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Higher-order spatial accuracy in diffeomorphic
image registration

Henry O. Jacobs and Stefan Sommer

We discretize a cost functional for image registration problems by
deriving Taylor expansions for the matching term. Minima of the
discretized cost functionals can be computed with no spatial dis-
cretization error, and the optimal solutions are equivalent to min-
imal energy curves in the space of k-jets. We show that the so-
lutions convergence to optimal solutions of the original cost func-
tional as the number of particles increases with a convergence rate
of O(hd+k) where h is a resolution parameter. The effect of this ap-
proach over traditional particle methods is illustrated on synthetic
examples and real images.

1. Introduction

The goal of image registration is to place differing images of the same ob-
ject (e.g. MRI scans) into a shared coordinate system so that they may
be compared. One common means of doing this is to deform one image
until it matches the other. Typical numerical schemes for implementing
this task are particle methods, where particles are used as a finite dimen-
sional representation of a diffeomorphism. If the particles are initialized on
a regular grid of resolution h, then the solutions can be O(hd) accurate
at best where d is the dimension of the image domain. Improving this
order of accuracy is non-trivial because traditional higher-order numeri-
cal schemes are designed on fixed meshes (e.g. higher order finite differ-
ences).

In this paper, we seek to improve this order of accuracy by considering
a more sophisticated class of particles. We will find that by equipping the
particles with jet-data, one can achieve registrations with higher orders of
accuracy. One impact of the use of higher-order particles is that the im-
proved accuracy per particle permits the use of fewer particles for a desired
total accuracy. For sufficiently smooth initial data, this implies the storage
requirements are improved as well.
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1.1. Organization of the paper

We will introduce the higher-order accurate image registration framework
through the following steps:

1. We will introduce the hierarchy of jet-particles.
2. We will pose an image registration problem as an optimal control prob-

lem on an infinite dimensional space.
3. We will pose a sequence of deformed problems which are easier to

solve.
4. We will reduce the deformed optimization problems to optimization

problems involving computation of finite dimensional ODEs (i.e. an
infinite dimensional reduction).

5. We will find necessary conditions for sequences of computed solutions
to the deformed problems to converge to the solution of the original
problem at a rate O(hd+k), where k ≥ 0 depends on the order of the
jet-particles used.

Finally, we will display the results of numerical experiments comparing the
use of zeroth, first, and second order jet-particles.

2. Previous work

In this section, we attempt a brief overview of the large deformation dif-
feomorphic metric mapping (LDDMM) framework from its origins in the
1990s, to its recent marriage with geometric mechanics (2000s-present).

2.1. Matching with LDDMM

The notion of seeking deformations for the sake of image registration goes
back a long way, see [SDP13, You10] and references therein. One of the first
attempts was to consider diffeomorphisms of the form ϕ(x) = x + f(x) for
some map f : Rd → R

d. The map f is often denoted a displacement field.
When f is “small”, ϕ is a diffeomorphism, but this can fail when f is “large”
[You10, Chapter 7]. Many algorithms outside the LDDMM context employ
a small deformation approach with a displacement field f . The displace-
ment can be represented for example with B-spline basis functions. Particle
methods, as considered in this paper, can loosely be interpreted as large de-
formation equivalents to representing the displacement f with finite linear
combinations of basis functions. In particular, the kernel K can be thought
of as taking the role of e.g. B-spline basis functions in small deformation
approaches.
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The breakdown for large f is a result of the fact that the space of diffeo-
morphisms is a nonlinear space. One of the early obstacles in diffeomorphic
image registration entailed dealing with this nonlinearity. A key insight in
getting a handle on the nonlinearity of the diffeomorphisms was to con-
sider the linear space of vector fields. Given a time-dependent vector field
v(t), one can integrate it to obtain a diffeomorphism ϕt, which is called
the flow of v [CRM96]. This insight was used to obtain diffeomorphisms
for imaging applications by posing an optimal control problem on the space
of vector-fields, and then integrating the flow of the optimal vector field to
obtain a diffeomorphism. The well-posedness of this approach was studied
in [Tro95, DGM98], where the cost functional (i.e. the norm) was iden-
tified as a fundamental choice in ensuring well-posedness and controlling
properties of the resulting diffeomorphisms. A particle method based upon
[DGM98] was implemented for the purpose of medical imaging in [JM00].
The completeness of the Euler-Lagrange equations in [DGM98] was studied
thoroughly in [TY05], where the image data was allowed to be of a fairly
general type (i.e. any entity upon which diffeomorphisms act smoothly). The
analytic safe-guards provided by [DGM98] and [TY05] where then excercised
in [BMTY05], where a number of examples were numerically investigated.

2.2. Connections with geometric mechanics

Following these early investigations, connections with geometric mechan-
ics began to form. The cost functional chosen in [JM00] was the H1-norm
of the vector-fields. Coincidentally, this is the cost functional of the n-
dimensional Camassa-Holm equation (see [HM05] and references therein).
In 1-dimension, the particle solutions in [JM00] are identical to the peakon
solutions discovered in [CH93], and the numerical scheme reduces to that of
[HR06]. The convergence of [JM00] was proven using geometric techniques in
[HR06] in the one-dimensional case. The same proof was used in [CDTM12]
for arbitrary dimensions. As images appear as advected quantities, the use
of momentum maps became a useful conceptual technique for geometers to
understand the numerical scheme of [BMTY05]. The identification of numer-
ous mathematical terms in [BMTY05] as momentum maps was performed
in [BGBHR11].

2.3. Jet particles

The particle method implemented in [JM00] allowed only for deformations
that acted as “local translations” (see Figure 1(a)). Motivated by a desire to
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Figure 1: Deformations of initially square grids. (a) zeroth order, (b-e) first
order, (f-h) second order. A single jet-particle is located at the blue dots
before moving with the flows to the red crosses. Grids are colored by log-
Jacobian determinant. (Color figure online)

create more general deformations [SNDP13] introduced a hierarchy of par-

ticles which advect jet-data. We call the particles jet-particles in this paper.

The first order jet-particles modify the Jacobian matrix at the particle lo-

cations and allow for “locally linear” transformations such as local scalings

and local rotations (see Figure 1(b-e)). Second order jet-particles allow for

deformations which are “locally quadratic” (i.e. transformations with non-

trivial Hessians (see Figure 1(f-h)). The geometric and hierarchal structure

of [SNDP13] was investigated in [Jac13] where the Lie groupoid structure

of jet-particles was linked to the Lie group structure of the diffeomorphism

group, thus making the case for jet-particles as multi-scale representations

of diffeomorphisms. Independently, an incompressible version of this idea

was invented for the purpose of incompressible fluid modelling in [DJR13].

Solutions to this fluid model were numerically computed in [CHJM14] based

upon the regularized Euler fluid equations developed in [MM13] and expres-

sions for matrix-valued reproducing kernels derived in [MG14]. The final

section of [CHJM14] provides formulas which illustrate how jet-particles in

the kth level of the hierarchy yield deformations which are approximated

by particles in the (k − 1)th level of the hierarchy. The approximation be-

ing accurate to an order O(hk) where h > 0 is some measure of particle

spacing. This approximation is more or less equivalent to the approximation

of a partial differential operator by a finite differences, and it will serve as
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one of the main tools used in this paper in producing higher-order accurate
numerical schemes.

3. LDDMM

Let M be a manifold and let V ⊂ X(M) be a subspace of the vector-fields
on M equipped with an inner-product 〈·, ·〉V : V × V → R. Let GV ⊂
Diff(Rn) be the corresponding topological Lie group to which V integrates
[You10, Chapter 8]. To do image registration, we try to assemble a “small”
diffeomorphism by minimizing a cost function on the space of curve in GV .
The standard cost function takes a time-dependent diffeomorphism, ϕt, and
outputs a real number. Mathematically, the cost function is often taken to
be a map EGV

: C1([0, 1] : GV ) → R given by

EGV
[ϕ(·)] := 1

2

∫ 1

0
�(v(t))dt+ F (ϕ1),

where v(t) ∈ V is the Eulerian velocity field v(t, x) = ∂tϕt(ϕ
−1
t (x)) and �

is a “control-cost”. Explicitly, ϕt ∈ GV is obtained from v(t) ∈ V via the
initial value problem {

d
dtϕt = v(t) ◦ ϕt

ϕ0 = id.
(1)

One then obtains extremizers of EGV
by solving the Euler-Lagrange equa-

tions on GV . However, GV is a non-commutative group, and can be very
difficult to work with. It is typical to express EGV

as a cost function on the
vector-space V and incorporate (1) as a constraint. This means optimizing
a cost function E : C1([0, 1], V ) → R with respect to constrained variations.
Any extremizer, v(·), of E must necessarily satisfy a symmetry reduced form
of the Euler-Lagrange equations, known as the Euler-Poincaré equation. In
essence, the Euler-Poincaré equations are nothing but the Euler-Lagrange
equations pulled to the space V . For a generic �, the Euler-Poincaré equa-
tions take the form

d

dt

(
δ�

δv

)
+ ad∗v

(
δ�

δv

)
= 0.(2)

We suggest [MR99] for further information on the Euler-Poincaré equa-
tions. Equation (2) is an evolution equation, which allows us to search
over the space of initial conditions (i.e. V ) in place of optimizing over
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space of curves (i.e. C1([0, 1];V )). Explicitly, this is done by considering
the map evolEP : V → C1([0, 1];V ) which sends each v0 ∈ V to the curve
v(·) ∈ C1([0, 1];V ) obtained by integrating (2) with initial condition v0. We
can then pre-compose E with evolEP to produce the function

e := E ◦ evolEP : V → R.(3)

The initial condition v∗ ∈ V minimizes e if and only the solution v(·) =
evolEP (v

∗) of (2) minimizes E. Generally, solutions to (2) are extremizers
of E, and one must appeal to higher-order variations in order to obtain
sufficient conditions for an extremizer to be a minimizer. However, we will
not pursue these matters in this article.

