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Simplicial Ricci flow: an example of a neck pinch
singularity in 3D
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We examine a Type-1 neck pinch singularity in simplicial Ricci flow
(SRF) for an axisymmetric piecewise flat 3-dimensional geometry
with topology S3. SRF was recently introduced as an unstructured
mesh formulation of Hamilton’s Ricci flow (RF). It describes the
RF of a piecewise-flat simplicial geometry. In this paper, we apply
the SRF equations to a representative double-lobed axisymmetric
piecewise flat geometry with mirror symmetry at the neck similar
to the geometry studied by Angenent and Knopf (A-K). We choose
a specific radial profile and compare the SRF equations with the
corresponding finite-difference solution of the continuum A-K RF
equations. The piecewise-flat 3-geometries considered here are built
of isosceles-triangle-based frustum blocks. The axial symmetry of
this model allows us to use frustum blocks instead of tetrahedra.
The S2 cross-sectional geometries in our model are regular icosahe-
dra. We demonstrate that, under a suitably-pinched initial geom-
etry, the SRF equations for this relatively low-resolution discrete
geometry yield the canonical Type-1 neck pinch singularity found
in the corresponding continuum solution. We adaptively remesh
during the evolution to keep the circumcentric dual lattice well-
centered. Without such remeshing, we cannot evolve the discrete
geometry to neck pinch. We conclude with a discussion of future
generalizations and tests of this SRF model.

1. Exploring simplicial Ricci flow in 3D

Hamilton’s Ricci flow (RF) has yielded new insights into pure and applied

mathematics as well as engineering fields [1, 2, 3, 4, 5]. Here the time evo-

lution of the metric is proportional to the Ricci tensor,

(1) ġab = −2Rab,
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and yields a forced diffusion equation for the curvature; i.e., the scalar cur-
vature evolves as

(2) Ṙ = �R+ 2R2.

The bulk of the applications of this curvature flow technique have been lim-
ited to the numerical evolution of piecewise-flat simplicial 2–surfaces [6]. It is
well established that, ordinarily, a geometry with complex topology is most
naturally represented in a coordinate-free way by unstructured meshes. e.g.
finite volume [7], finite element [8], in general relativity by Regge calcu-
lus [9, 10] and for electrodynamics by discrete exterior calculus [11]. While
the utility of piecewise–flat simplicial geometries in analyzing the RF of 2–
dimensional geometries is well established and proven to be effective [6, 30],
one expects a wealth of exciting new applications in 3 and higher dimensions.
Here we explore the utility of RF in three and higher dimensions. However,
we first note that the applications of discrete RF in two dimensions arise
from its diffusive curvature properties and from the uniformization theorem,
that every simply connected Riemann surface evolves under RF to one of
three constant curvature surfaces — a sphere, a Euclidean plane or a hyper-
bolic plane. RF on surfaces is perhaps the only general method to engineer
a metric for a surface given only its curvature [6]. In three dimensions the
uniformization theorem yields to the geometrization conjecture of Thurston
suggesting that all Riemannian 3-manifolds have a similar, but richer, clas-
sification into a connected sum of one or more of eight canonical geometries
[19]. The diffusive curvature flow in 3 and higher dimensions together with
this classification can provide a richer taxonomy than its 2-dimensional coun-
terpart. We believe this more refined taxonomy will prove useful in network
classification. Diffusive curvature flow can provide noise reduction in higher
dimensional manifolds, and in this direction we are currently exploring a
coupling of RF with persistent homology [20, 21].

A discrete RF approach for three and higher dimensions, referred to as
Simplicial Ricci Flow (SRF), has been introduced recently and is founded on
Regge calculus [22, 23, 24], as well as complementary work in this direction
by [12, 13, 14, 15, 16, 17, 18]. The Regge-Ricci flow (RRF) equations of SRF
are similar to their continuum counterpart. They are naturally defined on
a d-dimensional simplicial geometry as a proportionality between the time
rate of change of the circumcentric dual edges, λi, and the simplicial Ricci
tensor associated to these dual edges,

(3) λ̇i = −2 Ricλ.
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It is the aim of this paper to explore the behavior of these RRF equations

in 3-dimensions for a geometry with axial symmetry, and to examine the

development of a Type-1 neck pinch singularity. We use as a foundation

of this work the analysis of Angenent and Knopf on the Type-1 singularity

analysis of the continuum RF equations [25]. They carefully analyzed a class

of axisymmetric dumbbell-shaped geometries with mirror symmetry about

the plane of the neck as illustrated in the top of Fig. 1. The metrics these

researchers evolve under RF are commonly referred to as warped product

metrics on I × S2,

g = ϕ(z)2dz2︸ ︷︷ ︸
da2

+ρ(z)2gcan(4)

= da2 + ρ(a)2gcan.(5)

Here, I ∈ R is an open interval,

(6) gcan = dθ2 + sin2 θdφ2,

is the metric of the unit 2-sphere,

(7) a(z) =

∫ z

0
ϕ(z)dz,

is the geodesic axial distance away from the waist, and ρ(a) is the radial

profile of the mirror-symmetric geometry, i.e. s = ρ(a) is the radius of the

cross-sectional 2-sphere at an axial distance a away from the waist. An-

genent and Knopf proved that the RF evolution for such a geometry has the

following properties:

1. If the scalar curvature is everywhere positive, R ≥ 0, then the radius

of the waist (smin = ρ(0)) is bounded,

(8) (T − t) ≤ s2min ≤ 2(T − t),

where T is the finite time that a neck pinch occurs.

2. As a consequence, the neck pinch singularity occurs at or before T =

s2min.

