)du

= v · w
√

γ1(β)− γ1(α)
√

γ2(β)− γ2(α)

= v · w
√
b− a

√
d− c
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where the inequality is just the Cauchy-Schwarz inequality. Finally, note
that if we replace each γi by γ̃i for i = 1, 2, then since each γ̃′i is a positive
constant function, the Cauchy-Schwarz inequality is actually an equality.

Lemma 18. Suppose γ passes through a point in the interior of Gk,l for
which Wk,l > 0. It follows that γ−1(Gk,l) = [α, β], where α < β. If we
replace γ|[α,β] by the unique linear map γ̃ : [α, β] → Gk,l that agrees with γ
at α and β, then

∫ β

α
(q1 ∗ γ̃1)(u) · (q2 ∗ γ̃2)(u)du ≥

∫ β

α
(q1 ∗ γ1)(u) · (q2 ∗ γ2)(u)du.

Since we are assuming that γ is optimal, it follows that this inequality is
actually an equality, so we can replace γ|[α,β] by the linear map γ̃ without
affecting its optimality.

Proof. Let a = γ1(α), b = γ1(β), c = γ2(α), and d = γ2(β). Since γ([α, β]) ⊂
Gk,l, it follows that q1 = v is constant on [a, b] and q2 = w is constant on
[c, d]. Also, since Wk,l > 0, we know that v ·w > 0. Then, from Theorem 17
it follows immediately that

∫ β

α
(q1 ∗ γ̃1)(u) · (q2 ∗ γ̃2)(u)du ≥

∫ β

α
(q1 ∗ γ1)(u) · (q2 ∗ γ2)(u)du.

The rest of the Lemma follows from this.
There is one other small point to consider here; in our proof, we tacitly

assumed that q1 and q2 are defined on all of γ1([α, β]) and γ2([α, β]), respec-
tively. However, in our case either q1 or q2 will fail to be defined at points
along the boundary of the block. As a result, one should consider separately
the possibility of a γ that stays along the edge of Gk,l for either an initial
portion or a final portion of [α, β]. However it is not possible for such an γ
to achieve a higher value for the integral in question. The reason is that the
contribution of the integral along the edge of Gk,l will always be zero (since
in these regions either γ′1 or γ′2 will vanish). And in the remainder of the
integral corresponding to such a γ, the value of b−a and/or the value of d−c
will have to be reduced, which will result in a reduction of the maximum
value of the integral as given in Lemma 16.

Lemma 19. Suppose γ passes through a point in the interior of Gk,l for
which Wk,l ≤ 0. It follows that γ−1(Gk,l) = [α, β], where α < β. If we replace
γ|[α,β] by a continuous piecewise linear γ̃ that agrees with γ on α and β but
is made up of a finite sequence of vertical (upwards) and horizontal (to the
right) segments, then the resulting γ will still be optimal.
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Proof. Because γ([α, β]) ⊂ Gk,l, it follows that

∫ β

α
(q1 ∗ γ1)(u) · (q2 ∗ γ2)(u)du =

∫ β

α
(vk) · (wl)

√
γ′1(u)

√
γ′2(u)du ≤ 0,

since we are assuming that (vk) · (wl) = Wk,l ≤ 0. However, note that

∫ β

α
(q1 ∗ γ̃1)(u) · (q2 ∗ γ̃2)(u)du = 0,

since for all u ∈ [α, β], either γ′1(u) = 0 or γ′2(u) = 0. Since γ is assumed

to be optimal, it follows that
∫ β
α (q1 ∗ γ1)(u) · (q2 ∗ γ2)(u)du = 0, and this

contribution doesn’t change if we replace γ|[α,β] by γ̃.

Now, suppose we have an optimal matching γ, and within that γ we have
chosen a segment, γ|[a,b], of Type I. We have proved that we can replace this
segment of γ with an equally optimal segment that is linear each time it
passes through a block Gk,l for which Wk,l > 0, and that is a finite sequence
of horizontal and vertical segments each time it passes through a block Gk,l

for which Wk,l ≤ 0. So assume γ|[a,b] has these properties. We claim that
there is at least one Gk,l, with Wk,l > 0, that our segment passes through
with positive, non-infinite slope. To prove this claim, note that if no such
Wj,k exists, then

∫ b
a (q1 ∗γ1)(u) · (q2 ∗γ2)(u)du = 0. But then, replacing γ|[a,b]

by a path that uses a sequence of horizontal and vertical segments to get
from γ(a) to (sj−1, tk−1), then a diagonal line from (sj−1, tk−1) to (sj , tk),
and then a sequence of horizontal and vertical segments to get from (sj , tk)
to γ(b), would result in a positive integral over this segment, contradicting
optimality.