3.1. Overview of the problem and our solution

Particle methods are typically used to approximate a diffeomorphism in the
following way. We usually compute all quantities with respect to an initial
condition where all the particles lie on a grid/mesh and prove convergence
as the mesh width, h, tends to 0. However, it would be nice to have an order
of accuracy as well.

PROBLEM: Can we solve for a minimizer of E with a convergence rate of
O(hp) for some p ∈ N?

Our strategy for tackling this problem is to approximate E with a se-
quence of O(hp)-accurate curve energies Eh for which we can compute the
minimizers exactly up to time discretization (i.e. the computed solutions
have no spatial discretization error). More specifically, the mesh size will de-
termine a continuous sequence of subgroups Gh ⊂ G. We will approximate
the matching functional F , with a Gh-invariant functional Fh : GV → R

such that for a fixed ϕ ∈ GV

F (ϕ)− Fh(ϕ) = O(hp)

for some p ∈ N. We find the curve energies to be O(hp) accurate as well,
and this accuracy will transfer to the solutions for a sufficiently wide range
of scenarios.

4. Reduction theory

In this section, we review subgroup reduction of a class of optimization
problems using Clebsch variables. In the Hamiltonian context, Clebsch vari-
ables are also called symplectic variables, and constitute a Poisson map
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ψ : T ∗
R
n → P . This is useful when 2n < dim(P ), since solutions to certain

Hamiltonian equations on P can be derived by solving Hamiltonian equa-
tions on T ∗

R
n first [MW83, Wei83]. The Lagrangian version of this idea

was further developed in the context of equations with hydrodynamic back-
ground in [HM05]. It is this later perspective which we shall take in this
paper, since problem setup is stated in Lagrangian form. A more thorough
overview of the role of reduction by symmetry in LDDMM can be found in
[SJ15].

Let G be a Lie group and Gs ⊂ G be a Lie subgroup with Lie algebras g
and gs respectively. We will denote the homogenous space of right cosets by
Q = G/Gs, and we will denote the corresponding principal bundle projection
by π : G → Q. Note that G naturally acts on Q through the formula
g · π(g̃) = π(g · g̃). Given this action, the corresponding (left) momentum
map, J : T ∗Q → g∗, is defined by the condition

〈J(q, p), ξ〉 = 〈p, ξ · q〉 , ∀ξ ∈ g.

Let L : TG → R be the Lagrangian and let F : G → R. We wish to
minimize the curve energy or “action”

E[g(·)] =
∫ 1

0
L(g(t), ġ(t))dt+ F (g(1))(4)

over the space of curves g(t) ∈ G on the interval [0, 1] with g(0) = id. That
is to say E : C1

id([0, 1];G) → R where C1
id([0, 1];G) denotes the space of C1

curves in G originating from the identity. Extremization of E means taking
a variation in C1

id([0, 1];G), which is a variation of a curve with a fixed end-
point at t = 0 but not at t = 1. It is simple to show that any solution must
satisfy the boundary value problem⎧⎨

⎩
d
dt

(
∂L
∂ġ

)
− ∂L

∂g = 0

g(0) = id , ∂L
∂ġ

∣∣∣
t=1

+ dF (g(1)) = 0.
(5)

If the dimension of G is large, integrating this equation can be troublesome.
However, in the presence of a Gs-symmetry a reduction can be applied to
reduce the problem to a boundary value problem on Q.

Throughout this section we will assume that F is Gs invariant. As a
result there exists a function f : Q → R defined by the condition

f(q) = F (g) ∀q ∈ Q, g ∈ G such that q = π(g).
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More succinctly, f = F ◦ π. We will also assume that L(g, ġ) is G-invariant,
and comes from a reduced Lagrangian function � : g → R. Finally, we will
assume that the Legendre transformation, δ�

δξ : g → g∗, is invertible. The
reduced Hamiltonian h : g∗ → R is then given by

h(μ) =

〈
μ,

δ�

δξ

−1

(μ)

〉
− �

(
δ�

δξ

−1

(μ)

)
.

Theorem 4.1 (c.f. [BGBHR11]). Let H := h ◦ J : T ∗Q → R. If the curve
(q, p)(t) ∈ T ∗Q satisfies

{
q̇ = ∂H

∂p , ṗ = −∂H
∂q

q(0) = π(id) , p(1) + df(q(1)) = 0
(6)

then the curve g(t) obtained by integrating the initial value problem

ġ(t) = ξ(t) · g(t) , ξ = (δ�/δξ)−1(J(q, p)) , g(0) = id

satisfies (5). Moreover, all minimizers of (4) must be of this form.

Proof. We can replace E with the (equivalent) curve energy E2 : C1([0, 1];
g) → R given by

E2[ξ] =

∫ 1

0
�(ξ(t))dt+ F (g(1))(7)

where g(1) ∈ G is implicitly obtained through the reconstruction equation
dg
dt = ξ · g which we view as a constraint. Minimizers of E2 are related to
minimizers of E through the reconstruction equation as well.

We are now going to use the Gs symmetry of (7) to reduce the dimen-
sionality of the problem. The Gs invariance of F implies the existence of a
function f : Q → R such that F = f ◦ π. Therefore, we may equivalently
express E2 as the energy functional

E2[ξ] =

∫ 1

0
�(ξ(t))dt+ f(q(1))(8)

where q(1) is obtained through the reconstruction equation q̇(t) = ξ(t) · q(t)
with the initial condition q(0) = πs(id). Again, the dynamic constraint q̇ =
ξ · q makes this a constrained optimization problem. We may take the dual
of this constrained optimization problem by using Lagrange multipliers to
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get an equivalent unconstrained optimization problem [BV04]. In our case,
the dual problem is that of extremizing the (unconstrained) curve energy
E3 : C

1([0, 1]; g× T ∗Q) → R given by

E3[ξ, q, p] =

∫ 1

0
�(ξ(t)) + 〈p(t), q̇(t)− ξ(t) · q(t)〉dt+ f(q(1)).

Using the definition of J we can re-write this as

E3[ξ, q, p] =

∫ 1

0
�(ξ) + 〈p, q̇〉 − 〈J(q, p), ξ〉dt+ f(q(1)).

We find that stationarity with respect to arbitrary variations of ξ implies

δ�

δξ
= J(q(t), p(t)).(9)

We may view (9) as a constraint which defines ξ in terms of the q’s and p’s.
Explicitly, (9) tell us

ξ =
δ�

δξ

−1

(J(q, p)).

We can substitute this into the previous curve energy to eliminate the vari-
able ξ and express E3 solely in terms of p and q. We thus obtain the curve
energy

E4[q, p] =

∫ 1

0
�

(
δ�

δξ

−1

(J(q, p))

)
+ 〈p, q̇〉 −

〈
J(q, p),

δ�

δξ

−1

(J(q, p))

〉
dt

+ f(q(1)).

By observing

H(q, p) = h(J(q, p)) =

〈
J(q, p),

δ�

δξ

−1

(J(q, p))

〉
− �

(
δ�

δξ

−1

(J(q, p))

)
,

we can write E4 as

E4[q, p] =

∫ 1

0
〈p, q̇〉 −H(q, p)dt+ f(q(1)).(10)

By taking arbitrary variations of q and p, we find that extremization of E4

yields the desired result.
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As a corollary, we find that extremizers of E in (4) can be derived by
finding the extremizers of E4 in (10). As E is a curve energy over TG and
E4 is a curve energy over T ∗Q = T ∗(G/Gs), we can see the computational
significance of this result most clearly when the dimension of Q is small
compared to G (e.g. finite compared to infinite). More specifically, Theorem
4.1 allows us to minimize curve energies using the following gradient descent
algorithm.

Algorithm for general Lie groups

1. Solve for (q(t), p(t)) ∈ T ∗Q in (6).
2. Set ξ(t) = (δ�/δξ)−1 · J(q(t), p(t))
3. If necessary, obtain g(t) ∈ G as a solution to the initial value

problem, ġ = ξ · g, g(0) = id.
4. Evaluate cost function E4, and backward compute the adjoint

equations [Son98] to compute the gradient of the cost function
with respect to a new initial condition.

5. If the gradient is below some tolerance, ε, then stop. Otherwise
use the gradient to create a new initial condition and return to
step 1.

We say “if neccessary” in step 3 because computation of g(t) is not
needed in the context of image registration. We will find that only q(t)
is needed. In any case, if g(t) were to be computed, the resulting curve
would minimize the original curve energy E given in equation (4), and all
the minimizers of the original problem are obtained in this way. Again, the
advantage of this method is that the bulk of the computation is performed
on the lower dimensional space T ∗Q rather than TG.

In the next sections we will consider the case whereG is a diffeomorphism
group, and Gs is a subgroup such that Q = G/Gs is the (finite-dimensional)
space of jet-particles.

5. Jets as homogenous spaces

In order to invoke the findings of the previous section, we must find a way
to characterize the space of jet-particles as a homogenous space (i.e. a group
modulo a subgroup). This is the content of Proposition 5.1, the main result
in this section.

Let Λ ⊂ M be a finite set of distinct points in M . If f is any k-
differentiable map from a neighborhood of Λ, the k-jet of f is denoted
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J (k)
Λ (f). In coordinates, J (k)

Λ (f) is represented by the coefficients of the
kth order Taylor expansions of f about each of the points in Λ. We call

J (k)
Λ the “kth order jet functor about Λ”. This is indeed a functor, and can

be applied to any k-differentiable map from subsets of M which contain Λ,
including real valued functions, diffeomorphisms, and curves supported on
Λ [KMS99, Chapter IV].