3. The height of the two lobes are bounded from below and under suitable

conditions, the neck will pinch off before the lobes will collapse.

4. The neck approaches a cylindrical-type singularity.
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We demonstrate in this paper that the SRF equations, for a sufficiently
pinched radial profile, will produce a neck pinch singularity in finite time.
Furthermore, we show that the results agree with a finite-difference solution
of the continuum RF equations for the same profile. The discrete model here
is a very coarse approximation to the dumbbell geometry (e.g. the S2 cross
sections are modeled by icosahedra, and adjacent faces of the icosahedra are
connected to each other via frustum blocks). However, this work represents
the first non-trivial numerical solution of the SRF equations, and it is the
goal of this paper to demonstrate for the first time neck pinch behavior in
SRF.

We can very well believe that the set of RRF equations will have an
equally rich spectrum of application as does its 2-dimensional counterpart
known as combinatorial RF [30]. We therefore are motivated to explore
the discrete RF in higher dimensions so that it can be used in the analy-
sis of topology and geometry, both numerically and analytically to bound
Ricci curvature in discrete geometries and to analyze and handle higher–
dimensional RF singularities [31, 32]. The topological taxonomy afforded by
RF is richer when transitioning from 2 to 3–dimensions. In particular, the
uniformization theorem says that any 2–geometry will evolve under RF to a
constant curvature sphere, plane or hyperboloid, while in 3–dimensions the
curvature and surface will diffuse into a connected sum of prime manifolds
[33].

2. A simplicial approximation of an Angenent-Knopf neck
pinch-type model: initial value data and lattice structure

For the purpose of examining Type-1 neck pinch behavior of the SRF equa-
tions introduced in [22], we have adopted for our simulations the qualitative
features of the Angenent and Knopf initial data [25], as shown in Fig. 1. The
cross sections of this geometry in planes perpendicular to the symmetry axis
are 2-sphere surfaces. As discussed in the last section, the surface and metric
can be parameterized by two coordinates, a and s. Here a given point on
the surface is identified by its proper “axial” distance of a from the throat,
and the radius, s = ρ(a), of the cross-sectional sphere where the point lies,
Eqs. 5 and 6. The initial data is determined by a radial profile function for
the dumbbell geometry, and amounts to specifying a function relating the
cylindrical radius of the dumbbell, s, to a scaled proper axial distance along
the dumbbell away from the neck, a ∈ {−π/2, π/2},

(9) s = ρ(a).
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Figure 1: An illustration of a 2-D dumbbell geometry analogous to the 3-D
dumbbell we will analyze in this manuscript. The top illustration shows
an embedding surface of a continuum dumbbell, while the bottom fig-
ure shows a simplicial representation of this geometry using trapezoids of
three shapes and two small hexagonal end-caps at the poles. The topology
of these models is S2. Just as this 2-D piecewise-flat dumbbell geometry

is characterized by the sum of axial edges, ac = a
(coord)
i , measuring the

proper distance a hexagonal cross section (of edge length si) is away from
the waist; the 3-D dumbbell is parameterized with the same set of edge
lengths. However, in the case of the 3-D dumbbell the surface is tiled with
regular triangle frustum blocks and two icosahedral end caps as shown in
Fig. 3.

If the dumbbell geometry has no neck, and is just a sphere of radius, R0,

this initial value data (ivd) radial profile function is simply the cylindrical

coordinate radius,

(10) s = ρsphere(a) = R0 cos(a).

In order to prove cleanly their theorems on the evolution of such geometries,

Angenent and Knopf introduced a parabolic waist for the purpose to aid in
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Figure 2: We illustrate here an embedding of the initial 3-D hypersurface
representing the dumbbell geometry at t = 0. This is the initial-value data
we examine in this manuscript. It is determined by the radial profile in
Eq. 12. Here, one of the azimuthal angles have been suppressed so that it
can be embedded in R3. The cross sections perpendicular to its symmetry
axis are 2-spheres of various radii, ρ, and are given by the radial profile
equation. In the case considered in this paper, the waist has the smallest
radius, ρw(t = 0) := ρ0 = 10 at ac = aw = 0, and the lobes have a maximal
radius, ρm(t = 0) ≈ 48.9 at a ≈ ±86.0.

the mathematical analysis of the neck singularity,

(11) r = ρ
AK

=

{
R0 cos (a) |a| ≥ π

4

R0

√
A+Ba2 |a| < π

4 .

The constant A controls the degree of neck pinching in the ivd, while the
constant B is chosen so as to ensure continuity in the radial profile function
at a = ±π/4. To better serve our purposes in this paper of numerically
comparing the continuum RF with the RRF equations in SRF, we analyze
a geometry with a smoother radial profile,

(12) ρ(a) = R0

(
cos (a/R0) + (1− ρ0) cos

4 (a/R0)
)
, ∀a ∈ R0

{
−π

2
,
π

2

}
.

We examine here the single case where ρ0 = 0.1 and R0 = 100. A 2-D
embedding diagram for this 3-D geometry (suppressing one of the azimuthal
angles) is shown in Fig. 2.

We approximate this double-lobed geometry (as shown in Fig. 2) by
first identifying a finite number, (Ns), of spherical cross sections along its
symmetry axis. To help visualize our lattice geometry, we illustrate this 3-D
dumbbell model for the case of ns = 9 as shown in Fig. 3. However, in this
paper we choose ns = 45 for our numerical simulation. Each 2-sphere cross
section is approximated by a regular icosahedron, of edge length si, where
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i = 1, 2, . . . , 45. The icosahedron with index i = (ns + 1)/2 = 23 is placed
at the waist while the remaining 44 icosahedra are paired off so that each
pair (i = 23 ± j for j = 1, 2, . . . , 22) is placed at an ever increasing, but
equal distance to the left and right of the waist. We do not enforce mirror
symmetry in our SRF equations; however, our initial value profile at t = 0 is
mirror symmetric. The two end-cap icosahedra with index i = 1 and i = 45
are placed inside the two extreme ends of the dumbbell geometry. In this
way they initially have a nonzero radius, s1 and s45 > 0.

