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Searching geometry-aware pants decomposition in
different isotopy classes

KANG ZHANG AND XIN Lr*

We propose an optimization framework to compute the desirable
pants decomposition of surfaces. A pants decomposition partitions
a surface into a set of genus-0 sub-patches with 3 boundaries. Any
surface with non-trivial topology admits infinitely many pants de-
compositions that are isotopically inequivalent. We traverse differ-
ent classes of pants decompositions to search for the optimal one
with the pre-determined geometric criterion. Our proposed frame-
work is general, and can be used to construct different suitable
segmentations according to different applications. We also general-
ize this algorithm for consistent decomposition of multiple surfaces,
which can be used to construct compatible cross-surface parame-
terization.

1. Introduction

Given a surface with complicated geometry and topology, the surface seg-
mentation partitions it into a group of simple sub-patches. It is widely used
in many divide-and-conquer methods in geometric modeling. For multiple
surfaces, a consistent decomposition is used to segment them into sets of sub-
patches with the coherent adjacency relationship, namely, their dual graphs
are isomorphic. It has many important applications, including cross-surface
parameterization, morphing, animation transfer/synthesis, and many oth-
ers [7, 15, 12, 11, 8, 20].

Existing algorithms segment the surface by local geometry regardless of
the topology of the surface itself and its resultant decomposition. They are
mostly used in single surface segmentation. However, the topological con-
sistency of the segmentation is critical when processing multiple models in
a unified divide-and-conquer scheme. Hence, existing single model segmen-
tation methods often can not be easily generalized to consistently segment
multiple surfaces. For the consistent segmentation, one popular scheme is to
partition multiple surfaces into sets of topological disks [8, 7, 15]; the cutting
boundaries of these disks are shortest paths connecting pre-defined marker
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(feature) points. However, this approach requires the same number of fea-
ture points to be coherently placed on every model. For high-genus surfaces,
quite a few amount of markers are necessary to ensure the correctness of the
path tracing. Corresponding markers often need to be labeled manually and
carefully, making the computation laborious and potentially unreliable. An
automatic algorithm for high-genus surfaces with guaranteed segmentation
consistency is hence desirable.

1.1. Consistent segmentation

Consistent segmentation of multiple objects has been intensively studied in
computer graphics literatures. It is desirable to partition multiple objects
into similar salient parts. For example, part analogies [16] segments each
model into parts independently and then creates a distance measure by both
local shape signatures and the context of the parts within a hierarchical de-
composition. A consistent segmentation is then created based on this catalog
of parts with inter-part distances. Golovinskiy and Funkhouser [4] simulta-
neously segment models and create correspondences between segments, so
that the salient segments that are shared across the set of objects can be bet-
ter identified. Kraevoy et al. [18] develop a modeling tool that consistently
partition two meshes into sub-patches. These sub-patches are one-to-one cor-
responded and hence can be transplanted from one model onto the other.
Yu et al. [24] compute consistent partitioning of shapes based on compat-
ible skeletonization and star decomposition. Unlike [4] that allows outlier
segments, this algorithm rigorously partitions all models consistently. This
topological coherency is necessary for applications like cross-surface mapping,
where outliers should not be allowed.

1.2. Pants decomposition for consistent segmentation

In this section we will introduce the definition for the pants decomposition,
which is a powerful topological tool for automatic consistent segmentation.

Definitions. A pants decomposition (PD) is a set of curve cycles that parti-
tions a surface into disjoint pants patches. Each pants patch is a topological
sphere with three boundaries (see Fig. 1 for examples).

Two curves ¢; and co on a surface M are homotopic to each other, if
one can continuously evolve to the other through a family of paths on the
surface. If a cycle is homotopic (i.e. can continuously contract) to a point,
it is a trivial cycle, otherwise, it is a non-trivial cycle (cycles in Fig. 1(b)).
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Figure 1: A Maximal Cut System (Pants Decomposition) for Two-torus.
Left: a pants patch; Right: a maximal cut system (please check the electronic
version of the paper for color figures).

A cycle is simple, if it is not self-intersected. Two cycles are disjoint if the
intersection of them is empty.

A surface patch M is genus-g if M can remain connected with at most g
simple non-trivial cycles removed. A genus-g surface patch with b boundaries
is denoted as the type (g,b). A mazimal cut system of M is a set C' of simple
and pairwise disjoint cycles {c¢;} that partitions M into sub-patches of type
(0,3). Fig. 1(b) illustrates a maximal cut system computed on a two-torus
model. Each sub-patch of type (0, 3) is called a pants patch. We also call this
C' a pants decomposition of surface M.

