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computer-aided polyp detection in CT colonography

Ming Ma
∗,†

, Lihong Li
‡
, Hao Han

†
, Yifan Hu

†
,

Xianfeng Gu
∗
, and Zhengrong Liang

∗,†

Computer-aided detection (CAD) of colonic polyps, as a second
reader for computed tomographic colonography (CTC) screening,
has earned extensive research interest over the past decades. False
positive (FP) reduction in the CAD system plays a crucial role in
detecting the polyps. To improve the performance of FP reduction
and better assist the physician’s diagnosis, we propose an adaptive
kernel based multiple kernel learning (MKL) method for CAD of
colonic polyps, called AK-MKL. This method builds a more adap-
tive synthesized classifier by incorporating an adaptive kernel into
a set of predefined base kernels for better performance in differ-
entiating true polyps from FPs, which is implemented by learning
an optimal combination of a collection of those kernel-based classi-
fiers. Performance evaluation for the presented AK-MKL method
was performed on a CTC database, consisting of 25 patients with
50 CT scans. In terms of the AUC (area under the curve of re-
ceiver operating characteristic) and accuracy merits, the experi-
mental results showed that our AK-MKL method achieves better
performance, compared with two other different methods, i.e., one
classifier based on support vector machine (SVM) with only one
adaptive kernel (AK-SVM) and the other one based on multiple
kernel learning only (MKL).

1. Introduction

Colorectal cancer, as pointed out in American Cancer Society annual report
in 2013 [1], is the third most common malignancy and the second leading
cause of cancer-related deaths in the United States. Appearing as bulbous
protrusions from the colon wall into the lumen, colonic polyps bear a high
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probability (greater than 90%) of transformation into the cancer, although
such a long latency period as estimated 5 to 15 years is usually required for
this malignant transformation. Thus, early detection and removal of colonic
polyps can diminish the risk of colon cancer [34, 7, 15].

Traditionally, optic colonoscopy (OC) acts as a gold standard, being
routinely employed in clinic practice for colonic polyp detection. However,
OC is not ideal in terms of safety, cost and patient compliance. Computed
tomographic colonography (CTC) or virtual colonoscopy (VC), as a new
minimally-invasive screening technique for detection of colonic polyps by
scanning cleansed and air-distended colon using computed tomography, has
shown the potential to become a mass screening modality [36, 10, 18].

In spite of the less invasiveness, VC still suffers from the disadvantages of
time-consumingness and proneness to perceptual errors [9]. To address these
difficulties, computer-aided detection (CAD) was proposed to automatically
detect colonic polyps on CTC scans [6]. Moreover, CAD serves as an initial
examination tool to detect polyp candidates. Radiologists can focus on a
small portion of regions where colonic polyp candidates are detected, thus
reducing interpretation time of radiologists and augmenting the diagnostic
performance in polyp detection. As a result, detection of colonic polyps turns
out to be more accurate and efficient using VC in conjunction with CAD.

A variety of CAD methods for polyps have been under investigation over
the past decades. Summers et al. [29, 30] proposed the use of some geomet-
rical features, such as mean, principle and Gaussian curvatures, to perform
the detection of colonic polyp candidates. Yoshida and Nappi [38, 37, 23, 22]
improved the polyp detection performance by using the local shape index
and curvedness, in comparison with mean and Gaussian curvature features.
Paik et al. [24, 25, 26] presented contour normal method and surface over-
lap method for detection of polyp candidates. Kiss et al. [12, 13] utilized the
combination of surface normal and sphere fitting method to detect the polyp
candidates, where sphere fitting acted as an important step for discerning
polyps from haustral folds. Wang et al. [33] introduced a global curvature
shape descriptor for colon wall and extracted internal geometrical, morpho-
logical and textural features for detection of colonic polyps. Suzuki et al. [31]
utilized a massive-training artificial neural network for distinction between
polyps and rectal tubes in polyp detection. Kim et al. [11] applied a Hessian
matrix–based algorithm for polyp detection. Li et al. [17] suggested a novel
detection method using wavelet-based features generated from two dimen-
sional (2D) projection images, and also optimized colonic polyp detection
by evolving the Pareto front [16]. Zhu et al. [42] augmented the detection
specificity using features extracted from both the gray and color projection
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images. Liu et al. [20] improved the sensitivity of small polyp detection by
utilizing image interpolation method for curvature estimation. Mang et al.
[21] evaluated the stand-alone performance of a polyp detection method
with and without fecal tagging, and showed no significant performance dif-
ferences. Wang et al. [32] provided a novel polyp detection scheme based
on decomposition of complex colon into uniform broken parts using second
order derivatives of the volumetric image.