We connect the vertices of each pair of adjacent icosahedra, i.e. icosa-
hedra of index i and i + 1, using twelve equal axial edges of length, ai. We
do not allow any twist of one icosahedron with respect to another; there-
fore, each regular triangle face of the i’th icosahedron, when connected by
three axial edges, ai, to its adjacent triangle on the (i + 1)’st icosahedron
will form a regular triangle frustum block as illustrated in Fig. 7. There are
twenty such frustum blocks sandwiched between any two adjacent icosahe-
dra. The geometry of this piecewise-flat icosahedral frustum model contains
20(ns − 1) = 880 equilateral-triangle-based frustum blocks and two icosahe-
dra. The lattice is rigid due to its axial symmetry and because we do not
allow any twisting of the frustum blocks. The geometry is completely deter-
mined by the ns = 45 icosahedral edge lengths, si and the (ns − 1) = 44
axial lengths, ai. Each evolution step requires the solution of (2ns− 1) = 89
locally-coupled nonlinear algebraic first order SRF equations. These equa-
tions are described in some detail in Sec. 4.

In order to compare our geometry with the continuum we set the cir-
cumradius of each icosahedron equal to the radius of sphere, ri,

(13) ri =

√
10 + 2

√
5

4
si,

and the proper distance from the waist a in the continuum is related to the
sum of the axial edges,

(14) a
(coord)
i =

i∑
j=1

ai −
ns−1

2∑
j=1

ai

︸ ︷︷ ︸
aw

.

The RRF equations will use extensively the elements of the circumcen-
tric-dual lattice. The original icosahedron-based lattice described above is
constructed by regular triangle-based frustum blocks and two end cap icosa-
hedra. Recall that in this icosahedral frustum lattice, there are ns icosahe-
dral edge lengths, si, and (ns − 1) axial edges, ai. The dual lattice shown
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Figure 3: Top Figure: The illustration at the top is our icosahedral dumbbell
model with ns = 9 icosahedra. The geometry of each of these icosahedra is
determined by a single parameter, its edge length, si. There are nine of these
edge lengths, {s1, s2, . . . , sns

}, in this model. Adjacent icosahedra are con-
nected with twelve equal axial edges of length ai. There are ns− 1 = 8 axial
edges. For clarity we only show two of the twelve axial edges ai sandwiched
between the i’th and (i+ 1)’st icosahedron. This yields a piecewise-flat ge-
ometry built of 20(ns−1) frustum blocks (as described in Appendix A) and
two icosahedral end caps. Bottom Figure: The bottom figure illustrates its
circumcentric dual dodecahedral frustum lattice as described in the text.

in Fig. 3 is an axisymmetric geometry consisting of (ns − 1) cross-sectional

spheres approximated by regular dodecahedra with edges σi. There is one

dodecahedron of the dual lattice sandwiched between every pair of adjacent

icosahedra. The 20 vertices of each dodecahedron are the 20 circumcenters

of the 20 triangle frustum blocks sandwiched between two adjacent icosahe-

dra. Any two adjacent dodecahedra (e.g. the i’th and the (i + 1)’st) in the

dual lattice are connected to each other by the 20 dual axial edges, αi. At

each of the two end caps of the dumbbell geometry the 20 axial edges meet

at a vertex. As mentioned, the vertices of the circumcentric dual lattice are

located at the circumcenters of the triangular frustum blocks; however, at

the two end caps the two dual lattice vertices are located at the circumcenter

of the icosahedral end caps. The edges of the dual lattice connect adjacent

circumcenters. The geometry of the dual dodecahedral lattice is composed

of 12(ns − 2) regular pentagonal-based frustum blocks and 12 tetrahedra at

each end cap. Ordinarily, there are many more circumcentric dual edges than

original edges; however, the discrete 3-dimensional axisymmetric geometry

we are considering in this manuscript has an equal number. We take advan-
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Figure 4: We illustrate here the dual areas (shaded polygons) for each of
the four types of edges in our lattice geometry. We also identify a couple of
representative moment arms (thin dashed or red lines) connecting the center
of the edge, ai and si to the perpendicular bisector of the dual edge, σi and
αi; respectively. The pentagonal-shaped dual area a∗i to axial edge ai is used
in part to define the sectional curvature associated with edge ai and is used
in the construction of the Ricci tensor. This is also true for the trapezoidal
dual area s∗i to icosahedral edge si. (Color figure online)

tage of this and show in Appendix B that the dual edge RRF equations are
equivalent to the original RRF equations.

