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Detecting deformities on objects is a typical topic in shape analy-
sis, and has much applications such as abnormalities detection in
medical imaging (e.g. growth of tumor, spread of cancer). While
many algorithms are already well-established in a 2-dimensional
case when the object is indeed a surface, a model that still per-
forms well in the general n-dimensional case is still missing. It is
our goal in this paper to complete this missing piece, by introduc-
ing an indicator in order to effectively distinguish between normal
and abnormal deformities. The proposed framework is closely re-
lated to the classic 2-dimensional conformal geometry and quasi-
conformal geometry. In this work, we model abnormal deforma-
tions by anisotropic deformations. Given any two objects of the
same dimension (with landmark constraints in between), we define
the Anisotropic Indicator, a locally defined real-valued function
on the original object, which demonstrates the abnormalities in the
deformation between them. Both global and local features about
the abnormalities between the two objects can be tracked by an-
alyzing the indicator. We tested the algorithm by detecting defor-
mations on synthetic data and real data, and results show that our
algorithm can detect deformations of different types and degrees.

1. Introduction

In shape analysis, detection of deformities is of great importance with ap-
plications in many aspects especially in medical research. For example, in
pulmonary imaging, doctors examine patients based on detecting abnormal-
ities from the X-ray photos of the respiratory system. In cardiac imaging
and oncology, to monitor disease progression and evaluate treatment effec-
tiveness, physicians keep track on shape deformations in organs. Therefore,
developing an effective method to detect abnormalities and track abnormal
geometric changes over time is always in great demand.

In this paper, we model abnormal deformations by anisotropic deforma-
tions, and a framework for detecting abnormal changes on any n-dimensional
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objects via conformal geometry is to be proposed. In the first place, we will
apply an existing algorithm to register the two given n-dimensional objects.
After that, we will propose an indicator, which is closely related to the clas-
sic 2-dimensional quasi-conformal geometry, to quantify implicit abnormali-
ties in the deformations between them. Lastly, after further post-processing,
both global and local features about the deformation can be studied easily
and any hidden abnormalities can be extracted effectively.

During investigation of medical images, normal geometric deformations
in human organs can never be simply modelled as isometry. For exam-
ple, stretching and contraction of lungs during normal respiration are non-
isometric changes. Enlargement of human organs due to aging is also non-
isometric but is regarded as normal in real life. However, we note that local
geometry of organs are well-preserved in those normal situations, whereas
not preserved in abnormal situation such as development of cancer and
growth of tumor. Because conformal maps are well known to preserve local
geometry of a surface, this motivates us to measure abnormal deformities
by relating them to conformality distortion. But the notion of conformal
geometry is restricted to 2-dimensional space only. In 2-dimensional space,
we have the famous complex dilation (or equivalently, the Beltrami coef-
ficient), which is uniquely assigned to each map, to measure how far the
corresponding function is from being conformal. And the function is said
to be conformal if and only if its corresponding Beltrami coefficient is zero.
Hence, the Beltrami coefficient is an effective indicator measuring the de-
gree of abnormalities, so a similar notion in higher dimensional spaces is of
our interest. Eventually, this allows us to analyze the deformities between
any two given objects, so that ultimately abnormal situations can be easily
distinguished and detected.

The main contribution of this paper is the proposal of the Anisotropic In-
dicator to extract any implicit abnormal situation occurred in deformations
applied to objects. Given arbitrary two objects of the same dimension, we
can compare them by computing the indicator between them. Both global
and local features can be further extracted from the indicator, such that a
different kind of study of the deformation can be conducted according to
desired applications. Experimental results provide evidences that our algo-
rithm is sensitive enough to deformation of an object in a different degree,
plus the region of abnormal deformations can be located and visualized.

The paper is organized as follows. In section 2, prior work on closely
related topics will be reviewed. Basic mathematical background composed
mainly of concepts of conformal geometry in 2-dimensional space will be
included in section 3. Then, we will describe and explain, in section 4, our
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proposed model to detect abnormal deformations between n-dimensional
objects by computing the conformality distortion. Numerical algorithm will
be discussed in section 5 and experimental results will be demonstrated in
section 6. Conclusions and future works are presented in section 7.

