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A metric Ricci flow for surfaces and its applications

EMIL SAUuCAN*

Motivated largely by Perleman’s work, the Ricci flow has become
lately an object of interest and study in Graphics and Imaging.
Various approaches have been suggested previously, ranging from
classical approximation methods of smooth differential operators
to discrete, combinatorial methods.

In this paper we introduce a metric Ricci flow for surfaces and we
investigate its properties: existence, uniqueness and singularities
formation. We show that the positive results that exist for the
smooth Ricci flow also hold for the metric one and that, moreover,
the same results hold for a more general, metric notion of curvature.
Furthermore, using the metric curvature approach, we show the
existence of the Ricci flow for polyhedral 2-manifolds of piecewise
constant curvature. We also study the problem of the realizability
of the said flow in R3.

AMS 2000 SUBJECT CLASSIFICATIONS: Primary 53C44, 52C26, 68U05;
secondary 65D18, 51K10, 57R40.

KEYWORDS AND PHRASES: Combinatorial surface Ricci flow, metric cur-
vature.

1. Introduction and background

Diffusion-type geometric flows have become important building blocks of
modern Image Processing, Vision, Graphics and related fields. Accordingly,
such methods as the Beltrami and mean curvature flows belong by now
to the basic repertoire of methods available to the Imaging, Vision and
Graphics communities. Recently, largely motivated by Perleman’s work [52],
[53], the Ricci flow has become an object of interest and study in Graphics
and Imaging.

Various approaches have been suggested previously, ranging from clas-
sical approximation methods of smooth differential operators to discrete,
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combinatorial methods. Amongst these, the most successful by far is the
one based on the discrete Ricci flow of Chow and Luo [20], due to Gu (see,
e.g. [43] and, for more details, [35]). In fact, the present paper was motivated
largely by our desire to better understand the discrete, circle-packing based
Ricci flow of Chow and Luo, and its relation with the Ricci flow for smooth
surfaces introduced by Hamilton [36] and Chow [19].

The metric approach we propose here is based on the notion of the
so called Wald-Berestovskii embedding curvature that, in conjunction with
smoothings, allows us to study the metric Ricci flow not directly, but rather
via the “classical” Ricci flow (i.e. the Ricci flow for smooth surfaces). While
this approach is certainly less elegant than the combinatorial approach of
Chow and Luo (and its various implementations due to Gu et al.), it allows
us to obtain, by making appeal to the power of the classical theory (see
[36], [84], [85]), a number of results that appear not to have been proved
previously for the combinatorial flow (and not even considered in the context
of Imaging, Vision and Graphics): existence of the reverse flow, uniqueness,
singularities formation and the issue of embeddability (realizability) in R3.
(Such results are not less important from the viewpoint of the applications
of the combinatorial flow — see, e.g. [35], [43].)

Remark 1.1. We have introduced elsewhere 73], [74] a combinatorial Ricci
curvature, based upon the theoretical work of Forman [26]; and we have also
developed a fitting Ricci flow for images [3], [4]. We do not discuss here in
detail this very different approach, where quite general weighted CW com-
plexes are considered. However, although much more general, the combina-
torial approach, in its implementation for images, essentially reduces — due
to the necessity of choosing natural, expressive weights, namely to gray-scale
level, resolution, etc. — to a very special case of PL surfaces embedded in R3.
In view of this fact we shall comment, throught the paper, on the relevance
of our results herein to the combinatorial flow for images.

We consider first compact surfaces without boundary and concentrate
mainly on polyhedral objects, since these arise more naturally and, moreover,
are of most interest in applications. (Some typical examples are given in
Figures 1 and 2.) We shall also show that by considering a more general
notion of metric curvature, we easily obtain an extension of these results to
a larger class of geometric objects and, in particular, to CW complexes, not
necessarily regular. (The class of CW complexes for which this generalization
holds is larger than the one considered in [20], since we do not have to restrict
ourselves to complexes such that each two cell has 3 vertices and each vertex
has degree > 2.)
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Figure 1: A piecewise flat surface (top, left), and the reconstruction it allows
(top, right and bottom, left) of a classical test image (bottom, right).

Figure 2: Detail of the piecewise flat surface obtained from the CT scan
image obtained from 7 slices of human colon scan. (Courtesy of Dr. Doron
Fisher from Rambam Madical Center in Haifa.)
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Figure 3: The simplest (but obviously not the most precise) way of passing
from the “sticks” model of an image, to a PL surface. Better numerical
results were obtained by replacing each quadruple of adjacent pixels with 8
triangles having a common vertex.

Remark 1.2. As we have noted above, in the special case of images, the
combinatorial Ricci curvature (and flow) reduces to the study of an analo-
gous type of curvature for PL 2-manifolds. Such manifolds arise due to the
need to pass from the piecewise flat, but discontinuous, model of Digital
Image Processing, namely of prisms over a square grid with heights equal to
the gray-scale level of the pixels (see Figure 3), on which Forman’s methods
are easily implemented, to a continuous model. The simplest — and most
natural from both the geometric and imaging viewpoints — approach in this
context is to pass to the dual complex (which is also just a square grid) and
to divide the resulting cells into triangles — see Figure 3. (For further details
and discussion, see the relevant bibliographical entries.) The naturalness of
this passage to PL manifolds enables us to infer, from results regarding the
metric flow, a number of corresponding consequences for the combinatorial
one, mainly regarding the existence of “good” approximations, convergence
rate of the flow and embeddability in R3. We shall signal out such facts as
we encounter them in the sequel.

In straightforward analogy with the classical flow

(1.1) dggft) = —2K(t)gi;(t),

we define the metric Ricci flow by

dli;
1.2 Y= 2Kl
( ) dt J
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where l;; = 1;;(t) denote the edges (1-simplices) of the triangulation (PL
or piecewise flat surface) incident to the vertex v; = v;(t), and K; = K;(t)
denotes the curvature at the same vertex. We shall discuss below in detail
what proper notion of curvature should be chosen to render this type of
metric flow meaningful.

We also consider the close relative of (1.1), the normalized flow

(13) Wil _ (ke — K (e)gis(0).

and its metric counterpart
dl;;
dt

(1.4) = (K — Ki)lij ,

where K, K denote the average classical, respectively metric, sectional
(Gauss) curvature of the initial surface Sp: K = fSo K(t)dA/ fSo dA, and
K= ‘71| le‘jl K;, respectively. (Here |V| denotes, as usually, the cardinality
of the vertex set of Sp,;.)

Before continuing further on, it is important to remark the asymmetry
in Equation 1.2, which is caused by the fact that the curvature on two
different vertices acts, so to say, on the same edge. We shall see that in the
approach considered in the present paper, this asymmetry is automatically
dealt with. Furthermore, in our final remarks, we shall indicate another
method of dealing with this issue.

Note also that, if starting with a polyhedral surface Sp.;, i.e. the under-
lying topological space of a locally finite 2-dimensional simplicial complex,
in order to ensure that (1.1), (1.3) will hold (and, indeed, make sense as
a flow), it is important to approximate Sp,; both in the metric sense and
also so that curvature is well approximated, hence the interest in — and the
need for — such an approximation result. First, let us recall a few definitions
regarding polyhedral metrics, following [30] (and, to a lesser degree, [31]):

Definition 1.3. Given a simplex o, a metric on o is linear iff it coin-
cides with the metric induced by some linear embedding of ¢ in some RY
(equipped with the usual Euclidean metric).

Applying this procedure on every simplex of a given simplicial polyhe-
dron K, one obtains a (singular Riemannian) a metric on K, metric that is
uniquely determined by the vector (I2,. .. ,l‘zE|), where [; denotes the length
of the edge e; € E — the set of vertices of K (and |E| the number of the
edges, as it is customary). We can be even more precise in our definition, in
the following manner:
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Definition 1.4. Given a polyhedron K, a presentation of a Riemannian
metric on K is given by:

1) The polyhedron K;

2) A triangulation 7 of K

3) A collection {d,} of linear metrics on the set of simplices {o} of the
given triangulation of K, satisfying the following consistency require-
ment:

o< T=d, =dlo-
(Here o < 7 is the standard notation for the fact that o is a face of 7.)

One can extend in a straightforward manner the definition above to any
subdivision 7" of a given triangulation 7. Moreover, if two triangulations 7T;
and 73 have a common subdivision 77, then, if the presentations of 71, Ta,
with respect to 77 are identical, they are called equivalent presentations. (It
is easy to check that the equivalence is, indeed, independent of the particular
subdivision 7".) We are thus conducted to the following definition:

Definition 1.5. Given a polyhedron K, a Riemannian metric K (or a poly-
hedral metric) is the equivalence class of presentations of Riemannian met-
rics. A Riemannian polyhedron consist of a polyhedron K together with a
choice for a Riemmanian metric on K.