Each edge of the icosahedral frustum lattice is dual to a polyhedron in
the dodecahedral frustum lattice, and vice versa. The dual areas are used to
construct the RRF equations. In particular each axial edge, ai, is dual to a
pentagonal face of the i’th dodecahedron. We refer to this dual pentagonal
face by a∗i . Each icosahedral edge, si, is dual to a trapezoidal face s∗i of the
i’th pentagonal-based frustum block. The edges of s∗i are σi, σi+1 and αi.
Similarly, each dodecahedron edge, σi, is dual to a trapezoidal face σ∗

i of the
i’th regular triangle-based frustum block. The edges of σ∗

i are edges si, si+1

and ai. Finally, each dual axial edge, αi, is dual to a regular triangle face
of the i’th icosahedron, α∗

i . These dual areas and their associated edges are
illustrated in Fig. 4

3. The continuum Ricci flow equations for a warped product
metric

In this section, we briefly highlight the continuum equations for the warped
product metric as introduced by Angenent and Knopf [25] and Simon [26].
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We do this so that we can more precisely compare the numerical solution of
these continuum RF equations governing the dynamics of the specific radial
profile (Eq. 12) to that of the evolution of the corresponding SRF equations
for our axisymmetric piecewise-flat lattice geometry. The numerical com-
parison will be discussed in Sec. 5; here we briefly outline the continuum
equations.

There are only two distinct mixed Ricci tensors for the warped product
metric given by Eq. 5,

Rcaa = −2

(
ρ′′

ρ

)
,(15)

Rcθθ = Rcφφ =
1

ρ2
− ρ′′

ρ
−
(
ρ′

ρ

)2

,(16)

where ρ = ρ(a) and the primes are partial derivatives with respect to the
proper distance a. The RF equations for this warped product metric in mixed
form govern the dynamics of the radial profile by a single partial differential
equation for ρ(a),

(17)
ρ̇

ρ
= − 1

ρ2
+

ρ′′

ρ
+

(
ρ′

ρ

)2

,

where the dots are time derivatives and the primes are partial derivatives
with respect to a. The time evolution of ϕ can be recovered solely from the
radial profile ρ and its second derivatives, ρ′′,

(18)
ϕ̇

ϕ
= −2

ρ′′

ρ
.

We numerically solve Eq. 17 using the initial radial profile given by Eq. 12.
This allows us in Sec. 5 to compare the solution of our SRF equations with
the continuum solution.

4. The SRF equations for the icosahedral frustum model

For the axisymmetric model we are analyzing, we show in Appendix B that
the RRF equations for the axial edges, ai, and the icosahedral edges, si, are
equivalent to the dual-edge RRF equations associated with dual edges σi
of the dodecahedra and dual axial edges αi (Fig. 3). In particular, we show
that
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(19)

{
σ̇i

σi
= −Rcσi

α̇i

αi
= −Rcαi

}
︸ ︷︷ ︸

dual-edge RRF equations

⇐⇒

⎧⎨
⎩
∑

λj∈s∗i
λ̇j

λj

(
Vsiλj

Vsi

)
= −Rcsi∑

λj∈a∗
i

λ̇j

λj

(
Vaiλj

Vai

)
= −Rcai

⎫⎬
⎭︸ ︷︷ ︸

simplicial-edge RRF equations

,

where the λi’s in the sum are the edges of the dual lattice in the boundary
of the polygon, a∗i or s∗i dual to the edge ai or si, respectively (as shown
in Fig. 4). The dual-edge RRF equations are significantly simpler. For this
reason, we have chosen to solve the dual-edge equations for this model. Our
analysis relies heavily on a recent paper by some of us, and in particular on
Sec. 3 and Sec. 5 of [22]. The notation here corresponds to the notation used
in the recent SRF manuscript [22].

4.1. The αi dual axial equations

There is one axial dual-edge equation associated with each of the ns dual
axial edges αi. Each of these equations can be expressed locally in terms of
the four edges, ai, ai+1, si, and si+1 of the icosahedral frustum model and
their time derivatives,

(20)
α̇i

αi
= −Rcαi

.

The axial edge, αi, reaches from the circumcenter of one triangle frustum
to the adjacent triangle frustum sharing an equilateral triangle of the i’th
icosahedron and is given by the sum of Eqs. 45 and 46, except for the two
dual axial edges on the end caps where they terminate at the circumcenter
of the end cap icosahedron. In particular, we find
(21)

αi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
3

12

(
3 +

√
5
)
s1 +

√
3
6

(
3a2

1−2s1(s1−s2)√
3a2

1−(s1−s2)2

)
, i = 1,

√
3
6

(
3a2

i+2si+1(si−si+1)√
3a2

i−(si−si+1)2

)
+

√
3
6

(
3a2

i+1−2si+1(si+1−si+2)√
3a2

i+1−(si+1−si+2)2

)
, i ∈ {2, 3, . . . ,

Ns−1},
√
3

12

(
3 +

√
5
)
sns

+
√
3
6

(
3a2

ns
−2sns (sns−sns−1)√

3a2
ns

−(sns−sns−1)2

)
, i = ns,

together with the time derivatives,

(22) α̇i =
∂αi

∂ai
ȧi +

∂αi

∂ai+1
ȧi+1 +

∂αi

∂si
ṡi +

∂αi

∂si+1
ṡi+1.
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These quantities are used to construct the left-hand side of Eq. 20.
The right-hand side of Eq. 20 are the Ricci tensors associated with the

dual axial edges,

(23) Rcαi
=
∑
�j∈α∗

i

Rc
(hyb)
�j

(
Vαi�j

Vαi

)
= 3Rc(hyb)si

(
1

3

)
= 2Rmsi = 2

εsi
s∗i

.

Here, the deficit angle εsi is associated with the icosahedral edge, si. Edge si
is the edge common to four triangle frustum blocks, except for the bounding
icosahedral caps where it is the edge common to two frustum blocks and one
end cap icosahedron; we find

(24) εsi =

⎧⎨
⎩
2π − θicosa − 2 θs1, i = 1,
2π − 4 θsi, i ∈ {2, 3, . . . , Ns−1},
θicosa + 2 θsns−1, i = ns.