Thus, choose a block Gk,l, with Wk,l > 0, that our segment passes
through with positive, non-infinite slope. If our entire segment γ|[a,b] passes
from the lower left vertex of this block to the upper right vertex, then γ|[a,b]
is a diagonal line joining these vertices, proving it is a P-segment. So, assume
γ|[a,b] either enters or exits Gk,l through a point on an edge that is not a
vertex. Just to be specific, assume that γ|[a,b] exits Gk,l through a point on
its right edge, which would be of the form (sk, t

∗), where tl−1 < t∗ < tl. Our
next task to to examine what happens to γ|[a,b] as it passes through the next
block to the right, Gk+1,l. First, consider the case in which Wk+1,l > 0. In
that case, by Lemma 18, we know γ is linear as it passes through Gk+1,l.
The following Lemma tells us the relationship between the slopes Hk,l and
Hk+1,l as γ passes through these blocks.
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Lemma 20. 1. Assume that the adjacent blocks Gk,l and Gk+1,l both
have positive weights, and suppose that an optimal γ passes from Gk,l

to Gk+1,l at the point (sk, t
∗), where tl−1 < t∗ < tl. Furthermore,

assume that γ has positive and non-infinite slope in at least one of
these two adjacent blocks. Then the slope of γ in the other block is also
positive and non-infinite, and these two slopes are related by

(8)
Hk+1,l

Hk,l
=

(
Wk+1,l

Wk,l

)2

2. Assume that the adjacent blocks Gk,l and Gk,l+1 both have positive
weights, and suppose that an optimal γ passes from Gk,l to Gk,l+1 at
the point (s∗, tl), where sk−1 < s∗ < sk. Furthermore, assume that γ
has positive and non-infinite slope in at least one of these two adjacent
blocks. Then the slope of γ in the other block is also positive and non-
infinite, and these two slopes are related by

(9)
Hk,l+1

Hk,l
=

(
Wk,l

Wk,l+1

)2

Proof. We assume that the adjacent blocks Gk,l and Gk+1,l both have posi-
tive weights, and that γ passes from Gk,l to Gk+1,l at the point (sk, t

∗), where
tl−1 < t∗ < tl. Furthermore, we assume that γ has positive and nonzero slope
in Gk,l. First, we will show that γ must pass through an interior point of
Gk+1,l. If it doesn’t, then it would have to follow a vertical path in the left
edge of Gk+1,l, which is the same as the right edge of Gk,l; but this would
violate the fact that is it linear while in Gk,l. So choose α and β such that
γ(α) = (σ1, τ1) is an interior point of Gk,l and γ(β) = (σ2, τ2) is an interior
point of Gk+1,l. It follows that∫ β

α
(q1 ∗ γ1)(u) · (q2 ∗ γ2)(u)du = Wk,l

√
(sk − σ1)(t∗ − τ1)

+Wk+1,l

√
(σ2 − sk)(τ2 − t∗)

by Lemma 16. If we view the above formula as a function of a single variable
t∗, it is an easy Calc I problem to show that the value of the integral is
maximized when we choose t∗ so that

(τ2 − t∗)

(σ2 − sk)
=

(
Wk+1,l

Wk,l

)2 (t∗ − τ1)

(sk − σ1)
.

Since we are assuming that γ is optimal, it follows that this slope relationship
must hold. The other cases of the Lemma follow by analogous arguments.
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Given a Type I matching, we have shown that it must pass through an
interior point of a block Gk,l, of positive weight, with a slope that is neither
zero nor infinity. As we follow this segment in either direction, Lemma 20
tells us how the slope of γ must change, as long as it enters new blocks
of positive weight through non-vertex edge points. (Of course, if it meets a
vertex, that terminates our Type I segment.) We now address the question
of what happens when a matching passes from a block of positive weight
(which it traverses a slope that is neither zero nor infinity) to a block with
non-positive weight.