After detecting initial candidates of colonic polyps, false positive (FP)
reduction plays a crucial role in a CAD system, where a variety of features
extracted from initial polyp candidates (IPCs) are fed into a classifier to
reduce FPs, including geometric, density, texture and projection features.
These different types of features are highly heterogeneous. Thus, multiple
kernel learning (MKL) methods [2, 27, 28, 8], which aim at tackling real clas-
sification applications with multiple and heterogeneous data sources, can be
employed at the FP reduction stage in our CAD pipeline. The main idea
of our paper is that we present a novel kernel-based classification method
called AK-MKL for improving the performance of FP reduction in the CAD
pipeline. We first construct an adaptive kernel using the training dataset
based on the boosting paradigm in [4]. This adaptive kernel is then in-
corporated into a set of predefined base kernels as a kernel pool for the
purpose of learning an optimal combination of a collection of those kernel-
based classifiers, under the framework of multiple kernel learning in [35].
The combination of the adaptive kernel learned from training dataset with
the well-known predefined base kernels shall generate a more adaptive and
strong classifier for better differentiating true polyps from FPs. To validate
the feasibility and effectiveness of the proposed method, we evaluate the
performance of our AK-MKL method in the experiments on a CTC dataset.

The novelties of our proposed method in this paper are as follows: 1) This
paper is the first attempt in introducing the boosting paradigm-based adap-
tive kernel construction in the application of classification for FP reduction
in CAD of colonic polyps in CT colonography. 2) Secondly, our paper is
also the first attempt to apply the newly presented multiple kernel learning
method to the classification problem in medical imaging, in particular, the
false positive reduction in computer-aided detection of colorectal polyps in
CT colonography. 3) In the perspective of novelty of the method, we propose
a novel AK-MKL method which builds a more adaptive classifier by incor-
porating an adaptive kernel into a set of predefined base kernels for better
discriminative performance in differentiating true polyps from false positives
in the stage of FP reduction. 4) We further validate the feasibility and ef-
fectiveness of our AK-MKL method in the experiments, demonstrating the
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better performance of our method in comparison with two other different
methods.

The remainder of this paper is organized as follows. Section II presents
our CAD pipeline and the multiple kernel learning with adaptive kernel
method for computer-aided detection of polyps. Experimental results on
evaluation of our proposed AK-MKL method is reported in Section III,
followed by discussion and conclusion in Section IV.

2. Materials and methods

2.1. CAD pipeline

A CAD scheme can automatically detect potential colonic polyps such that
radiologists’ interpretation time is substantially reduced and the diagnostic
performance largely improved. The schematic diagram of the CAD pipeline
for the detection of colonic is given in Figure 1, where four stages are sum-
marized [39, 41, 40].