As expected, an approximation theorem of the type required indeed
exists, assuring that, given a polyhedral surface szgol, we can find a smooth
surface S? arbitrarily close to it, both in the Hausdorff metric and as far
as Gaussian curvature is concerned. More precisely, we have the following
result due to Brehm and Kiihnel [12]:

Proposition 1.6 ([12]). Let S%_, be a compact polyhedral surface without
boundary embedded in R3. Then there exists a sequence {S2, }men of smooth
surfaces in R3, (homeomorphic to 512301)7 such that it assures good approxi-
mation of 512901 in the

1) metric sense, that is
a) 92 = Sl%ol outside the %—neighbourhood of the 1-skeleton of 5’12301,
b) The sequence {S2 }men converges to 5%, in the Hausdorff metric;

2) curvature sense, more precisely the (combinatorial) curvatures of S2,
weakly converge to Sl%ol in the sense of measures. Here the curvature
measure in the smooth case is the area measure weighted by Gauss
curvature (considered as a function) and in the polyhedral case it is the
Dirac measure at the vertices weighted by the combinatorial curvature.
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Remark 1.7. If only convergence in the Gromov-Hausdorff metric is re-
quired, then a similar result, holding for all compact inner metric spaces
has been proven by Cassorla [17]. Moreover, the basic construction he em-
ploys is essentially the same as one of [12], so similar curvature estimates
can also be obtained. (In fact, the author also states — a seemingly still un-
published result — that one can approximate the given spaces with a series
of smooth surfaces having Gaussian curvature bounded from above by —1.
Unfortunately, this cames at the price of loosing the embeddability in R3
of the approximating surfaces.) However, the generality of the spaces that
admit smooth approximations comes at a cost, so to say: One cannot ensure
that the genus of the approximating surfaces will remain bounded.

Recall that combinatorial Gauss curvature for polyhedral surfaces is de-
fined by the angular defect, that is:

(15) K(p) =27 - ai)

where a1, ..., q;, are the (interior) face angles adjacent to the vertex v;.

We do not bring here the original demonstration of Brehm and Kiihnel,
but rather provide a different proof, which also applies to a larger class of
surfaces. Moreover, it captures better the meaning of the notion of Hausdorff
convergence and its interplay with curvature. Let us note, however, that the
original proof also holds for surfaces embedded in RY, for some N > 3.
This is important if an abstract surface is given and one must start by
considering first an isometric embedding in RY. (See [67], [66] for a discussion
on the feasibility and practicability of such embeddings for PL, as well as
more general types of surfaces, both in the applied and purely mathematical
contexts.) Moreover, as noted by Brehm and Kiihnel, their proof extends to
surfaces that are only locally embedded in R3.

Our approach is less elementary than the one of Brehm and Kiihnel,
but in a sense more natural for geometers and topologists, as well as for
image processing applications, and, moreover, as opposed to the original
proof, it uses only standard analytic tools: Instead of building the smooth
surfaces from a set of “standard elements” (cylinders, etc.), as in [12], we
consider instead smoothings S2, (see, e.g. [49]). (A similar approach of ap-
proximating discrete structures by smooth ones is adopted also in theoretical
physics [27], [28], the paradigm therein being that the structure of space-
time at the smallest scales is, in fact, discrete and that classical models are
smooth approximations of these structures.) Since, by [49], Theorem 4.8,
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such smoothings are J-approximations, and therefore, for § small enough,
also a-approximations of the given piecewise-linear surface 512301’ they ap-
proximate arbitrarily well both distances and angles on 512301' (Not to en-
cumber the presentation with too many details regarding tools of differen-
tial topology, we have concentrated the relevant definitions, and results in
an appendix.) Therefore, angles, hence defects, are arbitrarily well approx-
imated as well. While Munkres’ results concern PL manifolds, they can be
applied to polyhedral ones as well, because, by definition, polyhedral mani-
folds have simplicial subdivisions (and furthermore, such that all vertex links
are combinatorial manifolds) — see, e.g. [13], p. 346. Of course, for different
subdivisions, one may obtain different polyhedral metrics. However, by the
Hauptvermutung Theorem in dimension 2 (and, indeed, for smooth triangu-
lations of diffeomorphic manifolds in any dimension) (see e.g. [48] and [49]
and the references therein), any two subdivisions of the same space will be
combinatorially equivalent, hence they will give rise to the same polyhedral
metric. The fact that 2-dimensional manifolds with a CW complex structure
are also smoothable follows from the fact that any manifold of dimension < 3
admits a PL structure (see, e.g. [83]) and that, furthermore, this structure
admits a unique smoothing (see, e.g. [49]). In consequence, Gauss curvature
of the smooth surface approximates arbitrarily well metric curvature, at the
essential common points (i.e. the vertices of the given polyhedral surface).
We note that since by [36], Corollary 5.2 (see also [21], Proposition 5.4) the
Ricci flow is conformal, it follows that metric curvature approximates arbi-
trarily well the curvature of the evolved surfaces, at any time t (see Section 2
below for details).

Note that our proof renders in fact a somewhat stronger result than that
of [12], since no embedding in R? is apriorily assumed, just in some R¥;
however, as we have already seen, this represents only a slight improvement.
More importantly, no change in the geometry of the 1-skeleton is made, not
even in the neighbourhoods of the vertices.

Moreover, it follows that metric quadruples (see definition below) on Spy;
are also arbitrarily well approximated (including their angles) by the corre-
sponding metric quadruples) on S,,. But, by [88] (see also [10], Theorems
11.2 and 11.3), the Wald metric curvature (see below) of S,,, at a point p,
Ky (p) equals the classical (Gauss) curvature K (p). Hence the Gauss cur-
vature of the smooth surfaces S,, approximates arbitrarily well the metric
one of Spr, (and, as in [12], the smooth surfaces differ from polyhedral one
only on (say) the L-neighbourhood of the 1-skeleton of Spy). This state-
ment can be made even more precise, by assuring that the convergence is
in the Hausdorff metric. This follows from results of Gromov [32] — see [70]
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Figure 4: A smooth analytic surface (left) as the smoothing of one of its PL
approximations (right).

Figure 5: Gaussian curvature of a standard test image, computed using stan-
dard discretizations of the differential operators involved (left), and its com-
binatorial Ricci curvature (right).

for details. That such curvatures converge not only punctually, but as mea-
sures as well, i.e. that the so called CCP(K) property of [12], Proposition
1, (that corresponds, essentially, to Condition (2) in Theorem 1.6 above)
also holds, follows, as a particular case, from [18], Theorem 5.1, using the
fact that polyhedral manifolds represent secant approximations of their own
smoothings (see Figure 4).

Remark 1.8. In view of our previous remarks it follows that, given the
specific, natural choice of weights for the combinatorial Ricci flow of images,
this type of curvature also converges, as resolution increases, to the Gaussian
curvature of the smoothed image, viewed as a (smooth) surface (see Figure 5
for a canonical example.)
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Another beneficial consequence of the passing to the smooth case, is
that the asymmetry in the metric flow that we observed above disappears
automatically via the smoothing process.

Here metric quadruples are defined as follows:

Definition 1.9. Let (M, d) be a metric space, and let Q = {p1,...,pa} C M,
together with the mutual distances: dij; = dj; = d(pi,pj); 1 < i, < 4.
The set @ together with the set of distances {d;;}1<; j<4 is called a metric
quadruple.

Remark 1.10. Metric quadruples can be defined in a slightly more ab-
stract manner, without the aid of the ambient space: a metric quadru-
ple being defined, in this approach, as a 4 point metric space; i.e. Q =
({pl, vy D4t {dij}), where the distances d;; verify the axioms for a metric.

Before we can define the notion of embedding curvature, we first have
to introduce some notation: Let S, denote the complete, simply connected
surface of constant Gauss curvature «, i.e. S, = R%, if k = 0; S, = S? -,

if Kk > 0; and S, = Hf/_—ﬁ, if Kk < 0. Here S, = S%/g denotes the sphere
of radius R = 1/y/k, and S, = H%/_—H stands for the hyperbolic plane of

curvature \/—k, as represented by the Poincaré model of the plane disk of
radius R =1/v/—k.

Definition 1.11. The embedding curvature k(Q) of the metric quadruple
Q is defined to be the curvature x of the gauge surface S, into which @) can
be isometrically embedded. (See Figure 6.)

We are now able to bring the definition of Wald curvature [88] (or rather
of its modification due to Berestovskii [6]):

Definition 1.12. Let (X, d) be a metric space. An open set U C X is called
a region of curvature > k iff any metric quadruple can be isometrically
embedded in S,,, for some m > k. A metric space (X,d) is said to have
Wald-Berestovskii curvature > k iff any x € X is contained in a region U of
curvature > k.

Remark 1.13. While the second part of the definition above is not needed
in the remainder of the paper, we bring it for completeness (and for its
importance elsewere — see, e.g. [67], [66]).

