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Equivalence of simplicial Ricci flow and Hamilton’s
Ricci flow for 3D neckpinch geometries

Warner A. Miller, Paul M. Alsing, Matthew

Corne, and Shannon Ray

Hamilton’s Ricci flow (RF) equations were recently expressed in
terms of the edge lengths of a d-dimensional piecewise linear (PL)
simplicial geometry, for d ≥ 2. The structure of the simplicial Ricci
flow (SRF) equations is dimensionally agnostic. These SRF equa-
tions were tested numerically and analytically in 3D for simple
models and reproduced qualitatively the solution of continuum RF
equations including a Type-1 neckpinch singularity. Here we ex-
amine a continuum limit of the SRF equations for 3D neck pinch
geometries with an arbitrary radial profile. We show that the SRF
equations converge to the corresponding continuum RF equations
as reported by Angenent and Knopf.

1. Exploring simplicial Ricci flow in 3D

Hamilton’s Ricci flow (RF) continues to yield new insights into problems in
pure and applied mathematics and proves to be a useful tool across a broad
spectrum of engineering fields [1, 2, 3, 4]. Here the time evolution of the
metric is proportional to the Ricci tensor,

(1) gac ġcb = −2Rcab.

Hamilton showed that this yields a forced diffusion equation for the curva-
ture, e.g. the scalar curvature evolves as

(2) Ṙ = �R+ 2R2.

The bulk of the applications of this curvature flow have utilized the nu-
merical evolution of piecewise-flat simplicial 2-surfaces [5, 6]. It is a widely
accepted verity in computational science that a geometry with complex
topology is most naturally represented in a coordinate-free way by an un-
structured mesh. This is apparent in the engineering applications utilizing
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finite-volume [7] and finite-element [8] algorithms, and is equally true in
physics within the field of general relativity through Regge calculus [9, 10],
and in electrodynamics by discrete exterior calculus [11].

One expects a wealth of exciting new applications for discrete formu-
lations of Ricci flow in 3 and higher dimensions. Canonical metrics on 3-
dimensional manifolds have proven to be valuable for the analysis of topo-
logical structure, and we believe that discrete Ricci flow in 3-dimensions
can be used for shape matching and volumetric parameterization. Our pre-
sumption is based on the uniformization theorem in 2-dimensions and since
the topological taxonomy is richer in higher dimensions via Thurston’s Ge-
ometrization Theorem [12]. One possible avenue to explore for applications
is extending the 2-dimensional shape analysis techniques such as deforma-
tion detection or image registration to 3-dimensions. In particular, appli-
cations in medical science could be explored in 3-dimensions by including
wall thickness and structure to the heart, colon or brain. These volumet-
ric geometries would have flat interiors with highly non-trivial boundary
topologies and geometries. Applications of SRF in mathematics could in-
clude the curvature flow analysis of each of the eight compactified Thurston’s
geometries with metric perturbations. This could provide further insight into
their singularity behavior under RF. We envision that applications in these
higher-dimensional applications will involve geometries with complex topol-
ogy and geometry. While SRF is one approach to extending combinatorial
Ricci flow from two to higher dimensions, there are other active and inde-
pendent approaches that are being explored. In particular, Yin et al. [15]
study discrete curvature flow for hyperbolic 3-manifolds whose boundary
consists of high genus surfaces, where Glickenstein [13, 14] studies discrete
conformal variations and scalar curvature on piecewise flat two and three-
dimensional manifolds and constructs discrete Laplacians on manifolds. In
addition, Ge and Xu [16] define discrete quasi-Einstein metrics as critical
points for discrete total curvature on simplicial 3-manifolds, where Forman
[17] defined a new notion of curvature for cell complexes corresponding to
the Ricci curvature for Riemannian manifolds. More recently, there have
been combinatorial analyses of curved 3-manifolds by Trout [18] providing,
in part, a generalization of the Bonnet-Myers theorem, and Gu and Saucan
[19] exploring a combinatorial curvature approach developed by Stone. We
believe it useful to explore each of these approaches and understand their
relation to curvature flows in the continuum.

We show here that the SRF equations are equivalent to an important
class of Hamilton Ricci flow problems exhibiting important singularity be-
havior, and we believe that SRF may provide a viable generalization of
curvature flows for 3 and higher dimensional PL manifolds.
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We recently introduced a discrete RF approach for PL simplicial mani-
folds in three and higher dimensions. We refer to this discretization as sim-
plicial Ricci flow (SRF) [20]. SRF is founded on Regge calculus and upon
the mathematical foundations of Alexandrov [9, 21, 22, 23]. Here the SRF
equations are similar to their continuum counterpart. They are naturally
defined on a d-dimensional simplicial geometry as a proportionality between
the time rate of change of the circumcentric dual edges, λi, and the simplicial
Ricci tensor associated to these dual edges,

(3) λ̇i/λi = −Rcλ.

It is the aim of this paper to explicitly show that these SRF equations
in 3-dimensions for a geometry with axial symmetry converge to the contin-
uum Hamilton RF equations for an arbitrarily refined mesh. Consequently,
we examine a continuum limit of the SRF equations for 3D neck pinch ge-
ometries. We show that the SRF equations converge to the corresponding
continuum RF equations as reported by Angenent and Knopf [24, 25]. In par-
ticular, we examine a piecewise flat axisymmetric geometry with 3-sphere
topology, S3 = S2 × [0, 1]. Our lattice 3-geometry is tiled primarily with
triangle-based frustum polyhedra with two simplicial polyhedra “end caps.”
This axisymmetric lattice 3-geometry is characterized by edges of two kinds,
the axial edges, ai and the cross-sectional sphere edges, si. In recent work
we examined a discrete model where each of the cross-sectional spheres was
approximated by an icosahedron, of edge si [26]. The accuracy of our model
was limited by the relatively low spatial resolution of the icosahedron. The
model considered here is built of infinitesimal isosceles-based frustums. The
spatial resolution, �, of each of the spherical cross-sectional polyhedra with
radius ρ is driven by a single infinitesimal scale � = ρξ → 0, and we assume
an arbitrarily large number of cross-sectional spheres. The spherical edges si
and axial edges ai are infinitesimal. The axisymmetry of this model allows
us to consider only two SRF equations, one associated to each axial edge,
ai, the other with a spherical edge, si. In the limit there will be an ever
increasing number of frustum blocks in our model. We show here that we
recover the exact RF equations in the continuum limit.

The foundation of this work is the analysis of Angenent and Knopf on the
neck pinching singularity analysis of RF on a class of axisymmetric double-
lobe-shaped geometries of Fig. 1. The metrics they considered were warped
product metrics on I × S2,

(4) g = da2 + ρ2dΩ2,
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Figure 1: A 2-dimensional rendering of the simplicial double-lobed model.
For visualization purposes, we have suppressed one of the azimuthal angles
for each of the 2-sphere cross sections. In two dimensions the piecewise lin-
ear (PL) surface tiles are trapezoids, where in 3-dimensions they are frustum
polyhedra (see Fig. 6 in the Appendix). In this paper we take the limit of
an ever more finely discretized sphere, and with an ever increasing num-
ber of spherical cross sections. In this limit we show that the continuum
Hamiltonian RF equations are recovered from the SRF equations.

where I ∈ R is an open interval, dΩ2 = dθ2+sin2 (θ)dφ2, is the usual metric
of the unit 2-sphere, a is the proper axial distance away from the equator,
and ρ(a) is the cylindrical radial profile of the axi-symmetric geometry, i.e.
ρ(a) is the radius of the cross-sectional 2-sphere at an axial distance a away
from the equator. The vector-valued one-form Ricci tensor is,