Figure 1: Schematic diagram of CAD pipeline for polyp detection.
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In stage 1, a volumetric mucosa (VM) extraction is performed by the
maximum-a-posterior expectation-maximization (MAP-EM) image segmen-
tation algorithm [19], which solves the partial volume segmentation problem
by estimating the mixture proportion of each tissue type within each voxel
of CTC images. Mathematically, the MAP-EM algorithm aims to iteratively
maximize the following objective function:

Q(θ|θ(n)) = EY=ΣkXk
[ln(p(X|θ)p(Z))|Y, θ(n)](1)

Suppose there are k types of tissues in the volume of interest for VM seg-
mentation, the image intensity Y of each voxel consists of the contributions
Xk from each tissue type and thus we have Y = ΣkXk. Let μk and νk be
the mean and variance of the intensity of tissue type k, Zik be the mix-
ture proportion of tissue type k in the i-th voxel, then θ = {μk, νk,Zik} is
the vector of to-be-estimated parameters. Let p(X|θ) be the likelihood on
CT image intensities and p(Z) represent the prior of mixture proportions,
the Q function actually models the conditional expectation of the posterior
probability of the CT image intensity and tissue mixture proportions.

In practice, the interpolation between corresponding pixels on the ad-
jacent slices of CTC images is required for the generation of 3D isotropic
voxels, prior to the MAP-EM segmentation. Figure 2 illustrates the process
of MAP-EM segmentation for VM extraction. One representative CTC im-
age is shown in Figure 2(a), and the image after electronically cleansing of
the tagged colonic residual is given in Figure 2(b). Electronic colon cleans-

Figure 2: MAP-EM segmentation for VM extraction. (a) A representative
slice of abdominal CT image with tagged fecal material. (b) The result-
ing abdominal CT image with tagged fecal material cleansed electronically.
(c) The cleaned colon lumen slice with arrows indicating VM and air.
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ing is an emerging technique developed to segment the colon lumen from
a patient’s abdominal CTC images by removing the residue stool and fluid
tagged using contrast materials. As the region of interest (ROI) for polyp
detection, the VM extracted by the MAP-EM segmentation algorithm is
shown in Figure 2(c). The colon lumen within the VM layer is shown in Fig-
ure 2(c) as well. Stage 2 shows that the VM is analyzed through geometric
computation, and the resulting measurement is then utilized to extract the
IPCs. FP reduction in stage 3 is our main contribution in this paper, where
various features are extracted and fed into the classifier constructed using
the proposed AK-MKL method for the purpose of FP reduction. In stage 4,
the results of detection are displayed in the colon visualization system in
order to assist the physician’s diagnosis.

2.2. Adaptive kernel based multiple kernel learning method

2.2.1. Overview of AK-MKL method The proposed multiple kernel
learning with adaptive kernel (AK-MKL) method in this paper is essentially
aimed to learn an optimal combination of a group of base classifiers, each
of which is constructed using a specific kernel. The kernel pool comprises
two parts. One part is a set of predefined radial basis function (RBF) ker-
nels, and the other part is an adaptive kernel constructed using a boosting
paradigm. The key of our method is to incorporate the adaptive kernel with
the predefined base kernels for the purpose of building a synthesized strong
classifier.

The flow chart of AK-MKL method is presented in Figure 3. The details
of this method are presented in both Algorithm 1 and 2.

2.2.2. Construction of the adaptive kernel Some of the conventional
implementations of the classification methods in previous applications only
pre-select a kernel function (e.g., RBF kernels), ignoring available training
data. These kind of pre-selection approaches fail to provide an optimal kernel
function which is adaptive to the specific data. Because of the adaptive
nature of the adaptive kernel constructed by learning from the training data,
it is expected that by introducing the adaptive kernel into our method, we
shall improve the classification for polyp detection.

The adaptive kernel in our AK-MKL method is constructed by an itera-
tive learning process where the boosting paradigm is applied to combine the
primitive kernels in consideration of the training data. In the following, the
basic kernel method is firstly outlined, and then details of the construction
of the adaptive kernel are presented.
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Figure 3: Flow chart of our proposed AK-MKL algorithm.