The classical (by now) Wald curvature at an accumulation point of a
metric space (hence on a smooth surface) is defined by considering limits
of the Wald-Berestovskii curvatures of nondegenerate regions of diameter
converging to 0, more precisely we have
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Figure 6: Isometric embedding of a metric quadruple in S%/E (left) and H?/g

(right).

Definition 1.14. Let (M,d) be a metric space, and let p € M be an ac-
cumulation point. Then M has (embedding) Wald curvature kw (p) at the
point p iff

1) Every neighbourhood of p is not contained in a geodesic;
2) For any € > 0, there exists 6 > 0 such that if Q@ = {p1,....,pa} C M
and if d(p,p;) < 0,i=1,...,4; then |x(Q) — kw(p)| < e.

Remark 1.15. Being a generalization of the classical, point-wise Gauss
curvature, Wald’s definition is less flexible and, in consequence, less powerful
than the Wald-Berestovskii comparison curvature.

Remark 1.16. The Wald and Wald-Besetkovskii curvatures can actually
be computed, using the following formula for the embedding curvature of a
metric quadruple

(1.6)

0  ifD(Q)=0;
H(Q) = Kk, k <0 if det(coshv/—k - di;) = 0;
k, k>0 if det(cosv/k - d;j) and /K -d;j <7
and all the principal minors of order 3 are > 0;

where d;; = d(z;,2;),1 <i,j <4, and D(Q) denotes the so called Cayley-
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Menger determinant:

1 1 1 1
0 & & &,
d%Q (2) d23 d%4
d%3 d%3 (2) d34
d14 d24 d34 0

(17) D($1,$2,x3,$4) =

_— = = = O

However, it should be noted that, as far as the actual computation of
%(Q) using Formula (1.6) is concerned, the equations involved are — apart
from the Euclidean case — transcendental, therefore not solvable, in general,
using elementary methods. Moreover, when solved with computer assisted
methods, they display certain numerical instability. For a more detailed
discussion and some first numerical results, see [62], [70].

In addition, it is important to notice that Formula (1.6) implies that, in
practice, a renormalization might be necessary for some of the vertices of
positive Wald-Besetkovskii curvature.

Also, we should point out that while Formulas (1.6) and (1.7) may ap-
pear somewhat mysterious, the first line in (1.6) represents nothing else
but the condition that the simplex of sides d;;,1 < i < j < 4 has zero
(Euclidean) volume (as given by Formula (1.7)), hence it is degenerate, i.e.
planar; while the following two lines of (1.6) are the corresponding conditions
for Hyperbolic and Spherical simplices, respectively.

Remark 1.17. The transcendental nature of the Formulas (1.6) in the
Spherical and Hyperbolic case represent, in fact, a lighter impediment that
it might appear at first view. This is due to an approximation result due
to Robinson [60]. To present his method and estimates, we need first to
introduce yet another definition:

Definition 1.18. A metric quadruple Q = Q(p1,p2,p3,p4), of distances
dij = dist(pi,pj), © = 1,...,4, is called semi-dependent (or a sd-quad, for
brevity), iff three of its points are on a common geodesic, i.e. there exist
three indices, e.g. 1,2,3, such that: dis + dog = d13.

We can now state Robinson’s result:

Theorem 1.19 ([60]). Given the metric semi-dependent quadruple @ =

Q(pla
D2, p3,pa), of distances dij; = d(p;i,p;), 4,5 = 1,...,4; the embedding cur-

vature £(Q) admits a rational approximation given by:

6(cos £92 + cos £p2)
1.8 K =
( ) (Q) d24 (d12 sin2(402) + d23 Sin2(102/))
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where: £02 = L(p1paps), £02' = A(pspaps) represent the angles of the
Euclidian triangles of sides dy2, d14, d24 and dag, dag, d34 , respectively.
Moreover the absolute error R satisfies the following inequality:

(1.9) R = |R(Q)| = |5(Q) — K(Q)] < 4s*(Q)diam*(Q)/X(Q),

where \(Q) = das(dq2 sin £92+dag sin £2')/S?, and where S = Max{p,p'};
2p = dig + dig + daa, 2p' = dsz + d3a + dau.

For the proof of the theorem above we refer the reader to the original [60]
or, since this source is less accessible nowadays, to [62] or [70]. The last two
bibliographical entries also provide some geometric intuition behind Formula
(1.8). Also, we should note that, in special cases (e.g. when di2 = dsa, etc.)
simpler formulas are obtained en lieu of (1.8) — again, see [60], or [62], [70].

As expected from the result above, the restriction to sd-quads does not
affect the capability of embedding curvature to approximate Gaussian cur-
vature of smooth surfaces, and we have the following theorem (whose full
proof can be found in [60]):

Theorem 1.20. Let S be a smooth (differentiable) surface. Then, for any
point p € S:
Ka(p) = lim K(Qn);

n—0

for any sequence {Qn}n>1 of sd-quads that satisfy the following conditions:

Qn — Q = Opippsps ; diam(Qp) — 0,
and

D*(@n)

(1.10) lim 0

=0.

It is important to underline that the convergence assured by Theorem
1.20 is not just in the sense of measures and, moreover, errors of different
signs do not simply cancel each other out. In fact, a stronger approximation
holds and sign(k(Q)) = sign(K(Q)), for any metric quadruple Q.

Even more important is to notice that Formula (1.8) is linear in the
distances d;;, a fact of crucial important in regarding the two following
related issues: (1) It facilitates a better understanding than the partially
transcendental Formula (1.6) of the relation between the Wald-Berestovskii
embedding curvature (or, at least, of a good approximation of ky (p)) and
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the edge lengths; and (2) It suggests that the flow can be implemented in
practice in a low complexity, therefore feasible, manner.!

Another important issue that should be emphasized is that of the role
of A(Q) in the error estimate (1.9) and in the convergence condition (1.10).
While its expression might appear somewhat complicated and mystifying,
its significance is that of a measure of approach to linearity: Indeed, it is
a continuous, nonnegative and homogeneous of order 0 function in the dis-
tances in @. In addition, the right-hand term in inequality (1.9) is finite
and bounded away from zero if A\(Q) also is. Also, for fixed x(Q) and given
shape of @, we have that x%(Q)diam?(Q)/\Q) ~ diam?(Q) (i.e. in this
case A\(Q) ~ k(Q)). Moreover, A\(Q) = 0 iff @ is actually linear. Therefore,
condition (1.9) guarantees that the sequence {Qy, }n>1 of sd-quads does not
converge to a linear configuration.

It is certainly worthwhile to observe that A\(Q), as a measure of non-
degeneracy, represents nothing but a specific, “augmented” version of thick-
ness or fatness of triangles (also know in the Graphics milieux as aspect
ration. The augmentation in question is meant to deal with triangles with
a (generalized) median, i.e. with sd-quads. We discussed in detail the con-
nection between metric curvatures and thickness, including the case of some
quite general spaces in [69], Section 4, and we have previously explored in
depth, in a series of papers — e.g. [63], [65], [69], [75], — the role of curvature
in producing thick triangulations (important, amongst other tasks, to the
construction of quasi-regular mappings [65], [71] with applications in Med-
ical Imaging [72]). The discussion above highlights yet another connection
between metric curvature (in this case, Robinson’s version for sd-quads of
Wald’s embedding curvature) and thickness. In consequence, it underlines
again, from another viewpoint (a purely metric one), the crucial importance
in practice (to ensure good convergence properties and, indeed, numerical
stability) of assuring that the mesh has has good aspect ration (i.e. that the
triangulation is thick?).

However, the significance of Robinson’s work goes beyond these practical
issues and has theoretical importance. Indeed, the “augmented” triangles
above are in fact identical to one version of the comparison triangles in the
definition of Alexandrov curvature (see, e.g. [16]). Thus not only do we have
at hand an alternative definition for thickness of comparison triangles, but
we also benefit for a concrete, direct method of viewing our results herein
in the far larger context of Alexander spaces. (We shall return later on to

'For the relative straightforward case of 0 embedding curvature, a study of the
optimisation of the algorithm was done by Sippl and Scheraga [79], [80].
2For a definition of thickness for general polyhedral meshes, see [34]
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the connection between Wald’s curvature and the more modern theory of
Alexandrov spaces.)

Of course, one would like to estimate the potential of obtaining, via The-
orems 1.8 and 1.20, good estimates in concrete, practical applications. One
is encouraged in this direction by the following example, due to Robinson
himself, that shows that, at least in some cases, the actual computed error
is far smaller then the one given by Formula (1.9).

Example 1.21 ([60]). Let Qo be the quadruple of distances dia = doz =
dos = 0.15,d14 = dss and of embedding curvature k = k(Qo) = 1. Then
kS? < 1/16 and K(Qp) ~ 1.0030280, whereas the error computed using
Formula (1.9) is |R| < 0.45.