Rc = ea

(
−2

ρ′′

ρ

)
ωa + eθ

(
1

ρ2
− ρ′′

ρ
−
(
ρ′

ρ

)2
)
ωθ(5)

+ eφ

(
1

ρ2
− ρ′′

ρ
−
(
ρ′

ρ

)2
)
ωφ,

where the primes refer to partial derivatives with respect to the axial dis-
tance, a, and the dots refer to derivatives with respect to time, t. In partic-
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ular, we show in this manuscript that the SRF equations, under a suitable
mesh refinement, converge to the continuum Hamilton’s RF equations of
Knopf and Angenent,

ȧ

a
= −Rcaa = 2

ρ′′

ρ
,(6)

ρ̇

ρ
= −Rcθθ = ρ′′/ρ+

(
ρ′/ρ
)2 − 1/ρ2.(7)

Armed with this result, all continuum theorems and corollaries apply equally
to the SRF equations. They are equivalent in the continuum limit we use.
Therefore, we can confidently say that the SRF equations are consistent
with the following theorems of Angenent and Knopf for non-degenerate neck
pinches:

1. If the scalar curvature is everywhere positive, R ≥ 0, then the radius
of the waist (amin = ρ(0)) is bounded,

(8) (T − t) ≤ a2min ≤ 2(T − t),

where T is the finite time that a neck pinch occurs.
2. As a consequence the neck pinch singularity occurs at or before, T =

a2min.
3. The height of the two lobes is bounded from below, and under suitable

conditions the neck will pinch off before the lobes will collapse.
4. The neck approaches a cylindrical-type singularity.

The result of this paper shows that any continuum RF theorem or curvature
bound for this class of geometries will apply equally well to the discretized
geometry under SRF evolution — the SRF equations are equivalent to the
RF equations in a continuum limit. Our result applies to both degenerate
and non-degenerate neck pinch singularity formation. The proof of the con-
vergence of SRF to continuum RF is done here explicitly and algebraically.
While this does not prove the equivalence between Hamilton’s RF and SRF
equations for any geometry and for any dimension; nevertheless, we conjec-
ture this is true. The work here supports the definition (Def. 1) of the SRF
equations introduced recently in [20].

2. A lattice approximation of the Angenent-Knopf
neckpinch geometry

For the purpose of examining Type-1 or Type-2 neck pinch behavior of the
SRF equations, we have introduced a PL lattice geometry sharing the qual-
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itative features of the Angenent and Knopf initial data [24] as illustrated in
Fig. 1. The continuum cross sections of this geometry in planes perpendicular
to the symmetry axis are 2-sphere surfaces. We impose no mirror symmetry
in the radial profile, ρ = ρ(a). The surface and metric can be parameterized
by two coordinates, a and ρ(a). Here a given point on the surface is identi-
fied by its proper “axial” distance of a from the equator (or any other point
we so choose), and the radius, ρ = ρ(a), of the cross-sectional sphere on
which the point lies. The continuum warped-product metric of this surface
as introduced by Angenent and Knopf [24],

(9) gij = da2 + ρ(a)2dΩ2,

where

(10) dΩ2 = dθ2 + sin2 (θ)dφ2,

is the usual spherical line element. The initial data is determined by a radial
profile function at t = 0 for the double-lobed geometry, and amounts to
specifying a function relating the cylindrical radius, ρ, to a scaled proper
axial distance along the double-lobed geometry away from an equator or
neck, a ∈ {amin, amax},

(11) s = ψ(a).

By way of an example, if the double-lobed geometry has no neck, and were
just a sphere of radius, R0, this initial radial profile function is simply the
cylindrical coordinate radius,

(12) ρ(a, t = 0) = R0 cos(a).

However, Angenent and Knopf’s mirror-symmetric double-lobed geometry
introduced a parabolic waist for their purpose so as to aid in their mathe-
matical analysis of the neck singularity,

(13) ρ = ρAK =

{
R0 cos (a) |a| ≥ π

4

R0

√
A+Ba2 |a| < π

4 ,

where constant A controls the degree of neck pinching in the initial-value
data, and the constant B is chosen so as to ensure continuity in the radial
profile function at a = ±π/4. In this paper, we explore arbitrary radial
profiles.
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Figure 2: The 2-dimensional triangulated region around the vertex, O, on
a spherical cross-section of the axisymmetric geometry. In this manuscript
we assume ξ = �/r is a global infinitesimal for each of the, Na, triangulated
sphere cross sections in this model.

We provide a simplicial approximation of an axisymmetric warped-prod-
uct geometry at time t characterized by an arbitrary C2 radial profile

(14) ρ(a, t) = ρ(a) ∀a ∈ {amin, amax}.

We first identify an arbitrarily large number (Ns → ∞) of nearly equal-
spaced spherical cross sections. Next we examine one of these spheres, namely
the i′th cross-sectional sphere. There are many ways to approximate this by
a polyhedron with an arbitrarily large amount of vertices, Ns → ∞. We
utilize the symmetry of our model to concentrate only in the vicinity of a
single point O on the sphere. At this point we project an infinitesimal flat-
space hexagonal lattice onto its surface, as shown in Fig. 2. Here we take the
lengths of the sides of the isosceles triangles that we are projecting onto the
sphere of radius ρ to be arbitrarily small, �k 
 ρ. This yields an infinitesimal
parameter in our model that we will drive to zero,

(15) ξ :=
�

ρ
→ 0.

In order to construct the SRF equations at O it is necessary for us to extend
the lattice radially one more level out from the first six equilateral triangles
so that we can examine 18 additional equilateral triangles, each of edge
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length �k 
 ρ, that we project onto the surface of the sphere as shown in
the right-hand side of Fig. 2. The projected triangles will no longer be equi-
lateral. In particular there will be two sets of 6 isosceles triangles, {O,X ,Y}
and {V,X ,Y}, as well as twelve triangles with three different edge lengths
{X ,U ,V}. These 24 triangles are composed of combinations of six distinct
edges,

s = cos−1

( −→CO
|CO| ·

−→CX
|CX |

)
≈ ρ ξ

(
1− 1

3
ξ2 +

1

5
ξ4 +O [ξ]6

)
,(16)

s̄ = cos−1
(
ĈX · ĈY

)
≈ ρ ξ

(
1− 11

24
ξ2 +

203

640
ξ4 +O [ξ]6

)
,(17)

u = cos−1
(
ĈX · ĈV

)
≈ ρ ξ

(
1− 35

24
ξ2 +

1183

640
ξ54 +O [ξ]6

)
,(18)

ū = cos−1
(
ĈU · ĈV

)
≈ ρ ξ

(
1− 11

6
ξ2 +

203

40
ξ4 +O [ξ]6

)
,(19)

u′ = cos−1
(
ĈX · ĈU

)
≈ ρ ξ

(
1− 7

3
ξ2 +

31

5
ξ4 +O [ξ]6

)
.(20)

We assume that all of the triangulated spherical polyhedral cross-sections
in our model have the same lattice topology. Furthermore, we assume that
they are all congruent to each other under a suitable global scale factor.
Consider the i’th and (i+ 1)’st polyhedral sphere of radius ρi and ρi+1; re-
spectively. Each triangulated polyhedron has N0 � 1 vertices, and therefore
N1 = 3N0 − 6 edges and N2 = 2N0 − 4 triangles. We connect these two
polyhedra together by connecting the N0 corresponding pairs of vertices
by N0 identical axial edges, each of length ai. Each pair of corresponding
triangles when connected by three ai edges will form a triangular-based frus-
tum block (see Appendix, Fig. 6). We require that the geometry interior to
each of our frustum blocks is flat Euclidean 3-space. Consequently, the 3-
dimensional geometry between the two bounding spherical polyhedrons is
tiled with N2 frustum blocks, one for each of the triangles. In particular,
axial edge OiOi+1 = ai is the meeting place of six identical isosceles triangle
frustum blocks as illustrated in Fig. 3. This is not ordinarily the case for
every axial edge, ai, e.g. axial edge XiXi+1 = ai is the meeting place of three
distinct pairs of frustum blocks, two pairs are isosceles frustum blocks the
last pair is a general triangular-based frustum block. The axial symmetry of
this model permits us to tile the geometry with the non-simplicial frustum
blocks. Given the symmetry of our model the geometry of each frustum block
is completely determined by its 9 edge lengths, in other words the symmetry
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Figure 3: The six identical isosceles frustum blocks sharing edge ai =
OiOi+1.