The dihedral angles (θ) are given in Appendix A. Care must be taken when
calculating the dual areas, s∗i , as shown in the lower-right of Fig. 4. This
dual area is given by moment arms and the three distinct dual edges in the
boundary of s∗i . It is simply the sum of four triangle areas, two of which are
always equal,

(25) s∗i =

⎧⎪⎨
⎪⎩
ms1α1

α1 +
1
2ms1σ1

, i = 1

msiαi
αi +

1
2msiσi

σi +
1
2msiσi+1

σi+1, i ∈ {2, 3, . . . , Ns−1},
msnsαns

αns
+ 1

2msnsσns
, i = ns.

Therefore, we find that the dual axial RRF equations are simply

(26)
∂αi

∂ai
ȧi +

∂αi

∂ai+1
ȧi+1 +

∂αi

∂si
ṡi +

∂αi

∂si+1
ṡi+1 = −2

εsi
s∗i

.

4.2. The σi, or dual dodecahedral edge equations

In many ways, the dual RRF equations for the σi edges are simpler than the
αi equations because they have no special boundary terms. On the other
hand, the Ricci tensors are more complicated. There is one dual dodecahe-
dral edge equation associated with each of the (ns − 1) dodecahedron edges
σi. Each of these equations can be expressed locally in terms of the edges
ai, si, and si+1 of the icosahedral frustum model and their time derivatives,

(27)
σ̇i
σi

= −Rcσi
.
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The axial edge, σi, reaches from the circumcenter of one triangle frustum to

the adjacent triangle frustum sharing a common trapezoid face sandwiched

between the i’th and (i+ 1)’st icosahedrons. This edge is given by the sum

of Eq. 47,

(28) σi =

(
a2i (si + si+1)√

3a2i − (si − si+1)2
√

4a2i − (si − si+1)2

)
,

and its time derivative is

(29) σ̇i =
∂σi
∂ai

ȧi +
∂σi
∂si

ṡi +
∂σi
∂si+1

ṡi+1,

yielding the left-hand side of Eq. 27.

The right-hand side of Eq. 20 are the Ricci tensors associated with the

dual dodecahedron edges,

Rcσi
=

∑
�j∈σ∗

i

Rc
(hyb)
�j

(
Vσi�j

Vσi

)
(30)

= 2Rc(hyb)ai

(
Vσiai

Vσi

)
+Rc(hyb)si

(
Vσisi

Vσi

)
+Rc(hyb)si

(
Vσisi

Vσi

)
(31)

= 4
εai

a∗i

(
Vσiai

Vσi

)
+ 2

εsi
s∗i

(
Vσisi

Vσi

)
+ 2

εsi+1

s∗i+1

(
Vσisi

Vσi

)
,(32)

where the ratios of the restricted dual hybrid volumes to the hybrid volumes

are expressed in terms of the moment arms in Appendix A,

Vσiai

Vσi

=
maiσi

ai
2maiσi

ai +msiσi
si +msi+1σi

si+1
,(33)

Vσisi

Vσi

=
msiσi

si
2maiσi

ai +msiσi
si +msi+1σi

si+1
,(34)

Vσisi

Vσi

=
msi+1σi

si+1

2maiσi
ai +msiσi

si +msi+1σi
si+1

.(35)

Two of the three deficit angles in Eq. 32 are given by Eq. 24, while the

remaining axial-edge deficit angle εai
is associated with the edge common to

five triangle frustum blocks,

(36) εai
= 2π − 5θai

.
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The dihedral angles (θ) are given in Appendix A. Once again, care must
be taken when calculating the dual areas, a∗i , as shown in the upper-left of
Fig. 4. This dual area is given by moment arms and the dual edges, σi, in
the boundary of a∗i . It is simply the sum of five identical isosceles triangle
areas,

(37) a∗i =
5

2
maiσi

σi.

The dual-dodecahedron-edge RRF equations are

(38)
∂σi
∂ai

ȧi +
∂σi
∂si

ṡi +
∂σi
∂si+1

ṡi+1 = −4
εai

a∗i

(
Vσiai

Vσi

)
− 2

εsi
s∗i

(
Vσisi

Vσi

)

− 2
εsi+1

s∗i+1

(
Vσisi

Vσi

)
.

5. The numerical algorithm and simulations

We report on our numerical solution of Eqs. 26 and 38 given the initial
profile dual-lobed profile of Eq. 12. These equations form a sparsely-coupled
first-order system of nonlinear algebraic equations,

(39) Mij �̇j = fi, ∀i, j ∈ {1, 2, . . . , 2ns − 1}.

We define the coordinate vector as alternating icosahedral and axial edges,

(40) ��� = {s1, a1, s2, a2, . . . , sNs−1
, aNs−1

, sns
};

consequently, the square matrix MMM is sparse with four non-zero diagonals
and populated with partial derivatives of the dual edges with respect to
isosceles frustum lattice edges. The vector fff ’s components are the weighted
sectional curvatures. We solve the equations using a fixed-time step 4-th
order Runge-Kutta algorithm and remesh the lattice occasionally to keep
the circumcenters roughly inside the frustum blocks. As a diagnostic, we
linearize,

(41) JJJ := δ
(
MMM−1 · fff

)
,

and track this Jacobian and its corresponding eigenvalues during the evolu-
tion.
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The initial radial profile of the double-lobed geometry given by Eq. 12
is translated into initial values for the axial and icosahedral edges using
Eqs. 13 and 14. However, we exploit our freedom in the axial placement of
each icosahedron. We choose to concentrate more icosahedra near the waist
where we expect a singularity in finite time. In order to remesh, we construct
a cubic interpolating function, s(acoord) for the simplicial geometry. We also
extrapolate to the poles (s = 0) of the dumbbell geometry in order to keep
the end cap icosahedra bounded away from the poles. This extended inter-
polating function allows us to place the icosahedra along the geometry based
on a distribution function. We choose a Gaussian distribution centered on
the waist,

(42) a
(new)
i = a

(ext)
i

(
1− κ exp

(
−(ācoordi /a

(coord)
max )2

2σ2

))
.