Let G = Diff(M) and let e ∈ G denote the identity transformation on
M . We can consider the subgroup

G
(0)
Λ := {ψ ∈ G | ψ(x) = x ∀x ∈ Λ}

and the normal subgroups

G
(k)
Λ := {ψ ∈ G

(0)
Λ | J (k)

Λ ψ = J (k)
Λ e}

Moreover, the Lie algebra of G
(k)
Λ is

g
(k)
Λ = {η(k)Λ ∈ X(M) | J (k)

Λ η
(k)
Λ = J (k)

Λ (0)}.

In other words, g
(k)
Λ is the sub-algebra of X(M) consisting of vector fields

with vanishing partial derivatives up to order k at the points of Λ.

Proposition 5.1. The functor, J (k)
Λ , is the principal bundle projection from

G to Q(k) = G/G
(k)
Λ .

Proof. This is merely the definition of J (k)
Λ , and a more thorough description

of this statement can be found in [KMS93]. Nonetheless, we will attempt a
skeletal proof here.

If ϕ2 = ϕ1 ◦ ψ for some ψ ∈ G
(k)
Λ then J k

Λ(ϕ2) = J k
Λ (ϕ1 ◦ ψ). However,

ψ has absolutely no impact on the kth order Taylor expansion because the

Taylor expansion of ψ is trivial to kth order. Thus J (k)
Λ (ϕ1) = J (k)

Λ (ϕ2)

and so J (k)
Λ is a well defined map on the coset space Q(k). Conversely, for

each element q ∈ Q(k) one can show that the inverse image (J (k)
Λ )−1(q) is

composed of a single G
(k)
Λ orbit and no more.

For example if Λ consists of only two distinct points then

Q(0) = {(y1, y2) ∈ M2 | y1 
= y2},
Q(1) = {(f1, f2) ∈ Fr(M)2 | πFr(f1) 
= πFr(f2)}.

where πFr : Fr(M) → M is the frame bundle of M .
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Proposition 5.2. J (k)
Λ (G

(0)
Λ ) is a (finite dimensional) Lie group, and the

functor J (k)
Λ restricted to G

(0)
Λ is a group homomorphism. Moreover

J (k)
Λ (G

(0)
Λ ) is a normal subgroup of J (k)

Λ (G
(l)
Λ ) for all l ∈ N.

Corollary 5.3. The space Q(k) is a (finite-dimensional) principal bundle

with structure group J (k)
Λ (G

(0)
Λ ).

For k = 0 this structure group is trivial. At k = 1 this structure group
is identifiable with GL(d) where d = dim(M).

6. An O(hp) accurate algorithm

In this section, we describe the basic strategy for using jet-particles to get
high order accuracy in solutions to LDDMM problems posed on M = R

d.
The algorithm uses an O(hp) approximation to the matching term which

is G
(k)
Λ invariant. We then invoke Theorem 4.1 to reduce the problem to a

finite dimensional boundary problem on the space of kth order jet-particles
Q(k). We solve this problem to obtain an approximation of the solution to
the original problem.

As discussed in Section 2.3, a finite number of jet-particles in Q(k−1) can
approximate jet-particles in Q(k). In particular, zeroth order jet-particles can
approximate any of the higher-order jet-particles in the hierarchy. While us-
ing low order particles may perform well in practical applications, they do
not represent exact solutions to higher-order discretizations of the matching
term. Therefore, they cannot represent the exact solutions to the approxi-
mated problem that we seek here. Furthermore, using lower-order particles
to represent higher-order jets can be numerically unstable as the approxi-
mation is in essence a finite difference approximation: the particles need to
be very close and the momentum can be of very large magnitude.

We will assume that the problem is defined on a reproducing kernel
Hilbert space (RKHS), which we denote by V ⊂ X(Rn) where X(R) will
denote the space of Ck vector fields. We will denote the kernel of V by
K : Rd × R

d → R [You10, Chapter 9], and we will assume V satisfies the
admissibility condition

‖v‖V ≥ ‖v‖k̄,∞(11)

for a constant C > 0 a positive integer k̄ ∈ N and all v ∈ V . We will denote
the topological group which integrates V by GV .

To make precise what we mean by “an O(hp) approximation” to a match-
ing term, we will recall the “big O” notation.
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Definition 6.1. Let F : GV → R, and let Fh : GV → R depend on a
parameter h > 0. We say that Fh is an O(hp)-approximation to F if

lim
h→0

(
F (x)− Fh(x)

hp

)
< ∞

for all x ∈ R
d. Moreover, O(hp) will serve as a place-holder for an arbitrary

function within the equivalence class of all functions of h which vanish at
a rate of hp or faster as h → 0. Under this notation, Fh is an O(hp)-
approximation of F if F = Fh +O(hp).

To illustrate how we may produce O(hp)-approximations to matching
functions we will consider the following example.

Example. Let I0, I1 ∈ Ck(Rd; [0, 1]) be two greyscale images with compact
support. We can consider the matching functional F : Diff(Rd) → R given
by

F (ϕ) =
1

σ
‖I0 − (I1 ◦ ϕ)‖2L2

=
1

σ

∫
Rd

|I0(x)− I1(ϕ(x))|2dx.

As I0 and I1 each have compact support, the integral term can be restricted
to a compact domain. We will continue to write our integrals as integrations
over Rd, but we will exploit this compactification when we need to.

Consider the regular lattice Λh = Z
dh whereupon, for sufficiently small

h > 0, the L2-integral can be approximated to order O(hd) with a Riemann
sum

F
(0)
h (ϕ) =

∑
x∈Λh

hd(I0(x)− I1(ϕ(x)))
2

While the order of the set Λh is infinite, the sum over Λh used to compute
Fh has only finitely many non-zero terms to consider because I0 and I1 have

compact support. Moreover, Fh is G
(0)
Λh

invariant because it only depends on
ϕ(x) for x ∈ Λh.

An O(hd+2) approximation is given by

F
(2)
h (q) =

∑
x∈Λh

hd(I0(x)− I1(ϕ(x)))
2

+
∑
α

hd+2

12

[
(∂αI0(x)− ∂βI1(ϕ(x))∂αϕ

β(x))2
]
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+
hd+2

12

[
(I0(x)− I1(ϕ(x))) (∂

2
αI0(x)

− ∂βγI1(ϕ(x))∂αϕ
β(x)∂αϕ

γ(x)− ∂γI1(ϕ(x))∂ααϕ
γ(x))

]
,

and we can observe that F
(2)
h is G

(2)
Λh

invariant because F (2)(ϕ) only depends
on the 2nd order Taylor expansion of ϕ centered at each x ∈ Λh. ♦

Given a G
(k)
Λh

-invariant O(hp)-approximation Fh : Diff(Rd) → R to the
matching term F , we may consider the alternative curve energy

Eh[ϕ] =
1

2

∫ 1

0
‖v(t)‖2V + Fh(ϕ1) ,

where v(t) ∈ V is the Eulerian velocity field v(t, x) = ∂tϕt(ϕ
−1
t (x)). For a

fixed curve ϕt, we observe that Eh is an O(hp)-approximation to E. One
might surmise that the extremizers of Eh provide good approximations of

the extremizers of E. This is important because Eh is G
(k)
Λh

-invariant, and
we can invoke Theorem 4.1 to solve for extremizers of Eh, but we can not
do this for E. Fortunately, for many choices of Fh, there will be minimizers
of Eh that converge to those of E as h → 0 with a known convergence rate.

Theorem 6.2. Let F : GV → R be C2 with respect to the topology induced
by V .1 Let Fh : GV → R be C2 and an O(hp)-approximation for F with

G
(k)
Λh

invariance, constructed as above. Consider the curve energies E,Eh :
C([0, 1], V ) → R

E[v(·)] = 1

2

∫ 1

0
‖v(t)‖V dt+ F (ϕ1)

Eh[v(·)] =
1

2

∫ 1

0
‖v(t)‖V dt+ Fh(ϕ1) .

where ϕ1 ∈ GV is the Lie integration of v(t). Let v∗ minimize

e = E ◦ evolEP : V → R

If the Hessian at v∗ ∈ V is bounded, positive definite, and non-degenerate
at v∗ ∈ V , and evolEP exhibits C2 dependency upon the initial velocity field,
then, for sufficiently small h, there exist a minimizer v∗h of

eh = Eh ◦ evolEP : V → R

which is an O(hp)-approximations of v∗ in the V -norm.

1We will assume that GV is a smooth manifold and a topological Lie group. For
example the space of Hs diffeomorphisms with s sufficiently large.
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We will employ the following well-known result to approximate vector-
fields in V with finite linear combinations of the RKHS kernel K.

Lemma 6.3. Assume V satisfies the admissibility assumption (11). Con-
sider the subspace of vector-fields

V
(k)
h = {v ∈ X(Rd) | v =

∑
y∈Λh,|α|≤k

αy∂αK(x− y)},

for k < (k̄ − 1)/2. The set W = ∪h>0V
(0)
h is dense in V with respect to

〈·, ·〉V .
Proof. Let {hj > 0} be a sequence such that limj→∞(hj) = 0. Let v ∈ V be
orthogonal to W . Thus 〈v, w〉V = 0 for all w ∈ W . That is to say v(x) = 0
for all x ∈ Λhj

and all j ∈ N. However, any point y ∈ R
n is the limit of a

sequence {xj ∈ Λhj
}. Since all members of V are continuous, it must be the

case that v = 0.

A direct corollary is that W (k) = ∪h>0V
(k)
h is dense in V since V

(0)
h ⊂

V
(k)
h for any k ∈ N. Lemma 6.3 will allow us to approximate our cost func-

tional on V .