For a linear classifier, a hyperplane can be used to linearly separate the
data. Given a set of labeled data D = {(xi, yi)|xi ∈ R

d, yi ∈ {+1,−1}, i =
1, ..., n} where xi is a d-dimensional vector of features and yi is the class
label, the hyperplane can be represented as

wTx+ b = 0(2)

where w denotes the normal vector to the hyperplane. To linearly separate
the data, two hyperplanes are selected as the boundary of “margin”, which
are expressed as follows:

wTx+ b = 1(3)

wTx+ b = −1(4)

Then we aim to maximize the margin 2√
wTw

, i.e., the distance between two

hyperplanes above, which is equivalent to minimizing
√
wTw
2 . Hence, we need

to solve a quadratic programming optimization problem:
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min
w,b

√
wTw

2
(5)

subject to yi(w
Txi + b) ≥ 1, ∀i = 1, ..., n

However, we cannot guarantee that all the data are correctly labelled, so
we introduce slack variables εi. The quadratic programming optimization
problems then becomes:

min
w,b,ε

√
wTw

2
+ CΣiεi(6)

subject to yi(w
Txi + b) ≥ 1− εi, ∀i = 1, ..., n

By introducing Lagrange multipliers α, the constrained optimization prob-
lem in (5) can be expressed as

max
αi≥0

min
w,b

√
wTw

2
− Σiαi(1− yi(w

Txi + b))(7)

When taking into consideration the slack variables εi, we impose constraints
on the Lagrange multipliers α such that 0 ≤ αi ≤ C. Let L(w, b, α) =√

wTw
2 − Σiαi(1 − yi(w

Txi + b)), we solve this optimization problem by

setting ∂L
∂w = 0 and ∂L

∂ b = 0 and then have w = Σiαiyixi and Σiαiyi = 0
respectively. After plugging w = Σiαiyixi and simplifying, we have

min
w,b

L(w, b, α) = Σiαi −
1

2
Σi,jαiαjyiyjx

T
i xj(8)

Finally, we have constrained optimization problem for linear classifier:

max
αi≥0

Σiαi −
1

2
Σi,jαiαjyiyjx

T
i xj(9)

subject to Σiαiyi = 0 and 0 ≤ αi ≤ C

where C is an error allowance parameter.
However, data is usually non-linear and cannot be linearly separable.

Kernel method is such a technique that could non-linearly map the data
in R

d space to a high-dimensional feature space F where they are linearly
separable. Formally, let xi and xj denote two data in R

d space respectively
and φ : Rd → F be a mapping into feature space F. The kernel function is
defined as an inner product in feature space

K(xi, xj) = φ(xi)
Tφ(xj)(10)
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By replacing xTi xj with the kernel function K(xi, xj) in (9), we have the
constrained optimization problem for non-linear classifier based on the kernel
function:

max
αi≥0

Σiαi −
1

2
Σi,jαiαjyiyjK(xi, xj)(11)

subject to Σiαiyi = 0 and 0 ≤ αi ≤ C

The corresponding classifier is then expressed as:

f(x) = Σn
i=1αiyiK(xi, x)(12)

Intuitively, a kernel function is a means for similarity measurement be-
tween a pair of data. Two common kernels applied for classification in various
applications are polynomial kernels and radial basis function (RBF) kernels,
which are given as follows respectively:

K(xi, xj) = (xTi xj + 1)p(13)

K(xi, xj) = exp(−‖ xi − xj ‖2
2σ2

)(14)

where the parameter p is the degree of the polynomial kernel and σ is the
width of RBF kernel.

In most classification applications, the kernels are predefined, for ex-
ample, a RBF kernel is selected before learning starts. This pre-selection
approach, however, may fail to offer a desirable kernel which is adaptive
to a specific classification application. In our presented AK-MKL method,
a key kernel used in classification is constructed by learning the empirical
training data, rather than by the pre-selecting approach. The experts’ input
as the labeling information is employed to construct an adaptive kernel with
respect to the specific data.