Lemma 21. 1. Suppose an optimal matching γ passes from a block Gk,l

with to a block Gk+1,l at a point (sk, t
∗), where tl−1 < t∗ < tl. As-

sume that one of these blocks has positive weight, and the other has
non-positive weight. Also, assume that the slope of γ in the block with
positive weight is non-zero and non-infinite. Then the slope of γ in the
block with non-positive weight is zero; hence, γ traverses the block with
non-positive weight along the horizontal line segment t = t∗.

2. Suppose an optimal matching γ passes from a block Gk,l to a block
Gk,l+1 at a point (s∗, tl), where sk−1 < s∗ < sk. Assume that one of
these blocks has positive weight, and the other has non-positive weight.
Also, assume that the slope of γ in the block with positive weight is
non-zero and non-infinite. Then the slope of γ in the block with non-
positive weight is infinite; hence, γ traverses the block with non-positive
weight along the vertical line segment s = s∗.

Proof. Suppose we are in the first case. Also, to be definite, assume that
Wk,l > 0 while Wk+1,l ≤ 0 and that the slope of γ in Gk,l is non-zero and
non-infinite. We proceed by contradiction; suppose that γ exits Gk+1,l at a
point other than (sk, t

∗). In that case, the exit point must be of the form
(s̃, t̃), where s̃ > sk and t̃ > t∗.

By Lemma 19, we know that the portion of γ passing through Gk+1,l

will contribute 0 to
∫ b
a (q1 ∗ γ1)(u) · (q2 ∗ γ2)(u)du. Consider what happens if

we replace the portion of γ passing through these two blocks by a segment
that enters Gk,l at the same entry point as γ, passes linearly through Gk,l

to the point (sk, t̃), and then proceeds through Gk+1,l by the horizontal
segment from (sk, t̃) to (s̃, t̃). This replacement will increase the integral∫ b
a (q1 ∗ γ1)(u) · (q2 ∗ γ2)(u)du, since it will increase the contribution of the
portion of γ in Gk,l (by Lemma 16), while not changing the contribution
of the portion in Gk+1,l, which will still be zero. Thus we contradict the
optimality of the original γ, and the proof of Case (1) of the Lemma is
complete. The proof of Case (2) is analogous and we omit it.
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Thus, given a Type I segment, we know it passes through an interior
point of a block Gk,l, of positive weight, with a slope that is neither zero nor
infinity. Following this segment in both directions, we know precisely what
happens to this segment as if it encounters a block of positive weight or a
block of negative weight. What happens if it encounters several blocks of
non-positive weight in a row?

Lemma 22. 1. Suppose Gk,l and Gp,l are blocks of positive weight, where
k < p, and suppose that the intervening blocks Gk+1,l, Gk+2,l, . . . , Gp−1,l

all have non-positive weights. If γ passes through Gk,l with non-zero
and non-infinite slope, and meets the boundary of Gk,l at the point
(sk, t

∗), where tl−1 < t∗ < tl, then γ proceeds through all the interven-
ing blocks Gk+1,l, Gk+2,l, . . . , Gp−1,l with slope 0 (along the horizontal
line t = t∗), and then passes through the block Gp,l with slope related
to the slope in Gk,l by the formula

(10)
Hp,l

Hk,l
=

(
Wp,l

Wk,l

)2

If instead of assuming γ passes through Gk,l with positive, non-infinite
slope, we assume that it passes through Gp,l with positive, non-infinite
slope, then we can again conclude that it passes through the intervening
blocks with slope 0 and passes through Gk,l with positive, non-infinite
slope, and that these slopes are related by the same equation.

2. Suppose Gk,l and Gk,p are blocks of positive weight, where l < p, and
suppose that the intervening blocks Gk,l+1, Gk,l+2, . . . , Gk,p−1 all have
non-positive weights. If γ passes through Gk,l with non-zero and non-
infinite slope, and meets the boundary of Gk,l at the point (s

∗, tl), where
sk−1 < s∗ < sk, then γ proceeds through all the intervening blocks
Gk,l+1, Gk,l+2, . . . , Gk,p−1 with slope ∞ (along the vertical line s = s∗),
and then passes through the block Gk,p with slope related to the slope
in Gk,l by the formula

(11)
Hk,p

Hk,l
=

(
Wk,l

Wk,p

)2

If instead of assuming γ passes through Gk,l with positive, non-infinite
slope, we assume that it passes through Gk,p with positive, non-infinite
slope, then we can again conclude that it passes through the intervening
blocks with slope ∞ and passes through Gk,l with positive, non-infinite
slope, and that these slopes are related by the same equation.
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Note that this Lemma contains Lemma 20 as the special case in which

the number of intervening blocks (with non-positive slopes) is zero.