endows each frustum block with rigidity. This construction gives us an ax-
isymmetric 3-cylinder geometry composed of triangular-based frustums. We
“cap-off” this 3-cylinder by treating each of the two bounding polyhedrons
of radius ρ1 and ρNa

as flat Euclidean tiles of our PL geometry. Our lattice
geometry becomes homeomorphic to a 3-sphere when we include the two
polyhedral end caps. It is composed of N2(Na − 1) frustum blocks and two
triangulated polyhedral “end caps.” This can be seen in Fig. 1, albeit with
one dimension suppressed. There the end caps are flat hexagons as opposed
to triangulated polygons.

A continuum limit of our lattice is achieved here by taking (1) Na → ∞,
or equivalently ai → 0, and (2) Ns → ∞, or equivalently ξ → 0.

3. Theorem: the SRF equations for the frustum geometry
are the Hamilton RF equations

The recent definition of the SRF equations and the dual-edge SRF equa-
tions in [20] made use of elements from both the simplicial lattice geometry
(in this case the frustum lattice geometry with end caps, F), and from
its circumcentric dual lattice F∗. The SRF and dual-edge SRF equations
for the S3 frustum geometry, F are functions of the (Na − 1) axial edges,
ai ∀i ∈ {1, 2 . . . , Na − 1}, as well as the Na radii ρi ∀i ∈ {1, 2 . . . , Na}.
The dual circumcentric lattice is composed of the dual axial edges, αi ∀i ∈
{1, 2 . . . , Na}, and the dual edges σi ∀i ∈ {1, 2 . . . , Na + 1}. Each dual axial
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edge reaches from the circumcenter of one frustum block to the circumcen-
ter of the adjacent frustum block sharing a common triangle face. The dual
edge α pierces the triangle at the triangle’s circumcenter, and the edge is
perpendicular to the triangle. On the other hand, the dual spherical edge
σ reaches from the circumcenter of one frustum block to the circumcenter
of an adjacent frustum block sharing a common trapezoidal face. This dual
edge σ is perpendicular to the trapezoid and pierces the trapezoid at its cir-
cumcenter. Therefore, there will be two dual axial edges, α and three dual
spherical edges σ emanating from the circumcenter of each of the frustum
blocks. The circumcenter of each of the two polyhedral “end caps” will be
the common meeting place of the N2 dual axial edges.

We proved recently that the dual-edge SRF equations are equivalent
to the simplicial-edge SRF equations for this warped-product geometry in
Appendix B of [26],

(21)

{
σ̇i

σi
= −Rcσi

α̇i

αi
= −Rcαi

}
︸ ︷︷ ︸

dual-edge SRF equations

≡

⎧⎨⎩
∑

λj∈s∗i
λ̇j

λj

(
Vsiλj

Vsi

)
= −Rcsi∑

λj∈a∗
i

λ̇j

λj

(
Vaiλj

Vai

)
= −Rcai

⎫⎬⎭︸ ︷︷ ︸
simplicial-edge SRF equations

,

where the definition of the volume-weighting factors are defined below in
4.2. Therefore, and for the purpose of this paper, it will suffice to prove the
following theorem:

Theorem 1. The two dual-edge SRF (Eq. 3) equations at a vertex Oi in
the frustum-based warped-product lattice geometry, F , converge to their con-
tinuum RF counterparts, Eqs. 6–7,

σ̇i/σi = −Rcσi
=⇒ ρ̇

ρ
= ρ′′/ρ+

(
ρ′/ρ
)2 − 1/ρ2,(22)

α̇i/αi = −Rcαi
=⇒ ȧ

a
= 2

ρ′′

ρ
,(23)

in the limit when (1) ξ → 0, and (2) Na → ∞.

4. The dual αi-edge SRF equation at the point Oi and its
continuum limit

In this section we examine the dual-edge SRF equation associated to the
axial edge, αi ∈ F∗ as displayed in the lower left-hand side of Eq. 21. Edge
αi is dual to triangle �OiXiYi

∈ F . The edge α and triangle �OiXiYi
are
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Figure 4: In 3-dimensions each edge of the triangular-based frustum lattice
is dual to an area of the dual circumcentric lattice. This is shown in the first
column for edges ai and si. Conversely, each dual edge in the circumcentric
dual lattice is dual to an area of the triangular-based frustum lattice, as
illustrated in the second column for edges αi and σi.

illustrated in the upper right hand side of Fig. 4. We also use Eqs 16–20 to
examine the continuum limit of this equation. We use the definition of the
dual-edge SRF equations as introduced recently in [20], and consequently
we find
(24)

α̇i

αi
= −Rcαi

= −
∑
�j∈α∗

i

2
ε�j
�∗j

(
Vαi�j

Vαi

)
= −4

εsi
s∗i

(
Vαisi

Vαi

)
− 2

εs̄i
s̄∗i

(
Vαis̄i

Vαi

)
.

We use the results of the Appendix and the definitions in [20] to examine each
term of this equation and to examine the Taylor series expansion to obtain
the continuum limit expression. We do this in three steps by examining (1)
the two circumcentric volume weighting factors on the right-hand side of the
dual SRF equation, (2) the two Gaussian curvature expressions also on the
right-hand side of Eq. 24, and finally (3) the time derivative on the left-hand
side of this equation.

4.1. The dual edge αi to triangle �i := OiXiYi

The dual edge αi reaches from the circumcenter C3i−1
of one frustum block

Fi−1 to the circumcenter C3i
of an adjacent frustum block Fi. This dual edge
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is perpendicular to triangle �i := OiXiYi common to Fi−1 and Fi. From

A.3, Eqs. 105–106, we find

(25)

αi = αtopi−1
+ αbasei

=
8a2i �2

i +s̄2i s
′2
i si (si−1 − si)

4�i

√
16a2i �2

i −s̄2i s
′2
i (si − si−1)

2

+
8a2i �2

i +s̄2i s
′2
i si (si+1 − si)

4�i

√
16a2i �2

i −s̄2i s
′2
i (si − si+1)

2

≈ ai−1 + ai
2

⎛⎜⎜⎝1 +

(
ai (ρi−1 − ρi) (ρi−1 + 3ρi)+
ai−1 (ρi − ρi+1) (ρi+1 + 3ρi)

)
6ai−1ai (ai−1 + ai)

ξ2 +O[ξ]4

⎞⎟⎟⎠ .

We will display the next higher order terms in our expansions. They may

be useful for numerical applications or to study singularity formation ana-

lytically.

4.2. Circumcentric volume weighting factors

The hybrid volume Vαi
is the volume of the hybrid polyhedron formed by

the product of dual edge αi ∈ F∗ and triangle �OiXiYi
∈ F and is the sum

of their reduced hybrid tetrahedra,

(26) Vαi
= 2Vαisi + Vαis̄i =

1

3
αi simαisi +

1

6
αi s̄imαis̄i .