Any compact orientable surface, except for four trivial cases: sphere
(b =g =0),disk (b =1,9 = 0), torus (b = 0,9 = 1), and cylinder (b =
1,9 = 1), admits a pants decomposition [6]. If M is of genus g and has b
boundaries, a pants decomposition (PD) C of M is made of |C| =3g+b—3
cycles {c;,i = 1,...,|C|}, and partitions M into 2g + b — 2 pants patches
(M;,i=1,...,2g+b—2} [10].

Topological classification of PD A surface M admits infinitely many pants
decompositions. We say two pants decompositions C' = {¢;} and C' = {¢;}
are topologically equivalent, or homotopic, to each other if |C| = \C’ | and
there is a permutation 7 : {1,...,[C[} — {1,...,|C|} that ¢; ~ ¢, for
V1 < ¢ < |C]. Intuitively, two pants decompositions are homotopic if we
can continuously evolve one set of cycles on M to the other. The topological
class of pants decompositions of M is that any two pants decompositions are
topologically equivalent to each other. In this paper, our goal is to develop
an algorithm to traverse among different topological equivalence classes to
search for the optimal pants decomposition with the given geometric criteria.

Ezisting work in PD  Pants decomposition algorithm is widely used in many
geometric modeling applications. For example, Wang et al. [22] uses pants
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decomposition to construct the T-spline. Other works including [23] and [13]
also generate the volumetric T-splines by applying the pants decomposition
algorithm.

Surfaces with nontrivial topology can be studied by its homotopy types
of maps. In [12], canonical homology bases [5] and systems of cycles [3] are
used to study this issue and build maps of different homotopy types. Dey
et al. [1] define the terms handle cycles and tunnel cycles, which provide
another intuitive way to study the topological handles on surfaces; they also
introduced an efficient computation algorithm to compute tunnel and handle
cycles [2]. Liet al. [10, 11] took the handles and tunnel cycles computed by [2]
as inputs to compute canonical pants decomposition. Hatcher et al. [6] stud-
ied the enumerations of pants decomposition of different homotopy types.
Computation of pants decompositions with shortest cutting locus has also
been studied [6, 19]. Zhang et al. [25] first studied the optimization of the
pants decomposition under certain geometric criteria.

A consistent pants decomposition algorithm for multiple surfaces was
proposed in [11]. Due to the topological regularity of each sub-patch (genus-
0, 3 boundaries), pants decomposition can be conducted on multiple high-
genus surfaces for consistent decomposition. The algorithm proposed in [11]
removes handles (type-(1,1) patch) of the given genus-g surface M itera-
tively and produces a type-(0, g) remaining patch M’ then it further par-
titions M’ into many type-(0,3) pants patches iteratively. However, such a
pants decomposition computed following a sequence of predetermined topo-
logical operations, may generate less geometrically-desirable partitioning on
some models due to two main reasons:

e Topologically, the pants decomposition obtained via iteratively remov-
ing handles may not be geometrically natural and can lead to unde-
sirable partitioning for some shapes (see Fig. 4(b) for an example).

e Geometrically, tracing the segmentation boundary only using shortest
paths is often not the most suitable criterion for many shapes.

1.3. Main contribution

We develop an algorithm to traverse among different topological equivalence
classes to search for the optimal pants decomposition. This topological op-
timization framework is ubiquitous for different applications preferring dif-
ferent geometric criteria. Guided by different criteria, this framework can
provide locally optimal pants decomposition results. We also generalize this
method to consistent pants decomposition for multiple surfaces and discuss
its applications on inter-surface mapping and morphing. The three specific
contributions of work are:
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1. We develop a computation framework to traverse among the different
topologically equivalence classes of the pants decompositions to search
for the optimal pants decomposition under given geometric criteria.

2. We evaluate and integrate several useful geometric criteria in our de-
composition framework.

3. Based on the above tool, we design a reliable consistent pants de-
composition framework. When 2¢g + b cycles are identified, a unique,
locally-optimal, consistent set of pants decompositions across multiple
objects can be obtained. We explore its applications on cross-surface
mapping and morphing.

The remainder of this paper is organized as follows. Section 2 introduces
the computation of PD in different homotopy classes; Section 3 integrates
different geometric criteria into the optimization of PD. We discuss consis-
tent PD computation across multiple surfaces in Section 4, show applications
and experimental results in Section 6, and conclude the paper in Section 7.