Proof. For definiteness, assume we are in Case (1) of the lemma. The proof

that γ continues with slope 0 through all the intervening blocks with non-

positive weights is the same as the proof of Lemma 21; if not, we could

replace γ by a matching would violate the optimality of the γ. Now that

we know that γ has zero slope through the intervening blocks, the proof of
the relationship between the slopes in Gk,l and Gp,l is identical to the proof

of the relationship in Lemma 20, the only modification being that we let t∗

represent that height of the horizontal line instead of just the height of the

transition point. Case (2) is completely analogous and we omit its proof.

If we are given a Type I segment, we have shown it passes through an

interior point of a block Gk,l, of positive weight, with a slope that is neither

zero nor infinity. Following the segment from this block in each direction,
we have now proved that until it encounters a vertex, it must follow the

definition of a P-segment. Of course when it encounters a vertex in either

direction, that will be the end of the Type I segment. Thus, we have proved

that each Type I segment is a P-segment.

We now turn to the proof that each Type II segment can be replaced

by an N-segment without altering its optimality. We start with an optimal
matching γ. Assume that our Type II segment is γ[a,b]. Recall from the

definition of a Type II segment, that it starts at a vertex, ends at a vertex,

and never passes through an interior point of a block with positive weight.

Also, we know that we cannot have two consecutive Type II segments, so if

it is preceded by a segment, that segment is now known to be a P-segment,
and if it is followed by a segment, that segment is known to be a P-segment.

Let γ(a) = (sp−1, tq−1) and let γ(b) = (sk, tl). Because γ[a,b] does not pass

through an interior point of any block with positive weight, we know that∫ b
a (q1 ∗ γ1)(u) · (q2 ∗ γ2)(u)du ≤ 0 (since the integrand is non-positive almost

everywhere). However, if we replaced γ[a,b] by a horizontal segment from
(si−1, tj−1) to (sk, tj−1) followed by a vertical segment from (sp, tq−1) to

(sk, tl), then
∫ b
a (q1 ∗ γ1)(u) · (q2 ∗ γ2)(u)du = 0; by the optimality of γ, it

follows that for our Type II segment,
∫ b
a (q1 ∗ γ1)(u) · (q2 ∗ γ2)(u)du = 0, and

we may make this replacement without affecting the optimality.

Lemma 23. If γ is optimal and γ[a,b] is a Type II segment from the vertex
(sp−1, tq−1) to the vertex (sk, tl) then Wi,j ≤ 0 for all i, j satisfying p ≤ i ≤ k

and q ≤ j ≤ l.
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Proof. Suppose not; choose (i, j) such that p ≤ i ≤ k and q ≤ j ≤ l but
Wi,j > 0. Then, if we replace γ|[a,b] by a segment that starts at (sp−1, tq−1),
then proceeds by first a horizontal segment and then a vertical segment to
(si−1, tj−1), then by a linear segment from (si−1, tj−1) to (si, tj), and then
by first a horizontal segment and then a vertical segment to (sk, tl), we
will increase the value of this integral from 0 to a positive number. This
contradicts the optimality of γ, and proves the Lemma.

To satisfy the definition of N-segment, we need to prove a few more
weights are ≤ 0.

Lemma 24. If γ is optimal and γ[a,b] is a Type II segment from the vertex
(sp−1, tq−1) to the vertex (sk, tl) then Wi,j ≤ 0 for all i, j satisfying any one
of the following conditions:

• p ≤ i ≤ k and j = q − 1
• p ≤ i ≤ k and j = l + 1
• i = p− 1 and q ≤ j ≤ l
• i = k + 1 and q ≤ j ≤ l

Note that in some cases one or more of these conditions may be vacuous;
for example, if q = 0, then there is no block Gi,j satisfying j = q − 1.