The moment arms, mαisi and mαis̄i are displayed in the upper right-hand

part of Fig. 4, and are calculated in Eqs. 92–94. The fractional volumes and

their series expansion in terms of ξ are,

Vαisi

Vαi

=
simαisi

2α∗
i

≈ 1

3

(
1− 1

12
ξ2 +

1

16
ξ4 +O [ξ]6

)
(27)

Vαis̄i

Vαi

=
s̄imαis̄i

2α∗
i

≈ 1

3

(
1− 1

6
ξ2 +

1

8
ξ4 +O [ξ]6

)
.(28)
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Figure 5: The two pairs of isosceles frustum blocks sharing edge si = OiXi.

4.3. Gaussian curvature

In [20] we defined the Gaussian curvature of edge si to be the deficit angle,
εsi , and distributed uniformly over the circumcentric dual area s∗i ,

(29) Ksi :=
εsi
s∗i

.

The edge, si, is common to four isosceles frustum blocks as shown in Fig. 5.
There are two pairs of dihedral angles of the frustum blocks at edge si, and
we can use Eq. 78 and Eq. 81 to define the deficit angle,

(30)

εsi = 2π − 2 cos−1

⎛⎝ s̄i (si − si+1)√
4s2i − s̄2i

√
4a2i − (si − si+1)

2

⎞⎠
− 2 cos−1

⎛⎝ s̄i (si + si−1)− 2s̄i−1si√
4s2i − s̄2i

√
4a2i−1 − (si − si−1)

2

⎞⎠
≈
(
ai (ρi − ρi−1) + ai−1 (ρi − ρi+1)√

3 ai ai−1

ξ

)

×
(
1 +

(
5a2i (ρi−1 − ρi)

2 + a2i−1

(
5 (ρi − ρi+1)

2 − 18a2i

)
+

5ai−1ai (ρi−1 − ρi) (ρi − ρi+1)

)
36 a2i a

2
i−1

ξ2
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+O [ξ]4

)
.

The dual area s∗i is a trapezoid and is shown in the lower left diagram of
Fig. 4 and is the sum of four isosceles triangles,

s∗i =
1

2
σimsiσi

+
1

2
σi−1msiσi−1

+ αimsiαi
(31)

≈
(
ai−1 (ρi−1 + 3ρi) + ai (3ρi + ρi+1)

8
√
3

ξ

)

×
(
1 +

⎛⎜⎝ ai (ρi−1 − ρi)
(
5ρ2i−1 + 10ρi−1ρi + 13ρ2i

)
−

6a2i−1ai (ρi−1 + 3ρi) + ai−1

(
−13ρ2i +

3ρ2i ρi+1 + 5ρiρ
2
i+1 + 5ρ3i+1 − 6a2i (3ρi + ρi+1)

)
⎞⎟⎠

12aiai+1 (ai−1 (ρi−1 + 3ρi) + ai (3ρi + ρi+1))
ξ2

+O [ξ]4

)
.

The Gaussian curvature of edge si in our lattice is expressed as,

Ksi :=
εsi
s∗i

≈ 8 (ai (ρi − ρi−1)− ai−1 (ρi+1 − ρi))

aiai−1 (ai (3ρi + ρi+1) + ai−1 (3ρi + ρi−1))
(32)

×
(
1 +

(
ai−1(ρi − ρi+1) + ai(ρi − ρi−1)

)
×(

5a2i−1(ρi−1 + 3ρi)(ρi − ρi+1) + 2ai−1ai×(
5ρ2i−1 + 10ρi−1ρi + 12ρ2i + 10ρiρi+1 + 5ρ2i+1

)
−

5a2i (ρi−1 − ρi)(3ρi + ρi+1)
)

36a2i−1a
2
i (ai−1(ρi−1 + 3ρi) + ai(3ρi + ρi+1))

ξ2

+O [ξ]4

)
.

Similarly we can calculate the Gaussian curvature associated with the hinge
edge s̄i where

(33) Ks̄i :=
εs̄i
s̄∗i

.

The dual area and dihedral angles now extend into the next band of triangles
away from the pole Oi as shown in Fig. 2. Using the expressions in the
Appendix and the series expansion for the edges (Eq. 16) the deficit angle
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for s̄i is

εs̄i = 2π − cos−1

⎛⎝ (si − si+1)
(
2s2i − s̄2i

)
si
√

4s2i − s̄2i

√
4a2i − (s̄i − s̄i+1)

2

⎞⎠(34)

− cos−1

⎛⎝ (ui − ui+1)
(
2u2i − s̄2i

)
ui
√

4u2i − s̄2i

√
4a2i − (s̄i − s̄i+1)

2

⎞⎠
− cos−1

⎛⎝ − (si − si−1)
(
2s2i − s̄2i

)
si
√

4s2i − s̄2i

√
4a2i − (s̄i − s̄i−1)

2

⎞⎠
− cos−1

⎛⎝ − (ui − ui−1)
(
2u2i − s̄2i

)
ui
√

4u2i − s̄2i

√
4a2i − (s̄i − s̄i−1)

2

⎞⎠
≈
(
(ρi−1 − ρi+1) ξ√

3 ai

)

×
(
1 +

(
10
(
ρ2i−1 + 3ρ2i − 3ρiρi+1 + ρ2i+1−

3ρi−1ρi + ρi−1ρi+1)− 117a2i
)
ξ2

72ai
+O [ξ]4

)
,

and the dual area s̄∗i is the sum of four kite areas whose series in ξ is

(35)

s̄∗i ≈
(
ai (3ρi + ρi+1) + ai−1 (3ρi+1 − ρi)

8
√
3

ξ

)

×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 +

2ρ3i (5ai − 13ai−1) + ρi+1

(
2ρ2i (3ai−1 + 5ai)−

3ai−1ai(3ai−1 + ai)) + 2ρiρ
2
i+1(5ai−1 + 3ai)−

3ai−1aiρi(ai−1 + 3ai) + 2ρ3i+1(5ai−1 − 13ai)

24ai−1ai(ai−1(ρi + 3ρi+1) + ai(3ρi + ρi+1))
ξ2 +O [ξ]4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Therefore the Gaussian curvature is

(36)

Ks̄i :=
εs̄i
s̄∗i

≈
(

8(ρi−1 − ρi+1)

ai(ai−1(ρi + 3ρi+1) + ai(3ρi + ρi+1))

)
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×
(
1 +

a2i−1(ρi + 3ρi+1)
(
54a2i − 5

(
ρ2i−1 + ρi−1(ρi+1 − 3ρi)+

3ρ2i − 3ρiρi+1 + ρ2i+1

))
+ ai−1ai

(
54a2i (3ρi + ρi+1)−

5ρ2i−1(3ρi + ρi+1) + 5ρi−1

(
9ρ2i − ρ2i+1

)
−

84ρ3i + 39ρ2i ρi+1 + 15ρiρ
2
i+1 + 10ρ3i+1

)
+

3a2i (ρi − ρi+1)
(
5ρ2i + 10ρiρi+1 + 13ρ2i+1

)
36ai−1a2i (ai−1(ρi + 3ρi+1) + ai(3ρi + ρi+1))

ξ2

+O [ξ]4

)
.

4.4. The zeroth-order expansion term of SRF equation for

dual-edge αi

The dual edge SRF equation associated to αi was given in Eq. 24. We can

calculate the series expansion of this equation in the limit ξ 
 1. We keep

the lowest-order term by substituting the expressions we derived in the last

section through Eqs. 27, 28, 32 and 36. We find the zeroth-order term,

(37)
ȧi−1 + ȧi
ai−1 + ai

= −

16(ai−1(ρi − ρi+1) + ai(ρi − ρi−1))×
(ai−1(ρi−1 + 5ρi + 6ρi+1) + 3ai(3ρi + ρi+1))

3ai−1ai(ai−1(ρi + 3ρi+1) + ai(3ρi + ρi+1))×
(ai−1(ρi−1 + 3ρi) + ai(3ρi + ρi+1))

.