2. Computing and enumerating PD
2.1. Pants decomposition graph

To help analyze homotopy classes of pants decomposition, we introduce the
following Pants Decomposition Graph (PD-graph) G = (V, E).

The node v; € V' denotes the pants patch p;. p; and p; are adjacent if
two pants patches p; and p; share one or more boundaries and v; and v; are
connected by the edge e;; € E for each pair of adjacent pants patches p; and
pj. Bach edge e;; also corresponds to a cycle shared by two adjacent pants
patches p; and p;. With the help of the PD-graph, we can enumerate the
topologically inequivalent pants decompositions which will be elaborated in
the next section. Fig. 2 shows one possible PD and its corresponding PD-
graph on the genus-4 Greek model. Note that a node can be adjacent to
itself if two of its boundaries share a common cycle. By gluing this cycle we
will get a (1,1)-typed patch.

2.2. Computing initial pants decomposition

In the first step, we will compute an initial pants decomposition on a given
surface M. We can apply the existing pants decomposition method such as
[11]. However, we develop a more efficient and reliable algorithm to compute
the initial pants decomposition.
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Figure 2: A Pants Decomposition Graph for Greek. Left: A decomposition
computed on Greek; Middle: Its maximal cut system; Right: Its correspond-
ing PD-Graph.

For a surface M with genus-g, its homology basis consists of 2¢g cy-
cles. The homology basis formed by the handle and tunnel cycles [1] are
used to compute the pants decomposition. In this paper, we apply the algo-
rithms/software of [2] to obtain the homology basis. First, we pick a subset
B composed of g simple and pairwise disjoint cycles {b1,ba,...,by} (e.g. all
the g tunnel (handle) loops, or some disjoint k& tunnels plus g — k handles,
form such a subset B). The maximal cut system is then computed based on
B. First, we slice along all the cycles in B, which makes M become a type-
(0,29 + b) surface. We denote this surface as M and its 2g + b boundaries
as W = {wi,ws, ..., wygqp}. Second, we iteratively pick two boundaries w;
and w; from W and compute the cycle w’ which is homotopic to w; o wj.
These three cycles can form a pants patch M. Then we remove M, from M
and the remaining surface M’ = M \ M}, becomes type-(0,2g + b — 1). That
is, its genus is 0 but the number of its boundaries are reduced by 1(since two
cycles w; and w; are removed, and one new cycle w’ are inserted). We repeat
this step until |W| = 3. The detailed algorithm is formulated in Algorithm 1.
Fig. 3 illustrates the process.

Algorithm 1. Initial PD computation.
In: A type-(g,b) surface M, B(M) = {b1,...,by};
Out: Its PD {My, M>, ..., Mygip—2}, where M = M,;.

1. Cut M open all cycles in B and get a type-(0,2g + b) surface M with
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Figure 3: An illustration of inital pants decomposition.

0@

(b)
Figure 4: Pants decomposition of a genus-3 surface (a) Homotopy equiva-
lence class (b) PD by previous method (c¢) PD by our method.

boundaries W = {wq, wa..., wag4p}-

2. Pick two cycles in W, compute a shortest cycle w’ homotopic to w;ow;.

3. {wj, wj,w'} bound a pant patch Mj; remove M from M, remove
w;, wj from W and add w’ into W.

4. If the remaining surface M « M\Mk is not a pants patch, go to
STEP 2, otherwise STOP.

2.3. Homotopic cycle computation

In the above algorithm and the following sections, we frequently use an
operation which computes a cycle v’ homotopic to cycle w; o w;. In this
section we would elaborate the details of the computation.

Given a surface M with multiple boundaries w; (i = 1,2...), we would
like to compute the shortest cycle w’ homotopic to cycle w; o wj:
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Figure 5: Computing Homotopic Cycle.

1. Connect w; and w; with shortest path. Connect all the boundaries
of M except w; and w; together with shortest paths (Red curves in
Fig. 5).

2. Slice all those computed shortest paths apart. M becomes a topological
cylinder.

3. Connect the two boundaries of the cylinder using shortest path ~
(Green curve in Fig. 5).

4. Slice v apart. Each point p on 7 will split to a pair (p,p). Find the
pair of points with the minimal length of the shortest connecting path.
This path is the cycle w’ (Blue cycle in Fig. 5).