Proof of Theorem 6.2. By the Morse Lemma (suitably generalized to Hilbert
Manifolds [Tro83, GM83]), there exists a smooth coordinate chart around
v∗, Φ : U → V , such that Φ(v∗) = v∗ and ẽ(v∗ + w) = ẽ(v∗) +D2

v∗ ẽ(w,w),
where ẽ := e ◦ Φ. Define also ẽh := eh ◦ Φ

Note that e(v∗)− eh(v
∗) = F (ϕ∗)−Fh(ϕ

∗) for ϕ∗ := evolEP (v
∗). By the

assumption on evolEP , and since F, Fh ∈ C2(G), we observe that e − eh is
C2 at v∗ ∈ V . Moreover, we know that e− eh = (F −Fh) ◦ evolEP = O(hp).
We can discard the “big O” notation and write

e(v)− eh(v) = A(v)hp +B(v, h)

where A ∈ C2(X(M)) is independent of h and ∂k
h|h=0B = 0 for k ≤ p.

SinceD2e(v∗) is nondegenerate, there exists κ > 0 such that ‖D2ẽ(w)‖ ≥
κ2‖w‖. Therefore

ẽ(v∗ + w) ≥ ẽ(v∗) + κ‖w‖2 .

Thus, for sufficiently small r > 0, ẽ(v∗+w) ≥ ẽ(v∗)+δr with δr = κ2r2 when
‖w‖ = r. Given such r > 0, choose h sufficiently small so that |e(v)−eh(v)| <
δr/3 in U and so that there exists v∗h ∈ Φ−1(V

(k)
h ∩U) with |ẽ(v∗)− ẽ(v∗h)| <

δr/3 (we know such a v∗h exists by Lemma 6.3). Then ẽh(v
∗
h) < ẽ(v∗)+2δr/3
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and ẽh(v
∗+w) > ẽ(v∗+w)−δr/3 ≥ ẽ(v∗)+2δr/3 when ‖w‖ = r. Thus there

exists a point inside the intersection of the r-ball of v∗ and Φ−1(V
(k)
h ∩ U)

where ẽh is strictly smaller than on the boundary of this intersection. Since

V
(k)
h is finite dimensional, this implies the existence of a local minimizer

ṽ∗h ∈ Φ−1(V
(k)
h ∩ U) of ẽh|Φ−1(U∩V (k)

h ). By Theorem 4.1, ṽ∗h is also a local

minimizer of ẽh on U . As h → 0, we can let r → 0, and the local minima ṽ∗h
will approach v∗. In addition, v∗h = Φ−1(ṽ∗h) is a local minimum for eh which

must also approach v∗. This proves convergence as h → 0.

We now address the order of accuracy. As v∗h is a critical point of eh,

we have that Deh(v
∗
h) = 0, where Deh is the Frechét derivative of eh. If we

define w̃ = ṽ∗ − ṽ∗h then we observe

0 = Dẽh(ṽ
∗
h) = Dẽ(ṽ∗h)−DÃ(ṽ∗h)h

p −DB̃(ṽ∗h, h)

= Dẽ(v∗) +D2ẽ(v∗)(w̃, ·)−DÃ(ṽ∗h)h
p −DB̃(ṽ∗h, h) .

Moreover Dẽ(v∗) = 0 because v∗ is a critical point of ẽ. Thus we observe

D2ẽ(v∗)(w̃, ·) = DÃ(ṽ∗h)h
p +DB̃(ṽ∗h, h)

We can observe that the Hessian D2ẽ(v∗) is related to the Hessian D2e(v∗)
via pre-composition by the bounded linear operator DΦ(v∗). Thus D2ẽ(v∗)
is a bounded operator from U into V ∗. By assumption, this Hessian is

non-degenerate, and thus invertible. Thus we observe w̃ = [D2ẽ(v∗)]−1 ·
(DÃ(ṽ∗h)h

p +DB̃(ṽ∗h, h)). In other words, v∗ = ṽ∗h + O(hp). So there exists

an O(1) function C(v) and a function F (v, h) such that v∗ = v∗h +C(v)hp +

F (v, h) where dkF/dhk = 0 for k ≤ p. Thus we find

v∗ = Φ−1(v∗) = Φ−1(ṽ∗h + C(v)hp + F (v, h))

= Φ−1(ṽ∗h) +DΦ−1(ṽ∗h) · (C(v)hp + F (v, h)) +O(h2p)

= v∗h +O(hp).

The assumption that the Hessian of the curve energy be non-degenerate

is generally difficult to check in practice. We can still invoke this theorem in

specific examples because the minimizer of

E(v) =
1

2

∫ 1

0
‖v(t)‖2V dt , v(t) = evoltEP (v)
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is v∗ = 0, and the Hessian is identical to the inner product on V . We can
view all relevant examples as perturbations of this curve energy, and use the
continuity of the Hessian operator to invoke Theorem 6.2.

Setting G = GV , Q = Q(k) = GV /G
(k)
Λh

in Algorithm 1, we obtain the
special case of Algorithm 1 given by

Algorithm 2:

1. Solve for (q(t), p(t)) ∈ T ∗Q(k) in (6).
2. If necessary, set u(t) = K ∗ J(q(t), p(t)) and obtain ϕt ∈ GV

through the reconstruction formula ϕ̇t(x) = u(ϕ(x)) for all
x ∈ M .

3. Evaluate the cost function, and backward compute the adjoint
equations to compute the gradient of the cost function with
respect to a new initial condition.

4. If the gradient is below some tolerance, ε, then stop. Otherwise
use the gradient to create a new initial condition and return to
step 1.

Step (1) concerns solving a system of Hamiltonian equations on the
space of kth order jet-particles. Here the configuration is given by numbers
[qi]

α
β where α ∈ {1, . . . , d}, β is a multi-index on R

d of degree less than
or equal to k, and i ∈ {1, . . . , N} where N is the number of jet-particles.
The Hamiltonian can usually be computed in closed form if the Green’s
kernel, K, of the RKHS V is known in closed form. For example if k = 0,
we obtain traditional particles (i.e. the multi-index β is of degree 0) and the
momentum map is given by

J(q, p) =

N∑
i=1

pi ⊗ δqi

where (qi, pi) ∈ T ∗
R
d ∼= R

d × R
d, and where pi ⊗ δqi is a one-form density

representation of the element of V ∗ given by 〈pi ⊗ δqi , w〉 := pi ·w(qi) for all
w ∈ V . The Hamiltonian is then given by

H(q, p) =
1

2

N∑
i,j=1

(pi · pj)K(qi − qj) ,

and Hamilton’s equations are
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q̇i =

N∑
j=1

pjK(qi − qj) , ṗi = −
N∑
j=1

(pi · pj)DK(qi − qj) .

The velocity field in step (2) is

u(x) =

N∑
j=1

pjK(x− qj) .

Steps (3) and (4) are obtained through formulas of comparable complexity.
For arbitrary k, the relationship between the momenta (q, p) ∈ T ∗Q(k)

and the velocity field u invokes the multivariate Faà di Bruno formula, and
so the algebra rises in complexity very quickly [CS96]. In the case of k = 2,
the Hamiltonian is substantially more complex but still tractable (see (12) in
Appendix A). However, beyond k = 2, a symbolic algebra package is advised.
The examples we will be considering in this paper concern the case where
d = 2, and k = 0 or 2. By Theorem 6.2, we should be able to approximate
minimizers of E with O(h2) and O(h4) accuracy respectively in the V -norm.

7. Numerical results

In this section we, will illustrate the deformations encoded by jet-particles
of various orders and numerically verify the O(hd+k) convergence rate of the
matching functional approximation for k = 0, 2. In addition, we will show

that the second order approximation F
(k)
h , k = 2 allows matching of second

order image features. We use simple examples to describe the different capa-
bilities of higher order jet-particles over lower order jet-particles. We do this
by illustrating structures that cannot be matched with low numbers of reg-
ular zeroth order landmarks, but can still be matched successfully with first
and second order jet-particles. These effects imply more precise matching
of small scale features on larger images where more spatial derivatives can
be leveraged. In all examples, the jet-particles will be positioned on regular
grids in the image domains.

We do not pursue approximations with k > 2 due to the difficulties
of taking very high order derivatives of images and kernel functions. In
addition, code complexity rises rapidly as the order increases beyond 2.

7.1. Implementation

The results are obtained using the jetflows code available at http://www.
github.com/stefansommer/jetflows. The package include scripts for produc-

http://www.github.com/stefansommer/jetflows
http://www.github.com/stefansommer/jetflows
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Figure 2: Convergence of matching functional F
(k)
h , k = 0, 2. Top row: (a)

linear, (b) quadratic, and (c) non-polynomial images. Lower rows, horz. axis:

decreasing h (increasing nr. of sample points); vert. axis: F
(k)
h (solid, left

axis) and convergence rate (dashed, right axis). With linear and quadratic
images, the error is vanishing with k = 2 and using only one sample point.
Average convergence rates, k = 0: quadratic; k = 2: quartic as expected.
(c, top row) sample points for h = 2−3 (23 sample points per axis). (Color
figure online)

ing the figures displayed in this section. The implementation follows Algo-
rithm 2. The flow equations that are given in explicit form in Appendix A
and the adjoint equations that are given in explicit form in Appendix C are
numerically integrated using SciPy’s odeint solver (http://scipy.org). Both
equation systems require a series of tensor multiplications. The optimiza-
tion is performed with a quasi-Newton BFGS optimizer. The algorithm uses
isotropic Gaussian kernels. The images to be matched are pre-smoothed with
a Gaussian filter, and image derivatives are computed as analytic gradients
of B-spline interpolations of the smoothed images.

7.2. Jet deformations

Figure 1 (page 450) shows the deformations encoded by zeroth, first and
second order jet-particles on initially square grids. Note the locally affine

http://scipy.org
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deformations arising from the zeroth and first order jet-particles. Up to ro-
tation of the axes, the three first order examples in the figure constitute
a basis of the 4 dimensional space of first order jet-particles with fixed
lower-order components. Likewise, up to rotation, the three second order
examples constitute a basis for the 6 dimensional space of second order jet-
particles.

