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Automated modeling of reflectance properties for
industrial plant primitives

Brandon Baker and Cynthia Furse

This paper outlines a method for determining reflectance param-
eters for modeling and rendering industrial plant primitives. The
reflectance parameters are diffuse and specular material proper-
ties and the industrial plant primitives are pipes from raw LiDAR
brightness data. For diffuse reflectance, the Lambertian model is
compared to the Oren-Nayar model, and methods for estimating
both are presented. For specular reflectance, the Phong model,
commonly used in computer graphics, is used. The brightness data
acquired from LiDAR systems are modeled as two different ideal
cylinders to recover the diffuse and specular reflectance parame-
ters and to illustrate the proposed method. A measured cylinder
using brightness data acquired from a LiDAR scanner is also an-
alyzed, and the diffuse and specular reflectance parameters are
estimated. The estimate for the specular coefficient and exponent
of the ideal cylinder are within 3.5% and 3.6%, respectively and
the estimate for the Lambertian reflectance albedo for the ideal
cylinder is within 0.02% of the actual value. The estimate for the
diffuse reflectance and roughness parameters for the second ideal
cylinder are within 0.3% and 1.2%, respectively. The estimated
reflectance model of the measured cylinder have a mean relative
error of 2.88% and a standard deviation of relative error of 4.0%.

1. Introduction

As-built models of industrial plants are utilized extensively in asset man-
agement, asset virtualization, risk assessment, and emergency evacuation
planning and training [3, 2, 1]. “As-builts”, as they are commonly called,
are databases containing existing condition information about a natural or
human architected structure. Ascertaining as-built information for industrial
plants usually involves taking measurements, utilizing those measurements
to create geometric primitives (such as pipes, flanges, elbows etc.), anno-
tating those primitives with descriptive information, and storing the results
in a database for future use. This paper proposes methods for estimating
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specular and diffuse reflectance properties for pipes, the simplest and most
prevalent of all industrial plant primitives.

The research conducted for this paper utilized Light Detection and Rang-
ing (LiDAR) scanners to extract physical geometry and reflectance informa-
tion from industrial plant pipes. LiDAR scanners are remote sensing devices
that use laser pulses to detect the distance to an object [45], [46]. In addition
to capturing 3D points, LiDAR scanners may also utilize amplitudes of the
reflected laser pulses, and, if coupled with color sensors, color photographic
data of physical objects. Such data contain vast amounts of information
that is scarcely utilized to its full potential. For example, the visual aspect
of the as-built information (if even available in a useful format) is under-
utilized in most circumstances [47]. Although many applications today can
render massive amounts of 3D points (called “point clouds”), these systems
do not exceed the visual quality of a polygonal 3D model, especially given
the extreme capabilities of modern graphics hardware. Hence, point clouds
are typically used to display and work with raw data, but not the final
model.

Specular reflectance is the modeling of light as it reflects off a surface at
a single (or very limited number of) angle(s). Specular reflectance describes
an object’s “shininess”. Diffuse reflectance is the reflectance of light that
scatters in many angles, is not “shiny,” and is largely responsible for illus-
trating the contrast between brightness and darkness of the colors we see in
objects.

Estimating specular and diffuse parameters has been performed for geo-
metric modeling applications, where these two physical aspects of reflectance
are determined independent of each other [39]. The purpose of determining
the reflectance properties in that paper was to help determine the shape of
the object under inspection. The shapes of primitives in industrial plants
can be created in a similar manner using photogrammetric methods [3], a
hybrid of photogrammetry and LiDAR scanners [5], or solely from LiDAR
range images [4].

Once the geometry has been determined, the photorealistic attributes of
geometric primitives are seldom utilized in industry today [1]. In fact, few
existing computer aided design (CAD) visualization and utilization tools
are even capable of properly rendering the specular and diffuse material
properties of 3D CAD models [1]. Modern CAD models for industrial plants
contain much more than simple geometric primitive information. Such infor-
mation may include: material type, outer diameter, inner diameter, material
density, melting point, specific heat, purchase price, purchase date, or life
expectancy. If the specular and diffuse reflectance values of the industrial
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plant primitives in their current state were known, the material type could
be automatically estimated. The material properties such as density, melt-
ing point, specific heat, life expectancy or even the inner diameter could
be automatically estimated (when utilized in conjunction with geometric
information such as a cylinder’s outer radius) once they are identified with
a matching material type in a database library. All the methods found in
the literature that determine reflectance properties of an object do so uti-
lizing photogrammetric methods. The object’s shape and the light source(s)
illuminating it are typically unknown, and the shape and light source have
to be estimated along with the reflectance properties. The methods found
in the literature that create CAD models of industrial plants focus on ac-
quiring geometry; the visual aspect is of secondary concern. Furthermore,
when a visual element is added to the model, raw photographic imagery is
typically draped over the geometry as a texture map; no material reflectance
properties are estimated [4, 5, 3].