2. Previous work

Different approaches have been employed to detect deformities in 2-dimen-
sional shapes. Tosun et al. [1] proposed to use shape index, curvedness and
L2 norm of mean curvature to quantify cortical gyrification and complexity.
Although the notion of curvature is already well defined in n-dimensional
spaces, these quantities are affected by normal changes, such as growth of
organ due to aging which decreases curvature. Also, since curvature involves
second-order derivative, it is too sensitive to noise in data and causes much
error in numerical computation. Chung et al.[2] suggested to study changes
in cortical surface area, thickness and curvature on cortical surface by com-
puting surface Jacobian and applying statistical inference via random field
theory. Although surface Jacobian is less sensitive to noisy data, it is still
affected by healthy changes like normal growth of tissues which increases sur-
face area. Then, to study gyrification patterns in Williams syndrome, Shi
et al. [3] proposed to measure the degree of gyrification on cortical surfaces
by the number of branches in the Hamilton-Jacobi skeletons. This method
gives fast measure of complexity of the cortical surface, but subtle changes
could occur within a branch of the cortical surface, which require a finer
measure to detect.

Much research has been done to detect disease as well as abnormalities
in medical images. Liu et al. [4] proposed to use sparse representation based
classification method for computer-aided cancer diagnosis. Song et al. [5]
proposed to examine medical images by a classification method called Large
Margin Local Estimate. By sub-categorizing the reference images, a local es-
timate is performed to the test images to detect possible diseases. However,
those approaches are restricted to the use of dictionary or reference im-
ages and comparison between two general images cannot be directly done.
While Kim et al. [6] proposed to use a multi-spectral MRI-based clinical
decision support approach to carry out automated seizure focus lateraliza-
tion in patients with temporal lobe epilepsy, Lui et al. [7] proposed to study
deformations using Beltrami coefficients. In their work, they formulated ab-
normal deformities as non-conformal deformations, and detect them by com-
puting the Beltrami coefficient associated uniquely to the quasi-conformal
maps between surfaces. The advantage of Beltrami coefficient is as follows.
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Firstly, healthy deformations such as normal breathing of lungs or normal

growth of organs will not be detected since all these are conformal change

of surfaces. Secondly, abnormal deformities such as growth of tumor can

be tracked since they are not conformal changes of surfaces. Additionally,

Beltrami coefficient involves only first-order derivative so it is not too sen-

sitive to noisy data. This motivates us to detect abnormal deformations

in n-dimensional objects using the idea of conformal and quasi-conformal

geometry.

Landmark-based registration is commonly used in real applications es-

pecially in medical imaging. It has been widely studied. Wang et al. [8] [9]

[10] [11] proposed to obtain the optimized harmonic registrations by mini-

mizing an energy involving the landmark-mismatching term. Although the

computed harmonic maps can better aligns the landmarks, the landmarks

still can not be perfectly matched and bijectivity may be lost if a large

number of landmarks is employed. Tosun et al. [13] proposed to combine

parametric relaxation, inverse stereographic projection and iterative closest

point registration to align cortical sulci across brain surfaces. Bookstein et

al. [12] proposed to obtain a registration with soft landmark constraints by

applying a biharmonic regularization. However, the former two diffeomor-

phisms computed still cannot match landmarks perfectly. Another approach

is the use of time-dependent vector fields, which is also widely studied [14]

[15] [16] [17] [18]. Using time-dependent vector fields, landmarks can be

matched well under an iterative process finding a diffeomorphism under

the flow. The time-dependent vector fields facilitate the optimization pro-

cedure but requires more memory and the computational cost is generally

expensive. Recently, Wei et al. [19] proposed to compute quasi-conformal

mappings for feature matching face registration. However, exact landmark

matching and bijectivity of the resultant map are not gauranteed under

their proposed algorithm. Lately, Lee et al. [20] proposed an algorithm to

compute the n-dimensional quasi-conformal mappings via an energy min-

imization. The tools are powerful since landmark constraints are exactly

matched and the algorithm works well even when severe deformations are

employed.