2.4. Enumerating pants decompositions

To search for a desirable pants decomposition from different homotopic
classes, we need to traverse all the possible PD. Here we introduce two
basic topological operations, denoted as Associativity Move (A-Move) and
Simple Move (S-Move) [6]. By sequentially applying one of these two oper-
ations, any two topologically different pants decompositions can transform
to each other. Therefore, all topological types of PD can be enumerated.
We illustrate these operations in Fig. 6, and elaborate their definitions and
computations as follows.
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() (d)

Figure 6: A-Move and S-Move. (a) An S-Move conducted on a handle patch
i.e., a self-connected node (c) on the PD-graph; (b) An A-Move; which mod-
ifies the connectivity of the PD-graph (d).

e Associativity move (A-move). If we glue two adjacent pants patches
along one of their shared boundary and get a (0,4)-typed patch, then
we can perform an A-move. There must exist a circle ¢’ which is disjoint
to the elements in B(M) other than ¢ and intersects ¢ with 2 distinct
points. After replacing ¢ by this circle we can get a new PD.

e Simple move (S-move). If we glue one pants patch along one of its
shared boundary and get a (1, 1)-typed patch, then we can perform an
S-move. There must exist a circle ¢ which is disjoint to the elements in
C(M) other than ¢ and intersects ¢ with a single point. After replacing
c by ¢ we can get a new PD.

Using our PD-graph, for a cycle ¢, we do not need to explicitly glue
adjacent patches then compute the resultant topological type such as (0,4)
or (1,1); we can directly check this cycle’s corresponding edge e on the PD-
graph. If e links two different nodes p # ¢, then gluing pants patches p
and ¢ along ¢ will lead to a patch whose type is (0,4). If e links a node
to itself p = ¢, then gluing p and ¢ along ¢ will lead to a patch of type
(1,1). Therefore, on a PD-graph, we can efficiently enumerate different pants
decompositions using A-moves and S-moves, and traverse all possible pants
decompositions of the surface M.

2.4.1. Computing A-move Consider two adjacent pants patches p,q;
let I'y,I'9,I's be 3 boundaries of p and 71,792,773 be 3 boundaries of ¢, and
I's and 3 be the same boundary I's = v3 € C. After an A-Move, I's = 3
will be glued and a new cycle I'y = 4 with a different homotopy type is
generated; and C' will be updated: C’ «— C\{I's} U {['4}. Fig. 7 illustrates
the process of computing A-move.
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Figure 7: Computing A-Move. (a) The initial pants patches p, q. (b) Glue p,
q and get a patch with type (0,4) Connect each pair of boundaries with ¢;
and cg. (¢) Connect ¢; and ¢ with ¢3. (d) Find the point pair with minimal
length of shortest path. (e) Different homology type of A-Move.

Algorithm 2. Computing an A-Move.
In: Adjacent patches p,q, and their ordered boundaries (I'1,I'9,T'3) C p,

(11,72,73) C g, I's = 3.
Out: I'y = 4 and updated maximal cuts.

1. Glue p and ¢ along I'3(7y3).

2. Compute the shortest path ¢; connecting I'y and ~; and the shortest
path co connecting I'y and ~s.

3. Compute the shortest path cs connecting ¢; and ca.

4. Slice c3 apart: each point ¢, € c3 splits to a pair of points (Tk,fk).
Compute the shortest paths s; connecting each pair of T} and Tk),
pick the shortest path that has the minimal length. This path is the
corresponding cycle I'y.

5. Update the maximal cut system C’ < C\{I's} U {T'4}.

Here all the shortest paths between two curves/cycles are computed on
triangle mesh using the Dijkstra algorithm. In the next section, we will ap-
ply different weights on triangle edges following different geometric criteria.
Also, all traced shortest pathes are enforced to circumvent ¢, ca (in step 3),
boundaries, and all the cycles in C'. This guarantees that the resulting I'y is
simple, non-trivial, and not homotopic to any other boundaries. The com-
puted c1, ¢2, c3 and the result I'y are shown in blue in Fig. 7(b,c,d). Note that
the indices of boundary cycles matter: if the input boundaries of ¢ becomes
(7v2,71,73), then the result is shown in Fig. 7(e).
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Figure 8: Computing S-Move. Left: The initial pants patch p; Right: Find
the point pair with minimal length of shortest path connecting them.