Proof. The proof is the same for all four conditions, so consider the first
one. Proceed by contradiction; suppose that Wi,j > 0, where p ≤ i ≤ k
and j = q − 1. Assume that γ|[a,b] takes the form of a horizontal segment
from (sp−1, tq−1) to (sk, tq−1), and then a vertical segment from (sk, tq−1) to

(sk, tl). (We know that by Lemma 23,
∫ b
a (q1∗γ1)(u) ·(q2∗γ2)(u)du ≤ 0; since

the segment described makes the integral equal to zero, it is an optimal one.)
Since q − 1 > 0 (so q > 1) in this case, we know that our current Type II
segment has a segment preceding it, and we have proved that this preceding
segment is a P-segment. We know that Gp−1,q−1 is the last block that this
preceding P-segment passed through, and we also know that because it was
a P-segment, Wp−1,q−1 > 0, and Hp−1,q−1 is positive and finite. Let α < a
be the lowest parameter value for which γ(α) ∈ Gp−1,q−1. Let (s̃, t̃) = γ(α).
Since the slope of γ in Gp−1,q−1 is positive, we know that t̃ < tq−1. Now,
focus attention on the segment of γ from (s̃, t̃) to (si, tq−1). This segment
consists of a straight line segment (of positive slope) from(s̃, t̃) to (sp−1, tq−1),
followed by a horizontal line segment from (sp−1, tq−1) to (si, tq−1). For any h
satisfying t̃ ≤ h ≤ tq−1, define a segment γh consisting of a straight line from
(s̃, t̃) to (sp−1, h), followed by a horizontal line from (sp−1, h) to (si−1, h),
followed by a straight line from (si−1, h) to (si, tq−1).
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By Lemma 16, the contribution of the segment γh to the integral in
question is

C(h) = Wp−1,q−1

√
sp−1 − s̃

√
h− t̃+Wi,q−1

√
si − si−1

√
tq−1 − h.

Note the contribution of the horizontal segment is zero and, by our as-
sumptions, Wp−1,q−1 and Wi,q−1 are both greater than zero. Clearly C(h)
is continuous for t̃ ≤ h ≤ tq−1, and is differentiable except at the endpoints
of this h-interval. When h = tq−1, the segment γh coincides with the seg-
ment of γ under consideration. Clearly, as h → tq−1, C

′(h) → −∞, since
the derivative of f(x) =

√
x approaches ∞ as x → 0. This implies that

for values of h within some some small interval (tq−1 − ε, tq−1], C(h) is a
decreasing function of h, and so for h ∈ (tq−1 − ε, tq−1), C(h) > C(tq−1).
This contradicts the optimality of our original γ, and completes the proof
of the Lemma.

The lemmas we have proved show that a segment of Type I is always a
P-segment and a segment of Type II is always an N-segment, establishing
Statements (1) and (2) of Theorem 6. What remains is to prove Statement
(3) of Theorem 6, which gives a relationship between the final slope of a P-
segment, and the initial slope of the next P-segment (whether or not there
is an N-segment between them).

First consider the case in which one P-segment of our optimal matching
γ ends at the vertex (si, tj), and the next one begins at the same point.
Since these are P-segments, we already know that their slopes Hi,j in Gi,j

and Hi+1,j+1 in Gi+1,j+1 are both positive. Let μ =
√

Hi+1,j+1

Hi,j
. We need to

prove that μ satisfies the appropriate inequalities given in Statement (3) of
Theorem 6. Note that these inequalities depend on the sign of C and D.
(Because we are dealing with P-segments, A and B must both be positive,
by definition.) This argument proceeds by contradiction; we show that if μ
is outside the prescribed intervals, then γ is not optimal.

We begin by assuming that D > 0. In either of the two cases where this
holds, the lower end of the prescribed interval for μ is D2/AB. So, suppose
that μ < D2/AB. Choose a point on γ in the interior of Gi,j . This point will
be of the form (si − p, tj − q), where p, q > 0. Likewise, choose a point on
γ in the interior of Gi+1,j+1. This point will be of the form (si + u, tj + v),
where u, v > 0. Now, for arbitrary x ∈ [0, u] and y ∈ [0, q], consider a
path γx,y = (γx,y1 , γx,y2 ), composed of the following three pieces: first, the
line segment from (si − p, tj − q) to (si, tj − y); second, the line segment
from (si, tj − y) to (si + x, tj); third, the line segment from (si + x, tj) to
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(si+u, tj+v). Assume that the portion of γ from (si−p, tj−q) to (si+u, tj+v)
corresponds to the parameter interval z ∈ [α, β]. Parameterize γx,y using this
same parameter interval, and assume that it is linear on each of the three
segments. Define

E(x, y) =

∫ β

α
(q1 ∗ γx,y1 )(z) · (q2 ∗ γx,y2 )(z)dz.