7.3. Matching functional approximation

We here illustrate and test the convergence rate of the matching functional

approximations. In Figure 2 (page 465), the approximations F
(p)
h are com-

pared for p = 0, 2 and varying grid sizes on three synthetic images supported
on the unit square. The first two images (a,b) are generated by first and sec-
ond order polynomials, respectively, while the last image (c) is generated by
a trigonometric function. A truncated Taylor expansion can therefore only

approximate the image (c). The second order approximation F
(2)
h models

F locally with a second order polynomial, and it is thus expected that the
error should vanish on the images (a,b). As the mesh width h decreases, we
expect to observe O(h2) convergence rate for the zeroth order approximation

F
(0)
h on all three images. Likewise, we expect a convergence rate of O(h4)

for F
(2)
h on image (c).

In accordance with these expectations, we see the vanishing error for

F
(2)
h on (a,b) and decreasing error on (c) (lower row, solid green lines).

The non-monotonic convergence seen on (c) is a result of the polynomial
approximation being integrated over a compact domain. The zeroth order

approximation F
(0)
h likewise decreases with h2 convergence rate (lower row,

dashed blue lines). The convergence rate of F
(2)
h on image (c) stabilizes at

approximately h4 until it decreases due to numerical errors introduced when
the error approaches the machine precision.

7.4. Matching simple structures

With the following set of examples, we wish to illustrate the effects of in-
cluding second order information in the matching term approximation. We
visualize this using simple test images. In all examples, we will employ the

approximations F
(k)
h for k = 0, 2. In addition, we will match using only

zeroth and first order information with a matching term that results from

dropping the second order terms from F
(2)
h . While this approximation does

not arise naturally from a Taylor expansion of F , it allows visualization of
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Figure 3: Matching moving images (b-d) to fixed image (a) using four jet-
particles (blue points). Enlarged fixed image and moving images after warp-
ing (e-h). Corresponding deformations of an initially square grid (i-l). (b/f/j)
Order 0; (c/g/k) order 1; (d/h/l) order 2. Red crosses mark location of jet-
particles in moving images after matching, green boxes deformed by the
warp Jacobian at the particle positions. Moving images at the red crosses
should match fixed image at blue dots; second row images should match the
fixed image (a/e). (Color figure online)

the differences between including first and second order image information
in the match.

In Figure 3, a bar (moving image) is matched to a square (fixed image).
The figure shows how four jet-particles move from their positions on a grid
in the fixed image (a) to positions in the moving image that contain features
matching the fixed image up to the order of the approximation. For zeroth
order (b), only pointwise intensity is matched and the jet-particles move
vertically (red crosses) resulting in only a slight deformation. With first order
matching (c), the jet-particles locally rotate the domain (warp Jacobian
matrices shown with green boxes) to account for the image gradient at the
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Figure 4: First order (linear/affine) deformations can be matched with mul-
tiple zeroth order jet-particles (a,b) or one first order jet-particle (c,d). A
rotated bar (b/d) is matched to a bar (a/c). The warps that transform the
moving images (b/d) to the fixed images (a/c) are applied to initially square
grids (i/j) (rotated 90◦). Red circles are deformed with warp derivative at
the particle positions. (e–h) shows enlarged fixed and warped moving im-
ages. The amount of bending at the edges (f/h) is a function of the kernel
size. (Color figure online)

corners of the square. This produces a diamond-like shape. With second
order (d), the corners are matched and the jet-particles move towards the
corners of the moving image bar. The middle row shows the warped moving
images enlarged. The second order match (h) is close to the fixed image (a)
while both first and zeroth order fail to produce satisfying matches.

Figure 4 shows the result of matching images differing by an affine trans-
formation with either one first order jet or multiple zeroth order jet-particles.
While three zeroth order jet-particles can approximate a first order defor-
mation in 2D, four particles are used to produce a symmetric picture. The
warp Jacobians deform the initially square green boxes displayed at the jet
positions. The resulting warps in both cases approximate an affine transfor-
mation.
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Figure 5: Without higher order features, 2nd order jet-particles do not
change the match: A blob (a) is translated and matched in moving images
(b,d) with red crosses marking positions of jet-particles after match. Grids
(c,e) illustrate the deformations that are equivalent for 0th order (b,c) and
2nd order (d,e). (Color figure online)

With translation only, including second order information in the match
does not change the result as illustrated in Figure 5 where the match is
performed on an image and a translated version of the image.

7.5. Real image data

We illustrate the effect of the increased order on real images by matching
two mid-sagittal slices of 3D MRI from the MGH10 dataset [KAA+09]. In
Figure 6, red boxes mark the ventricle area of the brain on which the match-
ing is performed. We perform the match with 9 jet-particles (3 per axis), 16
jet-particles (4 per axis) and 64 jet-particles (8 per axis) and k = 0, 2. With
9 second order jet-particles (e), the moving image (d) approaches the fixed
(b). A visually good match is obtained with 16 or more jet-particles. 9 and
16 zeroth order jet-particles are not sufficient to correctly encode the ex-
pansion of the ventricle. With 64 zeroth order jet-particles, the transformed
image is close to the results of the second order matches.

8. Conclusion and future work

A priori, the LDDMM framework of image registration poses an optimiza-
tion problem on the space of diffeomorphism. Here, we introduced a family
of discretized cost functions on a finite dimensional phase space that can
be minimized numerically. The solutions of the discretized problem can be
related to solutions of the full infinite-dimensional problem with O(hd+k)
accuracy, where h is a grid spacing and k is the order of approximation.

We provided numerical examples of deformations parametrized by ze-
roth, first, and second order jet-particles, and we showed examples of the



470 Henry O. Jacobs and Stefan Sommer

Figure 6: 2D registration of MRI slices, (a-b) fixed image, (c-d) moving
image, red boxes: regions to be matched. Lower rows: matching results using
2nd order jet-particles (e-g), 0th order jet-particles (h-j). Images in lower
rows should be close to (b). With 9 2nd order jet-particles (3 per axis), the
moving image approaches the fixed. The match is visually good with 16 jet-
particles (4 per axis). The ventricle region can equivalently be inflated with
64 0th order jet-particles. (Color figure online)

higher order convergence of the similarity measure. The higher-order simi-

larity measure allows matching of higher order features, and we use this fact

to register various shapes and images with low numbers of jet-particles.

Representing a Ck image requires much less information than represent-

ing a C0 image. Heuristically, the impact of this for computation is that

we may use different techniques to approximate and advect smooth images

with a sparse set of parameters. The higher-order accuracy schemes here
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constitutes a particular example of using reduction by symmetry to remove

redundant information, and specialize advection to the data at hand. In

this case, we reduce the dimensionality from infinite to finite for a given

discretization, and we specialize the discretization to C2 images.

While the applicability of this specialization is limited to images of suf-

ficient regularity, the bigger point of this article is the notion of tailoring

discretizations to data. This approach is applicable for reducing the dimen-

sionality of data beyond images. For example, accurate discretizations of

curves with tangents, surfaces with tangent planes, and higher-order ten-

sors can be derived with corresponding reduction in dimensionality. The

present framework thus points to a general approach for higher-order ac-

curate discretizations of general classes of matching problems. Future work

will constitute testing these areas of wider applicability.
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Appendix A. Equations of motion

The equations of motion are expressible as Hamiltonian equations with re-

spect to a non-canonical Poisson bracket. If we denote q(0) simply by q and

p(0) simply by p then the Hamiltonian is

H(q, p, μ(1), μ(2)) =
1

2
piαpjβK

αβ(qi − qj)− piα[μ
(1)
j ] γ

β ∂γK
αβ(qi − qj)(12)

+ piα[μ
(2)
j ] γδ

β ∂δγK
αβ(qi − qj)(13)

− 1

2
[μ

(1)
i ] δ

α [μ
(1)
j ] γ

β ∂δγK
αβ(qi − qj)

+ [μ
(1)
i ] ε

α [μ
(2)
j ] γδ

β ∂εγδK
αβ(qi − qj)(14)

+
1

2
[μ

(2)
i ] εφ

α [μ
(2)
j ] γδ

β ∂γδεφK
αβ(qi − qj)(15)
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Where Kαβ(x) = δαβe−‖x‖2/2σ2

. Hamiton’s equations are then given in short

by

q̇ =
∂H

∂p
(16)

ṗ = −∂H

∂q
(17)

ξ =
∂H

∂μ
(18)

μ̇ = − ad∗ξ(μ).(19)

More explicitly, equation (16) is given by

q̇αi = pjβK
αβ(qi − qj)− [μ

(1)
j ] γ

β ∂γK
αβ(qi − qj) + [μ

(2)
j ] γδ

β ∂γδK
αβ(qi − qj)

equation (17) is given by the sum

ṗiα = T 00
iα + T 01

iα + T 02
iα + T 12

iα + T 11
iα + T 22

iα

Where we define the six terms in this sum as

T 00
iα =− piγpjβ∂αK

γβ(qi − qj)

T 01
iα =(piδ[μ

(1)
j ] γ

β − pjδ[μ
(1)
i ] γ

β )∂γαK
δβ(qi − qj)

T 02
iα =− (piε[μ

(2)
j ] γδ

β + pjε[μ
(2)
i ] γδ

β )∂γδαK
εβ(qi − qj)

T 12
iα =− ([μ

(1)
i ] ε

φ [μ
(2)
j ] γδ

β − [μ
(1)
j ] ε

φ [μ
(2)
i ] γδ

β )∂εγδαK
φβ(qi − qj)

T 11
iα =[μ

(1)
i ] δ

ε [μ
(1)
j ] γ

β ∂δγαK
εβ(qi − qj)

T 22
iα =− [μ

(2)
i ] εφ

ζ [μ
(2)
j ] γδ

β ∂εδγφαK
ζβ(qi − qj)