The adaptive kernel in our AK-MKL method is constructed using the
boosting paradigm [4]. The idea behind this strategy is, in an iterative learn-
ing fashion, to construct a target adaptive kernel ̂K which is a weighted com-
bination of a set of primitive kernels {Kμ,t|t = 1, 2, ..., T} w.r.t. a vector μ,
written as:

̂K(xi, xj) = ΣtαtKμ,t(xi, xj)(15)

In each iteration t of the boosting process, a primitive kernel Kμ,t is learned
using generalized eigen vector decomposition, given the labeled training data
set D, unlabeled testing dataset ˜D and a distribution P over the labeled
training dataset. Then the target adaptive kernel ̂K is composed of a set of
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Algorithm 1 Construction of the adaptive kernel

Input: Labeled dataset: D = {(xi, yi)|xi ∈ R
d, yi ∈ {+1,−1}, i = 1, ..., n},

unlabeled dataset: ˜D = {(x̃i|x̃i ∈ R
d, i = 1, ..., ñ}

Output: Adaptive kernel ̂K
1: ̂K = 0
2: for t = 1, 2, ..., T do
3: Compute distribution Pt over D:Pt(i, j) =

1
1+exp(−yiyjK(xi,xj))

4: compute matrices B ∈ R
n×ñ with Bi,r = xT

i x̃r, W ∈ R
n×n with Wi,j =

Pt(i, j)yiyj and M ∈ R
ñ×ñ with Mr,s = x̃T

r x̃s

5: Using generalized eigen vector decomposition, solve BTWBv = λMV and
find the generalized eigenvector v ∈ R

n corresponding to the largest eigen-
value λ

6: Set vector μ = Σrvrx̃r

‖Σrvrx̃r‖
7: Primitive kernel Kμ,t is acquired by Kμ,t = μμT

8: Compute l+t = {(i, j)|yiyjKμ,t(xi, xj) > 0}
W+

t = Σ(i,j)∈l+t
Pt(i, j)|Kμ,t(xi, xj)|

l−t = {(i, j)|yiyjKμ,t(xi, xj) < 0}
W−

t = Σ(i,j)∈l−t
Pt(i, j)|Kμ,t(xi, xj)|

9: Update ̂K = ̂K + 1
2 ln(

W+
t

W−
t

)Kμ,t

10: end for

weighted primitive kernels {αtKμ,t|t = 1, 2, ..., T}, where the labeled training
dataset is employed to evaluate the learned kernel Kμ,t and to determine its
corresponding weight αt. In the following, we give the description of the
algorithm for the adaptive kernel construction using the boosting paradigm.

In the above algorithm, step (1) initializes the kernel ̂K by assigning ze-
ros matrix, followed by T iterations of boosting process. During each itera-
tion, a distribution Pt is computed in step (3). This distribution is essentially
a logarithmic alignment loss [5, 14] which bounds the empirical classification
error. Steps (4) to (7) aim to compute the current primitive kernel Kμ,t with
respect to the current distribution Pt. The resulting primitive kernel Kμ,t is
the outer-product between the vector μ and itself, written as Kμ,t = μμT

with norm constraint ‖μ = 1‖, and the kernel function for a pair of data xi
and xj is expressed as Kμ(xi, xj) = xTi μμ

Txj . To evaluate how good a prim-
itive kernel Kμ is, a score for the kernel Kμ w.r.t. the current distribution
Pt is defined:

score(Kμ) = Σi,jP (i, j)yiyjKμ(xi, xj)(16)

The larger the score is, the better primitive kernel Kμ fits the training data.
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The optimization problem of maximizing score of Kμ can be solved by the
generalized eigen vector decomposition (i.e. step (5)). At the completion
of the primitive kernel generation, step (8) groups all pairs of data into
two sets with index pairs l+t and l−t respectively, one being the positive
labeled pairs where a pair of data xi and xj have the same label, and the
other one being the negative labeled pairs where they have the opposite
label. Using these two sets of index pairs, the weight αt for the primitive
kernel Kμ,t in the weighted combination ̂K(xi, xj) = ΣtαtKμ,t(xi, xj) which

denotes the target adaptive kernel is expressed as αt =
1
2 ln(

W+
t

W−
t

) in step (9).

Thus, combining each weighted primitive kernel which is generated in each
iteration of boosting process will eventually lead to an adaptive kernel ̂K.