Regarding the experimental side, one can examine the results on both
meshes and images (both natural as well as medical) in [70], pp. 350-352.
While the outcomes of the tests therein are only incipient and, perhaps,
somewhat naive (since the meshes were simplistic and did not allow good
approximation of all directions, and the results on images did not undergo
any histogram equalization), they do still comply to the basic expectations
regarding the efficiency of the theorems under scrutiny.

Evidently, in the context of polyhedral surfaces, the natural choice for
the open set U required in Definition 1.12 is the open star of a given vertex
v, that is, the set {e,;}; of edges incident to v. Therefore, for such surfaces,
the set of metric quadruples containing the vertex v is finite.

We should also emphasize the fact that the two approximations of Gaus-
sian curvature considered therein, namely the combinatorial (defect) and
metric (Wald-Berestovskii) notions of curvature, are more closely related
than just by having as limit, when the mesh of the polyhedral approxi-
mation of a smooth surface tends to zero, the Gauss curvature of the said
(smooth) surface. Indeed, Wald-Berestovskii curvature can be characterized
in terms of angles’ sum at a vertex (hence defect). Before formally stating
this result, we first need to introduce some further notation:

Given three points z;,z;,2; in a metric space (X,d), we denote by
o (i, z5,2;) € [0, 7], the angle £(z;x;x;) (that is of apex ;) of the model
triangle in S2. Let Q = {21, z2, 23,74} be a metric quadruple. We introduce
the following quantity associated with Q:

(1.11) Vie(@i) = an(@i; x5, 1) + 024375, Tm) + (245 21, )

where z;, zj, ], z;, € Q are distinct, and x is any number (see Figure 8).
We can now bring the promised characterization of Wald-Berestovskii
in terms of angle sum:



274 Emil Saucan

Figure 7: Detail of the triangulation (middle, bottom) corresponding to a
natural image (top); and the computation of the Wald curvature at a vertex
(bottom). Notice that only the quadruples generated by edges incident to
the vertex (red edges) are considered. Note that distances between adjacent
vertices (yellow edges) should be considered, even though they are not among
the edges of the triangulation.

Proposition 1.22 ([55], Theorem 23). Let (X,d) be a metric space and let
U € X be an open set. U is a region of curvature > k iff Vi.(x) < 27, for
any metric quadruple {z,y,z,t} C U.
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Figure 8: The angles o (x;, 2, ;) (right), induced by the isometric embed-
ding of a metric quadruple in Sf/g (left).

The result above shows that, in fact, the metric approach to curvature
is essentially equivalent to the combinatorial (angle-based) one, as far as
polyhedral surfaces (in R3) are concerned.® In particular, as far as approxi-
mations of smooth surfaces in R? are concerned, both approaches render, in
the limit, the classical Gauss curvature. We should also stress that, in fact,
the metric approach is more general, since it can be applied to a very large
class of metric spaces (see discussion at the end of this section).

Note that we just gave a positive answer to the question — unposed so
far, to the best of our knowledge — whether the metric curvature version of
Brehm and Kiihnel’s basic result also holds, namely we have proved:

Proposition 1.23. Let ‘912301 be a compact polyhedral surface without bound-
ary. Then there exists a sequence {S2,}men of smooth surfaces, (homeomor-
phic to S%,,), such that

1) a) S2, = 5%, outside the %—neighbourhood of the 1-skeleton of S%

ol’
b) The sequence {S2, }men converges to S%; in the Hausdorff metric;
2) K(S%)— Kw(S%,,), where the convergence is in the weak sense.

Remark 1.24. The converse implication — namely that Gaussian curvature
K(X) of a smooth surface ¥ may be approximated arbitrarily well by the
Wald curvatures Ky (X po,m) of a sequence of approximating polyhedral

3This holds, of course, up to the specific type of convergence for the metric and
combinatorial curvature, namely pointwise and in measure, respectively.
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surfaces X po1m — is, as we have already mentioned above, quite classical.
(For other approaches to curvatures convergence, see, amongst the extensive
literature dedicated to the subject, [18] and [11], [22], for the theoretical and
applicative viewpoints, respectively.)

Remark 1.25. Since Wald curvature approximates the classical (Gauss)
curvature arbitrarily well, the convergence rate of curvature function Ky of
a series of smooth surfaces approximating a (smooth) given one, is identical
to that of the classical Gaussian curvatures as prescribed by Brehm and
Kiihnels theorem.

However, in practice one deals with the metric curvatures of polyhedral
surfaces, rather than with smooth ones. One possible approach to estimat-
ing the convergence rate in this discrete setting (as opposed to the rather
theoretical one of ideal smoothings), would be to make appeal once again to
Robinson’s results. Indeed, since by Formula (1.9), R < 4x%(Q)diam?(Q)/
A(Q) and since, as we have already noted, for given x(Q) and fixed thick-
ness (of Q), x(Q)diam?(Q)/MNQ) ~ diam?(Q), and, moreover, for given
thickness g > 0, diam?(Q) = C - Area(Q),C = C(yyp), it follows that
R < Cy - Area(Q). Therefore, for finite triangular meshes, where both thick-
ness and curvature, as well as diameter of the triangles, are uniformly
bounded, the error in the estimation of Wald curvature, hence, for suffi-
ciently fine approximations (triangulations) of smooth surfaces, of Gaussian
curvature, curvature approximation converges at the same rate as the area
of the triangles or, equivalently, as n?, where 1 denotes the mesh of the
triangulation, i.e. maximum of the diameters of the simplices of the trian-
gulation. (Of course, in dealing with applications such as those encountered
in Graphics and Imaging, the non-degeneracy of the shape of the triangles,
i.e. boundedness away from zero of thickness, might have to be elevated (by
mash improvement) since, in numerical computations, a practical bound
usually has to be far greater than the theoretical one.)

Using the facts above one can presumably determine the convergence
rate of the curvature measure associated to the Wald curvature function,
namely uw (v) = Ky (v) - Area(St(v)), where St(v) denotes the star of the
vertex v. We postpone the full analysis of this problem for future study.

We should also stress again the properties of the Gromov-Hausdorf con-
vergence of finite e-nets in any sequence of approximating surfaces S2, (poly-
hedral or smooth) of a given surface S? (again, smooth or not). (Just for
the record, recall that, given a metric space (X,d), a A C X is called an
e-netiff d(x, A) < ¢, for any x € X.) In particular, by considering e-nets on
surfaces, one automatically ensures (see [32], [16]) any intrinsic geometric
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property of an approximation to the respective geometric property of the
limiting geometric object. Most important for us, this holds for the intrinsic
metric, hence for the metric curvatures — see [62], [70] for a more detailed
discussion and some numerical experiments.

Also, one can consider simultaneously the metric Ricci flow on a poly-
hedral surface 5123013 as well its classical counterpart on its smoothing S2.
Since, as we have already noted above, the metric and the classical cur-
vatures, Ky (5%,) and K(S2), respectively, are arbitrarily close to each
other, and since the equations of the two respective flows (metric and clas-
sical/smooth) contain the same curvature term, the ensuing metrics at each
time during the flow will coincide on the common set, i.e the 1-skeleton of
the polyhedral manifold and in the exterior of an arbitrarily small neigh-
bourhood of it. Therefore, the limit surfaces for both flows — Sg, po and Sg,
respectively — will be isometric on the said set, but perhaps only arbitrarily
close to being isometric in the considered neighbourhood. (One can ensure
actual isometry by imposing a certain additional constraint on the so called
“volume density’ of the surface — for details, see [82].) Moreover, by consid-
ering dense enough e-nets (of arbitrarily small mesh), the intrinsic metric
of a polyhedral approximation gp, of a smooth manifold, and the (smooth)
metric g of the later will be arbitrarily close to each other. If one does not
consider a limiting process, then the distortion of g by gpe;, both of the met-
ric per se, as well as that of curvature, can be computed, at each time “t”
during the flow, using such Formulae as (2.2) and (2.6) in the proof of The-
orm 2.6 below, in conjunction with the computations in, say, [51], Lemma
3.19. For manifolds with boundary, similar distortion estimates follow from
the results in [63]. Of course, in this case, one still obtains isometry when

restricting to the 1-skeleton. (This answers to a question posed to us by D.
X. Gu.)

Remark 1.26. Since for PL surfaces (hence for their smoothings) Ky (p) =
0 for all points apart from vertices, the ensuing Ricci flow is stationary,
except at vertices where the change rate is quite drastic. In this aspect, the
metric Ricci flow introduced here resembles the combinatorial, rather than
the smooth (classical) one. This should not be too surprising, given that, as
already stated, the initial motivation of considering the metric flow (and, a
fortiori, of smoothings) was to gain a better understanding of some of the
properties of the combinatorial flow.