Next, we calculate the quantities ξ(i) = ∂H/∂μ(i) for i = 1, 2 of equation
(18) to be

[ξ
(1)
i ]αβ = pj,γ∂βK

αγ(qi − qj)

− [μ
(1)
j ] γ

δ ∂βγK
αδ(qi − qj) + [μ

(2)
j ] γδ

ε ∂βγδK
αε(qi − qj)

[ξ
(2)
i ]αβγ = pjδ∂βγK

αδ(qi − qj)

− [μ
(1)
j ] ε

δ ∂εβγK
αδ(qi − qj) + [μ

(2)
j ] φδ

ε ∂βγφδK
αε(qi − qj)
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which allows us to compute μ̇(i) in equation (19) as

[μ̇
(1)
i ] β

α = [μ
(1)
i ] γ

α [ξ
(1)
i ]βγ − [μ

(1)
i ] β

γ [ξ
(1)
i ]γα

+ [μ
(2)
i ] δγ

α [ξ
(2)
i ]βδγ − [μ

(2)
i ] βγ

δ [ξ
(2)
i ]δαγ − [μ

(2)
i ] γβ

δ [ξ
(2)
i ]δγα

[μ̇i
(2)] βγ

α = [μ
(2)
i ] δγ

α [ξ
(1)
i ]βδ + [μ

(2)
i ] βδ

α [ξ
(1)
i ]γδ − [μ

(2)
i ] βγ

δ [ξ
(1)
i ]δα

A.1. Computing q̇ as a function of ξ

The action of ξ on q is given by ξ ·q. We set q̇ = ξ ·q. We’ve already calculated
q̇(0). We need only calculate q̇(1) and q̇(2). Componentwise we calculate these
to be

[q̇(1)]αβ = [ξ(1)]αγ [q
(1)]γβ

[q̇(2)]αβγ = [ξ(2)]αδε · [q(1)]δβ · [q(1)]εγ + [ξ(1)]αδ · [q(2)]δβγ

Appendix B. First variation equations

The first variation equations are equivalent to applying the tangent functor
to our evolutions. We find the velocites:

d

dt
δqαi = δpjβK

αβ(qi − qj) + pjβ(δq
γ
i − δqγj )∂γK

αβ(qi − qj)

− [δμ
(1)
j ] γ

β ∂γK
αβ(qi − qj)− [μ

(1)
j ] γ

β ∂γδK
αβ(qi − qj)(δq

δ
i − δqδj )

+ [δμ
(2)
j ] γδ

β ∂γδK
αβ(qi− qj)+ [μ

(2)
j ] γδ

β ∂γδεK
αβ(qi− qj)(δq

ε
i − δqεj)

[δξ
(1)
i ]αβ = δpjγ∂βK

γα(qi − qj) + pjγ(δq
δ
i − δqδj )∂δβK

αγ(qi − qj)

− [δμ
(1)
j ] γ

δ ∂βγK
αδ(qi − qj)− [μ

(1)
j ] γ

δ (δqεi − δqεj)∂βγεK
αδ(qi − qj)

+ [δμ
(2)
j ] γδ

φ ∂βγδK
αφ(qi−qj)+[μ

(2)
j ] γδ

φ (δqεi−δqεj)∂βγδεK
αφ(qi−qj)

[δξ
(2)
i ]αβγ = δpjδ∂βγK

αδ(ij) + pjε(δq
δ
i − δqδj )∂βγδK

αε(ij)

− [δμ
(1)
j ] δ

ε ∂βγδK
αε(ij)− [μ

(1)
j ] δ

φ (δqεi − δqεj)∂βγδεK
αφ(ij)

+ [δμ
(2)
j ] δε

φ ∂βγδεK
αφ(ij) + [μ

(2)
j ] δε

λ (δqφi − δqφj )∂βγδεφK
αλ(ij)

and the momenta:

d

dt
δpiα = δT 00

iα + δT 01
iα + δT 02

iα + δT 12
iα + δT 11

iα + δT 22
iα
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The first-variation equation for μ(1) is

d

dt
[δμ(1)] β

α = [δμ(1)] γ
α [ξ(1)]βγ + [μ(1)] γ

α [δξ(1)]βγ

− [δμ(1)] β
γ [ξ(1)]γα − [μ(1)] β

γ [δξ(1)]γα

+ [δμ(2)] δγ
α [ξ(2)]βδγ + [μ(2)] δγ

α [δξ(2)]βδγ

− [δμ(2)] βγ
δ [ξ(2)]δαγ − [μ(2)] βγ

δ [δξ(2)]δαγ

− [δμ(2)] γβ
δ [ξ(2)]δγα − [μ(2)] γβ

δ [δξ(2)]δγα

and finally

d

dt
[δμ(2)] βγ

α = [δμ(2)] δγ
α [ξ(1)]βδ + [μ(2)] δγ

α [δξ(1)]βδ

+ [δμ(2)] βδ
α [ξ(1)]γδ + [μ(2)] βδ

α [δξ(1)]γδ

− [δμ(2)] βγ
δ [ξ(1)]δα − [μ(2)] βγ

δ [δξ(1)]δα

where the δT ’s are given by

δT 00
iα =− δpiγpjβ∂αK

γβ(qi − qj)− piγδpjβ∂αK
γβ(qi − qj)

− piγpjβ∂αδK
γβ(qi − qj)(δq

δ
i − δqδj )

δT 01
iα =− δpjδ[μ

(1)
i ] γ

β ∂γαK
δβ(ij)− pjδ[δμ

(1)
i ] γ

β ∂γαK
δβ(ij)

− pjδ[μ
(1)
i ] γ

β (δqεi − δqεj)∂εγαK
δβ(ij)

+ δpiδ[μ
(1)
j ] γ

β ∂γαK
δβ(ij) + piδ[δμ

(1)
j ] γ

β ∂γαK
δβ(ij)

+ piδ[μ
(1)
j ] γ

β (δqεi − δqεj)∂εγαK
δβ(ij)

δT 02
iα =− δpiε[μ

(2)
j ] γδ

β ∂γδαK
εβ(ij)− piε[δμ

(2)
j ] γδ

β ∂γδαK
εβ(ij)

− piε[μ
(2)
j ] γδ

β (δqφi − δqφj )∂γδφαK
εβ(ij)

− δpjε[μ
(2)
i ] γδ

β ∂γδαK
εβ(ij)− pjε[δμ

(2)
i ] γδ

β ∂γδαK
εβ(ij)

− pjε[μ
(2)
i ] γδ

β (δqφi − δqφj )∂γδφαK
εβ(ij)

δT 12
iα =− [δμ

(1)
i ] ε

φ [μ
(2)
j ] γδ

β ∂εγδαK
φβ(ij)

− [μ
(1)
i ] ε

φ [δμ
(2)
j ] γδ

β ∂εγδαK
φβ(ij)

− [μ
(1)
i ] ε

φ [μ
(2)
j ] γδ

β (δqζi − δqζj )∂ζεγδαK
φβ(ij)

+ [δμ
(1)
j ] ε

φ [μ
(2)
i ] γδ

β ∂εγδαK
φβ(ij)
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+ [μ
(1)
j ] ε

φ [δμ
(2)
i ] γδ

β ∂εγδαK
φβ(ij)

+ [μ
(1)
j ] ε

φ [μ
(2)
i ] γδ

β (δqζi − δqζj )∂ζεγδαK
φβ(ij)

δT 11
iα = ([δμ

(1)
i ] δ

ε [μ
(1)
j ] γ

β + [μ
(1)
i ] δ

ε [δμ
(1)
j ] γ

β )∂δγαK
εβ(ij)

+ [μ
(1)
i ] δ

ε [μ
(1)
j ] γ

β (δqφi − δqφj )∂φδγαK
εβ(ij)

δT 22
iα =− ([δμ

(2)
i ] εφ

ζ [μ
(2)
j ] γδ

β + [μ
(2)
i ] εφ

ζ [δμ
(2)
j ] γδ

β )∂εδγφαK
ζβ(ij)

− [μ
(2)
i ] εφ

ζ [μ
(2)
j ] γδ

β (δqλi − δqλj )∂λεδγφαK
ζβ(ij)

Finally, we compute the variation equations for δq(1) and δq(2) to be

δ[q̇
(1)
i ]αβ = [δξ

(1)
i ]αγ [q

(1)
i ]γβ + [ξ

(1)
i ]αγ [δq

(1)
i ]γβ

δ[q̇(2)]αβγ = [δξ(2)]αδε · [q(1)]δβ · [q(1)]εγ + [ξ(2)]αδε · [δq(1)]δβ · [q(1)]εγ
+ [ξ(2)]αδε · [q(1)]δβ · [δq(1)]εγ + [δξ(1)]αδ · [q(2)]δβγ
+ [ξ(1)]αδ · [δq(2)]δβγ

Appendix C. Computation of the adjoint equations

Given any ODE ẋ = f(x) on M , we may consider the equations of motion
for variations d

dtδx = Txf · δx. In particular, Txf is a linear operator over
the point x which has a dual operator. The adjoint equations are and ODE
on T ∗M given by

dλ

dt
= −T ∗

xf · λ.

This is useful for us in the following way. Given an integral curve, x(t), and
a variation in the initial condition, δx0, we see that the quantity 〈λ(t), δx(t)〉
is constant when δx(t) satisfies the first variation equation with initial con-
dition δx0 and λ(t) satisfies the adjoint equation. In our case we are able
to compute the gradient of the energy with respect to varying an initial
condition in this way. More explicitly, we should be able to express Txf as
a matrix M(x)BA so that the first variation equations are

d

dt
δxA = M(x)ABδx

B

and the adjoint equations can be written as

λ̇A = −λBM(x)BA



476 Henry O. Jacobs and Stefan Sommer

where λA is the covector associated to the A-th coordinate and M(x)BA

is the coefficient for δxA in the equation for d
dtδ

B. More specifically, the

elements of MB
A is the partial derivative of δḂ with respect to δA. So we

compute all these (36) quantities below.