The methods outlined in this paper automatically extract specular and
diffuse material properties from raw LiDAR data of pipes found in indus-
trial plants. The sizes and spatial orientations of the pipes are assumed to
be known, and the location and direction of the active light source em-
anating from the LiDAR scanner illuminating the pipes are also known.
The determination of specular and diffuse reflectance properties is the sole
objective of this paper, thus differing from related work found in the litera-
ture.

In section 2, more details regarding related work found in the literature
is presented. Section 3 outlines some details of industrial plant modeling of
cylindrical objects such as pipes, railings, supports, etc., where the specific
mathematical representations of specular and diffuse reflectance models are
provided and described. Section 3.1 illustrates the difference between the
Oren-Nayar and Lambertian diffuse reflectance models [16].

The numerical inversion process used in this paper is described in section
4. The experimental results are outlined in section V. Reflective properties
from two simulated ideal cylinders and a measured cylinder were deter-
mined. The first ideal cylinder was created to illustrate Phong specular [15]
and Lambertian diffuse reflectance [10]. The second ideal cylinder was cre-
ated to illustrate the differences between the Lambertian model and the
more general Oren-Nayar model for diffuse reflectance. The final piece in
this section outlines experimental results estimating specular and diffuse re-
flectance values of a measured cylinder using data acquired from a LiDAR
scanner of an industrial plant pipe. Section VI contains conclusions and lists
potential future work.
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2. Related research

Properties of light as they interact with an object and are perceived by hu-
man eyes have been researched for centuries [10, 11, 12, 13]. Lambert offered
a basic mathematical model that describes this interaction, and the Lamber-
tian model is the most prevalent algorithm for computing diffuse reflectance
today. The Lambertian model calculates the brightness of a particular point
on an object based on the object’s inherent color, the reflected angle of the
light source, and its relation to the angle of the viewing direction. The visual
properties of light, such as Lambertian reflectance, were applied to computer
systems to enhance realism in computer graphics in the 1960s. Cook, Tor-
rance, Sparrow, Phong, and Blinn contributed a great deal of pioneering
work in the field [44, 14, 15, 16]. The efficient approximation of specular
reflectance is one aspect of early advances in computer graphics that has
withstood the test of time.

Oren and Nayar introduced a generalization of Lambert’s solution to the
diffuse reflectance model by accounting for rough surfaces that scatter light
more prevalently than other relatively smooth surfaces [16]. This contribu-
tion, although not as computationally efficient as the Lambertian model,
provides a much more accurate representation for rough surfaces.

Applications utilizing diffuse and specular reflectance models have
yielded advances in the field of determining the geometric properties of an
object [17, 18, 19, 20, 42, 22, 23, 43, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34].
“Shape from shading,” as it is more commonly called, has seen dramatic
advances over the years. Specular highlights, specifically, can provide de-
tailed and accurate information regarding the detailed shape of a surface in
addition to its reflective properties. Nayar, et al. uses reflectance to perform
object recognition [25].

The general science of specular and diffuse reflectance has seen signifi-
cant attention. Brelstaff, et al. have utilized Lambertian constraints to detect
specular reflection parameters [21]. Nayar et al. contributed additional work
outlining the identification and removal of specular highlights using color
and polarization [35]. Wolff, Nayar and Oren then published work that ap-
plies their enhanced reflectance models for computer vision [31]. Lin and Lee
provide several methods for enhancing the visual appearance of objects uti-
lizing specular and diffuse properties [36, 37, 38]. Ragheb, et al. illustrated a
method for separating Lambertian and specular reflectance parameters for
Machine Vision [39]. More recently, Nayar outlined a method for overcoming
challenges in shape from shading techniques using a diffuse filter to alleviate
specular highlights and shadowed regions common in digital images [40].
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Figure 1: Geometric representation of cylinder model.