2.2.3. Boosting-based multiple kernel learning Multiple kernel learn-
ing (MKL) is a technique using multiple kernel functions to learn the optimal
combination of kernels or classifiers for classification tasks. In this paper, we
propose a novel kernel-based classification method by combining the prede-
fined base kernels with the adaptive kernels to build a synthesized strong
classifier for FP reduction in CAD of colonic polyps, which is new and a
breakthrough in the presented paper.

The idea behind the presented AK-MKL method is that the boosting
strategy is applied to learn a synthesized classifier by a weighted combination
of multiple base classifiers. Each of such base classifier is generated using
an optimal kernel selected among a set of kernels in each iteration of the
learning process. The pool of kernels which are used in our AK-MKL method
encompass not only several predefined RBF kernels but also the adaptive
kernel constructed using the aforementioned Algorithm 1. In what follows,
our proposed AK-MKL method is detailed in Algorithm 2.

The first two steps in the above algorithm generate several predefined
RBF kernels and an adaptive kernel constructed using Algorithm 1. Step (1)
builds the commonly used RBF kernels which are predefined by assigning
different values of width parameter. Step (2) constructs an adaptive kernel
learned from training data. This combination of predefined kernels with
adaptive kernel based on empirical data could be employed to learn a more
adaptive classifier. In each iteration, only a proportion ρ of training data
are sampled for learning in step (5). Then the optimal base classifier ft
with minimal classification error εt in current iteration t is selected among
M learned classifiers, each of which is learned from a kernel function Kj ,
as shown in steps (7) to (14). Then, a weight αt for the learned optimal
base classifier ft is computed according to the classification error εt in step
(15). The subsequent steps (16) to (22) update the distribution Dt(i) which



34 Ming Ma et al.

Algorithm 2 Multiple kernel learning with adaptive kernel

Input: Labeled dataset: D = {(xi, yi)|xi ∈ R
d, yi ∈ {+1,−1}, i = 1, ..., n},

unlabelled dataset: ˜D = {(x̃i|x̃i ∈ R
d, i = 1, ..., ñ}

number of kernels M , sample ratio ρ and number of boosting trials T
Output: The synthesized classifier f(x)
1: Generate M − 1 RBF kernels: K1,K2, ...,KM−1

2: Call Algorithm 1 to construct an adaptive kernel KM as one of the base kernels
3: Initialize the distribution D1(i =

1
n ) where i = 1, 2, ..., T

4: for t = 1, 2, ..., T do
5: Sample m = nρ data in labeled training dataset D
6: Reset optimal base classifier ft and minimal training error εt = 1
7: for j = 1, 2, ...,M do
8: Learn a base classifier f j

t using kernel Kj

9: Compute training error εjt = Σn
i=1Dt(i)(f

j
t (xi) 	= yi)

10: if εjt < εt then
11: εt = εjt
12: ft = f j

t

13: end if
14: end for
15: set weight αt =

1
2 ln(

1−εt
εt

)
16: for i=1,2,...,n do
17: if ft(xi) = yi then

18: Dt+1(i+ 1) = Dt(i)e
−αt

Σn
k=1Dt(i)

19: else
20: Dt+1(i+ 1) = Dt(i)e

αt

Σn
k=1Dt(i)

21: end if
22: end for
23: end for
24: Construct synthesized classifier f(x) = ΣT

t=1αtft(x)

features the importance of training data for learning. Finally, the target
synthesized classifier is given by the combination of T base classifiers.

3. Results

3.1. CTC database

The performance of the presented AK-MKL method for polyp detection was
evaluated on a CTC database from 25 patients with 50 CT scans. The colon
was cleaned by standard pre-colonoscopy or barium enema bowel prepara-
tion. The stool and fluid were tagged using a single dose of 2% barium and
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Figure 4: True polyps and non-polyps. (a) true polyps on colon wall. (b) true
polyp and non-poly on haustral fold.

diatrizoate. The 50 CT scans were acquired using the multi-slice CT scan-
ners in helical mode with the following settings. The collimation was set to
be 1.25 to 5.0 mm, the reconstruction intervals to be 1.25 to 5.0 mm, the
modulated tube current to be 50 to 200 mAs and the tube voltages to be 80
to 120 kVp.