We make the following substitutions,

ai+1 = ai + ζ1(38)

ai−1 = ai − ζ0.(39)

In the limit of ζ0 → 0 and ζ1 → 0 we find Eq. 37 becomes,

(40)
ȧi
ai

=
4 (ρi−1 − 2ρi + ρi+1) (ρi−1 + 14ρi + 9ρi+1)

3a2i (ρi + ρi+1)(ρi−1 + 6ρi + ρi+1)
.

In this limit we can also substitute

ρi−1 + 14ρi + 9ρi+1 ≈ 24ρi,(41)

ρi−1 + 6ρi + ρi+1 ≈ 8ρi,(42)

ρi + ρi+1 ≈ 2ρi,(43)
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yielding after some rearrangement,

(44)
ȧi
ai

= 2

(
ρi+1−ρi

ai

)
−
(

ρi−ρi−1

ai

)

ai

ρi
.

We immediately recognize the right-hand side of this equation is the second
derivative of ρ with respect to a, and therefore we recover the corresponding
continuum RF equation for the axial edge in the limit, namely

(45)
ȧi
ai

= 2

(
ρi+1−ρi

ai

)
−
(

ρi−ρi−1

ai

)

ai

ρi︸ ︷︷ ︸
continuum-limit SRF equation

=⇒ ȧ

a
= 2

ρ′′

ρ︸ ︷︷ ︸
continuum RF equation

.

This result proves half of Theorem 1. We only need to examine the σi-edge
SRF equation and show it converges to the continuum RF equation in order
to complete the proof. We accomplish this identification in the following
section.

5. The dual σi-edge SRF equation at point Oi and its
continuum limit

In this section we repeat the process we presented in the last section; how-
ever, we examine the dual-edge SRF equation associated to the edge σi ∈
F∗. This edge in the dual cross-sectional polyhedron is dual to trapezoid
OiXiOi+1Xi+1 ∈ F . This is illustrated in the lower right of Fig. 4, and an-
chors the dual SRF equation in the upper left-hand side of Eq. 21. We also
use Eqs. 16–20 to examine the continuum limit of this equation. We use the
definition of the dual-edge SRF equations as introduced recently in [20], and
consequently we find

σ̇i
σi

= −Rcσi
= −

∑
�j∈σ∗

i

2
ε�j
�∗j

(
Vσi�j

Vσi

)
(46)

= −2
εsi
s∗i

(
Vσisi

Vσi

)
− 2

εsi+1

s∗i+1

(
Vσisi+1

Vσi+1

)
− 2

εai

a∗i

(
Vσiai

Vσi

)
− 2

εâi

â∗i

(
Vσiâi

Vσi

)
.

Here we differentiated the axial edge ai = OiOi+1 from the axial edge âi =
XiXi+1. The fractional volumes, deficit angles and dual areas are not equal.
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As we did in Sec. 4, we use the results of the Appendix and the definitions
in [20] to examine each term of Eq. 46 and to examine the Taylor series
expansion to obtain the continuum limit expression. We do this in three
steps by examining (1) the two circumcentric volume weighting factors on
the right-hand side of the dual SRF equation, (2) the two Gaussian curvature
expressions also on the right-hand side, and finally (3) the time derivative
on the left-hand side of the equation.

5.1. The dual edge σi to trapezoid OiXiOi+1Xi+1

The dual edge σi reaches from the circumcenter C3i−1
of one frustum block,

Fi, to the circumcenter, C3i
, of the adjacent frustum block Fi. This dual edge

is perpendicular to trapezoid OiXiOi+1Xi+1 common to these two frustum
blocks. From A.3, Eq. 104, we find

σi = 2σ 1

2
i(47)

=
√

α2
basei

+m2
siαi

−m2
siσi

(48)

=
a2i s̄i (si + si+1)√

4a2i − (si − si+1)
2
√

a2i
(
4s2i − s̄2i

)
− s2i (si − si+1)

2
(49)

≈ (ρi + ρi+1)

2
√
3

ξ

(
1 +

7(ρi − ρi+1)
2 − 12a2i

24a2i
ξ2 +O

(
ξ4
))

.(50)

5.2. Circumcentric volume weighting factors

The hybrid volume Vσi
is the volume of the hybrid polyhedron formed by

the product of dual edge σi ∈ F∗ and trapezoid OiXiOi+1Xi+1 ∈ F and is
the sum of their reduced hybrid tetrahedra,

(51) Vσi
=

1

6
σisimσisi︸ ︷︷ ︸

Vσisi

+
1

6
σisi+1mσisi+1︸ ︷︷ ︸

Vσisi+1

+
1

6
σiaimσiai︸ ︷︷ ︸

Vσiai

+
1

6
σiâimσiâi︸ ︷︷ ︸

Vσiâi

,

where the moment arms shown in the lower right-hand part of Fig. 4 and
by Eqs. 95–97. Additionally, symmetry of the trapezoid guarantees that
mσiâi

= mσiai
so that Vσiai

= Vσiâi
. The fractional volumes and their series

expansion in terms of ξ are,

Vσisi

Vσi

=
simσisi

2σ∗
i

=
si
(
2a2i − si(si − si+1)

)
(si + si+1)

(
4a2i − (si − si+1)

2
)(52)
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≈ ρi
2(ρi + ρi+1)

(
1 +

(ρi+1 − ρi)
2

4a2i
ξ2 +O

(
ξ4
))

,

Vσisi+1

Vσi

=
si+1mσisi+1

2σ∗
i

=
si+1

(
2a2i − si+1(si+1 − si)

)
(si + si+1)

(
4a2i − (si − si+1)

2
)(53)

≈ ρi+1

2(ρi + ρi+1)

(
1 +

(ρi − ρi+1)
2

4a2i
ξ2 +O

(
ξ4
))

,

and,

Vσiai

Vσi

=
aimσiai

2σ∗
i

=
a2i

4a2i − (si − si+1)
2(54)

≈ 1

4

(
1 +

(ρi − ρi+1)
2

4a2i
ξ2 +O

(
ξ4
))

5.3. Gaussian curvature

In [20] we defined the Gaussian curvature of edge ai = OiOi+1 to be the

deficit angle, εai
, distributed uniformly over the circumcentric dual area a∗i ,

(55) Kai
:=

εai

a∗i
.

The edge, ai is common to six identical isosceles frustum blocks as shown in

Fig. 3. We use dihedral angle of the frustum block at edge ai given in Eq. 78

to determine define the deficit angle,

εai
= 2π − 6 cos−1

(
2a2i
(
s̄2i − 2s2i

)
+ s2i (si − si+1)

2

s2i
(
(si − si+1)2 − 4a2i

) )
(56)

≈

√
3
(
a2i − (ρi+1 − ρi)

2
)

2a2i
ξ2

×

⎛⎜⎜⎝1−
5

(
3a4i − 4a2i (ρi − ρi+1)

2+
(ρi − ρi+1)

4

)
24a4i

(
a2i − (ρi+1 − ρi)

2
) ξ2 +O

(
ξ4
)⎞⎟⎟⎠ .

The boundary dual area a∗i is a hexagon and is shown in the upper left

diagram of Fig. 4 and is the sum of six isosceles triangles,
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a∗i =6

(
1

2
σimaiσi

)
=

3a3i s̄i (si + si+1)
2

2
(
4a2i − (si − si+1)

2
)√

a2i
(
4s2i − s̄2i

)
− s2i (si − si+1)

2

(57)

≈
√
3

8
(ρi + ρi+1)

2 ξ2

(
1−

2a2i − 5
(
ρi − ρi+1)

2
)

12a2i
ξ2 +O

(
ξ4
))

.