Before concluding this section, it is important that we set the Wald
curvature in its proper, more general (and modern) context:

While largely forgotten (except by a number of researchers in the field)
Wald’s curvature is not an esoteric notion. In fact, it essentially equivalent
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with the much more modern — and widely employed in a vast array of math-
ematical fields — notion of Alexandrov curvature, at least for spaces in which
there exists “sufficiently many” minimal geodesics (see, for instance, [55],
Corollary 40), a condition that certainly is fulfilled in PL surfaces. We do
not bring here the full technical definition of Alexandrov curvature, since
this would take us to far afield, and we refer the reader to, e.g. [16]. How-
ever, it is important to recall that, in defining Alexandrov curvature, one
makes appeal to comparison triangles in the model space (i.e. gauge surface
Sk), rather than quadrangles, as in the definition of Wald curvature. We
do not elaborate further on the extensive, and by now classical, subject of
Alexandrov curvature, and refer the reader again to [16]. Also, for a discus-
sion between the the comparison quadrangles, respective triangles, in the
definition of Wald and Alexandrov curvatures, as well as for the practical
consequences of the similarities and differences between the two approaches,
see [69].

The reasons we prefer working with the Wald curvature, are that it is
computable and, moreover, that it has even simpler, more practical approxi-
mations — see [70]). For further theoretical relative advantages of the types of
curvature discussed above, see [54]. (In fact, we have first considered Wald’s
curvature — and the metric approach to curvature in general — as means of
of computing, in a direct and applicable manner, Alexandrov’s curvature.)
For computational advantages of this approach, see Remarks 1.17 and 1.25.

However, a few further comments regarding the Wald vs. Alexandrov
curvature choice are quite necessary at this point. The most important of
these would be that one has take into account the “discrete” nature of the
types of spaces considered, hence to compute solely the Wald curvature of
the 1-star neighbourhood of a vertex, as already stressed above, and not
to consider (ever) smaller neighbourhoods, as perhaps natural in other con-
texts. This, however, agrees with the method of computing discrete curvature
as angular defect, as employed in the Brehm-Kiihnel theorem above and in
the Chow-Luo discrete Ricci flow (as well as in many other instances — see
the bibliography for some of them). A positive consequence of this fact is
that any such neighbourhood becomes a region having the same Alexan-
drov curvature bounded from below as the computed Wald one. Moreover,
by the Alexandrov-Topogonov Theorem (see, e.g. [55], Theorem 43 and its
proof, pp. 837-840), the whole surface becomes a space of curvature (Wald
or Alexandrov) bounded from below.

In fact, due to the finiteness of its set of vertices, it also becomes a space
of Alexandrov curvature bounded from above, thus satisfying the double
curvature bounds, therefore enjoying a whole range of important properties
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(see [55] and the bibliography therein, as well as [69] for some of their ap-
plications). This property follows from a theorem proved independently by
Kirk [40] and Berestovskii [5], asserting that a space in which the existence
of geodesics is assured and, moreover, each point has a neighbourhood such
that any four points of it can be mapped into some S2, k1 < k < ko, is a
space of curvature bounded from below by x; and from above by k9. Indeed,
the first condition is trivial, while the second one follows from our definition
of neighbourhoods of vertices, the finiteness of the set of vertices and from
the (obvious) fact that a metric quadruple emebeddable in S2 is, a fortiori,
embeddable in S2 (where S? denotes the 3-dimensional analogue of S2).

On the other hand, considering only these “discrete” neighbourhoods is
very important when equating the Wald and Alexandrov curvature, since
it allows to avoid the blow-up of Alexandrov curvature at the vertices dur-
ing smoothing. However, if one still wishes to consider smaller-and-smaller
neighbourhoods of the vertices (motivated, perhaps, by other applications
then Imaging and Graphics, such as those in Regge calculus [18]), one can
resort to the basic approach of Brehm and Kiihnel, that is “rounding” the
edges by cylinders of radius e (without any change in curvature) and re-
placing the polyhedral cones at the vertices by smooth “caps”, up to a
predetermined admissible error of, say, ;. Moreover, such a “filtration” of
Ky by Gaussian curvature (of the approximating smooth surfaces) is in con-
cordance with common practices in Imaging, Vision and, indeed, in many
applicative fields.

Remark 1.27. Before proceeding to the main results, we should mention
that the anonymous reviewer of an earlier, much more restricted version
of the paper, brought to our attention the fact that Simon used [77], [78] a
somewhat similar approach to define Ricci flow on spaces with a non-smooth
metric tensor. Also, quite some time after this version of the paper was
essentially finished, we noted that there are other works regarding the Ricci
flow on surfaces with conical singularities [58], [89], as well as on (compact)
Alexandrov surfaces [59]. However, we wish to emphasize that the approach
herein is totaly independent of the works above, including Simon’s (and,
indeed, it was developed largely for other, more applications oriented ends).

2. Main results
From the “good”, i.e. metric and curvature, approximations results above, it

follows that one can study the properties of the metric Ricci flow via those
of its smooth counterpart, by passing to a smoothing of the polyhedral
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surface. The heavier machinery of metric curvature considered above pays
off, in the sense that, by using it, the “duality” between the combinatorics
of the packings (and angles) and the metric disappears: The flow is purely
metric and, moreover, the curvature at each stage (that is, for every “t”)
is given — as in the classical context — in an intrinsic manner, i.e. solely in
terms of the metric.

A number of important properties now follow immediately.

2.1. Existence and uniqueness

In particular, the (local) existence and uniqueness of the forward (i.e. given
by dgi;(t)/dt = 2K (t)g;;(t)) Ricci flows hold, on some mazimal time in-
terval [0,7];0 < T < oo (see, e.g. [21], as well as [36], for the original,
different proof?). Moreover, the backward uniqueness of a solution (if ex-
isting) has been proven by Kotschwar [45] (see also [84] for a sketch of the
proof). Beyond the theoretical importance, the existence and uniqueness of
the backward flow would allow us to find surfaces in the conformal class of
a given circle packing (Euclidean or Hyperbolic). More importantly, the use
of the purely metric approach (based on the Wald curvature or any of other
equivalent metric curvatures), rather than the combinatorial (and metric)
approach of [20], allows us to give a first, tentative, purely theoretical at
this point, answer to Question 2, p. 123, of [20], namely whether there ex-
ists a Ricci flow defined on the space of all piecewise constant curvature
metrics (obtained via the assignment of lengths to a given triangulation of
2-manifold). Since, by Hamilton’s results [36] (and those of Chow [19], for
the case of the sphere), the Ricci flow exists for all compact surfaces, it fol-
lows from our arguments above that the fitting metric flow exits for surfaces
of piecewise constant curvature. In consequence, given a surface of piecewise
constant curvature (e.g. a mesh with edge lengths satisfying the triangle in-
equality for each triangle), one can evolve it by the Ricci flow, either forward,
as in the works discussed above, to obtain, after the suitable area normal-
ization, the polyhedral surface of constant curvature conformally equivalent
to it; or backwards — if possible — to find the “primitive” family of surfaces
(including the “original” surface) conformally equivalent to the given one.
(Here, by “original”, we mean the surface obtained via the backwards Ricci
flow, at time T'.) We shall dwell again upon the backward existence issue in
the concluding remarks. At this point, we do, however, emphasize the fact

4See also [84], Theorems 5.2.1 and 5.2.2 and the discussion following them for
short exposition of the main steps of the proof.
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that it is not necessarily true, however, that all the surfaces obtained via the
backwards flow are embedded (or, indeed, embeddable) in R? — for details
see Section 3 below. We can summarize the discussion above as

Proposition 2.1. Let (Sl%ol, gpol) be a compact polyhedral 2-manifold with-
out boundary, having bounded metric curvature. Then there exists T > 0
and a smooth family of polyhedral metrics g(t),t € [0,T], such that

% — 2Ky (Hg(t) t e [0,T];
(2.1) { ;(0) = gPol -

(Here Ky (t) denotes the Wald curvature induced by the metric g(t).)

Moreover, both the forwards and the backwards (when existing) Ricci
flows have the uniqueness of solutions property, that is, if gi(t), g2(t) are
two Ricci flows on S%,,, such that there exists to € [0,T] such that gi(to) =
g2(to), then g1(t) = ga(t), for all t € [0,T).

In fact, the existence and uniqueness of the Ricci flow hold even if we
do not restrict to compact surfaces, but we still require that the manifold is
complete. Indeed, by applying the ideas employed in the proof above to a
result of Shi [76] (see also [41]), we obtain the following

Proposition 2.2. Let (S%_,,gpo) be a complete polyhedral surface, such
that 0 < Kw < Ky. Then there exists a (small) T as above, such that there
exists a unique solution of (1.1) for any t € [0,T].

Remark 2.3. Shi’s result (hence the proposition above) does not necessarily
hold for noncomplete surfaces — see [86] (See, however, Remark 2.7.) This is
most pertinent for the case of images, as emphasized below:

Remark 2.4. By the same arguments as in Remarks 1.2 and 1.4 above, it
follows that the forward existence, as well as uniqueness (both forwards and
backwards) are also guaranteed for the combinatorial Ricci flow of images.