Here we use κ = 0.95, σ = 0.1, a
(coord)
max is the maximal length geodesic

from pole to pole, ācoordi = (acoordi+1 − acoordi )/2, and a
(ext)
i = a

(coord)
max /(ns +

1) represents the equally-spaced a’s along the extrapolated length of the
interpolating function.

During the evolution, we want each of the circumcenters to lie within,
or nearly within, their respective triangular frustum blocks. The condition
for this well-centeredness is obtained from Eqs. 48, 49, and an expression
for the altitude of the frustum block; we impose,

(43) ai ≥
√

si+1|si − si+1|
3

.

Given the very poor azimuthal resolution afforded to us by the icosahedra,
this well-centeredness condition is nearly impossible to satisfy, and we have
to allow each circumcenter to evolve slightly outside its frustum block before
we remesh. We find, on occasion, the adjacent circumcenters cross in very
short time scales, and this abruptly crashes the evolution. This problem is
exacerbated when we increase the number of icosahedral cross sections in
our model. In this case the height of the frustum block vanishes, and we
observe that the gradients in the radial profile, (si + 1 − si)/ai, will cause
changes in the axial edges, ai, which in turn cause the circumcenter to evolve
through the largest equilateral triangle face. With this in mind, we find
empirically that the nearly maximal number of icosahedral cross sections we
can use in our simulation in order to evolve stably is ns = 45. However, if
we were to remove the condition that the corrections be limited to regular
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Figure 5: The evolution of the 3-dimensional SRF icosahedral frustum ge-
ometry using the RRF equations with the remeshing described above. The
solid line is the radius of the waist as a function of time. The long dashed
line at the top is the time evolution of the largest radius of the lobes. The
short dashed line in between the other two lines is the difference between the
maximum radius and the waist radius, thus demonstrating a neck pinching
singularity. Just below the time axis, and at four separate times during the
evolution we plot an embedding surface representing the dumbbell geometry
as it evolves toward neck pinch singularity.

icosahedra then the azimuthal resolution could increase which would allow
cross-sectional slices, which should lead to a more finely resolved evolution
and comparison with the continuum. However, this was beyond the scope
and intent of this paper.

In Fig. 5 we show the results of our evolution. This evolution includes
remeshing at those times during the evolution when the well-centeredness
condition (Eq. 43) is violated. It is interesting to note that we observed that
this evolution only runs a few units in time without remeshing. Furthermore,
we find that the system of dual-edge RRF equations is rather stiff, when the
condition number of the Jacobian in Eq. 41 becomes the order of C ∼ 108.
As a rule of thumb, the accuracy is diminished by log10(C). Therefore, it
is important to keep the condition number as small as possible. Remesh-
ing reduces the condition number by a factor of 2 and also produces more
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negative eigenvalues in the Jacobian. While the equations we are solving are
obtained by the method of lines, the equations are nonlinear. The eigenvalue
spectrum of the Jacobian will change during evolution; that we observe more
negative eigenvalues under remeshing is a positive diagnostic. We identify an
interesting phenomenon where the axial distance of every other icosahedron
shrinks, while the adjacent axial edges grow. The relatively poor resolution
of the icosahedra prohibits us from exploring this in much detail, and a re-
finement in the azimuthal directions is beyond the scope and intent of this
paper.

We also solve the continuum RF equation, Eq. 17, for the same initial
radial profile and compare it to the SRF solution. These two solutions show
excellent agreement and demonstrate neck pinching in SRF. To make the
comparison shown in Fig. 6, we only rescale the collapse time of the contin-
uum equations to agree with the SRF evolution.

6. Toward higher resolution, proper sampling, and surgery
in SRF

The purpose of this paper has been to demonstrate a neck pinching evo-
lution in 3-dimensional SRF. Our comparison with the continuum solution
accomplishes this goal. We have learned that these equations require delicate
numerical techniques and higher resolution. We have demonstrated here the
necessity of remeshing, and we expect to need a more sophisticated adap-
tive mesh and remeshing algorithm for higher-dimensional SRF simulations.
Our model used regular icosahedral cross sections and therefore we could
not explore the scaling behavior of our code with resolution in a meaningful
way. However, the extension of our warped product geometries to higher di-
mensions will not change the structure or complexity of the RRF equations.
There will still be only one axial equation and one azimuthial equation per
cross-sectional slice. It should not add any substantial computational de-
mands to extend beyond 3-dimensions. The sparsity of the matrix we need
to invert will not increase in the discretization of our warped product geom-
etry. Notwithstanding this observation, the availability of regular polytopes
in four and higher dimensions is restricted to the cross polytope. The az-
imuthal resolution would be more coarse than our 3-dimensional icosahedral
model and we would not be able to resolve the dumbbell along the axial di-
rection as well either. The computational scaling of our algorithm should
be dominated by the inversion of the sparse square matrix in Eq. 39. This
matrix needs to be constructed and inverted at each time step. The struc-
ture of this matrix, Mij , is determined by the lattice structure. In our case
it will have at most four non-zero diagonals. This is also the case for higher
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Figure 6: We show here a comparison of the continuum RF equation and
the RRF equations. The black curves are the solution of the RRF equations,
and the red (grey) are the solution of the continuum equations. The solid
lines (lying on top of each other) are the radius of the waist as a function of
time. The long dashed lines at the top are the time evolution of the largest
radius of the lobes. The short dashed lines in between are the difference
between the maximum radius and the waist radius, thus demonstrating a
neck pinch singularity. These curves are only scaled in time so that the pinch
happened at the same instant. Given the relatively low resolution afforded
by the icosahedral cross sections, the agreement is rather striking. (Color
figure online)

dimensional dumbbell geometries. A regular lattice structure will yield a
well structured matrix. There are efficient parallelized preconditioned ma-
trix inversion algorithms to extend our numerical techniques for arbitrary
geometries in three and higher dimensions [40]. We see no way in three and
higher dimensions to decouple the RRF equations.