Other efforts have been made to model primitive objects found in in-
dustrial plants. Goulette automatically modeled CAD primitives found in
industrial pipes using range images [4]. Hong similarly outlined how to ob-
tain 3D models from industrial piping systems using digital photogrammetry
in conjunction with laser scan data [5]. Chapman, et al. presented an omni-
directional imaging system for modeling industrial plants [3].

Previous methods for modeling industrial plant primitives focus on de-
termining the objects’ geometry – size of pipe, orientation in space, its
clearance from other objects, etc. This paper uses LIDAR data similar to
Goulette [4] and [5], but we determine diffuse and specular reflectance prop-
erties instead of primitive geometry. The reflectance properties determined
by methods outlined in this paper may enable one to more render realistic
models more efficiently and determine the nature and well being of primitive
objects in industrial plants.

3. Industrial plant cylinder modeling

3.1. Geometric representation

One of the most common and most basic primitive forms in industrial plants
is the cylinder. Pipes, railings, conduit, heating and cooling ducts, to name
a few, are all cylindrical. The typical geometric aspects of a CAD model
of a cylinder are shown in Figure 1. We use a centerline vector, �c; a radius
r; a starting point (not shown); and an extrusion or length, l; a surface
normal vector, �k; a light source vector, �S; and a light reflection vector, �R.
The reflectance properties for our model include: the specular coefficient,
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Figure 2: Geometric representation for Oren-Nayar model.

S (a scalar), and exponent, n; and the diffuse coefficient (albedo), ρ, and
surface roughness coefficient, σ.

Figure 2 shows some geometric elements used in the Oren-Nayar model.
θi is the azimuth incident angle, θr is the azimuth reflected angle, φi is the
polar incident angle, φr is the polar reflected angle, �k and �S are the same as
in Figure 1, and �i and �j are orthogonal vectors tangential to the surface of
the cylinder. A planar surface is shown in Figure 2, depicting a small area
where the surface is a plane in the limit.

The specular brightness of a surface (kspec) is defined by the Phong
model [15] given by

(1) kspec = S(�R · �V )n

A sample (ideal) cylinder is created and used for sections 5.1 and 5.2.
Various reflective properties are assigned to the ideal cylinder, to which noise
is added, and then the assigned reflective properties are determined by nu-
merical inversion. Next, in section 5.3, LiDAR data of an actual measured
cylinder from an industrial plant are used to create a geometric model,
from which the reflective properties are determined by numerical inver-
sion.

Since LiDAR scanners typically operate in the infrared or near infrared
spectrum, passive light in the visible spectrum (from overhead lights, for
example) will not interfere with the near infrared active light source provided
by the LiDAR scanner. Due to the nature of LiDAR scanners, the emitting
and detecting origins are identical, and likewise, the emitting and detecting
paths are coaxial.

The Lambertian diffuse reflectance ratio Ld [1] can be expressed as:

(2) Ld =
Lr

Li
=

ρ

π
cos(θi)
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where Lr is the red, green or blue color value received at the sensor for a
color imaging device, or the brightness value received in the LiDAR case
(where the intensity of the reflected light is mapped in grayscale); Li is the
intensity of light emanating from the source; Ld is the ratio of reflected light
versus emitted light; ρ is the diffuse coefficient (albedo); θi is the azimuth
incident angle; and Lr is the resulting brightness. Typically, a LiDAR scan-
ner will record the ratio Ld/Li as a unitless reflectance ratio, so we will use
that quantity as the diffuse contribution to the “brightness” or the diffuse
component of the “data vector.” In this paper we utilize the quantity ρ/π
frequently for convenience, even though ρ is the “albedo.”

The Oren-Nayar generalized reflectance model [16] can be expressed as:

(3) Ld =
ρ

π
cos(θi)(A+ (Bmax[0, cos(φi − φr)] sin(α) tan(β))

where

A = 1− 0.5
σ2

σ2 + 0.33
(4)

A = 1− 0.5
σ2

σ2 + 0.33
(5)

α = max[θr, θi], and(6)

β = min[θr, θi](7)

where ρ is the diffuse coefficient (albedo), and σ is the surface roughness
coefficient.

The Oren-Nayar reflectance model (3) simplifies to the Lambertian model
(2) when σ = 0. An additional simplification can be made since the emit-
ting and detecting axes and origins are identical for LiDAR scanners. This
suggests that θi = θr and φi = φr; thus, (3) reduces to

(8) Ld =
ρ

π
cos(θi)(A+ (B sin(α) tan(β)).