2.4.2. Computing S-move Consider a pants patch p with 3 boundaries
I',I'9, 13, suppose I's and I's are the same boundaries I'y = I's € C. An
S-move can be computed by tracing shortest paths. Fig. 8 illustrates the
process of computing S-move. For each point ¢ € I's, there should be a
corresponding point t € I's. Note that when we glue I's and T's, ¢ and t will
merge, but now since the surface is sliced open, the shortest path Path(t,~)
between ¢ and ¢ will go following a longer path like a handle or tunnel
cycle. We search all the point pair (¢,£) on I'5(I's), and pick the pair t,t,
whose Path(t,%v) has the shortest length. This shortest path is a new cycle
I'y with a different homotopy type. And C shall be updated accordingly:

C' «+ C\{Fg} U {P4}.
2.5. Topological surgery

In order to decompose surfaces with trivial topology (four cases discussed
in Section 1.2), or more frequently, surfaces with features. We can use the
topological surgery operation to evolve a region with genus 0 to a handle.
Given a pair of surgery points (e.g. features), first punch holes on them
and make their one-ring neighbors to become boundaries, w; and wy. Then
compute a cycle ws ~ w; owy bounding them. Then this region bounded by
those three boundaries becomes a type-(0, 3) patch and can be matched with
a handle region, as illustrated in Fig. 9. This is very helpful in controlling

Figure 9: Topological surgery and evolution to a handle.
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decomposition using feature alignment and also in matching surfaces with
different topologies (details to be discussed later).

3. Optimizing pants decomposition

The topological operations enable us to enumerate pants decompositions of
different homotopy types. With that the optimization of PD under some pre-
determined geometric criterion can be performed. We adopt a few popular
criteria to guide this optimization, but note that our topological framework
is general and can be applied on other user-specified metrics for different
applications. We adopt a greedy search over the PD-graph upon which dif-
ferent geometric criteria are defined. The algorithm starts from an initial
decomposition, and conducts either the S-move or A-move if the total cost
defined on PD-graph decreases.

3.1. Defining geometric criteria on PD-graph

We adopt several useful geometric criteria to guide the PD optimization. In
this framework, since all the tracing of cutting cycles are from Dijkstra’s
algorithm conducted on the weighted triangle meshes. These criteria can be
integrated into the weight of each triangle edge. On the PD-Graph, each
node indicates a pants patch and each arc corresponds to a traced cycle. We
perform a breadth-first search on the PD-Graph, and pick the decomposition
whose cost is minimal.

Shortest length Short cutting paths are usually desirable in shape decom-
position, because shortened paths better approximate the geodesic curves
and avoid the zigzagged boundary geometry of the sub-regions. One can
minimize the total length of all the cycles in the maximal cut system. On
edge e = (v;,v;), we can take the Euclidean distance between two vertices
as its weight, oy(e) = |v; — v;|?, to be used in the Dijkstra tracing. Then the
PD-graph, in its optimized state, indicates a partitioning whose boundaries
have the minimal total length.

Minima rule Human perception often cuts the surfaces along concave re-
gions, which is referred to as the minima rule [9]. Following the minima rule
to partition an object along the concave regions, the models are likely to
be decomposed into convex sub-parts. For example, for human bodies, the
head, arms and legs are naturally separated by the minima rule. We inte-
grate this into our decomposition so that it traces the cutting boundaries
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along the concave regions, i.e., the regions with salient negative minimal
curvature: (1) compute the minimal curvature x(v) for each vertex on the
surface; (2) normalize the minimal curvature by r(v) = (k(v) — p)/a, where
1 is the mean and « is the standard deviation of k(v) over all vertices of the
surface; then (3) further normalize r(v) into range (0, 1). The minima-rule
weight of an edge e = (v;,v;) is then defined as: oy, (e) = %
Symmetry Many geometric shapes have intrinsic symmetric patterns, it
is natural and desirable that they are also partitioned symmetrically. For
example, in order to cut the surface along its symmetry plane, we can define
a scalar field, encoding on each vertex d(v) its (Euclidean) distance to the
symmetry plane. We further normalize this scalar field into range (0,1).
The weight on each edge is then: os(e) = w. An edge that on the
symmetry plane has higher priority to be included in the tracing curves.
The final combined weight to be used in optimization is

(1) a(e) = aile) - (am(e))™ - (os(e))™,

where a,,, as are weights indicating importance of different terms. Note that
each of the o,,(e) and os(e) is normalized into (0, 1), bigger corresponding
« indicates larger importance. Other geometric criteria can be integrated
similarly.

Fig. 10 and Fig. 11 illustrate PD guided by the aforementioned metrics.
Fig. 10 shows an example of adopting the minima rule in PD computation.

Figure 10: PD of the Hand model using different criteria. Left: PD cycles
traced via shortest lengths; Middle: the minimal curvature field; Right: PD
cycles traced via minima rule.
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Figure 11: PD of genus-3 mechanical part using different criteria. Left: PD
using shortest lengths; Middle: the distance field to the symmetry plane;
Right: PD guided by symmetry.