3. Mathematical background

In this section, basic concepts on the conformal geometry in 2-dimensional

space will be reviewed to enlighten the idea of our proposed model in the

next section.
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3.1. Conformal maps

Given two 2-dimensional manifolds M and N , a diffeomorphism f : M → N
is said to be conformal if it preserves angles between any two tangent vec-
tors in the tangent space of a point x ∈ M . More precisely, since f is a
map from M to N , the differential df : TM → TN is a map from the
tangent bundle of M to the tangent bundle of N . By denoting dxf =
df(x, ·), we define f to be conformal if dxf : TxM → Tf(x)N satisfies
< dxf(u), dxf(v) >= λ(x) < u, v > for any u, v ∈ TxM , for some smooth
function λ : M → R. Therefore, a conformal map preserves surface metric
up to a multiplicative factor called the conformal factor, which is denoted
above as λ.

Another definition of conformal maps is that, a diffeomorphism f is
conformal if it satisfies the Cauchy-Riemann Equation:

(1)
∂f

∂z̄
= 0

where ∂
∂z̄ = ∂

∂x + i ∂
∂y . Readers may check that the above two definitions

of conformal maps are equivalent. In the remainder of this paper, we will
focus on the latter definition since we can generalize the notion of conformal
maps to the notion of quasi-conformal maps, which is intuitively describing
mappings that are “close to conformal”.

3.2. Quasi-conformal maps

A homeomorphic mapping f : M → N is defined to be quasi-conformal if it
is orientation-preserving and satisfies the Beltrami equation:

(2)
∂f

∂z̄
= μ(z)

∂f

∂z

where μ : M → C is Lebesgue measurable satisfying ||μ||∞ < 1, and ∂
∂z =

∂
∂x − i ∂

∂y . μ is called the Beltrami coefficient, which is a measure of non-
conformality.

An obvious observation is that, ||μ|| = 0 if and only if f is conformal.
The relation between conformal map and quasi-conformal map can be made
clearer by investigating the local property of them. Infinitesimally, for any
point z in a small neighborhood of a point p ∈ M , a quasi-conformal mapping
f has its local parameter expression:

f(z) ≈ f(p) + fz(p)z + fz̄(p)z̄

= f(p) + fz(p)(z + μ(p)z̄)
(3)
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Figure 1: Illustration of the conformality distortion in 2-dimensional space:
mapping an infinitesimal disk to an infinitesimal ellipse.

Since the translation function f(p) and the dilation function fz(p) are confor-
mal, all the non-conformality of f is due to the term D(z) = z+μ(p)z̄, which
causes f to eventually map infinitesimal circle to infinitesimal ellipse (See
Figure 1). Specifically, the angle of maximal magnification is arg(μ(p))/2
with magnifying factor 1 + |μ(p)| while the angle of maximal contraction is
the orthogonal angle (arg(μ(p))− π)/2 with contraction factor 1− |μ(p)|.

To conclude, there is a one-to-one correspondence between any quasi-
conformal mapping f : M → N and the associated Beltrami coefficient
μ. Therefore, the Beltrami coefficient μ characterizes the behaviour of f ,
which can be used to measure the abnormality of f to the given surface in
application [7]. This eventually leads to the construction of a similar measure
in arbitrary dimension space, which is our task in the next section.

4. Proposed model

In this section, firstly, details of our proposed Anisotropic Indicator will
be explained. This is to be done by examining the construction of the Bel-
trami coefficient in detail. The proposed indicator is able to quantify the
abnormality of an n-dimensional diffeomorphism. In the next subsection,
we will discuss the registration process to reconstruct the diffeomorphism
between two n-dimensional objects with landmark constraints. Finally, an
investigation will be done on the computation of our proposed indicator.

4.1. Anisotropic Indicator

In two dimensional space, the Beltrami coefficient plays the role of an indi-
cator, measuring the behaviour of its corresponding function f . Concerning
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the infinitesimal ellipse in Figure 1, the ratio of the major axes to the minor

axes characterizes the ellipse and hence the corresponding quasi-conformal

mapping. This ratio is crucial in quantifying the degree of deformation that

f induces. And in high dimensional spaces, a similar ratio still exists.