The series expansion for the Gaussian curvature of axial edge ai in powers

ξ is,

Kai
:=

εai

a∗i
≈

4
(
a2i − (ρi+1 − ρi)

2
)

a2i (ρi + ρi+1)2

⎛⎝1+
5
(
a2i − (ρi+1 − ρi)

2
)

24a2i
ξ2+O

(
ξ4
)⎞⎠.

(58)

We also need to calculate the slightly more involved expression for the Gaus-

sian curvature,

(59) Kâi
:=

εâi

â∗i
,

associated with the hinge edge âi. The dual area and dihedral angles now

extend into the next band of triangles away from the pole Oi as shown in

Fig. 2. Using the expressions in the Appendix and the series expansion for

the edges (Eq. 16) the deficit angle for âi is

εâi
= 2π − 2 cos−1

(
s̄i
(
2a2i − (si − si+1)

2
)√

4a2i − (si − si+1)2
√

4a2i s
2
i − s̄2i (si − si+1)2

)
︸ ︷︷ ︸

cos−1 (θâi ss)

(60)

− 2 cos−1

(
s̄i
(
2a2i − (ui − ui+1)

2
)√

4a2i − (ui − ui+1)2
√

4a2iu
2
i − s̄2i (ui − ui+1)2

)
︸ ︷︷ ︸

cos−1 (θâi uu)

− 2 cos−1

⎛⎝ 2a2i

(
u2i − ū2i + u′2i

)
− u′2i (ui − ui+1)

2√
4a2i − (ui − ui+1)2

√
4a2i u

2
iu

′2
i − u′4i (ui − ui+1)2

⎞⎠
︸ ︷︷ ︸

cos−1 (θai uu′)
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≈

√
3
(
a2i − (ρi+1 − ρi)

2
)

2a2i
ξ2

×

⎛⎝1− 51a4i − 56a2i (ρi − ρi+1)
2 + 5(ρi − ρi+1)

4

24a2i

(
a2i − (ρi+1 − ρi)

2
) ξ2 +O

(
ξ4
)⎞⎠ ,

and the dual area â∗i is the sum of three pairs of kite areas whose series in

ξ is

(61) â∗i ≈
√
3

8
(ρi + ρi+1)

2 ξ2
(
1− 28a2i − 5(ρi+1 − ρi)

2

12a2i
ξ2 +O

(
ξ4
))

.

Therefore, the Gaussian curvature at edge âi is

Kâi
:=

εâi

â∗i
≈ − 4(ρi − ρi+1)

2

a2i (ρi + ρi+1)2

(
1− 5(ρi+1 − ρi)

2

24a2i
ξ2 +O

(
ξ4
))

.(62)

Finally, the last of the four Gaussian curvatures we need for Eq. 46 is asso-

ciated with edge si+1. To calculate

(63) Ksi+1
=

εsi+1

s∗i+1

,

we need only increment each index in Eq. 32 by one.

5.4. The zeroth-order expansion term of SRF equation for

dual-edge σi

The dual edge σi SRF equation was given in Eq. 46. We can calculate series

expansion of this equation in ξ and keep the lowest-order term by substi-

tuting the expressions we derived in the last section through Eqs. 52, 53,

54 for the three circumcentric volume weighting factors, as well as the three
Gaussian curvatures given in Eqs. 32, 63, 58 and 62. We find a zeroth-order

term,

ρ̇i−1 + ρ̇i
ρi−1 + ρi

=
2(ρi − ρi+1)

2

a2i (ρi + ρi+1)2
− 2(ai + ρi − ρi+1)(ai − ρi + ρi+1)

a2i (ρi + ρi+1)2
(64)

−
8
(

ρi(ai−1(ρi−ρi+1)+ai(ρi−ρi−1))
ai−1(ai−1(ρi−1+3ρi)+ai(3ρi+ρi+1))

)
ai(ρi + ρi+1)
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+
8
(

ρi+1(ai(ρi+1−ρi+2)+ai+1(ρi+1−ρi))
ai+1(ai(ρi+3ρi+1)+ai+1(3ρi+1+ρi+2))

)
ai(ρi + ρi+1)

.

We make the following substitutions,

ai+1 = ai + ζ1(65)

ai−1 = ai − ζ0,(66)

in the last term. In the limit of ζ0 → 0 and ζ1 → 0, we find Eq. 64 becomes,

ρ̇i−1 + ρ̇i
ρi−1 + ρi

=− 8ρi(−ρi−1 + 2ρi − ρi+1)

a2i (ρi + ρi+1)(ρi−1 + 6ρi + ρi+1)

(67)

− 8ρi+1(−ρi + 2ρi+1 − ρi+2)

a2i (ρi + ρi+1)(ρi + 6ρi+1 + ρi+2)
−

2
(
a2i − (ρi − ρi+1)

2
)

a2i (ρi + ρi+1)2

− 2(ai + ρi − ρi+1)(ai − ρi + ρi+1)

a2i (ρi + ρi+1)2
.

In this limit we can also substitute

ρi−1 + 6ρi + ρi+1 ≈ 8ρi,(68)

ρi + 6ρi+1 + ρi+2 ≈ 8ρi+1,(69)

ρi + ρi+1 ≈ 2ρi,(70)

in the previous equation to yield, after some rearrangement,

(71)
ρ̇i
ρi

=

(
ρi+1−ρi

ai

)
−
(

ρi−ρi−1

ai

)

ai

ρi
+

(
ρi+1−ρi

ai

)2
ρ2i

− 1

ρ2i
.

We immediately recognize the numerator of the first two terms on the right-
hand side of Eq. 71 as the second derivative of ρ with respect to a and the
square of the first derivative of ρ with respect to a. Therefore, we recover the
corresponding continuum RF equation for the axial edge in the continuum
limit, namely
(72)

ρ̇i
ρi

=

(
ρi+1−ρi

ai

)
−
(

ρi−ρi−1

ai

)

ai

ρi
+

(
ρi+1−ρi

ai

)2
ρ2i

− 1

ρ2i︸ ︷︷ ︸
continuum-limit SRF equation

=⇒ ρ̇

ρ
= ρ′′/ρ+

(
ρ′/ρ
)2 − 1/ρ2︸ ︷︷ ︸

continuum RF equation

.
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This result, together with Eq. 45 and Appendix B of [26] completes the proof
of Theorem 1.

6. Exploring SRF as a guide for the behavior of Hamilton’s
RF in higher dimensions

We demonstrated that the continuum limit of the SRF equations yielded the
Hamilton RF equations for an interesting class of warped product metrics.
Therefore, all the mathematical foundations, definitions and theorems of
the continuum equations can be automatically transferred to the discrete in
SRF equations. This further reinforces the definition of the SRF equations
recently forwarded as Definition 1 in [20]. While we proved this for geome-
tries described by the warped-product metrics of Angenent, Isenberg and
Knopf [24, 25], we conjecture that the SRF equations converge to the con-
tinuum Hamilton RF equations for any n-dimensional geometry for n ≥ 2.
The convergence analysis presented here was for a particularly regular lat-
tice. Within this model we are exploring the convergence properties for less
symmetric spherical polyhedral cross-sections, and we are currently investi-
gating cross-sections with anisotropy as in the Bianchi type IX geometries.
Technically, the formulation of the SRF equations does not depend on the
meshing, and in principle, we would expect the convergence results presented
here to be valid in a broader context. However, from a practical point of view
we expect that numerical stiffness and stability of the SRF equations might
depend on proper meshing techniques (small deviations from regularity). We
are currently exploring the numerical behavior of the equations, and we ex-
pect we can borrow numerical techniques (re-meshing, and mesh refinement)
from the finite-element and finite-volume community.