With big ayy,, the cutting boundaries are more likely to go through concave
regions, i.e., in (b) the blue regions with high negative minimal curvature.
Fig. 11 shows an example of symmetry-emphasized PD computation.

3.2. PD optimization under geometric guidance

We use a greedy strategy to search for the optimal pants decomposition from
topologically-inequivalent classes. Given a genus-g surface and its PD-Graph
G, for each element ¢; (i = 1,...,3¢g — 3) in the maximal cut system of M,
we do an S-moves or A-moves on ¢;. Then we can generate a different pants
decomposition and a new corresponding PD-Graph G;. Enumerate all the
PD-Graphs G; (i =1,...,3g — 3) that are evolved from G by one move of
different edges, we pick the PD-Graph with the minimal cost, denoted as G’.
If G’ = Gy, the original PD is a locally optimal result, then return with G’,
otherwise, let Gy +— G’ and repeat this search.

Since our searching is a greedy approach, the result is only a local op-
timum. However, we can increase the searching space by comparing two or
more moves from the current PD-graph. On the other hand, although our
greedy searching cannot guarantee to find the globally optimal solution, it
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usually produces topologically simple and geometrically desirable partition-
ing. More importantly, this approach can be easily generalized for consistent
segmentation.

4. Consistent decomposition of multiple models

The PD optimization framework introduced above can be generalized from
one surface to multiple surfaces. In the following, we elaborate an algorithm
on consistently segmenting two surfaces M; and My (generalizing this to
handle multiple (more than two) surfaces is straightforward). We can start
from a consistent decomposition of M; and M, and simultaneously per-
form the same moves iteratively, when the algorithm stops, the resultant
partitioning is consistent. This provides a general consistent partitioning
optimization framework for graphics applications such as cross-surface pa-
rameterization, matching, morphing, and etc.

4.1. Initial consistent PD computation

We can compute the consistent decomposition of M; and Ms using the al-
gorithm in Section 3. Denote C'(M;) as a maximal cut system for M; and
C(M3) a maximal cut system for Ms. We shall discuss the correspondence
between two maximal cut systems. The correspondence between pants de-
compositions of surfaces is determined by the indexing of the two maximal
cut systems. Since the maximal cut system is deduced by the initial 2g 4+ b
boundaries obtained in Section 2.2, we only need to specify the index of the
initial 29 4+ b boundaries. In practice, the correspondence between 2g + b
boundaries can be specified by user, or computed using heuristic methods
such as [11] (spatially matching the mass centers of handle loops).

Now, given an arbitrary indexing of B(M;) and B(Ms), say, T1, ..., Tag+p
and T7,...,T, g+b> respectively. We then follow the same consistent order to
compute the partitioning cycles, i.e., trace w’ ~ wry o wry in My if and only
if we trace cycle w ~ wr, owr, in Mj, and the correspondence between these
two maximal cut systems will be consistent. By this means, we can obtain
a consistent pants decompositions of My and Mo.

4.2. Consistently optimizing multiple decompositions
Using a similar aforementioned greedy searching scheme, we simultaneously

optimize both decompositions on PD-Graph G(M;) of surface M; and the
PD-Graph Go(Mz) of surface M. Namely, the same S-Move or A-Move
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should be applied on both the cycle ¢; € B(Mj) and its corresponding cycle
¢, € B(M3). Then we will obtain a new PD-Graph G;(M;) of surface M; and
an isomorphic PD-Graph G;(M3) correspondingly. During this searching, we
consider weights on each edge to be the sum of the weights defined on G;(M;)
and GZ(MQ) .

5. Cross-surface parameterization

When two high genus surfaces M and M are consistently partitioned into
pants patches {Mi,...,M,} and {Mi,...,M,}, where M = |J_; M; and
M = Ui, ]\7z We can get the cross parameterization ¢ : M — M PE indi-
vidually mapping each corresponding pair of sub-regions ¢; : M; — M;. Due
to the standard topological structure of pants decomposition, this divide-
and-conquer can be performed uniformly, using the following three-step al-
gorithm: (1) Flatten the pants patches M; and M; into two canonical planar
hexagons Q} and Q2, ¢; : M; — (QLUQ?), Ui+ M; — (Q1u0?), (2) compose
pants mapping ¢; : M; — M; by ¢; = 1;;1 o1, (3) relax the map across the
decomposition boundaries to reduce the mapping distortion. In our work
the mapping distortion is defined as the angle distortion. Angle-preserving
property is important in many applications, including texture transfer and
quad meshing.