3.2. Ideal cylinder with Oren-Nayar diffuse reflectance

Brightness values for an ideal cylinder with Lambertian diffuse reflectance
and an ideal cylinder with Oren-Nayar diffuse reflectance (both without
specular reflectance) are shown in Figure 3 to emphasize the difference be-
tween the two models. The brightness values arranged as pixels in an image
are shown in Figure 3. These brightness values are the data vector values,
d, that will be used in the inversion process in the next section.
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Figure 3: Brightness values, d, of ideal cylinders: Oren-Nayar diffuse model
(left), ρ/π = 0.5, σ = 0.25, S = n = 0; and Lambertian model (right);
ρ/π = 0.5, σ = 0.0, S = n = 0.

Figure 4: Statistical mean for Lambertian reflectance (-·-·) and Oren-Nayar
(-) along a cross section of the pipe.

Figure 4 shows brightness values along a cross section of the pipe, with
the mean of intensity values at a given horizontal distrance from the pipe
center plotted for the Oren-Nayar and the Lambertian models. The intensity
rounds off gradually as the angle of incidence strays from the center for the
Lambertian reflectance; whereas, the Oren-Nayar model (represented as a
dash-dotted line) tapers off slowly around the center of the pipe, and then
drops abruptly at the edges.

Figure 4 illustrates the reflectance values shown in Figure 3 that exist
at different radial distances from the center. As shown in Figure 3, Figure 4
shows the gradual rounds off effect inherent in the Lambertian reflectance;
whereas, the Oren-Nayar model demonstrates the slow tapering off around
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the center of the pipe, and then abruptly drops at the edges. Whereas the
Oren-Nayar is more computationally intense, it also provides a more general
characterization of an object’s diffuse reflectance properties, so it should
provide added information that the Lambertian does not.

4. Numerical inversion process

Numerical inversion is an iterative process by which a set of unknown model
parameters, m, can be estimated by using an initial guess of the model pa-
rameters and a known forward operator, A(m). The forward operator pro-
vides an approximation, d̂, to the data vector, d, and the difference between
the d and d̂ (in some sense) provides an update to the model parameters for
the next iteration. The forward operator for the inverse problems found in
this paper is

(9) d̂ = A(m) = kspec(S, n) + Ld(
ρ

π
, σ),

where kspec and Ld are determined by (1) and (8) respectively, and the model
parameter vector, m, is S, n, ρ, σ.

The forward operator for this problem is a non-linear process, so a non-
linear inversion technique must be employed. Conjugate gradient, steepest
descent and Newton’s method are a few possible inversion techniques that
may be used to solve this problem. For this paper, Newton’s method was
selected as the numerical inversion algorithm based on its reputation for
rapid convergence.

Ideal cylinder #1 was modeled using Phong specular (1) and Lambertian
diffuse reflectance (8). The model parameter vector S, n, ρ, σ for ideal cylin-
der #1 has specular content (S = 0.154, and n = 26.8), and a Lambertian
reflectance coefficient of ρ/φ = 0.498. For this cylinder, (9) becomes:

(10) AL(m) = S(�R · �V )n +
ρ

π
cos(θi)

where σ = 0. We created the ideal model using brightness data calculated
by (10) with the parameter values given above, then added 1.45% standard
deviation of Gaussian noise.

Ideal cylinder #2 was modeled using only Oren-Nayar diffuse reflectance
(8) without a specular component (kspec = 0) to illustrate the differences be-
tween the Lambertian model and the Oren-Nayar model. For the numerical
inversion of this cylinder (9) becomes:

(11) AON (m) =
ρ

π
cos(θi)(A+B sin(α) tan(β)).



12 Brandon Baker and Cynthia Furse

where m = [ρ, σ]; A and B are computed by (4) and (5), and α and β are
determined by (6) and (7).

Finally, the measured cylinder from LiDAR intensity data was modeled
using specular and Oren-Nayar model parameters. Newton’s method for
inverse problems iteratively updates m according to

(12) mi = −inv(F ′F )F ′(d̂i−1 − d).

where F is the Frechet derivative of the forward operator, A; and d is the
brightness data vector. More information on the Frechet derivative, unique-
ness and Newton’s method can be found in [6, 7, 8].