Let S be a high dimensional infinitesimal sphere and let x, r be its

center and radius respectively. A high dimensional quasi-conformal mapping

f maps S to an infinitesimal ellipsoid E. For any distinct u, v ∈ S, f(u) and

f(v) are in E. Considering the supremum of the ratio of their distance to

the center of the ellipsoid f(x) over S, this characterizes the local property

of f . Therefore, we have the following definition:

Definition 1 (Anisotropic Indicator of a homeomorphic map). Suppose M

and N are two n-dimensional subsets of Rn, each being connected. Let f :

M → N be homeomorphic, x ∈ int(M), and SM
x (r) be an (n-1)-dimensional

sphere of radius r centered at x in M . The Anisotropic Indicator of f at x

is defined to be

Aidf (x) =
Lf (x)− 1

Lf (x) + 1

where Lf : M → N is defined by

Lf (x) := lim
r→0

sup
u,v∈SM

x (r)
u�=v

|f(u)− f(x)|
|f(v)− f(x)|

In the above definition, Lf determines the local property of f by con-

sidering its behaviour on an infinitesimal ball in M . Aidf is a scaling of Lf ,

such that Aidf (x) ∈ [0, 1) for any x ∈ M , and for arbitrary n-dimensional

M . Clearly, Aidf (x) = 0 if and only if Lf (x) = 1 and this is true provided

that f(SM
x (r)) is a sphere, and vice versa. As Aidf (x) is bounded above by

1, this indicator can be used to determine if f is close to be conformal at x

or not.

Employing the above definition, we now can define a measure of abnor-

mality of the deformation between objects of the same dimension:

Definition 2 (Anisotropic Indicator of deformation from object M to ob-

ject N). Suppose M and N are two n-dimensional subset of Rn, each being

connected. Suppose f̂ : LM → LN is the landmark constraint function where

LM ∈ M and LN ∈ N are the sets of landmark constraints in M and N

respectively, with |LM | = |LN |. If f : M → N is a diffeomorphic registration

from M to N such that f |LM
= f̂ , then the Anisotropic Indicator of the
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deformation from M to N through f at x is defined to be:

AidM,N (f ;x) := Aidf (x)

With this definition, one is able to quantify the degree of abnormal
deformation between any objects (of the same dimension). In particular,
AidM,N (x) = 0 implies the deformation is conformal, and hence is normal,
at x. When AidM,N (x) grows larger, it indicates that the deformation is
leaving away from being normal at x.

Moreover, we can quantify the general and overall degree of abnormality
between objects M and N through f by defining the following General
Abnormality Indicator:

Definition 3 (General Anisotropic Indicator from object M to object N
through f). Suppose M and N are two n-dimensional subset of Rn, each
being connected. Suppose f̂ : LM → LN is the landmark constraint function
where LM ∈ M and LN ∈ N are the sets of landmark constraints in M
and N respectively, with |LM | = |LN |. If f : M → N is a diffeomorphic
registration from M to N such that f |LM

= f̂ , then the General Anisotropic
Indicator of the deformation from M to N through f at x is defined to be:

GAidM,N (f ;x) :=

∫
M

AidM,N (f ;x)dx/

∫
M

dx

where dx = dx1 ∧ dx2 ∧ · · · ∧ dxn is the volume form of M when M is
considered as a Riemannian manifold.

4.2. The registration model

In the previous subsection, we proposed an indicator such that, given a
diffeomorphic registration between two objects, we can quantify the abnor-
mality of the deformation in between. So in this subsection, our main focus
is on solving for the desired diffeomorphic registration.

Our method mainly follows the algorithm proposed in [20]. Here we
explain the model briefly and readers are recommended to refer to [20] for
a detailed explanation. The main idea is to minimize an energy functional
to solve for the desired map. Concerning the elements of the functional,
note that by computing a diffeomorphic registration, we mean to find a
smooth function with one-one correspondence between the objects such that
landmark constraints are all satisfied. Therefore, our energy functional to
be used is:

(4) inf
f∈F

‖H(x)‖1 +
σ

2
||Δf(x)||22dx
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where σ ≥ 0 is a fixed parameter and F is the set of functions satisfying the

landmark constraints.

This energy is composed of two terms. The first term H(x) is a term that

generically involves Df , the Jacobian of f . This term guarantees the map

to be bijective and orientation-preserving having no overlaps. And for per-

formance consideration, we choose to minimize ||H(x)||1. Then the second

term, which is the Laplace-Beltrami operator of f , is employed to promote

smoothness of the resultant mapping.