Two conditions govern the proper sampling of the geometry. First, we
would like to have large blocks where the curvature is small and small blocks
where the curvature is large. This can be accomplished with the condition
that all the deficit angles be small and roughly equal, since the sectional
curvature will then be inversely proportional to its dual area. Second, we
would like to keep the blocks as well-centered and equilateral as possible.
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This can be accomplished by using a well-centeredness or fullness condition
introduced by Whitney [34], and others used in RC, e.g. the waste function
[35].

We consider that the best way to advance this numerical work in SRF
follows three distinct approaches. First, we can introduce a higher-resolution
triangulation of each of the cross-sectional spheres in the current model. We
are currently exploring a simplicial model that can be arbitrarily refined,
and refer to this as the “continuum SRF model” [36]. With this higher az-
imuthal resolution, we will be better able to maintain well-centeredness of
the lattice to a higher tolerance, and we hope to introduce more spherical
cross-sectional spheres. The numerical intricacies in solving the RRF equa-
tions is that we may learn from the continuum model that will guide us to a
fully-generic (e.g., no axial symmetry restrictions) simplicial geometry evolv-
ing under SRF. Note that for a general simplicial geometry there are more
dual edges than simplicial edges which necessitates solving the simplicial-
edge RRF equations directly. In addition, we need to develop a sophisticated
implementation of remeshing as well as adapting the mesh during evolution
(i.e. resample the mesh in areas at higher or lower resolution). We also need
an adaptive time step stiff integrator. This example makes clear that such
techniques are essential for the analysis of singularity development in this
model. Such techniques will enable us to automatically detect singularity
formation, perform surgery in these regions, and continue our integration.
Some of us are already exploring surgery techniques in SRF [20]. Finally,
we think it important to explore a reformulation of SRF where we have
a diffeomorphically equivalent flow under a convex energy functional, e.g.
a simplicial application of the de Turck trick, or a simplicial version of a
convex entropy functional [38, 39].
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Appendix A. The geometry of the equilaterial triangle
frustum block

The SRF equations depend directly on the geometry of the triangular frus-
tum block. We will outline the relevant geometric features of this polyhedron
that are used to construct the axial and icosahedral-edge RRF equations for
this model. We focus in this section on a single isosceles-based triangular
frustum block as illustrated in Fig. 7. Here the block has three types of edges:
three axial edges each of length ai, three equal edges of the base isosceles
triangle of length si, and three equal edges of the cap triangle of length
si+1. Here we assume the base triangle is larger than the top cap triangle,
si > si+1. Since all three of the axial edges are equal, then the top triangle
is parallel to the base triangle; also, the circumcenter of the two triangles
and the circumcenter of the frustum block all lie on the same line.

Each of our SRF equations are constructed, in part, from the three
dihedral angles of the frustum block. The dihedral angle between any two
of its three trapezoidal faces sharing an edge, a, is the axial dihedral angle,
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(44) θai
= arccos

(
2a2i − (si − si+1)

2

4a2i − (si − si+1)2

)
.

The dihedral angle along edge si is the angle between the base triangle and
the trapezoid sharing si we refer to as the base dihedral angle,

(45) θsi = arccos

( √
3(si − si+1)

3
√

4a2i − (si − si+1)2

)
,

and consequently the corresponding dihedral angle associated to the top cap
edge, si+1, is the supplementary angle,

(46) θsi+1
= π − θsi .

This frustum block contains the segments of three of the dual edges
in our model: the dual decahedron edge σi, the dual axial edge αi, and
the dual axial edge αi+1. The circumcentric dual edge σi associated with
this frustum block is the line segment that starts at the circumcenter of
this frustum block, pierces through the circumcenter of one of the three
trapezoidal blocks of the frustum, and terminates at the circumcenter of the
adjacent frustum block. In this case half of the dual edge, σ 1

2 i

, lies in the

frustum considered here,

(47) σ 1

2 i

=
1

2

(
a2i (si + si+1)√

3a2i − (si − si+1)2
√

4a2i − (si − si+1)2

)
,

and σi = 2σ 1

2 i

. There are two segments of dual axial edges within the

frustum, one dual to the base isosceles triangle, αi, and the other with the
top cap triangle, αi+1. Here, the dual axial edge segment reaches from the
circumcenter of the frustum to the circumcenter of the base isosceles triangle,

(48) h1i
=

√
3

6

(
3a2i − 2si(si − si+1)√
3a2i − (si − si+1)2

)
.