The model parameters were initialized according to:

So = max(d)−median(d)

no = 20

ρo = median(d)

σo = 0.1

The exit criterion for the inversion process is met when the change in the
misfit between iterations is less than 0.0145 divided by the number of el-
ements in the data vector; this corresponds to an average error of 1.45%
per datum. LiDAR scanner manufacturers don’t publish error metrics of
brightness data, so we simply estimate this to be 1.45%.

5. Experimental results

5.1. Ideal Lambertian and specular model

Figure 5 shows the data vector, d, from ideal cylinder #1 and the estimate
of the data vector, d̂, from the inverted model.

The inversion process, in the presence of noise, was able to estimate the
two quantities for specular reflectance (the specular coefficient S and the
exponent n) within 3.5% and 3.6% of their actual values, respectively, and
the albedo to within 0.02%, as shown in Table 1. (σ= 0 in (1), so the final
column on the table was not estimated.)

These results correspond reasonably well to the 1.45% standard devia-
tion of noise added to the data vector. The effect of the specular component
only affects a relatively small portion of the surface area of the cylinder
(where the bright highlights appear on Figure 5), and therefore, a larger
specular reflectance error is understandable. Contrarily, the diffuse coeffi-
cient affects the entire visible surface of the cylinder; therefore the error is
minimized in the presence of zero mean noise.
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Figure 5: Ideal cylinder #1: data vector, d, of Lambertian diffuse and Phong
specular reflectance with noise (left), and inverted estimate, d̂ (right).

Table 1: Inverted Model Vector,m, for Ideal Lambertian Cylinder #1. Values
for the specular coefficient (S), specular exponent (n), and diffuse reflectance
(ρ/π) for the Ideal and Estimated cylinders are shown. The absolute value
of the relative error is also listed for each variable. Oren-Nayar roughness
(σ) is not used for Lambertian reflectance models

Type S n ρ/π σ
Ideal 0.150 27.0 0.500 −

Estimate 0.145 25.9 0.499 −
|rel error | 3.5% 3.6% 0.02% −

5.2. Ideal Oren-Nayar cylindrical model

The second ideal model (ideal cylinder #2) uses the Oren-Nayar cylindrical
model (8) and provides a more generalized estimation of diffuse reflectance
phenomena than the Lambertian model by accounting for rough surfaces
that exhibit a broader dispersion of light due to surface roughness. Figure 6
shows the noisy model (left) compared to the inverted estimate (right).

The ideal noisy cylinder and the inverted approximation have a similar
appearance. The diffuse albedo was estimated within 0.3% of the actual
value and the roughness was within 1.2% as shown in Table 2.

The numerical inversion process described in this paper for estimating
reflectance parameters for cylinders (industrial pipes) has proven to effec-
tively determine reflectance parameters in the presence of noise for ideal
cylinders. In this section we considered ideal cylinder models with noise
added to the data. In the next section we perform a similar operation using
measured data on a metal pipe found in an industrial plant.
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Figure 6: Ideal cylinder #2: data vector, d, of Oren-Nayar diffuse reflectance
with noise (left), and inverted estimate, d̂ (right).

Table 2: Inverted Model Vector, m, for Ideal Cylinder #2. Values for the
diffuse reflectance (ρ/π) and Oren-Nayar roughness (σ) for the Ideal and
Estimated cylinders are shown. The absolute value of the relative error is
also listed for both variables. Values for the specular coefficient (S), specular
exponent (n) were not used for these Oren-Nayar models

Type S n ρ/π σ
Ideal − − 0.500 0.250

Estimate − − 0.498 0.243
|rel error | − − 0.3% 1.2%

5.3. Measured cylinder

In order to evaluate the Oren-Nayar and Lambertian models in an actual in-
dustrial application, LiDAR measurements of a metal pipe vertically aligned,
had a radius of 0.20 m, and was covered in light blue paint that exhibited
a fair amount of specular reflectance. The LiDAR scanner used was a Leica
C10 [9] The diffuse roughness (σ) of the measured pipe was assumed to be
non-zero, so the more general Oren-Nayar diffuse model 11 was used for the
inversion process. The albedo (ρ) was 0.498; the measured roughness (σ) was
0.237. The measured specular coefficient (S) was 0.154, and the measured
specular exponent (n) was 26.8.