Before proceeding further, we should stress that, at this point, the metric
approach introduced above is purely theoretical and, while it allows for a
number of (theoretical) results to be inferred from the classical theory, it
lacks (at least for now) the simple algorithmic capability of the combinatorial
one of Chow and Luo, and certainly of its subsequent development — see [35]).

2.2. Convergence rate

A further type of result, highly important both from the theoretical view-
point and for computer-driven applications, is that of the convergence rate.



282 Emil Saucan

Definition 2.5. A solution of (1.4) is said to be convergent iff

1) lim¢ oo Ki(t) = Ki(00), for all 1 <u < |V|, where K;(c0) € (0, 27);
2) lims o0 lz‘j(t) = lij(oo), l”(OO) > 0.

A convergent solution is said to converge exponentially fast iff there exists
constants ¢y, co, such that, for any ¢t > 0, the following inequalities hold:

1) ’Kl(t) — Kz| < 016—0275;
2) [lij(t) = lij| < cre™!

(The fitting definition for the flow (1.2) is immediate.)

For the combinatorial flow, it is shown in [20] that, in the case of back-
ground Euclidean (Theorem 1.1) or Hyperbolic (Theorem 1.2) metric, the
solution — if it exists — converges, without singularities, exponentially fast to
a metric of constant curvature. Using the classical results of [36] and [19],
we can do slightly better, since we already know that the solution exists and
it is unique (see the subsection below for the nonformation of singularities).
Moreover, we can control the convergence rate of the curvature:

Theorem 2.6. Let (S%_,,gpo) be a compact polyhedral 2-manifold without
boundary. Then the normalized metric Ricci flow converges to a surface of
constant metric curvature. Moreover, the convergence rate is

1) exponential, if K = Kw < 0 (i.e. x(5%,) <0);
2) uniform; if K =0 (i.e. x(S%,,) =0);
3) exponential, if K >0 (i.e. x(5%,) >0).

Proof. As already noted, a unique solution for the Ricci flow exists for all
0 < t < T and, again, these solutions are uniformly (conformally) equivalent.
Indeed, by [36], Corollary 5.2 and [21], Proposition 5.15, there exists C' =
C(gpor), where gpy is the smoothing of gp,, such that

1. - _
(2.2) o Ipol < g < Cqpor,

where g; is the smoothing of g;, and the discussion above shows that the
same holds for the polyhedral metrics. (It is in this sense that we say that
the convergence is, in the case K = 0, uniform.)

To estimate the convergence rate for the curvature, we make appeal to
the following formulae (see, e.g. [21], Proposition 5.18): There exists C' =
C'(gpor) > 0, (in fact, C' = C'(gpo1)), such that
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1) If K <0 then
(2.3) K —C'ef < K(t) < K + C'eX?

2) If K =0 then

Cl
(2.4) Ty o <Kt <C;
3) If K > 0 then
(2.5) —CeFt < K(t) < K+ C'eRt

To show that the metric also converges with exponential rate, one has
to make appeal to a refinement of (2.2), namely that the constant C' therein
is, in fact, given by C = e?Fuaz where Ky, = max|K(t)|, t € [0,T].
(This holds, in fact, for the case of the general Ricci flow, with Gaussian
curvature K being replaced, of course, by the Ricci curvature Ric — see, e.g.
[84], Lemma 5.3.2.) In fact, given that the manifold under investigation is
compact, hence of curvature bounded below and above, a stronger form of
this improvement of (2.2) can be given, and, moreover, one that is better
fitted for the case of polyhedral manifolds (see, e.g. [44] Lemma 27.1, Remark
27.5 and the following material):

(2.6) e—KMazt < d‘iStt(‘T’ y) < eKMaa:t7
disto(z, y)

where K. i as above.

By the approximation results above, namely Propositions 1.6 and 1.23,
the result follows for the Wald-Berestovskii curvatures, respectively. Alterna-
tively, one can more directly infer the respective convergence rates from (2.6)
and (2.2) as far as the metric is concerned, and for the Wald-Berestovskii
curvatures from (2.6) and (2.3)—(2.5). O

Remark 2.7. Existence, uniqueness and, furthermore, convergence rate re-
sults for polyhedral surfaces can be obtained, using the same techniques as
before, for smooth surfaces with (a finite number of) cusps and funnels, us-
ing quite recent results of Isenberg, Mazzeo and Sesum [41] (for finite area
surfaces) and Albin, Aldana and Rochon [1] (for surfaces of infinite area).
We do not bring here the technical details — however interesting and rele-
vant (see below) they might be — since they would bring us too far afield,;
for details and further related results, see [42].
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Remark 2.8. Again, as in our previous Remarks 1.4 and 2.5, we obtain the
corresponding result for the combinatorial Ricci flow of images, in this case
for its rate of convergence. However, for the sake of honesty, we should note
that a more realistic model for (gray-scale as well as color) images should
probably be based on surfaces with boundary. It turns out that similar
results can be obtained for this type of surface (see [14], [15]), however we
postpone for further study the detailed analysis, in this model, of the metric
Ricci flow of images.

2.3. Singularities formation

Another important aspect of any Ricci flow, be it smooth or discrete, is that
of singularities formation. By [20], Theorem 5.1, for compact surfaces of
genus > 2, the combinatorial Ricci flow evolves without singularities. How-
ever, for surfaces of low genus no such result exists. Indeed, in the case of the
Euclidean background metric, that is, the one of greatest interest in graph-
ics, singularities do appear [33]. Such singularities are always combinatorial
in nature and amount to the fact that, at some t, the edges of at least one
triangle do not satisfy the triangle inequality [33]. These singularities are
removed in heuristic manner, using the graphics equivalent of e-moves (see,
e.g. [23]). However, by [36], Theorem 1.1, the smooth Ricci flow exists at all
times, i.e. no singularities form. By the considerations above, it follows that
the metric Ricci flow also exists at all times without the formation of sin-
gularities. In fact, by a quite recent result of Topping [85], the same result
holds even for unbounded (but complete) Riemannian 2-manifolds (M, g)
with bounded curvature and satisfying a certain mild noncollapsing condi-
tion, namely that, there exists rqg > 0, such that, for all x € M, the following
holds:

(2.7) Voly (By(x,70)) > € > 0.

(Here, as usual, By(z,ro) denotes the open ball, in the metric g, of center
and radius 79.)
Again, we can recap the discussion above as

Proposition 2.9. Let (5%, gpo) be a complete polyhedral 2-manifold, with
at most a finite number of hyperbolic cusps (punctures), having bounded met-
ric curvature and satisfying the noncollapsing condition (2.7). Then there
exists a unique Ricci flow that contracts the cusps. Furthermore, the curva-
ture remains bounded at all times during the flow.
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Remark 2.10. Both the boundedness and the noncollapsing conditions
evidently hold for surfaces that appear in graphics, hence the fitting result
for the metric flow also holds for this type of application. It follows that
we can apply also in this context the cusp contracting result of [85]. One
may, however, argue that manifolds with (hyperbolic) cusps do not appear
in graphics, only compact manifolds (with or without boundary), but in fact
many algorithms are modeled upon surfaces with punctures — see e.g. [35],

143].
3. Embeddability in R3

In this section we mainly consider a problem regarding smooth surfaces,
and we hope that by now, the connection with its version for polyhedral
surfaces is clear. It should be noted, in this context that, by [49], Theo-
rem 8.8, any d-approximation of an embedding is also an embedding, for
small enough J. Since, as we have already mentioned, smoothings represent
d-approximations, the possibility of using results regarding smooth surfaces
to infer results regarding polyhedral embeddings is proven. (The other direc-
tion — namely from smooth to PL and polyhedral manifolds — follows from
the fact that the secant approzimation (see Appendix) is a d-approximation
if the simplices of the PL approximation satisfy a certain nondegeneracy
condition — see [49], Lemma 9.3.) We wish to stress here the importance of
the embeddability in graphics and image processing. In the only fully im-
plemented Ricci flow, that is the combinatorial flow [35], [43], the goal is, in
fact, to produce, via the circle packing metric, a conformal mapping from
the given surface to a surface of constant (Gauss) curvature. Since in the
relevant cases (see [20]) the surface in question is a planar region (usually
a subset of the unit disk), its embeddability (not necessarily isometric) is
trivial. Moreover, in the above mentioned works, there is no interest (and
indeed, no need) to consider the (isometric) embeddability of the surfaces
S? (see below) for an intermediate time ¢ # 0,7. However, this aspect is
very important if one considers the problem of the Ricci flow for surfaces of
piecewise constant curvature; as well as in image processing — see [3], [4]. (In
fact, the results below represent an answer to a question, regarding precisely
these applicative aspects of the Ricci flow, which was posed to us by Ron
Kimmel.)