By applying Lemma 16 to the three linear pieces of γx,y, we obtain

E(x, y) = A
√
p
√
q − y +D

√
x
√
y +B

√
v
√
u− x

where we are in the case of A,B,D > 0. It is an easy exercise in two-
variable calculus that the function E(x, y) has a unique absolute maximum
on the domain (x, y) ∈ [0,∞) × [0,∞), and that this maximum occurs at
the point

x0 = u

(
D4q −B2A2

(pv
u

)
D4q +D2B2v

)

y0 = q

(
D4u−B2A2

(pv
q

)
D4u+D2A2p

)

We now observe that this maximum (x0, y0) lies in (0, u)× (0, q), as follows.
First, note that every individual variable occurring in the expressions for x0

and y0 has a positive value. Furthermore, recall that μ =
√

Hi+1,j+1

Hi,j
=

√
v/u
q/p .

Since we are assuming that μ < D2/AB, it follows immediately that the
numerators in the formulae for both x0 and y0 are positive and therefore
x0, y0 > 0. Since the numerator in the fraction for x0 is less than D4q, while
the denominator is greater than D4q, it follows that x0 < u and, similarly,
that y0 < q. Hence we have shown that (x0, y0) lies in (0, u) × (0, q). Since
E has an absolute maximum at (x0, y0), it follows that E(x0, y0) > E(0, 0).
But this contradicts the optimality of γ, since γ0,0 corresponds exactly to
our original γ!

Similarly, under the assumption that C > 0, we show that μ > AB/C2

leads to a contradiction. This proves Statement (3) for two adjacent P-
segments.

The case of two P-segments separated by a single N-segment is similar.
Suppose one P-segment ends at a vertex (si, tj) and the next one starts at
(sk, tl), and there is an N-segment from (si, tj) to (sk, tl). Once, again, we will
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assume we are in the case D > 0, and suppose that μ < D2/AB. Choose a
point on γ in the interior of Gi,j . This point will be of the form (si−p, tj−q),
where p, q > 0. Likewise, choose a point on γ in the interior of Gk+1,l+1. This
point will be of the form (sk+u, tl+v), where u, v > 0. Note that the portion
of γ from (si − p, tj − q) to (sk + u, tl + v) consists of four line segments:
first from (si− p, tj − q) to (si, tj), second from (si, tj) to (sk, tj), third from
(sk, tj) to (sk, tl), and fourth from (sk, tl) to (sk+u, tl+v). Now, for arbitrary
x ∈ [0, u] and y ∈ [0, q], consider a path γx,y = (γx,y1 , γx,y2 ), composed of the
following five line segments: first from (si − p, tj − q) to (si, tj − y), second
from (si, tj − y) to (sk, tj − y), third from (sk, tj − y) to (sk + x, tj), fourth
from (sk + x, tj) to (sk + x, tl), and fifth from (sk + x, tl) to (sk + u, tl + v).
The rest of the argument proceeds just as before; the contribution of the
integral over the segment γx,y is again given by the formula

E(x, y) = A
√
p
√
q − y +D

√
x
√
y +B

√
v
√
u− x

since the horizontal and vertical segments have no contributions. By finding
that the maximum value of E(x, y) does not occur at (x, y) = (0, 0), we
contradict the assumption that γ was optimal.

This completes the proof of Theorem 6.

8. Algorithm for producing a precise optimal matching of
PL curves

In Theorem 6, we proved that given PL curves f1 and f2, there exists an
optimal matching γ = (γ1, γ2) that is a union of P-segments and N-segments.
We now outline our algorithm for producing such an optimal matching.
Throughout this section, we continue using the notation developed in the
previous section for our curves f1 and f2 and their SRVF’s q1 and q2. We
assume that the q′is are step functions that do not take the value zero on
any of their subintervals.

The algorithm examines each vertex (si, tj), one row at at time, in the
order

(s0, t0), (s1, t0), (s2, t0), . . . , (s0, t1), (s1, t1), (s2, t1), . . . , (sm−1, tn), (sm, tn)

When it arrives at a vertex (si, tj), it checks whether an optimal segment
has been found from (s0, t0) to (si, tj). If no such optimal segment has been
found, it skips to the next vertex.