5.1. Flattening a pants patch

A pants patch M; can be partitioned and parameterized onto two planar

hexagons Q}, Q2. We adopt a combination of the partitioning methods sug-

1
gested in [14] and [11]. (1) On M; we pick a boundary with the biggest
length, call it the outer boundary and denote it as 3, then map 3 onto a
unit circle. We then flatten the interior region using the harmonic map onto
the unit disk. Then the largest boundary 3 becomes the external boundary
I'3 of the planar disk and the other two boundaries ; and v of P become
the planar region’s internal boundaries I'y and I's. (2) We connect the three
boundaries I'y, I'y and I's with the shortest paths Aj, Ao and Az. These
three paths have three corresponding paths Aj, Ay and Az on M;. (3) We
slice M; along A1, A2 and A3, and get two patches Mi1 and Mf that are both
topological disks. Here we can flatten MZ-1 and Mf using harmonic maps
Yl M — Q and ¢? : M? — Q2 in order to minimize the angle distortion.

Optimizing planar hexagon shapes In [11], regular planar hexagons are used
to parameterize M. However, using a regular hexagon to parameterize dif-
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Figure 12: Parameterization of a Pants Patch. (a) A pants patch with 3
boundaries; (b) flattened to a big circle. There will be three boundaries on
this planar domain; (c) Compute the shortest path between three boundaries
and map the path back to the pant patch. (d) Slice the patch and map the
two parts into 2 hexagons.

ferent patches with different shapes can result in a big mapping distortion.
Inspired by [21], we also seek a better approximated planar domain shape for
each MZJ . We denote the lengths of six paths on partitioned patches, which
will be mapped to six edges of hexagon, by I; (i = 1...6), and denote six
corner points by C; (i = 1...6) (See Fig. 13). Then we solve the six corners
of a hexagon on a circle (centered at the origin O) such that each central
angle is ZC;0C;41/2m = 1;/ > I; due to simplicity and efficiency. Intuitively,
the length of each arc on the circle should be proportional with respect to
the corresponding path length. After locating corner points, other boundary
points are parameterized onto the boundary of the planar hexagon using the
arc-length ratio.

We can evaluate the angle distortion of these mappings by accumulating
the angle changes during this flattening [17]:
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Figure 13: Mapping two pants patches. Each pants patch is mapped to two
common planar hexagons. Then they are used as the common domain to
compose the mapping.
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f =1

where Ny is the number of triangles; on each triangle f, {a;} are the original
angles while {¢//} are the angles of the flattened mesh. Table 1 shows the
comparison result. Using optimized hexagon domain significantly reduces
angle distortion.

5.2. Composing cross-surface mapping

Suppose M and M are consistently partitioned into two compatible sets of
pants patches: {M,..., My} and {Ml, ..., My,}. We parameterize M; and
M onto two common planar hexagons Ql Q2 using the above algorithm.

Here each optimal planar hexagon Qi is computed from both Mf and ]\Aff
simultaneously.
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Table 1: Angle Distortion of the Flattening of the 3-torus Model. Each of the
four pants patches M, ..., My is decomposed into two topological hexagons
Mil, Mig. Rows 1 and 2 show the angle distortions when using the regular
planar hexagon as parametric domains; rows 3 and 4 show distortions when
using the optimized planar hexagon

Hexagons | Patches M, Ms Ms My
e(djil) 0.292 0.324 0.234  0.391

Regular | €(¥2?) | 0315 0.298 0.335  0.400
e(¥D) 100635 0.0642 0.0432 0.0776
Optimized | e(y2) | 0.0780 0.0727 0.0596 0.0797

The composition qbg = ({Ef )t owzzj can then be computed on the common

domain 2/, where the inverse of @ZZJ is approximated by the barycentric
interpolation. Fig. 13 illustrate the procedure of mapping two pants patches.

5.3. Global smoothing

The distortion of cross-surface mapping highly depends on the shape of
patches. The cross-surface mapping will have low distortion only if the
patches are well shaped, i.e., similar to regular hexagon. However, this is
not always the case. Here we introduce a smoothing procedure to allow a
vertex to migrate from one patch to another, which will drastically reduce
the mapping distortion.

For a vertex v, denote its one ring neighborhood as N (v). Suppose N (v)
is lying on two adjacent patches p;,p;, i.e., patches sharing the common
boundary. We use the following procedure to relax v:

1. Map p;,p; to local planar domain P. Compute the coordinates u(v;)
of v; € N(v) with respect to P.

2. Compute the new coordinates u(v) of v in P using the harmonics
average of its neighbors:

1
u(v) = S Zwiu(vi),

where w; is the harmonic weight of edge e(v, v;).
3. Check if the relocation flips triangle. If not, map v back to its patch,
and update the location of v. Otherwise, discard the relocation.