We explore Ricci flow in 3 and higher dimensions because we can very
well believe that the SRF equations will have an equally rich spectrum of
application as do 2-dimensional combinatorial RF applications. We therefore
are motivated to explore the discrete RF in higher dimensions so that it can
be used in the analysis of topology and geometry, both numerically and ana-
lytically to bound Ricci curvature in discrete geometries and to analyze and
handle higher–dimensional RF singularities [29, 30]. The topological taxon-
omy afforded by RF is richer when transitioning from 2 to 3–dimensions. In
particular, the uniformization theorem says that any 2–geometry will evolve
under RF to a constant curvature sphere, plane or hyperboloid; while in
3–dimensions the curvature and surface will diffuse into a connected sum of
a finite number of prime manifolds [12]. We are motivated by Alexandrov
[21],
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“The theory of polyhedra and related geometrical methods are attractive not
only in their own right. They pave the way for the general theory of surfaces.
Surely, it is not always that we may infer a theorem for curved surfaces from a
theorem about polyhedra by passage to the limit. However, the theorems about
polyhedra always drive us to searching similar theorems about curved surfaces.”
A. D. Alexandrov, 1950

We are therefore eager to explore the geometry and curvature of higher-
dimensional polytopes through the SRF equations as a guide for continuum
analogues.
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Appendix A. The circumcentric geometry of the
triangle-based frustum block

The SRF equations depend on the geometry of the triangular frustum block
as well as the two end-cap polyhedra. We highlight here the relevant ge-
ometric features of these frustum polyhedra. These polyhedra are used to
construct the axial-edge (αi) and sphere-edge (σi) dual SRF equations for
this model. We focus in this section on a single isosceles-based triangular
frustum block as illustrated in Fig. 6. This polyhedron has nine edges. It
has three equal axial edges of length,

(73) OiOi+1 = XiXi+1 = YiYi+1 = ai.

The three edges of the base triangle, OiXi = si, OiYi = s′i, and XiYi = s̄i
can be arbitrary as long as they satisfy the triangle inequality. We require
that the top triangle is congruent, parallel and aligned with the bottom
triangle. The remaining three edges of the top triangle are Oi+1Xi+1 = si+1,
Oi+1Yi+1 = s′i+1, and Xi+1Yi+1 = s̄i+1. In this section, we assume the base
triangle is larger than the top cap triangle, si > si+1, although the relevant
formulas for the SRF equations will be insensitive to this choice, as we
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Figure 6: The circumcentric-geometry of a triangle-based frustum block used
to define the SRF equations.

expect. Since all three of the axial edges are equal and the triangles are
congruent, the top triangle is parallel to the base triangle. Furthermore, the
circumcenter of the top triangle, Ct

2, the circumcenter of the frustum, C3,
and the circumcenter of the base triangle, Cb

2 are collinear. We also assume
that there is no twist of the top triangle with respect to the base triangle,
i.e. si ‖ si+1, so that the three trapezoidal faces of the frustum blocks are
planar. These conditions are consistent with our model’s symmetry and serve
to rigidify the frustum block.

A.1. The nine dihedral angles of the frustum block

The SRF equations are constructed, in part, from the nine distinct dihedral
angles of the frustum block. We found it convenient to construct a diagonal
for each of the three trapezoidal faces of the frustum,

di =
√

a2i + sisi+1,(74)

d′i =
√

a2i + s′is
′
i+1,(75)

d̄i =
√

a2i + s̄is̄i+1.(76)

We can use these diagonals to subdivide the frustum block into three tetrahe-
dra, {OiOi+1XiYi}, {YiYi+1XiOi+1}, and {XiXi+1Yi+1Oi+1}. We can then
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Figure 7: The dihedral angle along edge �ab = AB of tetrahedron {ABXY }.

use the usual formula for the dihedral angle of a tetrahedron to determine the
nine dihedral angles of the frustum block. The cosine of the dihedral angle
for the tetrahedron shown in Fig. 7 is a function of its six edge lengths,

(77) cos θab =

1
2

∣∣∣∣ �2ax + �2ay − �2xy �2ay + �2bx − �2ab − �2xy
�2by + �2ax − �2ab − �2xy �2bx + �2by − �2xy

∣∣∣∣
4�abx �aby

.

Here, �abx is the area of the triangle face {ABX}, and �aby is the area of
the triangle face {ABY }. Using this cosine formula together with the de-
composition of the frustum into three tetrahedra and the expressions for the
diagonals of the three trapezoidal faces, we find the following three dihedral
angles associates to the three edges of the base triangle �i = {OiXiYi}:

θsi = cos−1

⎛⎝(si+1 − si)
(
s2i − s̄2i − s′2i

)
4�i

√
4a2i − (si − si+1)

2

⎞⎠(78)

θs′i = cos−1

⎛⎝(s′i+1 − s′i
) (

s′2i − s2i − s̄2i

)
4�i

√
4a2i − (s̄i − s̄i+1)

2

⎞⎠(79)

θs̄i = cos−1

⎛⎝(s̄i+1 − s̄i)
(
s̄2i − s2i − s′2i

)
4�i

√
4a2i − (s̄i − s̄i+1)

2

⎞⎠ .(80)

The three dihedral angles, each associated with their corresponding edge of
the top cap triangle �i+1 = {Oi+1Xi+1Yi+1} are,

θsi+1
= π − θsi ,(81)



Equivalence of SRF and Hamilton’s RF 359

θs′i+1
= π − θs′i ,(82)

θs̄i+1
= π − θs̄i .(83)

The remaining three dihedral angles, θ̄ai
, θ′ai

and θai
are associated with the

three axial edges, {OiOi+1}, {XiXi+1}, and {YiYi+1}; respectively. These
are similarly derived and yield,

θ̄ai
= cos−1

⎛⎝ 2a2i s̄
2
i

(
s2i + s′2i − s̄2i

)
− s2i s

′2
i (s̄i − s̄i+1)

2

s̄2i sis
′
i

√
4a2i − (si − si+1)

2
√

4a2i −
(
s′i − s′i+1

)2
⎞⎠(84)

θ′ai
= cos−1

⎛⎝ 2a2i s
′2
i

(
s̄2i + s2i − s′2i

)
− s2i s̄

2
i

(
s′i − s′i+1

)2
s′2i sis̄i

√
4a2i − (si − si+1)

2
√

4a2i − (s̄i − s̄i+1)
2

⎞⎠(85)

θai
= cos−1

⎛⎝ 2a2i s
2
i

(
s̄2i + s′2i − s2i

)
− s̄2i s

′2
i (si − si+1)

2

s2i s̄is
′
i

√
4a2i −

(
s′i − s′i+1

)2√
4a2i − (s̄i − s̄i+1)

2

⎞⎠ .(86)

We also find it useful to note the three slant heights of the trapezoids,

h2i
= Cb

1Ct
1 =

1
2

√
4a2i − (si − si+1)

2,(87)

h′2i
= C′b

1C′t
1 =

1
2

√
4a2i −

(
s′i − s′i+1

)2
,(88)

h̄2i
= C̄b

1C̄t
1 =

1
2

√
4a2i − (s̄i − s̄i+1)

2,(89)

height of the frustum block,

h3i
=

8a2i �2
i +s̄2i s

′2
i si (si+1 − si)

4�i

√
16a2i �2

i −s̄2i s
′2
i (si − si+1)

2︸ ︷︷ ︸
αbasei

(90)

+
8a2i �2

i −s̄2i s
′2
i si+1 (si+1 − si)

4�i

√
16a2i �2

i −s̄2i s
′2
i (si − si+1)

2︸ ︷︷ ︸
αtopi

=

√
16a2i �2

i −s̄2i s
′2
i (s1 − si+1)

2

4�i
,
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and the circumradius of the frustum block,

(91) r3i
= ai

√
4�2

i a
2
i + sisi+1s̄2i s

′2
i

16�2
i a

2
i − s̄2i s

′2
i (si − si+1)

2 ,

as labeled in Fig. 6.