In this CTC database, 64 out of 786 IPCs are true polyps (shown in
Figure 4(a)) confirmed by both optical colonoscopy (i.e. the golden standard
in this study) and CTC expert reading. The remaining are FPs (shown in
Figure 4(b)), such as fecal residue, normal tissue or image artifact, etc. The
polyp size ranges from 6 to 22 mm, and totally 21 features were extracted
for FP reduction.

3.2. Experimental settings

To evaluate the performance of our presented AK-MKL method, we com-
pared it with another two classifiers in terms of AUC (area under the curve of
receiver operating characteristics) and accuracy. One is the support vector
machine (SVM) with only one adaptive kernel (abbreviated as AK-SVM)
which is constructed using Algorithm 1, and the other one is the classi-
fier based on multiple kernel learning only (abbreviated as MKL) which is
learned on a set of 21 different RBF kernels without the adaptive kernel.
The classifier based on our proposed AK-MKL method employs both RBF
kernels and the adaptive kernel.

In terms of implementation of these methods, the LIBSVM library [3]
was utilized in our experiments. The number of boosting trials was set to
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Figure 5: The number of times that each base classifier is chosen.

100 unless stated otherwise. To report the average performance, we ran the
programs 100 times repeatedly. In the following, we report experimental
results by evaluating the performances.

3.3. Performance evaluation

Prior to the evaluation of the performance of our presented AK-MKL meth-
od, we first demonstrate its feasibility of combining a collection of 21 dif-
ferent RBF kernels with the adaptive kernel. In Figure 5, the number in
the X-coordinate represents the ID of each base classifier, of which the first
21 classifiers are learned from various RBF kernels with different Gaussian
kernel widths, and the last one (ID=22) is constructed based on the adap-
tive kernel using Algorithm 1. Y-coordinate value denotes the number of
times that each base classifier is selected in 22 boosting trials. As observed
from Figure 5, the 22-th base classifier constructed with the adaptive ker-
nel is chosen twice, which shows the strength of the adaptive kernel and its
contribution for combination with other RBF kernels into an efficient and
high-performance integrated classifier.

In order to evaluate the performance of the three classifiers based on AK-
SVM, MKL and AK-MKL method, we firstly compare their performance in
terms of AUC and accuracy w.r.t. different sample ratios (i.e., the proportion
of training data to be sampled among all of training data, which ranges
from 0.1 to 1). Table 1 shows the experiment results of AUC and accuracy
for different methods. Figure 6 demonstrates the performance in terms of
AUC. As observed from Figure 6, the AUC measurement of AK-SVM is
not stable w.r.t. different sample ratios, while the performances of MKL
and AK-MKL are improved with the growing sampling data size from the
training dataset. Although AK-SMV outperforms MKL and AK-MKL when
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Table 1: Evaluation of three classifiers in terms of AUC and accuracy w.r.t.
different sample ratio

AK-SVM AK-SVM MKL MKL AK-MKL AK-MKL
Sample ratio AUC Accuracy AUC Accuracy AUC Accuracy

0.1 0.9324 0.9183 0.9158 0.9756 0.9203 0.9763
0.2 0.9229 0.9181 0.9323 0.9778 0.9415 0.9782
0.3 0.9256 0.9178 0.9515 0.9792 0.9572 0.9794
0.4 0.9291 0.9175 0.9676 0.9796 0.9723 0.9799
0.5 0.9442 0.9186 0.9784 0.9807 0.9857 0.9815
0.6 0.9530 0.9183 0.9811 0.9821 0.9845 0.9822
0.7 0.9232 0.9180 0.9881 0.9828 0.9904 0.9832
0.8 0.9195 0.9175 0.9897 0.9832 0.9930 0.9837
0.9 0.9192 0.9171 0.9954 0.9839 0.9966 0.9840
1.0 0.9203 0.9186 0.9970 0.9835 0.9988 0.9836

Figure 6: Comparison of three algo-
rithms in terms of AUC.