Note that when the vertex’s one ring neighborhood is lying on more than
2 patches, it is not moved. Fig. 14 shows the precedure. Fig. 15 shows the
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Figure 15: Mapping Relaxation. (a) A camel model is mapped onto a horse.
The camel’s mesh is transferred onto the horse geometry. The resultant mesh
is stretched if the map has large distortion (b); after relaxation the distortion
across the cutting boundary has significantly reduced (c).

relaxing result on camel to horse. From it, we can observe that the mapping
distortion is greatly reduced by smoothing process.

6. Experimental results

FEnumerating pants decomposition and optimization Fig. 16 shows our com-
putation on enumerating different pants decomposition on the genus-3 Mi-
chelangelo-David model. It shows both the maximal cut system and corre-
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Figure 16: Enumeration of Topologically-different Pants Decomposition on
Michelangelo-David Model. Both the decomposition and its corresponding
PD-graph are illustrated. This figure shows part of the entire enumeration
without considering any geometric criterion. The first row also indicates a
path to the pants decomposition with the shortest total length.

sponding PD-graph. The first row also indicates a path to the optimal pants
decomposition using shortest length as the criterion.

We show some more optimization results on pants decomposition in
genus-5 Botijo and genus-6 Happy-Buddha (Fig. 17). The original pants
decomposition are optimized using shortest length as the criterion. In all
these examples we can see the final decomposition patches have better shapes
than that before the optimization.

Consistent pants decomposition and cross-surface mapping Fig. 18 shows
some examples of the optimal consistent pants decomposition for multiple
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Figure 17: Optimization for Pants Decomposition on Botijo and Happy-
Buddha. (a,e) Initial pants decomposition; (b,f) optimized pants decompo-
sition, using shortest length as the criterion. (c,d,g,h) The front and back
views of the decomposition results; patches are color-encoded and moved
away from each other slightly for better visualization purpose.

objects. The cross-surface mappings are also computed and the results are
visualized using the morphing sequence. In Fig. 18(a), surface mapping is
generated with no user interference involved. In Fig. 18(b), two surgery
points are placed on the head of each model to guarantee the correspondence
between their head region.
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Figure 18: Several Examples for Morphing (0%, 50% and 100% morphing).

Fig. 18(c) shows the cross surface mapping between two models with
different topology (Dragon with genus-1 and Feline with genus-2). To enforce
the correspondence between their heads and feet, two surgery points are
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Table 2: Run-time table for the cross parameterization in our experiments.
# V is the number of vertices of the two models and # P is the number
of pants generated. Ta-prove, 1S-Moves L pp and Ty are the computational
times for one step of A-Move, S-Move, construction of pants decomposition,
and the entire mapping framework, respectively. The time unit is ‘second’

Models # \ # P | Ta-move | Ts-move | TPD Tou
genus-3 To 3-torus | 27719 & 29094 4 4.0 0.2 15.5 | 47.5
Feline To Dragon | 67252 & 25065 | 12 12.2 0.4 36.7 | 218.1

David To Greek | 26156 & 41057 | 6 4.8 0.2 18.7 | 524
Male To Cow 25002 & 30000 5 3.6 0.2 19.2 | 58.1

needed in each of those regions. In addition, a pair of surgery points are
generated on the tail of dragon corresponding to the handle of feline. We
can observe the tearing of handles and the evolution to a region with trivial
topology.

Fig. 18(d) shows the cross surface mapping from man to cow with texture
on the model, which demonstrates that our method can produce the cross
surface mapping with low angle distortion.

Running time The decomposition and mapping were implemented in C++
and we performed experiments on a desktop with Xeon(R) E5507 CPU
2.27GHz and 12GB RAM. The runtime statistics are documented in Table 2.

7. Conclusion

We propose a general pants decomposition optimization framework that
can traverse the space of pants decomposition. Given a predefined geomet-
ric criterion define on cycles or pants patches, we search for the optimal
partitioning using the PD-graph. This framework is robust, automatic, and
efficient. Therefore, it can facilitate cross-surface mapping computation by
providing optimized consistent segmentation among multiple models. We
demonstrate the effectiveness of the optimization framework by showing op-
timal decomposition under different geometric criteria and illustrating the
morphing indicated by the mapping.
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