Let S2 be a smooth surface of positive Gauss curvature, and let S?
denote the surface obtained at time ¢ from S3 via the Ricci flow. For all
omitted background material (proofs, further results, etc.) we refer to [37].
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Proposition 3.1. Let Sg be the unit sphere S?, equipped with a smooth
metric g, such that K(g) > 0. Then the surfaces S? are (uniquely, up to a
congruence) isometrically embeddable in R, for any t > 0.

Proof. By a now-classical result of Nirenberg [50] and Pogorelov [56] (inde-
pendently), 5’3 admits a smooth isometric embedding in R3.

The metric g; being conformal to gg, for any finite ¢ (see [36]), we can
write it as g; = €2#go, for some smooth function ¢. (This represents, in fact,
the first, basic step in the proof of the Niremberg-Pogorelov theorem.)

We reparemeterize the flow, by a parameter 7, in such a manner that, if
the original parameter ¢ belongs to any specific (given) time interval [0, ¢]
it is replaced by 7 € [0, 1].

Then K, = e 2?(K, — Ayp) (see [37], Lemma 2.1.3). From here, by
elementary computations (see, e.g. [37], Lemma 9.1.4), we obtain that the
Gauss curvature of this metric is

K, =K(g;) = 6_2‘p(Kg0 —TAg ) = 762(1_t)‘ng +(1-7)e 2% >0.

Therefore, again by Nirenberg and Pogorelov’s theorem, the surfaces S? are
isometrically embeddable in R, for any ¢ > 0. O

We can, in fact, do somewhat better:

Corollary 3.2. Let S? be a compact smooth surface. If x(S3) > 0, then there
exists some tog > 0, such that the surfaces 5’,52 are isometrically embeddable
in R3, for any t > ty.

Proof. By the continuity of the Gauss curvature during the Ricci flow, it
follows that, as some time tg, the |Ky| < Ko > 0. Applying again the
arguments in the proof above, the corollary follows. O

We also briefly sketch an alternative proof,® of both the proposition and
the corollary above, that makes no appeal to facts regarding embeddings,
but only on results regarding the Ricci flow.

Alternative Proof In dimension 2, Ricci curvature essentially equates
Gaussian curvature, i.e. scalar curvature, and since, for surfaces, dil‘;al =
Ascal +scal?, it follows from the maximum principle (see e.g. [84], Theorem
3.1.1 and Corollary 3.1.2), that if scal is positive at ¢t = 0, it remains posi-
tive for ant ¢ > 0. From this fact, and from [19], Theorem 1.2, that states
that, in the conditions of the corollary, the curvature will eventually become

positive, the conclusion of the corollary now follows immediately. O

5for which the author is indebted to the anonymous reviewer of an earlier version
of the paper
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Remark 3.3. In this context it is impossible not to mention Alexandrov’s
results [2] regarding convex surfaces in R3: (A) Any convex surface, en-
dowed with its intrinsic metric, is a manifold of nonnegative curvature; and,
in essentially the opposite direction, (B) Any complete metric of positive
curvature (nonnegative) on the sphere (the plane) represents the metric of
a (not necessarily smooth) convex surface.

However, we should underline that requiring that a certain polyhedral
sphere actually has (strictly) positive curvature at all its vertices it is quite
a strong condition; indeed, it is a well known fact in graphics (see, e.g.
[46]) that even the most standard polygonal approximations of the sphere,
exhibit, even at high resolution, saddle points at certain vertices.

In contrast with this positive result regarding surfaces uniformized by
the sphere, for (complete) surfaces uniformized by the Hyperbolic plane we
have the following negative result:

Proposition 3.4. Let (Sg,go) be a complete smooth surface, and consider
the normalized Ricci flow on it. If X(Sg) < 0, then there exists some tg > 0,
such that the surfaces S? are not isometrically embeddable in R3, for any
t > to.

Proof. Since at time T' = +00, the surface undergoing the flow has constant
negative Gauss curvature, it is not smoothly (C*) embeddable in R?, by a
classical theorem of Hilbert [39]. By the continuity of the Gauss curvature
during the (normalized) Ricci flow, it follows that, at some time tg, K;, <
Ky < 0. Therefore, by a result of Efimov [24], it follows that S;, admits no
smooth (C?) isometric immersion (hence embedding) in R3. O

Remark 3.5. Efimov [25] also proved that even if only the gradient of the
Gaussian curvature is bounded (by some specific constant — see [25], [37]),
there exists no smooth (C?) isometric immersion in R?, and no C? isometric
immersion exists if the suprema of K and of its gradient are < co. On the
other hand, Hong [38] showed that smooth isometric immersions in R? exist
if the decay rate at infinity of K is slower than the inverse square of geodesic
distance.

Obviously, the above mentioned results render appropriate versions of
Proposition 3.4. However, their applicability is of far lesser interest in the
context of the Ricci flow for polyhedral surfaces, so we do not formulate
them explicitly.

Remark 3.6. In fact, the the situation is far worse, so to speak, than
even Hilbert’s and Efimov’s theorems might suggest. Indeed, no general
existence/nonexistence result is available, even if one restricts oneself to local
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Figure 9: The combinatorial flow applied to a noisy version (middle) of
“Lenna” (left), and the denoised image obtained after 3 iterations of the
combinatorial Ricci flow. (Here the noise applied is of 3.5 db.) Even though
in this case some priors have been used (namely the sign of the image’s
gradient), results like this one show, experimentally, the existence of the
combinatorial Ricci flow and its embeddability in R3.

isometric embedding. Without going into too many details (since this would
bring us out of our scope), it is known that such embeddings are possible
if K does not vanish; or when K(p) = 0 and dK(p) # 0 or if dK(p) > 0
in some neighbourhood of a point p; and again when K(p) = 0,dK(p) =0
and HessK (p) < 0. (For further details and bibliographical references see
e.g. [37].)

However, as in the global case, (for lower differentiability classes), no
general results are even possible. This was first shown by Pogorelov [57],
who constructed a C?!' metric on the unit disk B2 = B?(0,1) c R?, that
admits no C? isometric imbedding in R3 of B2(0,r), for any 0 < r < 1.

Remark 3.7. The experimental results obtained with the combinatorial
Ricci flow for images show, contrary to the pessimistic outlook conveyed by
Hilbert’s and Efimov’s results and Remark 3.6 above, not only the (short
time) existence, but also the embeddability in R? of the flow. Indeed, the fact
that one can successfully apply the combinatorial flow to an image and still
obtain an image, bears testimony both to the existence of the combinatorial
Ricci flow and to its embeddability in R3 (see Figure 9).

Remark 3.8. For other results on the embedding of the Ricci flow on man-
ifolds of revolution, see [61], [81].

‘We mention in this context that a criterion for the local isometric embed-
ding of polyhedral surfaces in R?, akin to the classical Gauss fundamental
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(compatibility) equation in the classical differential geometry of surfaces,
was given in [67]. Namely, given a vertex v, with metric curvature Ky (v),
the following system of inequalities should hold:

max Ao (v) < 2m;

3.1 ag(v;vi,v) < ag(v; v, vy) + ag(v; v, v,), forall vi, vy, v, ~ v;
j 3> Up P j p
Vi(v) < 2.
Here
(32) Ao = max Vp;
1

13

~" denotes incidence, i.e. the existence of a connecting edge e; = vv; and, of
course, Vi (v) = a.(v; v, v) + 0w (v; v5, vp) + o (v vy, vp ), where v, v, vy ~ v,
etc.

Note that the first two inequalities represent the (extrinsic) embedding
condition, while the third one represents the intrinsic curvature (of the PL
manifold) at the vertex v.

For details and a fitting global embedding criterion see [67].

Remark 3.9. In Formula 3.1 the correct definition of the open neighbour-
hood of a vertex is essential (see the relevant discussion in Section 1).

4. Final remarks

We conclude with a number of concluding remarks regarding the feasibility
of this approach and sketching some further directions of study.

1) As it is clear by now to the reader, unfortunately we have no exper-
imental data with the metric Ricci flow (with the exception of the
related combinatorial curvature and flow). Therefore, the main future
task is to convert this into an algorithm and experiment with it on
triangular (or even more general polygonal) meshes.

2) In practice, especially in Imaging and Vision, one often wants to use
larger neighbourhoods (masks). Therefore, it would be useful to better
understand how to efficiently compute the Wald curvature for larger
neighbourhoods (2-star, 3-star neighbourhoods, etc.) and how to ef-
ficiently implement this calculation in a practical algorithm (see the
discussion in (1) above).

3) The previous observations conduct us naturally to muse upon the com-
putation complexity of the flow introduced in the present paper. This
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question is inherently divided into two parts: The computational com-
plexity of the calculating Wald curvature and, respectively, that of the
flow itself.