Figure 7: Comparison of three algo-
rithms in terms of accuracy.

the sample ratio is around less than 0.15, the overall performance of MKL
and AK-MKL achieve better AUC measurement (as seen when the sample
ratio is greater than 0.15). Moreover, Figure 6 shows that the AK-MKL has
better performance than MKL in terms of AUC measurement.

The three methods were also evaluated on their performance in accuracy,
and the experimental results are presented in Figure 7 and Figure 8. As
shown in Figure 7, MKL and AK-MKL attain better performance than AK-
SVM, and AK-MKL and MKL are comparable to each other. When focusing
on MKL and AK-MKL in the zoomed-in view shown in Figure 8, AK-MKL
still outperforms MKL to some degree.
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Figure 8: Accuracy comparison of
two algorithms in a zoomed-in view.

Figure 9: Performance of AK-MKL
w.r.t. number of boosting trials.

To investigate the influence of the number of boosting trials on our pro-
posed AK-MKL method, experiment of AUC evaluation was carried out for
AK-MKL method when sample ratio is set to 0.4 and the corresponding re-
sults are shown in Table 2. Figure 9 demonstrates that increasing the number
of boosting trials leads to the improvement of performance prior to reaching
the optimal performance, and then the performance falls down with the in-
crease in the number of boosting trials. At the scenario of 11 boosting trials,
the optimal performance of AK-MKL in a current experimental setting is
achieved.

4. Discussion and conclusion

In this paper, we proposed a novel AK-MKL method for achieving better
classification performance in FP reduction stage of CAD of colorectal polyps.
The novel adaptiveness of this method from the adaptive kernel constructed
using boosting paradigm and an optimal combination of a set of base clas-
sifiers by incorporating the adaptive kernel into the predefined RBF kernel
pool promotes our method to achieve better performance in terms of AUC
and accuracy, compared with two other methods, such as AK-SVM and
MKL.

In Figure 6, we observed that the AK-SMV outperforms MKL and AK-
MKL when a small sampled portion of training data is used. This mainly
results from the fact that a single learned adaptive kernel from the empirical
training data enables the corresponding classifier to become more effective
in classification, whereas a more complicated combination of a set of kernels
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Table 2: Evaluation of AK-MKL in terms of AUC w.r.t. different boosting
trials

AK-MKL
Boosting trials AUC

5 0.9740
5 0.9740
6 0.9740
7 0.9746
8 0.9773
9 0.9774
10 0.9778
11 0.9782
12 0.9774
13 0.9765
14 0.9763
15 0.9767
16 0.9775
17 0.9754
18 0.9754
19 0.9752
20 0.9751
30 0.9724
40 0.9732
50 0.9741
60 0.9738
70 0.9730
80 0.9726
90 0.9717
100 0.9703

may lead to the declining of the performance. On the contrary, when there is

a large amount of sampled training data, the performance of AK-SVM with

the single kernel learned from training data may decline due to redundancy

of the training data. MKL and AK-MKL, however, can achieve good perfor-

mance by an optimal combination of various kernels which fit the data well.

In examining how the number of boosting trials imposes the influence on

the performance of the presented AK-MKL method, the observation from

Figure 9 comes to show that there usually exists an optimal performance

with respect to a well-selected number of boosting trials. Generally, the

number of boosting trials can be chosen between 5 and 100 in practice.

We have developed a novel classification method for FP reduction in

CAD of colorectal polyps based on multiple kernel learning with adaptive
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kernel method, called AK-MKL. Experiment results demonstrated the fea-
sibility and effectiveness of our presented AK-MKL method. For our future
research, we will investigate the ensemble classifier based on the support
vector machine (SVM), random forest (RF) and linear discriminant analysis
(LDA), for achieving better classification performance to improve the FP
reduction in CAD of colorectal polyps.
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