However, if such an optimal segment has been found, it implements
a “searchlight” procedure, looking for segments starting from (si, tj), as
follows:
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• If Wi+1,j+1 ≤ 0, the algorithm finds all possible N-segments beginning
at (si, tj). Suppose such an N-segment ends at (sk, tl). The algorithm
checks whether the value of the optimal segment from (s0, t0) to (si, tj)
is higher than the value of the best segment found so far from (s0, t0) to
(sk, tl). If it is, then the union of these two segments yields a new best
possible segment from (s0, t0) to (sk, tl), and this segment is recorded
as such. If it is not, then this N-segment is simply ignored.

• If Wi+1,j+1 > 0, then the algorithm examines P-segments beginning at
(si, tj). It does not have to examine all such P-segments, because of the
slope restriction imposed by the last clause of Theorem 6. To be more
precise, by considering the final slope of the last P-segment occurring
in the optimal path from (s0, t0) to (si, tj) and the value of four relevant
weights, the last clause of Theorem 6 specifies an allowable range of
slopes for the next P-segment. Our searchlight procedure examines all
P-segments beginning at (si, tj) whose initial slopes are within this
range. (We will soon give some more details on how we accomplish the
enumeration of these P-segments.) Suppose such a P-segment ends at
(sk, tl). The algorithm checks whether the sum of the values of this new
P-segment and the optimal segment from (s0, t0) to (si, tj) is greater
than the value of the best segment found so far from (s0, t0) to (sk, tl).
If it is greater, the union of these two segments yields a new candidate
for best possible segment from (s0, t0) to (sk, tl), and this segment is
recorded as such. If it is not, then this new P-segment is ignored.

During the application of this algorithm, by the time we are examining a
vertex (si, tj), we have already determined whether or not there exists a
segment from (s0, t0) to (si, tj) that follows the rules of Theorem 6.

Thus when we arrive at the final vertex (sm, tn), we will have determined
the best possible segment from (s0, t0) to (sm, tn).

We now make some further comments on the searchlight procedure al-
luded to above. In the first case, we are searching for all possible N-segments
starting at (si, tj). This can be accomplished by a relatively simple combi-
natorial procedure, searching for vertices above and to the right of (si, tj)
which will be the endpoint of an allowable N-segment.

However, the searchlight procedure has more subtlety in the second case,
where we are searching for all possible P-segments, with starting slope within
a given interval, say [h1, h2]. Because of this subtlety, we give some more
details about how this is accomplished. In order to make sure we don’t miss
any allowable P-segments due to round-off error, we begin by choosing an
initial slope h1− ε, where ε denotes some convenient small positive number.
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Then, we construct a segment beginning at the vertex (si, tj) and following

the slope-change rules from the definition of P-segment whenever we cross

from one block to the next. There is essentially a zero probability that this

segment will meet a vertex, so the segment ends when it arrives at either

the vertical line s = 1 or the horizontal line t = 1. Technically, this segment

is not a P-segment, because its final point is not a vertex. The idea of the

searchlight algorithm is that we want to find the next initial slope above

(h1− ε) that will result in a P-segment that actually terminates at a vertex.

There is a nice trick for accomplishing this. Note that the slope of this

segment changes each time it passes from one block to the next, because of

the change in the weights as we pass from one block to the next. However, it is

very easy to perform a PL reparameterization of the original curves, that will

result in all the blocks that this path passes through having the same weight!

For example, consider the case in which the first edge-crossing of our segment

takes it from Gi+1,j+1 to Gi+2,j+1. By choosing a linear reparameterization

γ : [si+1, s̃i+2] → [si+1, si+2], we can change the value of the q-function of f1
on this portion of the curve to any multiple of its original value ui+2 that

we desire. Therefore, we can change the weight Wi+2,j+1 to make it equal

to the weight Wi+1,j+1 by such a reparameterization. (Of course, we must

translate the values of sk for all k > i + 2 in order to accommodate the

new value of s̃i+2.). Since the weights of these two blocks are now equal, it

follows from the slope transition formula that the slope of the segment will

now remain the same as our segment basses from Gi+1,j+1 to Gi+2,j+1. We

proceed along our segment, making a similar reparametrization of either f1
or f2 each time the segment passes from one block to the next. The result of

this procedure will be that our entire segment has the same slope (equal to

its initial slope in Gi+1,j+1). Note that the total parameter intervals will no

longer be the unit intervals that they were to start with, but that doesn’t

matter. Also, note that the coordinates of several of the vertices will have

been changed by these reparameterizations.