We have discussed the first aspect to some extent in Remarks 1.17
and 1.25, at least as far as the problem of computing embedding cur-
vature for triangular meshes is concerned. (In particular, we should
recall that, precisely like in the implementation of the combinatorial
Ricci flow (see also below) a mesh improvement method needs to be
applied first, thus complexity increasing accordingly.) If, however, one
wishes to reproduce the theoretical process and deal with smooth sur-
faces, then one has to make appeal to one of the standard smoothing
techniques available in the Graphics or Imaging arsenal of tools (such
as making appeal to splines, wavelets, etc.). Of course, in this case,
the complexity of the smoothing method compounds the basic one of
calculating the metric curvature.

As far as the complexity of the flow is concerned, we must empha-
size that in our basic approach, smoothing allows us to pass to the
classical flow, thus obtaining almost effortlessly its properties detailed
in Sections 2 and 3. If remaining in this rather theoretical setting, it
appears quite difficult to determine the complexity of the algorithm.
However, if we pass to the purely metric flow (see discussion below),
then the complexity of our method equates that of the combinatorial
flow of Gu et al. (for reasons that we shall expound upon shortly).
One would be tempted to extend this method to higher dimensional
manifolds, both for theoretical reasons and because of their applica-
tions (Medical Imaging, Video, etc.) However, it is not clear how to
correctly define a flow in this case: Indeed, 3-dimensional analogues of
all the pertinent results on the Ricci flow for smooth surfaces have,
by and large yet to be obtained. Moreover, even defining a metric
Ricci curvature in dimension 3 and higher is a daunting task. We have
proposed one such PL metric curvature for the case n = 3 in [68§],
and experiments with it, in collaboration with D. Gu, are currently
underway.

The most far-reaching results in this direction would be to develop a
purely metric Ricci flow, that is without making appeal to smoothings.
Some first, tentative results in this direction are presented in study.
One basic observation that has to be made is that the lack of sym-
metry that we mentioned when we first introduced the metric flow in
Section 1 will not not disappear by passing to the limit, and has to be
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dealt with in a different and direct manner. From symmetry reasons, a
natural way of defining the flow is (using the same notation as before):

dlij _ Kit+ K,
at 2 o

(4.1)

where in this case, K;, K; denote, of course, the Wald curvature at the
vertices v; and vj, respectively. It is also important to notice that, in
fact, this expression appears also in the practical method of comput-
ing the combinatorial curvature, where it is derived via the use of a
conformal factor (see [35]).

An important consequence of such a purely metric flow would be that,
precisely as in the case of combinatorial Ricci flow of Chow and Luo
[20], Equations (1.1) and 1.2) become — due to the fact that K; depends
only on the lengths of the edges l;;, and not on their derivatives —
ODE’s, instead of PDFE’s, thence they are easier to study and enjoy
better properties. In particular (and of importance in applications) the
metric flow will have the backward existence property.

Perhaps the most natural way of developing an efficient purely metric
flow would be to follow the same basic pattern as in the combinato-
rial flow of Gu et al., namely by first showing that the initial metric
prescribes the conformal class of the flow, i.e. the metric at time is
given by g = w¢(x)go, go being the initial metric, thus being able to
write the flow as heat type equation in w. In fact, this seems to be
a quite straightforward task if one is identifying (as we have done at
times in this paper) Wald and Alexandrov curvatures and if, further-
more, one is willing to make appeal to Richard’s recent results on Ricci
flow on Alexandrov surfaces [59]. However, we believe that this task
is achievable directly, without making appeal to such “ready made”
tools.

Since we have not discussed the relevance of the reversibility of the flow
when we first introduced it, in Section 2, it is perhaps better to empha-
size in this context its importance in a variety of Imaging and Graphics
tasks, such as morphing, registration, deformation estimates in medi-
cal images and sampling (or rather resampling). A more detailed study

6As already stressed before, our approach here is different from Richard’s work
(being much more direct and, in a sense, more elementary) and we became aware
of his work long after the paper was essentially written. We should also underline
(vet again) that our method facilitates concrete, computational treatment of the
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of some of these endeavors, at least from the more theoretical point of
view, represents work currently in progress.

We can hardly conclude this article without drawing a comparison,
even if only a brief one, between the metric flow proposed herein and
the combinatorial one of Gu et al. As already stressed in the intro-
duction, our approach lacks the elegance and esthetic allure of the
circle packing approach. Furthermore, as we have noted above, at this
point in time we are only beginning to develop an efficient method of
actual computation of the flow. However, as we also remarked, once
this is achieved, the two methods will probably perform with similar
computational effectiveness.

On the positive side, we should emphasize again that, even in the
absence of a concrete and practical method of computation, by passing
to the smooth case, we were able to obtain essentially effortlessly a
number of very important properties of the flow (some of which it
would seem we considered for the first time in the context of Imaging
and Graphics), such as uniqueness, reversibility, singularities formation
and embeddability in R3. This is the point to add, before we proceed
further, that the combinatorial flow also has the reversibility property,
precisely as our metric one.

On the other hand, the combinatorial flow is not realisable in R? (at
least no method of doing this is known to us), while the metric flow has
this capability. Therefore, the first one is ideally suited for such tasks
as, for instance, registration, where the flow evolves till T' = oo, i.e. to
the (simply connected) gauge surface of constant curvature; whereas
the metric flow is best fitted, due to the parallels with the classical
theory, for the study of short time evolution processes that appear in
such Imaging tasks as smoothing, sharpening and denoising.
Moreover, while due to its very definition, the combinatorial flow per-
forms at great efficiency in the context of Graphics where smooth
surfaces are subliminally presumed (if not the proclaimed norm). On
the other hand, the metric flow, given its definition, needs no smooth-
ness assumptions (even implicit one) and it performs as well on any
data, as long as a polygonal structure is assumed. Therefore, it appears
to be best suited for settings with “rough” data, such as Ultrasound
Imaging and even, perhaps, some Manifold Learning tasks.
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Appendix

We include here the modicum of differential topology needed (mainly in the
alternative proof of Proposition 1.6). Our source for this material is [49)].
We presume that the reader is familiar with the basic concepts (simplicial
complexes, triangulations, etc.) however, as a background text, we warmly
recommend Munkres’ notes [49].

Definition 4.1. 1) Let f: K — R" be a C" map, and let § : K — R be
a continuous function. Then g : |[K| — R is called a §-approzimation
to f iff:

(i) There exists a subdivision K’ of K such that g € C"(K',R");

(i) devet (£ (), 9(2)) < 8(z), for any = € |K|;

(iii) deuet (dfa(2), dga(z)) < 8(a) - deyer(x, a), for any a € |K| and for
all x € St(a, K').

2) Let K’ be a subdivision of K, U = U, and let f € C"(K,R"), g €
C"(K',R™). g is called a d-approzimation of f (on U) iff conditions (ii)
and (iii) above hold for any a € U.

(Here St(a, K) denotes, as it standardly does, the star of a (in K), i.e.

St(a7 K) = UaEa,JEK g.

Recall that in the PL context the differential (of a map) is defined as
follows:
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Definition 4.2. Let o be a simplex, and let f : 0 = R", f € C".If a € 0 we
define df, : 0 — R"™ as follows: df,(z) = Df(a)-(x—a), where D f(a) denotes
the Jacobian matrix Df(a) = (9fi/0x?)1<i j<n, computed with respect to
some orthogonal coordinate system contained in II(c), where II(o) is the
hyperplane determined by o. The map df, : 0 — R” does not depend upon
the choice of this coordinate system.

Moreover, dfy|nr is well defined, for any o, 7 € St(a, K). Therefore the
map df, : St(a, K) — R" is well-defined and continuous, and it is called —
analogous to the case of differentiable manifolds, the differential of f.

Definition 4.3. Let K’ be a subdivision of K and let f € C"(K,R"), g €
C"(K',R™) be non-degenerate mappings (i.e. rank(f|,) = rank(gls) = dim o,

for any 0 € K) and let U = U C |K|. The mapping g is called an «-
approzimation (of f on U) iff:

(4.2) Z(dfa(z),dga(z)) < a; for any a € U, and any x € St(a, K'), a # =.

As expected, a fine enough d-approximation is also an a-approximation:

Lemma 4.4 ([49], Lemma 8.7). Let K be a (finite) simplicial complex and
let f: K — R"™ be a non-degenerate C",1 < r < oo map. Then, for any
a > 0, there exists 6 = d(a) > 0 such that any non-degenerate C" map
g : K' — R"™, which is a §-approximation of f on some open set U, is also

an a-approzimation of f on U. (Here K' denotes, as above, a subdivision of

We conclude the appendix with the following definition:

Definition 4.5. Let f € C"(K) and let s be a simplex, s < ¢ € K. Then
the linear map: Ls : s — R", defined by Ls(v) = f(v) where v is a vertex of
s, is called the secant map induced by f.
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