A.2. The twenty moment arms of the faces of the frustum block

Each of our SRF equations depend on the moment arms of the frustum
blocks. Consider a face, λ∗, of a given frustum block. This face can be either
a triangle or a trapezoid. The frustum-tiled 3-geometry, F , that we consider
here has a circumcentric dual lattice, F∗. The face λ∗ ∈ F is dual to an
edge, λ ∈ F∗. The dual edge λ is perpendicular to face λ∗ by construction.
The moment arm (m�λ) associated with this face and edge reaches from the
middle of the edge to the circumcenter of the face. The circumcenter of the
face is the point along the dual edge where λ intersects face λ∗. The face will
ordinarily not be the bisector of the dual edge. There are four moment arms
for each of the three trapezoidal faces, and three moment arms for each of
the triangular caps of the frustum block.

The three moment arms of the base triangle as illustrated in Fig. 6 are,

msiαi
=

si
(
s̄2i + s′2i − s2i

)
8�i

,(92)

ms′iαi
=

s′i
(
s2i + s̄2i − s′2i

)
8�i

,(93)

ms̄iαi
=

s̄i
(
s2i + s′2i − s̄2i

)
8�i

.(94)

The three moment arms on the top triangle are obtained from these by
relabeling all indices i −→ i+ 1.

The three distinct moment arms of the trapezoidal face {OiOi+1XiXi+1}
as illustrated in Fig. 6,

msiσi
=

2a2i + si (si+1 − si)

2
√

4a2i − (si − si+1)
2
,(95)

msi+1σi
=

2a2i + si+1 (si − si+1)

2
√

4a2i − (si − si+1)
2
,(96)
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maiσi
=

ai (si + si+1)

2
√

4a2i − (si − si+1)
2
.(97)

The three distinct moment arms for the trapezoidal face {OiOi+1YiYi+1}
can be obtained from these by the substitutions,

si −→ s′i,(98)

si+1 −→ s′i+1,(99)

σi −→ σ′
i.(100)

Similarly, the moment arms associated with face {XiXi+1YiYi+1} of the top

triangle are obtained from Eqs. 95–97 by the substitutions,

si −→ s̄i,(101)

si+1 −→ s̄i+1,(102)

σi −→ σ̄i.(103)

A.3. The five circumcentric dual edge segments within the

frustum block

This frustum block contains partial segments of five of the dual circumcentric

lattice edges, (1) edge σi dual to the trapezoid OiOi+1XiXi+1, (2) edge σ′
i

dual to face OiOi+1YiYi+1, (3) edge σ̄i dual to the trapezoid XiXi+1YiYi+1,

(4) edge αi dual to the triangle OiXiYi, and finally (5) edge αi+1 dual to

the triangle Oi+1Xi+1Yi+1. Each of these are illustrated in Fig: 4.

There are three dual σ edges emanating from vertex C3. The section of

the circumcentric dual edges σ 1

2
i, σ

′
1

2
i
and σ̄ 1

2
i associated with the frustum

block illustrated in Fig. 6 is the line segment that starts at the circumcen-

ter, C3 of this frustum block and terminates at the respective trapezoidal

circumcenter, C2, C′
2 and C̄2; respectively. In particular, we find that

σ 1

2
i =
√

α2
basei

+m2
siαi

−m2
siσi

(104)

=
a2i (si + si+1)

(
s̄2i + s′2i − s2i

)
2
√

4a2i − (si − si+1)
2
√

16a2i �2
i −s̄2i s

′2
i (si − si+1)

2

σ′
1

2
i =
√

α2
basei

+m2
s′iαi

−m2
s′iσ

′
i
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=
a2i s

′2
i (si + si+1)

(
s2i + s̄2i − s′2i

)
2
√

4a2i s
2
i − s′2i (si − si+1)

2
√

16a2i �2
i −s̄2i s

′2
i (si − si+1)

2

σ̄ 1

2
i =
√

α2
basei

+m2
s̄iαi

−m2
s̄iσ̄i

=
a2i s̄i (si + si+1)

(
s2i + s′2i − s̄2i

)
2
√

4a2i s
2
i − s̄2i (si − si+1)

2
√

16a2i �2
i −s̄2i s

′2
i (si − si+1)

2
.

Finally, there are two segments of dual axial edges, α, within the frustum
that terminate at the circumcenter C3. The lengths of these two segments
were given in Eq. 90. Their sum gives the height, h3i

the frustum block. One
segment, αbasei , is dual to the base isosceles triangle, OiXiYi,

(105) αbasei = hb = Cb
2C3 =

8a2i �2
i +s̄2i s

′2
i si (si+1 − si)

4�i

√
16a2i �2

i −s̄2i s
′2
i (si − si+1)

2
,

while,

(106) αtopi
= ht = Ct

2C3 =
8a2i �2

i −s̄2i s
′2
i si+1 (si+1 − si)

4�i

√
16a2i �2

i −s̄2i s
′2
i (si − si+1)

2

is the other axial segment dual to triangle Oi+1Xi+1Yi+1.

A.4. The nine kite areas of the frustum block: the SRF equation
weighting factors

There is one kite area associated to each of the nine edges of the frustum
block. We show explicitly the kite area associated to edge si in the far right
side of Fig. 6. Each kite is the sum of two triangles. A given kite, e.g. κsi , is
the fraction of the dual area, s∗i within the given frustum. Since we know the
moment arms and the dual-edge segments, each of the nine kites are easily
expressed in terms of the nine edge lengths of the frustum block. Using the
right-most part of Fig. 6 as guide, we find the three kite areas associated
with the three edges of the base triangle,

κsi =
1

2
msiσi

σ 1

2
i +

1

2
msiαi

αbasei ,(107)

κs′i =
1

2
ms′iσ

′
i
σ′

1

2
i +

1

2
ms′iαi

αbasei ,(108)
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κs̄i =
1

2
ms̄iσ′

i
σ̄ 1

2
i +

1

2
ms̄iαi

αbasei .(109)

The corresponding kite areas for the top triangle are,

κsi+1
=

1

2
msi+1σi

σ 1

2
i +

1

2
msi+1αi

αtopi
,(110)

κs′i+1
=

1

2
ms′i+1σ

′
i
σ′

1

2
i +

1

2
ms′i+1αi

αtopi
,(111)

κs̄i+1
=

1

2
ms̄i+1σ′

i
σ̄ 1

2
i +

1

2
ms̄i+1αi

αtopi
.(112)

Finally, there are three corresponding kite areas, κāi
, κa′

i
and κai

for each
of the three axial edges, OiOi+1, XiXi+1 and OiOi+1; respectively. We find,

κāi
=

1

2
maiσi

σ 1

2
i +

1

2
maiσ′

i
σ′

1

2
i,(113)

κa′
i
=

1

2
maiσi

σ 1

2
i +

1

2
maiσ̄i

σ̄ 1

2
i,(114)

κai
=

1

2
maiσ′

i
σ′

1

2
i +

1

2
maiσ̄i

σ̄ 1

2
i.(115)

Each of these kite areas can be expressed in terms of the nine edge
lengths of the frustum blocks using the expressions for the moment arms
and the dual edge segments above. They are rather lengthy expressions, we
refrain from including them here; however, they are useful in forming the
dual areas used in the definition of the Gaussian curvature.
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