∂[δq̇
(0)
i ]α

∂[δq
(0)
j ]β

=
(
pkγ∂βK

αγ(jk)− [μ
(1)
k ] γ

δ ∂γβK
αδ(jk)+ [μ

(2)
k ] γδ

ε ∂γδβK
αε(jk)

)
δji

− pjγ∂βK
αγ(ij) + [μ

(1)
j ] γ

δ ∂γβK
αδ(ij)− [μ

(2)
j ] γδ

ε ∂γδβK
αε(ij),

∂[δq̇
(0)
i ]α

∂[δq
(1)
j ]βγ

=0 ,
∂[δq̇

(0)
i ]α

∂[δq(2)]βγδ
= 0,

∂[δq̇
(0)
i ]α]

∂[δp
(0)
j ]β

=Kαβ(ij) ,
∂[δq̇

(0)
i ]α

∂[δμ
(1)
j ] γ

β

= −∂γK
αβ(ij)

∂[δq̇
(0)
i ]α

∂[δμ
(2)
j ] γδ

β

= ∂γδK
αβ(ij),

∂[δq̇
(1)
i ]αβ

∂[δq
(0)
j ]γ

=
∂[δξ

(1)
i ]αδ

∂[δq
(0)
j ]γ

[q
(1)
i ]δβ,

∂[δq̇
(1)
i ]αβ

∂[δq
(1)
j ]γδ

= [ξ
(1)
i ]αγδ

δ
βδ

j
i , ,

∂[δq̇
(1)
i ]αβ

∂[δq
(2)
j ]γδε

= 0,

∂[δq̇
(1)
i ]αβ

∂[δp
(0)
j ]γ

=
∂[δξ

(1)
i ]αδ

∂[δp
(0)
j ]γ

[q
(1)
i ]δβ ,

∂[δq̇
(1)
i ]αβ

∂[δμ
(1)
j ] δ

γ

=
∂[δξ

(1)
i ]αε

∂[δμ
(1)
j ] δ

γ

[q
(1)
i ]εβ,

∂[δq̇
(1)
i ]αβ

∂[δμ
(2)
j ] δε

γ

=
∂[δξ

(1)
i ]αφ

∂[δμ
(2)
j ] δε

γ

[q
(1)
i ]φβ ,

∂[δq̇
(2)
i ]αβγ

∂[δq
(0)
j ]δ

=
∂[δξ

(2)
i ]αφε

∂[δq
(0)
j ]δ

[q
(1)
i ]φβ[q

(1)
i ]εγ +

∂[δξ
(1)
i ]αε

∂[δq
(0)
j ]δ

[q
(2)
i ]εβγ ,

∂[δq̇
(2)
i ]αβγ

∂[δq
(1)
j ]δε

= ([ξ
(2)
i ]αδφ[q

(1)
i ]φγδ

ε
β + [ξ

(2)
i ]αφδ[q

(1)
i ]φβδ

ε
γ)δ

j
i ,

∂[δq̇
(2)
i ]αβγ

∂[δq
(2)
j ]δεφ

= [ξ
(1)
i ]αδδ

ε
βδ

φ
γ δ

j
i ,
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∂[δq̇
(2)
i ]αβγ

∂[δp
(0)
j ]δ

=
∂[δξ

(2)
i ]αφε

∂[δp
(1)
j ]δ

[q
(1)
i ]φβ [q

(1)
i ]εγ +

∂[δξ
(1)
i ]αε

∂[δp
(0)
j ]δ

[q
(2)
i ]εβγ ,

∂[δq̇
(2)
i ]αβγ

∂[δμ
(1)
j ] ε

δ

=
∂[δξ

(2)
i ]αφζ

∂[δμ
(1)
j ] ε

δ

[q
(1)
i ]φβ [q

(1)
i ]ζγ +

∂[δξ
(1)
i ]αφ

∂[δμ
(1)
j ] ε

δ

[q
(2)
i ]φβγ ,

∂[δq̇
(2)
i ]αβγ

∂[δμ
(2)
j ] εφ

δ

=
∂[δξ

(2)
i ]αζλ

∂[δμ
(2)
j ] εφ

δ

[q
(1)
i ]ζβ [q

(1)
i ]λγ +

∂[δξ
(1)
i ]αζ

∂[δμ
(2)
j ] εφ

δ

[q
(2)
i ]ζβγ ,

∂[δṗ
(0)
i ]α

∂[δq
(0)
j ]β

=
∂[δT 00

i ]α

∂[δq
(0)
j ]β

+
∂[δT 01

i ]α

∂[δq
(0)
j ]β

+
∂[δT 11

i ]α

∂[δq
(0)
j ]β

+
∂[δT 12

i ]α

∂[δq
(0)
j ]β

+
∂[δT 02

i ]α

∂[δq
(0)
j ]β

+
∂[δT 22

i ]α

∂[δq
(0)
j ]β

,

∂[δṗ
(0)
i ]α

∂[δq
(1)
j ]βγ

= 0 ,
∂[δṗ

(0)
i ]α

∂[δq
(2)
j ]βγδ

= 0,

∂[δṗ
(0)
i ]α

∂[δp
(0)
j ]β

=
∂[δT 00

i ]α

∂[δp
(0)
j ]β

+
∂[δT 01

i ]α

∂[δp
(0)
j ]β

+
∂[δT 02

i ]α

∂[δp
(0)
j ]β

,

∂[δṗ
(0)
i ]α

∂[δμ
(1)
j ] γ

β

=
∂[δT 01

i ]α

∂[δμ
(1)
j ] γ

β

+
∂[δT 11

i ]α

∂[δμ
(1)
j ] γ

β

+
∂[δT 12

i ]α

∂[δμ
(1)
j ] γ

β

,

∂[δṗ
(0)
i ]α

∂[δμ
(2)
j ] γδ

β

=
∂[δT 02

i ]α

∂[δμ
(2)
j ] γδ

β

+
∂[δT 12

i ]α

∂[δμ
(2)
j ] γδ

β

+
∂[δT 22

i ]α

∂[δμ
(2)
j ] γδ

β

,

∂[δμ̇
(1)
i ] β

α

∂[δq
(0)
j ]γ

= [μ
(1)
i ] δ

α

∂[δξ
(1)
i ]βδ

∂[δq
(0)
j ]γ

− [μ
(1)
i ] β

δ

∂[δξ
(1)
i ]δα

∂[δq
(0)
j ]γ

+ [μ
(2)
i ] δε

α

∂[δξ
(2)
i ]βδε

∂[δq
(0)
j ]γ

− [μ
(2)
i ] βε

δ

∂[δξ
(2)
i ]δαε

∂[δq
(0)
j ]γ

− [μ
(2)
i ] εβ

δ

∂[δξ
(2)
i ]δεα

∂[δq
(0)
j ]γ

,

∂[δμ̇
(1)
i ] β

α

∂[δq
(1)
j ]γ

= 0, ,
∂[δμ̇

(1)
i ] β

α

∂[δq
(2)
j ]γ

= 0,

∂[δμ̇
(1)
i ] β

α

∂[δp
(0)
j ]γ

= [μ
(1)
i ] δ

α

∂[δξ
(1)
i ]βδ

∂[δp
(0)
j ]γ

− [μ
(1)
i ] β

δ

∂[δξ
(1)
i ]δα

∂[δp
(0)
j ]γ

+ [μ
(2)
i ] δε

α

∂[δξ
(2)
i ]βδε

∂[δp
(0)
j ]γ
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− [μ
(2)
i ] βε