We need to find the lowest slope above h1 − ε for which the segment

encounters a vertex. But, because the slopes are all the same along the

segment, this becomes easy. Let S denote the set of vertices that are either

the upper end of a vertical edge crossed by our segment, or the left end of

a horizontal edge crossed by our segment. For each of the vertices (sk, tl)

in S, compute the ratio tl/sk; the lowest value of this ratio will obviously

be the lowest initial slope above h1 − ε for which our segment encounters a

vertex. Call this new slope h̃1. Going back to our original parameterizations,

we have our first P-segment, starting at (si, tj), with initial slope h̃1.
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To find the next P-segment, we begin by constructing a segment starting
at (si, tj), with slope h̃1 + ε for a very small ε, that follows the slope-change
rules whenever it passes from one block to another. There is a zero probabil-
ity that this segment will encounter a vertex, so it will end when it arrives
at either the vertical line s = 1 or the horizontal line t = 1. To find the next
slope above h̃1+ ε that will yield a P-segment, we use exactly the same path
straightening procedure that we just described. We proceed in this manner
until we arrive at a slope above h2. This gives us all the P-segments start-
ing at (si, tj) with initial slopes in the required range. Note that for each
P-segment we construct, we just need to construct one “test” segment to
find it.

9. Examples

In the following pages, we present the results produced by implementing
the aforementioned algorithm on different pairs of 1D, 2D and 3D-curves.
In case of 1D-curves, A shows the original curves as graphs, B shows the
aligned curves and C shows the optimal matching on I × I grid. In case of
2D and 3D-curves, the alignment of the curves is shown in figure A, the
geodesic is shown in B and C represents the optimal matching on the I × I
grid for the pair of curves. The following table shows the list of the pairs of
curves.

EX DESCRIPTION OF THE PAIRS OF CURVES

1(1D) f1(t) = f(t), f2(t) = g(t), t ∈
{

n
5

}5

n=0
, taken from a random data set

2(1D) f1(t) = f(t), f2(t) = g(t), t ∈
{

n
100

}100

n=0
, taken from a simulated data set

3(2D) f1(t) = (t, f(t)), f2(t) = (t, g(t)), t ∈
{

n
45

}45

n=0
, taken from the female

growth data set [11]

4(2D) f1(t) = (2πt, 2πt) and f2(t) = (2πt, sin(6πt)), t ∈
{

n
45

}45

n=0

5(2D) f1(t) = (1 + cos(2π(1− t)), sin(2π(1− t))),

f2(t) = (−1 + cos(−2πt), sin(2πt)), t ∈
{

n
45

}45

n=0

6(2D) f1(t) = (1 + cos(2π(1− t)), sin(2π(1− t))),

f2(t) = (−1 + cos(−2πt), sin(2πt)), t ∈
{

n
3

}3

n=0

7(2D) f1(t) = (2πt, sin(6πt)), f2(t) = (2πt, sin(4πt)), t ∈
{

n
45

}45

n=0

8(3D) f1(t) = (cos 4πt, sin 4πt, t), f2(t) = (cos 8πt, sin 8πt, t), t ∈
{

n
50

}50

n=0

9(3D) f1(t) = (4πt cos(4πt), 4πt sin(4πt), (4πt)2),

f2(t) = (4πt cos(4πt), −4πt sin(4πt), (4πt)2), t ∈
{

n
50

}50

n=0
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Figure 3: Example 1(1D). Distance before alignment is 1.4815. Distance
after alignment is 0.5071.

Figure 4: Example 2(1D). Distance before alignment is 1.4312. Distance
after alignment is 0.1195.
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Figure 5: Example 3(2D). Distance before alignment is 7.0108. Distance
after alignment is 4.0721.

Figure 6: Example 4(2D). Distance before alignment is 3.9107. Distance
after alignment is 2.8418.
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Figure 7: Example 5(2D). Distance before alignment is 2.5064. Distance
after alignment is 2.0683.

Figure 8: Example 6(2D). Distance before alignment is 2.4495. Distance
after alignment is 2.
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Figure 9: Example 7(2D). Distance before alignment is 4.1655. Distance
after alignment is 1.7899.

Figure 10: Example 8(3D). Distance before alignment is 6.1114. Distance
after alignment is 3.2117.
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Figure 11: Example 9(3D). Distance before alignment is 8.5302. Distance
after alignment is 8.5253.

Figure 12: Comparing results from the Dynamic programming (top row)
with the algorithm (bottom row). Distance before alignment is 1.57. Distance
after alignment: 1.5239 (using DP); 1.2457 (using our algorithm).
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