A cross sectional scatter-plot with all of the brightness values examined
for the measured pipe is shown in Figure 7. The statistical mean dm of the
data vector, d, and the statistical mean m of the inverted estimate of the
data vector, d̂, along the same cross section are shown in Figure 8. The error
(|dm− d̂m|) for the entire cross section of the pipe is shown in Figure 9, and
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Figure 7: Cross section of brightness data vector, d, of measured cylinder.

Figure 8: Cross section of statistical mean of data vector, dm (dots) and
numerical inversion estimate d̂m (line).

the relative error for the entire cross section of the pipe (|dm − d̂m|/d̂m) is
shown in Figure 10.

The inverted values closely resemble the brightness data vector near the
center of the pipe where the specular reflection and diffuse reflectance values
are maximized. The estimate deviates significantly near the edge of the pipe
where the brightness drops below 20% –25% reflectance. This is most likely
caused by the nonlinear dynamics of the receiver circuitry. LiDAR scanners
possess input signal amplifiers to compensate for the limited dynamic range
in the analog to digital conversion process. When the input signal drops
below a specified threshold, the analog amplifier boosts the input signal so
a reading can be made. The estimate of the roughness coefficient was most
adversely affected by this added circuitry. The inversion process attempts
to estimate the brightness of the pipe at the edges, but this nonlinear phe-
nomenon is not accounted for in the estimator model 9.
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Figure 9: Cross section of absolute error of statistical mean |dm − d̂m|.

Figure 10: Cross section of relative error |dm − d̂m|/d̂m.

The inverted value for the specular highlight closely matches the bright-

ness data vector. The equation for the specular reflectance 1 is used exten-

sively in computer graphics and is not derived from any physics equation,

but Figure 8 shows that it is a close approximation to the actual physical

phenomenon exhibited by light reflecting off of specular reflective surfaces.

The mean relative error (mean of brightness values in Figure 10) is 2.88%

and the standard deviation of the relative error is 4.0%. The values for each

of the inverted model parameters are shown in Table 3.

A photograph of the measured cylinder, its measured LiDAR reflectance

values, and the approximated reflectance values obtained by numerical in-

version are shown in Figure 11, arranged as pixels in an image array.

The photograph demonstrates visual anomalies inherently found in cir-

cumstances involving passive light sources. Although there are many light

sources present, the dominant light source is above and to the right of the
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Table 3: Inverted Model Vector, m, for Measured Cylinder. Values for specu-
lar coefficient (S), specular exponent (n), diffuse reflectance (ρ/π), and Oren
Nayar roughness (σ) are given. Actual values are not known for this physical
pipe

Type S n ρ/π σ
Estimated 0.154 26.835 0.498 0.237

Figure 11: Photograph of measured pipe (left); LiDAR brightness data vec-
tor, d, (center); and inverted brightness estimate, d̂ (right).

pipe, and there are shadows (and highlights) of other pipes and metal grates
visible. A specular highlight appears on the right-hand side of the pipe, just
above the middle, as labeled on Figure 11. Most of the other variations
in brightness are due to highlights and shadows demonstrated by diffuse
reflectance.

The center image is LiDAR brightness of the measured pipe. There are
obvious anomalies in the actual brightness data due to noise in the receiver
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circuitry of the LiDAR scanner. One may observe that there are obvious dark
regions of similarities between the visible light image (left) and the LiDAR
brightness (center). Both sensors failed to return adequate brightness in
those regions due to a foreign substance on the pipe in those regions. Also,
there is a weld near the bottom of the pipe that is visible in both measured
images that is not present in the estimated image (right).

6. Conclusions

A method for determining the specular and diffuse reflectance properties for
two ideal and one measured pipe from an industrial plant was presented.
LiDAR data intensity values provided the brightness data for the measured
cylinder. The reflectance properties determined include the specular coeffi-
cient and specular exponent commonly used in computer graphics, as well
as the diffuse albedo parameter and the Oren-Nayar roughness parameter.

Newton’s method from numerical inversion was used to compute the esti-
mate for the model parameters. The inversion process for the ideal cylinders
recovered the model parameters within 3.6% of the actual values, providing
a suitable method for recovering reflectance parameters.

Inversion of the model parameters for the measured cylinder provided
an accurate estimate to the actual data to within 3.5% for all brightness
values over 0.3. The relative errors associated with brightness estimation for
data at the extreme edges of the pipe, where the incident angle is close to
orthogonal to the surfaced normal, were as high as 44.7% due to nonlinear
amplifiers in the detection hardware.
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