4.3. Computation and discretization of the Anisotropic Indicator

In this subsection, the discrete model and the computational method of the

proposed Anisotropic Indicator are to be introduced. For a discrete model

of the registration model, readers are advised to read [20] for detailed ex-

planation.

In a discrete case, M and N are high dimensional meshes. Hence, for

any vertex point p ∈ M , we may take the one-ring vertices of p, that is, all

vertices in M that are connected to p by an edge. In the following we denote

the set of all one-ring vertices of p by Rp.

We may represent M and N as subsets of Rn by an index matrix. For

example, if M is a 3-dimensional subset of R3, we can put M into an, say,

1,000-by-1,000-by-1,000 matrix M̂ , and assign 1 to M̂(x, y, z) if (x, y, z) is

in M and 0 otherwise. Also, if there are two adjacent 1 in M̂ we say these

two vertices are connected and the edge length is 1. In this manner, for

each p ∈ M , Rp is the set of all vertices in M having distance 1 from p. By

this simplification we have the following definition of discretized Anisotropic

Indicator.

Definition 4 (Discrete Anisotropic Indicator of deformation from object

M to object N through f). Let f : M → N be a registration function. The

Anisotropic Indicator from M to N through f at each p ∈ M is defined to

be:

AidM,N (f ; p) = Aidf (p) :=
Lf (p)− 1

Lf (p) + 1

where

Lf (p) := max
u,v∈Rp

u�=v

|f(u)− f(p)|
|f(v)− f(p)|

Moreover, since now Rp is finite, we can simplify Lf (p) by
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(5) Lf (p) =

max
u∈Rp

|f(u)− f(p)|

min
v∈Rp

|f(v)− f(p)|

Therefore, the Anisotropic Indicator can be easily computed in the dis-
crete case. And by this, the discretization of the General Anisotropic Indi-
cator is immediate.

5. Algorithm

In this section, we summarize the numerical algorithm to detect abnormal-
ities of an object from another object.

Given M , an n-dimensional object as a control object. Given N , an n-
dimensional object that is viewed as a deformation of M , such that M and
N has the same number of points (i.e. |M | = |N | = P ). Given LM ∈ M ,
LN ∈ N and f̂ : LM → LN , where the former two sets are the landmarks in
M and N respectively such that |LM | = |LN |, and f̂ is the bijective function
matching the landmark constraints. The algorithm is as follows:

1. Compute the registration diffeomorphism f : M → N by solving the
minimization problem

inf
f∈F

‖H(x)‖1 +
σ

2
||Δf(x)||22dx

subjected to the constraint f |LM
= f̂ .

2. For each p ∈ M , compute

AidM,N (f ; p) =
Lf (p)− 1

Lf (p) + 1

where

Lf (p) =

max
u∈Rp

|f(u)− f(p)|

min
v∈Rp

|f(v)− f(p)|

3. Compute

GAidM,N (f ; p) =

(
P∑
i=1

AidM,N (f ; p)

)
/P

to measure the general abnormalities of the deformation of N from M .
4. Local abnormalities of N from M can be detected by AidM,N (f ; p) for

each point p ∈ M .
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6. Experimental results

We tested our proposed model on synthetic examples to validate the sen-
sitivity of our algorithm to detect deformations of different type, different
degree and different position. We also applied our algorithm to real exam-
ples like the CT lung images. After computing the Anisotropic Indicator
Aid, the GAid, the maximum and the standard deviation of Aid are further
computed, that each of them carry significant information to analyze the de-
formation. While GAid is already explained in previous sections, max(Aid)
indicates the upper bound of the degree of deformation, and std(Aid) gives
further illustration on the distribution of the deformation. Since the confor-
mality distortion is locally defined, the distribution of the deformation can
hence be visualized, by showing the color map corresponding to the magni-
tude of Aid(x), such that abnormal deformities can be clearly located in an
efficient manner.