The dual edge reaching from the circumcenter of the frustum to the cir-
cumcenter of the top cap isosceles triangle can be obtained from αi+1 by
switching the base edges in Eq. 48, i.e. si+1 ↔ si,

(49) h2i+1
=

√
3

6

(
3a2i + 2si+1(si − si+1)√

3a2i − (si − si+1)2

)
.
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Each of our SRF equations depends on one or more of the five types
of moment arms. A moment arm, e.g. maiσi

is defined as the line segment
reaching from the center of an edge of the frustum, ai in this case, to the
perpendicular bisector of a dual edge, σi in this case. Since σi is dual to a
trapezoid, there are three moment arms, maiσi

, msiσi
and msi+1σ. Moment

arm maiσi
is the length of the edge that reaches from the center of edge, ai

to the circumcenter of the trapezoidal face of the frustum,

(50) maiσi
=

ai(si + si+1)

2
√

4a2i − (si − si+1)2
.

This moment arm is perpendicular to dual edge σi. Similarly, msiσi
is the

length of the edge that reaches from the center of either edge si to the
circumcenter of the trapezoidal face of the frustum,

(51) msiσi
=

2a2i − si(si − si+1)

2
√

4a2i − (si − si+1)2
,

and finally,

(52) msi+1σi
=

2a2i + si+1(si − si+1)

2
√

4a2i − (si − si+1)2
,

which is obtained from the base moment arm via si+1 ↔ si. The two remain-
ing moment arms are associated with the dual axial edges, αi. In particular,
the moment arm msiαi

reaches from the center of edge si to the circumcenter
of the base triangle. It is the inradius of the base triangle,

(53) msiαi
=

√
3

6
si.

The corresponding moment arm associated with the top cap of the frustum
is also the inradius of the top triangle,

(54) msi+1αi+1
=

√
3

6
si+1.

The only other quantities that enter into the normalized SRF equations
from the frustum block is its volume, Vf ,

(55) Vfi =
1

12

(
s2i + s2i+1 + sisi+1

) √
3a2i − (si − si+1)2.
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In addition, our frustum geometry has two regular icosahedral boundaries

at both ends of the dumbbell. The dihedral angle of the regular icosahedron

of edge length, s,

(56) θicosa = arccos

(
−
√
5

3

)
,

as well as its 3-volume,

(57) Vicosa =
5

12

(
3 +

√
5
)
s3,

also enter into our axial and spherical SRF equations.

Appendix B. The equivalence of the RRF and dual-edge
RRF equations for axisymmetric geometries

In this section we prove that the RRF equations associated with the edges of

the icosahedral-frustum model are equivalent to the dual-dodecahedron-edge

RRF equations. We follow as closely as possible the notation and equations

from recent work in Sec. 3 and Sec. 5 of the Simplicial Ricci Flow manuscript

[22].

Theorem. The Regge-Ricci Flow equations associated to the edges of the

icosahedral-frustum-block geometry are equivalent to the dual-edge Regge-

Ricci Flow equations.

Proof. There are two sets of RRF equations associated with the edges of the

icosahedral-frustum model as shown in the right-hand side of Eq. 19. One

equation, the si-equation, is associated with each icosahedron; the other

set is associated with the axial edges (ai). In particular, there is one ai-

equation associated with each axial edge. These can be expressed in terms

of the moment arms, deficit angles, dual areas and edge lengths. All moment

arms are strictly positive. The si-equation can conveniently be written as

the sum of three terms,

msiσi

⎛
⎝ σ̇i +

(
σi

σ∗
i

){(
si
s∗i

)
msiσi

εsi

+
(
si+1

s∗i+1

)
msi+1σi

εsi+1
+ 2
(

ai

a∗
i

)
maiσi

εai

}
⎞
⎠

︸ ︷︷ ︸
Term σi

(58)
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+msiσi+1

⎛
⎝ σ̇i+1 +

(
σi+1

σ∗
i+1

){(
si+1

s∗i+1

)
msi+1σi+1

εsi+1

+
(
si+2

s∗i+2

)
msi+2σi+1

εsi+2
+ 2
(
ai+1

a∗
i+1

)
mai+1σi+1

εai+1

}
⎞
⎠

︸ ︷︷ ︸
Term σi+1

+ 2msiαi

(
α̇i + 3

(
αi

α∗
i

)(
si
s∗i

)
msiαi

εsi

)
︸ ︷︷ ︸

Term αi

= 0.

The axial-edge equation associated with edge ai is just Term σi of the si-
equation,

(
σ̇i +

(
σi
σ∗
i

){(
si
s∗i

)
msiσi

εsi +

(
si+1

s∗i+1

)
msi+1σi

εsi+1
+ 2

(
ai
a∗i

)
maiσi

εai

})
︸ ︷︷ ︸

Term σi

(59)

= 0.

The under braces on these equations are important for the clarity of the
proof.

There are just two dual-dodecahedral-edge RRF equations for this model.
The αi-equation is simply Term αi,

(60)

(
α̇i + 3

(
αi

α∗
i

)(
si
s∗i

)
msiαi

εsi

)
︸ ︷︷ ︸

Term αi

= 0,

and the σi-equation is simply Term σi,

(
σ̇i +

(
σi
σ∗
i

){(
si
s∗i

)
msiσi

εsi +

(
si+1

s∗i+1

)
msi+1σi

εsi+1
+ 2

(
ai
a∗i

)
maiσi

εai

})
︸ ︷︷ ︸

Term σi

(61)

= 0.

Suppose Eqs. 58 and 59 are satisfied. Then, Eq. 61 is automatically satisfied
as it equals Eq. 59. Also, by an indexing argument, Eq. 59 implies that
Term σi = 0 and Term σi+1 = 0. The vanishing of Term σi and Term
σi+1, with Eq. 58 and the strict positivity of moment arms, imply that 60
is true.

Conversely, if the dual-edge equations (Eqs. 60 and 61) are satisfied,
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then all three terms in Eq. 58 vanish so that their sum is zero. Also, Eq. 59
is identical to Eq. 61.
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