δ

∂[δξ
(2)
i ]δαε

∂[δp
(0)
j ]γ

− [μ
(2)
i ] εβ

δ

∂[δξ
(2)
i ]δεα

∂[δp
(0)
j ]γ

,

∂[δμ̇
(1)
i ] β

α

∂[δμ
(1)
j ] δ

γ

= δji δ
γ
α[ξ

(1)
i ]βδ + [μ

(1)
i ] ε

α

∂[δξ
(1)
i ]βε

∂[δμ
(1)
j ] δ

γ

− δji δ
β
δ [ξ

(1)
i ]γα

− [μ
(1)
i ] β

ε

∂[δξ
(1)
i ]εα

∂[δμ
(1)
j ] δ

γ

+ [μ
(2)
i ] εφ

α

∂[δξ
(2)
i ]βεφ

∂[δμ
(1)
j ] δ

γ

− [μ
(2)
i ] βε

φ

∂[δξ
(2)
i ]φαε

∂[δμ
(1)
j ] δ

γ

− [μ
(2)
i ] εβ

φ

∂[δξ
(2)
i ]φεα

∂[δμ
(1)
j ] δ

γ

,

∂[δμ̇
(1)
i ] β

α

∂[δμ
(2)
j ] δε

γ

= [μ
(1)
i ] φ

α

∂[δξ
(1)
i ]βφ

∂[δμ
(2)
j ] δε

γ

− [μ
(1)
i ] β

φ

∂[δξ
(1)
i ]φα

∂[δμ
(2)
j ] δε

γ

+ δji δ
γ
α[ξ

(2)
i ]βδε,

+ [μ
(2)
i ] φλ

α

∂[δξ
(2)
i ]βφλ

∂[δμ
(2)
j ] δε

γ

− δji δ
β
δ [ξ

(2)
i ]γαε

− [μ
(2)
i ] βλ

φ

∂[δξ
(2)
i ]φαλ

∂[δμ
(2)
j ] δε

γ

− δji δ
β
ε [ξ

(2)
i ]γδλ − [μ

(2)
i ] λβ

φ

∂[δξ
(2)
i ]φλα

∂[δμ
(2)
j ] δε

γ

,

∂[δμ̇
(2)
i ] βγ

α

∂[δq
(0)
j ]δ

= [μ
(2)
i ] εγ

α

∂[δξ
(1)
i ]βε

∂[δq
(0)
j ]δ

+ [μ
(2)
i ] βε

α

∂[δξ
(1)
i ]γε

∂[δq
(0)
j ]δ

− [μ
(2)
i ] βγ

ε

∂[δξ
(1)
i ]εα

∂[δq
(0)
j ]δ

∂[δμ̇(2)] βγ
α

∂[δq(1)]δε
= 0

∂[δμ̇(2)] βγ
α

∂[δq(2)]δεφ
= 0

∂[δμ̇
(2)
i ] βγ

α

∂[δp
(0)
j ]δ

= [μ
(2)
i ] εγ

α

∂[δξ
(1)
i ]βε

∂[δp
(0)
j ]δ

+ [μ
(2)
i ] βε

α

∂[δξ
(1)
i ]γε

∂[δp
(0)
j ]δ

− [μ
(2)
i ] βγ

ε

∂[δξ
(1)
i ]εα

∂[δp
(0)
j ]δ

∂[δμ̇
(2)
i ] βγ

α

∂[δμ
(1)
j ] ε

δ

= [μ
(2)
i ] φγ

α

∂[δξ
(1)
i ]βφ

∂[δμ
(1)
j ] ε

δ

+ [μ
(2)
i ] βφ

α

∂[δξ
(1)
i ]γφ

∂[δμ
(1)
j ] ε

δ

− [μ
(2)
i ] βγ

φ

∂[δξ
(1)
i ]φα

∂[δμ
(1)
j ] ε

δ

∂[δμ̇
(2)
i ] βγ

α

∂[δμ
(2)
j ] εφ

δ

= δji δ
γ
φδ

δ
α[ξ

(1)
i ]βε + [μ

(2)
i ] λγ

α

∂[δξ
(1)
i ]βλ

∂[δμ
(2)
j ] εφ

δ

+ δji δ
δ
αδ

β
ε [ξ

(1)
i ]γφ

+ [μ
(2)
i ] βλ

α

∂[δξ
(1)
i ]γλ

∂[δμ
(2)
j ] εφ

δ

− δji δ
β
ε δ

γ
φ[ξ

(1)
i ]δα − [μ

(2)
i ] βγ

λ

∂[δξ
(1)
i ]λα

∂[δμ
(2)
j ] εφ

δ



Higher-order spatial accuracy in image registration 479

∂[δT 00
i ]α

∂[δq
(0)
j ]β

= −pjγpkδ∂αβK
γδ(jk)δij + piγpjδ∂αβK

γδ(ij),

∂[δT 01
i ]α

∂[δq
(0)
j ]β

= δji (pjδ[μ
(1)
k ] γ

ε − pkδ[μ
(1)
j ] γ

ε )∂αβγK
δε(jk)

− (piδ[μ
(1)
j ] γ

ε − pjδ[μ
(1)
i ] γ

ε )∂βγαK
δε(ij)

∂[δT 02
i ]α

∂[δq
(0)
j ]β

= (piε[μ
(2)
j ] γδ

φ + pjε[μ
(2)
i ] γδ

φ )∂γδβαK
εφ(ij)

− δji (pjε[μ
(2)
k ] γδ

φ + pkε[μ
(2)
j ] γδ

φ )∂γδβαK
εφ(jk)

∂[δT 12
i ]α

∂[δq
(0)
j ]β

= δij([μ
(1)
k ] ε

φ [μ
(2)
j ] γδ

λ − [μ
(1)
j ] ε

φ [μ
(2)
k ] γδ

λ )∂βεγδαK
φλ(jk)

− ([μ
(1)
j ] ε

φ [μ
(2)
i ] γδ

λ − [μ
(1)
i ] ε

φ [μ
(2)
j ] γδ

λ )∂βεγδαK
φλ(ij)

∂[δT 11
i ]α

∂[δq
(0)
j ]β

= δji [μ
(1)
j ] δ

ε [μ
(1)
k ] γ

φ ∂βγδαK
εφ(jk)− [μ

(1)
i ] δ

ε [μ
(1)
j ] γ

φ ∂βδγαK
εφ(ij)

∂[δT 22
i ]α

∂[δq
(0)
j ]β

= −δji [μ
(2)
j ] εφ

λ [μ
(2)
k ] γδ

ζ ∂βεδγφαK
λζ(jk)

+ [μ
(2)
i ] εφ

λ [μ
(2)
j ] γδ

ζ ∂βεδγφαK
λζ(ij)

∂δT 00
iα

∂[δp
(0)
j ]β

= −δji pkγ∂αK
βγ(jk)− piγ∂αK

γβ(ij)

∂δT 01
iα

∂[δp
(0)
j ]β

= −[μ
(1)
i ] γ

δ ∂γαK
βδ(ij) + δji [μ

(1)
k ] γ

δ ∂γαK
βδ(jk)

∂δT 02
iα

∂[δp
(0)
j ]β

= −δji [μ
(2)
k ] γδ

ε ∂γδαK
βε(jk)− [μ

(2)
i ] γδ

ε ∂γδαK
βε(ij)

∂[δT 01
i ]α

∂[δμ
(1)
j ] γ

β

= −δji pkδ∂γαK
δβ(jk) + piδ∂γαK

δβ(ij)

∂[δT 11
i ]α

∂[δμ
(1)
j ] γ

β

= (δji [μ
(1)
k ] δ

ε ∂γδαK
βε(jk) + [μ

(1)
i ] δ

ε ∂δγαK
εβ(ij)

∂[δT 12
i ]α

∂[δμ
(1)
j ] γ

β

= −δji [μ
(2)
k ] εδ

φ ∂γεδαK
βφ(jk) + [μ

(2)
i ] εδ

φ ∂γεδαK
βφ(ij)
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∂[δT 02
i ]α

∂[δμ
(2)
j ] γδ

β

= −(δji [μ
(2)
k ] γδ

ε ∂γδαK
βε(jk) + [μ

(2)
i ] γδ

ε ∂γδαK
βε(ij))

∂[δT 12
i ]α

∂[δμ
(2)
j ] γδ

β

= δji [μ
(1)
k ] ε

φ ∂εγδαK
φβ(jk)− [μ

(1)
i ] ε

φ ∂εγδαK
φβ(ij)

∂[δT 22
i ]α

∂[δμ
(2)
j ] γδ

β

= −δji [μ
(2)
k ] εφ

ζ ∂γφεδαK
βζ(jk)− [μ

(2)
i ] εφ

ζ ∂εδγφαK
ζβ(ij)

∂[δξ
(1)
i ]αβ

∂[δq
(0)
j ]γ

=
(
pkδ∂βγK

αδ(jk)− [μ
(1)
k ] δ

ε ∂βγδK
αε(jk)

+ [μ
(2)
k ] εδ

φ ∂βγδεK
αφ(jk)

)
δij

− pjδ∂βγK
αδ(ij) + [μ

(1)
j ] δ

ε ∂βγδK
αε(ij)− [μ

(2)
j ] εδ

φ ∂βγδεK
αφ(ij)

∂[δξ
(1)
i ]αβ

∂[δq
(1)
j ]γδ

= 0 ,
∂[δξ

(1)
i ]αβ

∂[δq
(2)
j ]γδε

= 0 ,
∂[δξ

(1)
i ]αβ

∂[δp
(0)
j ]γ

= ∂βK
γα(ij)

∂[δξ
(1)
i ]αβ

∂[δμ
(1)
j ] δ

γ

= −∂δβK
γα(ij) ,

∂[δξ
(1)
i ]αβ

∂[δμ
(2)
j ] δε

γ

= ∂εδβK
γα(ij)

∂[ξ
(2)
i ]αβγ

∂[q
(0)
j ]δ

=
[
[p

(0)
k ]ε∂βγδK

αε(jk)− [μ
(1)
k ] ε

φ ∂βγδεK
αφ(jk)

+ [μ
(2)
k ] εφ

λ ∂βγδεφK
αλ(jk)

]
δij

− [p
(0)
j ]ε∂βγδK

αε(ij) + [μ
(1)
j ] ε

φ ∂βγδεK
αφ(ij)

− [μ
(2)
j ] εφ

λ ∂βγδεφK
αλ(ij),

∂[ξ
(2)
i ]αβγ

∂[q
(1)
j ]δε

= 0 ,
∂[ξ

(2)
i ]αβγ

∂[q
(2)
j ]δεφ

= 0 ,
∂[ξ

(2)
i ]αβγ

∂[p
(0)
j ]δ

= ∂βγK
αδ(ij)

∂[ξ
(2)
i ]αβγ

∂[μ
(1)
j ] ε

δ

= −∂βγεK
αδ(ij) ,

∂[ξ
(2)
i ]αβγ

∂[μ
(2)
j ] εφ

δ

= ∂βγεφK
αδ(ij)

The adjoint equation are then given by
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d

dt
[λq(0)i

]α = −[λq(0)j
]β
∂[δq̇

(0)
j ]β

∂[δq
(0)
i ]α

− [λq(1)j
] γ
β

∂[δq̇
(1)
j ]βγ

∂[δq
(0)
i ]α

− [λq(2)j
] γδ
β

∂[δq̇
(2)
j ]βγδ

∂[δq
(0)
i ]α

− [λp
(0)
j
]β
∂[δṗ

(0)
j ]β

∂[δq
(0)
i ]α

− [λμ
(1)
j
]βγ

∂[δμ̇
(1)
j ] γ

β

∂[δq
(0)
i ]α

− [λμ
(2)
j
]βγδ

∂[δμ̇
(2)
j ] γδ

β

∂[δq
(0)
i ]α
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