6.1. Synthetic examples

In this subsection, experiments are to be done on four synthetic examples.
The first experiment is enlargement of an unit cube. In the experiment

the cube is sliced into 32-by-32-by-32 small cubes evenly. For instance, each
sub-cube is a cube with length 1

32 . The collection of vertices of all these sub-
cubes form the vertex set of our experiment. Then, the unit cube is enlarged
into cubes with edge length:⎧⎪⎨

⎪⎩
Experiment 1(a) l = 2

Experiment 1(b) l = 4

Experiment 1(c) l = 9

Simulating normal growth of human tissue, this deformation should be
regarded as entirely normal, that is, conformal, by the algorithm. The sta-
tistical result of the conformality distortion computed is recorded in table 1.
The result generated by our algorithm is as expected, proving that conformal
deformation is neglectable using our proposed algorithm.

Our second experiment is to stretch the unit cube with respect to one
principal axis. For simplicity the stretching is always directed along the z-
axis. And it elongates the height h of the cube from h = 1 to:⎧⎪⎨

⎪⎩
Experiment 2(a) h = 1.5

Experiment 2(b) h = 3

Experiment 2(c) h = 5
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Figure 2: Volumetric brain model.

While the previous experiment models normal deformation, abnormal
deformation is modelled this time. The aim performing this experiment is to
show the ability of our algorithm detecting abnormal deformities. Referring
to the result listed in table 1, our algorithm detected all three abnormal
deformities by reporting Aid(x) > 0 at all the points. This satisfies our
expectation, meanwhile the magnitude of Aid further indicates the degree
of the deformations concerned, in which it is gradually magnified as the
height of the cube is further stretched.

Combining the above two experiments, the results prove the assertion
that our algorithm can distinguish between normal and abnormal deformi-
ties, which are modelled by isotropic and anisotropic deformations respec-
tively. We now proceed to investigate the sensitivity of our algorithm in
the following experiments. To better model practical situations like medical
imaging, we will use a volumetric brain model to perform our experiment
(See Figure 2).

We first model a simpler situation: a tumor is grown inside the brain. In
the experiment, we artificially plant a tumor in our brain model as indicated
in Figure 3.

Now, we operate our algorithm on the brain, registering the normal one
to one with an artificial tumor. We expect the algorithm to report abnormal
deformation near the region of the tumor and report normal away from
that region. And, fulfilling our hope, the statistical result of Aid(x) (in
table 1) tells that abnormal deformation occurs in a localized manner, since
small GAid and std(Aid) are recorded, together with a large magnitude of
max(Aid).

This is not the whole story unless the position of the deformation can
also be tracked efficiently by our algorithm. Since the conformality distor-
tion Aid is locally defined, a natural way to locate the region of abnormal
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Figure 3: Tumor planting in Experiment 3.

deformation is to simply search for the region where Aid(x) is high. But a
more efficient and humane method is to use color-map with correspondence
to the magnitude of Aid(x). In our experiment, we colored the brain model
with face color value based on the magnitude of Aid(x) on each face (See
Figure 4).

Comparing with Figure 3, it is undoubtable that the color-map Figure 4
is capable to be used to trace the location of the tumor. Here we set the color
range to be from 3 to 3.5 to ease visualization. To locate the abnormalities in
a more meticulous manner, the color range can be adjusted to highlight the
region with the most severe deformation. Considering the practical usage of
the algorithm in industry or hospital, this should be an efficient method to
locate abnormal deformations.

Our last experiment on synthetic examples is an advanced version of the
last tumor experiment on brain. This time, three tumors are planted inside
the brain. (See Figure 5). All the processes stated above are performed once
again to detect the tumors.

The significance of this experiment is to further test the power of our
algorithm. Whether the three tumors can all be identified, and how the
statistical results differ from that of the previous experiment are the two
most important subjects of our investigation. The results are recorded in
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Figure 4: Color-map of brain model in Experiment 3.

table 1. Statistics show that the abnormalities occur locally somewhere.
Comparing with the last experiment, max(Aid) increases slightly, which is
as expected, because the tumors planted are in around the same size as that
in the previous experiment. GAid remains similar, with a possible reason
being that the the overall shape of the brain does not change a lot either by
planting one tumor or three tumors. Lastly, std(Aid) increases significantly,
which also lies on our expectation since the spread of tumors is obviously
more severe this time.

Only by recording statistical results could no one understand the defor-
mation complete enough, and the missing information is mostly stored in
the color-map of Aid on the object concerned. For instance, the location of
the tumors can be traced by looking at the color map.

Referring to Figure 5, the color-map is trust-worthy pointing out the
tumors’ location. Again, adjusting the range of the color-map varies the
accuracy of location of abnormalities.

The statistical results of all four synthetic experiments are listed in the
following table:

Table 1: Result of experiments on synthetic examples

Deformation Type Level max(Aid) GAid std(Aid) max(||∇f ||2)

Enlargement deformation
1(a) 0 0 0 0.00146
1(b) 0 0 0 0.01172
1(c) 0 0 0 0.13348

Stretch deformation
2(a) 0.2000 0.2000 0 0.00028
2(b) 0.5000 0.5000 0 0.00055
2(c) 0.6667 0.6667 0 0.00092

Brain tumor deformation 1 - 0.7386 0.0144 0.0187 0.00020
Brain tumor deformation 2 - 0.7553 0.0138 0.0223 0.00027
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Figure 5: Tumor planting in Experiment 4.

6.2. Real examples using CT images of lung respiratory
deformation

Apart from synthetic examples, we also applied our algorithm to detect
abnormal deformities on real data. We emphasize once again, that our al-
gorithm is built so as to detect and extract abnormal (anisotropic) defor-



410 Hei Long Chan and Lok Ming Lui

Figure 6: Color-map of brain model in Experiment 4.

mations from any hybrid deformations, hindering all normal (isotropic) de-
formations that may be included. Hence, in order to validate the power
of our algorithm to accomplish this task, we need to analyze some hybrid
deformations in real life.

For instance, we analyze the pulmonary system of human. Lungs of ev-
eryone must undergo contraction and dilation in breathing, but the way
they deform may differ according to the medical state of the person. In our
experiments, we used lung CT images as our data set. We tested our al-
gorithm using five set of data. In each set of data, a sequence of lung CT
images, capturing the shape of the lungs when a patient respire, are pho-
tographed. Six images, taken in constant time interval, complete a half-cycle
of the respiration process, showing the shape of the lungs from maximum
exhalation to maximum inhalation. Between each two consecutive images,
300 landmark constraints are pre-assumed to correspond the images. The
images are partly provided (to save space) in Figure 7.

We applied our algorithm to study the five images. The statistical results
are computed and recorded in table 2.

Results show that all five deformations are similar, and are very likely
to be abnormal locally at some points. Among all examples, as max(Aid)

Table 2: Real example on lung CT images (note: volume of the cubes are
all 1)

Example max(Aid) GAid std(Aid) max(||∇f ||2)
CT 1 0.6285 0.0424 0.0307 0.000004
CT 2 0.4658 0.0466 0.0327 0.000005
CT 3 0.6266 0.0564 0.0386 0.000006
CT 4 0.8019 0.0639 0.0401 0.000035
CT 5 0.6410 0.0490 0.0317 0.000005
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Figure 7: Lung CT models.

Figure 8: Color-painting of abnormalities of CT1.

suggests, CT2 has the least degree of abnormalities while the most serious
abnormal deformation took place in CT4. To complete the analysis on the
deformations, we proceed to visualize the position of abnormal deformations.

As in the previous subsection, we suggest to use color-map to locate the
position of large abnormal deformations. To save space we show here only
the result of CT1, CT2, and CT3 (See Figures 8, 9, 10).

Using the images (Figures 8–10), the position of abnormalities can be
well approximated for future studies by medical doctors.

7. Conclusion and future work

This paper presents an extension of the detection of shape deformities, from
that between 2-dimensional surfaces to that between any n-dimensional ob-
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Figure 9: Color-painting of abnormalities of CT2.

Figure 10: Color-painting of abnormalities of CT3.

jects. By modelling abnormal deformations by anisotropic deformations, we

propose the Anisotropic Indicator to quantify the abnormality of a deforma-

tion. The basic idea is to characterize a deformation using its local behaviour

on an infinitesimal sphere. The proposed indicator provides local informa-

tion including the position and degree of abnormalities. Also, the indicator

is easy to compute in a discrete case. Experimental results approves the ef-

fectiveness and sensitivity of our algorithm to detect and extract abnormal

deformations. Besides, visualization of abnormalities can be easily achieved

using our algorithm, so as to help tracing the regions of abnormalities effi-

ciently. In the future, more experiments on other real medical data will be

done to test the algorithm.
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